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Abstract 
 

This year marks the 80th anniversary of the origin of the research problem (see [1]), 

later called the problem of large deviations. And after the appearance in early 2000 

of its alternative (see [4]-[6]), the original version it was natural to call it a classic. 

In this work, it is proposed to resume the study of both options in the simplest, one-

dimensional case, i.e. take the first step in a certain direction. More precisely, In this 

and subsequent work of M. V. Maslikhin, a comparison of representations of large 

deviations obtained in the classical (in the style [3]) and alternative (in the style [6]) 

cases for the normalized sums of the i.i.d.r.v’s. and 10 (5 in each work) of different 

distributions of the summands of these sums is carried out. To conduct this analysis 

has proven difficult, but the conclusions that they allowed us to make were very 

interesting. 

 

Keywords: classical and alternative versions of representations of large 

deviations, the deviation function and its "analogue". 

 

1  Introduction 
 

Among the limit theorems of the probability theory the problem of large deviations (LD) 

occupies a prominent place. The beginning of its research was laid in the article [1]. And over the 

past 40 years, by the works of Borovkov A.A. and his disciples (mainly) it has moved forward very 

much. Moreover, as noted on page IX in [2], interest in LD resumed in the late 90-ies of the 20th 

century and on two grounds. I will note the second: LD estimates have proved their ability to solve 

many problems in statistics, statistical mechanics and in the field of applied probability theory. 

But, of course, there were also the simplest statements of this problem for students, as in [3]. On 

the other hand, for a long time there was no alternative approach to its analysis, which is not 

always good. And if I’m not mistaken, it was first proposed in articles [4]-[6].  

In the present article (and another article of this collection) an attempt is made to compare 

the representations of LD for the normalised sums of i.i.d.r.v’s. obtained in the classical version 

from [3] and in the alternative from [6] for several specific one-dimentional distributions of the 

summands of these sums. Their appearance is specified below, and for the 5 distributions in each 

article. And at the same time we wanted to understand not only how much easier the 

representation is in one case compared to the other, which is due to its practical usefulness, but 

also the complexity of the process of obtaining it. We express our opinion about these sides of 

ideas not only here, in conclusion, but also in the above article of Maslikhin M. V..  

 On the view of representations in both cases. First, let’s clarify what type of views we 

will compare, and what elements of these views will have to be searched in each of the 5 cases.  
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1. Let’s start by the representation of LD from theorem 1 in [6]  

 

 𝑃(𝑆𝑛 > 𝑥𝑠𝑛) =
𝜑𝑛(𝑧)𝑒−𝜆𝑥

𝑐𝜎(𝑧)√2𝜋
 (1 + 𝛿𝑛(𝜆)),                                               (1) 

 

  𝑤ℎ𝑒𝑟𝑒   𝛿𝑛(𝜆) = 2휃𝛼(𝑧)𝑐𝜎(𝑧)√2𝜋 − [1 − 𝐽(𝑐𝜎(𝑧))], 𝐽(𝑡) =
𝑡(1−Φ(𝑡))

Φ′(𝑡)
,                    (2) 

𝑆𝑛 = ∑  𝑛1 𝑋𝑙 , 𝑠𝑛
2 = 𝐷𝑆𝑛 , 𝑐 = 𝜆/𝑑, 휃 is such number, for which |휃| ≤ 1 (the remaining elements are 

defined below). 

It is performed under assumpsions  
 𝐸𝑋𝑙 ≡ 0,          𝑑

2 ≡ 𝐷𝑋𝑙 > 0,                                                         (3) 

 

 𝜑(𝜆) ≡ 𝐸𝑒𝜆𝑋1 < ∞,      0 ≤ 𝜆 < Δ,                                                   (4) 

under any 0 < 𝜆 < 𝑠𝑛Δ = 𝑑Δ√𝑛. 

The connection of the auxiliary parametre 𝜆 with the main one 𝑥 is given by equivalent 

equations.  

 𝑥 = 𝐸휁 (𝜆;
𝑆𝑛

𝑠𝑛
)    ⇔     𝑥 =

𝑛

𝑠𝑛
 𝑚(𝑧),    𝑧 =

𝜆

𝑠𝑛
.                                        (5) 

In the first, which determines this relationship, the so-called Cramer transformation 휁 = 휁(𝜆; 휂) of a 

r.v. 휂 is used (instead of the deviation function), i.e. a r.v., the distribution of which is determined 

by the equality  

 𝑑𝑃(휁 < 𝑦) =
𝑒𝜆𝑦

𝜑(𝜆)
 𝑑𝑃(휂 < 𝑦). 

However, any specific distribution further, i.e. it’s representing r.v. 𝜉 is connected with 𝑋1 as 

follows: 𝑋1 = 𝜉 − 𝐸𝜉.  

For each 𝜉 we will look for the following elements of the representation (1):  

 𝜑(𝜆),    𝑚(𝜆) = 𝐸휁 =
𝜑′

𝜑
, 𝜎2(𝜆) = 𝐷휁 =

𝜑′′𝜑−𝜑′2

𝜑2
, 𝛼 = 𝛼(𝜆, 𝑋1) =                     (6) 

 

 sup
𝑡
|𝐻(𝑡) − Φ(𝑡)|,    𝐻(𝑡) = 𝑃(휁 < 𝑥 + 𝜎𝑡), Φ(𝑡) =

1

√2𝜋
∫  
𝑡

−∞
𝑒−𝑦

2/2𝑑𝑦. 

In them, 3 functions are defined by the value 휁 = 휁(𝜆; 𝑋1), and the connection of parameters 𝑥 and 

𝜆 of (5) is proved in theorem 1.  

2. We also consider the representation of LD from theorem 13 on page 183 of [3],  

 𝑃(𝑆𝑛 ≥ 𝑦)~
1

𝜎𝛼𝜆(𝛼)√2𝜋𝑛
 exp{−𝑛Λ(𝛼)},                                                  (7) 

where 𝑆𝑛 = Σ1
𝑛𝑋𝑙 , 𝑠𝑛

2 = 𝐷𝑆𝑛 . Only Borovkov uses 𝜉𝑙 insted of 𝑋𝑙 we have, but in any case, the 

i.i.d.r.v. 𝑋𝑙 satisfy conditions  
 𝐸𝑋𝑙 ≡ 0,          𝐷𝑋𝑙 = 1,                                                            (8) 

 

 ∃𝜆 > 0:      𝜓(𝜆) = 𝐸𝑒𝜆𝑋1 < ∞                                                  (9) 

and (7) is fulfilled if, in addition to (9) (i.e. Cramer’s condition), there are  

 
𝑦

√𝑛
→ ∞,          limsup

𝑛→∞

𝑦

𝑛
< 𝛼+ =

𝜓′(𝜆+)

𝜓(𝜆+)
,                                       (10) 

and also h.f. 𝜓𝑚(𝑡), for example, is integrable for some whole 𝑚 ≥ 1. And recall, that 𝜆+ =
sup{𝜆:  𝜓(𝜆) < ∞}.  

But in addition to the values 𝜆+, 𝛼+, we will look for functions first  
 Λ(𝛼),      𝜆(𝛼),      𝜎𝛼 ,                                                        (11) 

defined below. And, as before, it will have to start with figuring out the functions (in paragraph 1 

all the same, except 𝛼(𝜆, 𝑋1))  

 𝜓(𝜆),      𝜓′(𝜆),      𝑚(𝜆) =
𝜓′(𝜆)

𝜓(𝜆)
,      𝑚′(𝜆), 

that is, with the ch.f. of summands in the sum of 𝑆𝑛 and their simplest transformations.  

The  deviation function determines the first equality and the second is true:  

 Λ(𝛼) = sup
𝜆
(𝛼𝜆 − ln𝜓(𝜆)) = 𝛼𝜆(𝛼) − ln𝜓(𝜆(𝛼)).                                 (12) 

Point of 𝜆(𝛼), in which is achieved the value of Λ(𝛼), is determined from  
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𝜓′(𝜆(𝛼))

𝜓(𝜆(𝛼))
= 𝛼,                                                                        (13) 

since the derivative of the function 𝛼𝜆 − ln𝜓(𝜆) in this point is 0, and (ln𝜓(𝜆))′ = 𝜓′(𝜆)/𝜓(𝜆). But 

the relation between Λ and 𝜆 can be set by equality  

 Λ(𝛼) = ∫  
𝛼

0
𝜆(𝑢)𝑑𝑢                                                                  (14) 

also, since Λ(0) = 𝜆(0) = 0 in force (12), and when using (13) we have  
 Λ′(𝛼) = 𝜆(𝛼) + 𝛼𝜆′(𝛼) − 𝜓′(𝜆(𝛼))/𝜓(𝜆(𝛼))𝜆′(𝛼) = 𝜆(𝛼). 

It remains to clarify the search of 𝜎𝛼 and how it is related to the parameters 𝛼 and 𝛼+.  

First, about the parameter 𝛼. In theorems 12 and 13 of [3], p. 182, 𝛼 = 𝑦/𝑛. Allocated 

interval 0 < 𝛼 <   𝑎𝑙𝑝ℎ𝑎+ is simply a gap containing the maximum point of the deviation function. 

And the parameter 𝜎𝛼 is determined by the Cramer transformation 𝜉(𝛼) of the initial value 𝑋1, i.e. 

r.v. (for 𝜆 = 𝜆(𝛼)), which has the following distribution function  

 𝐺(𝑦) =
1

𝜓(𝜆)
∫  
𝑦

−∞
𝑒𝜆𝑡𝑑𝑃(𝑋1 < 𝑡):                                                    (15) 

 

 𝐸𝜉(𝛼) =
𝜓′(𝜆(𝛼))

𝜓(𝜆(𝛼))
= 𝛼,    𝐷𝜉(𝛼) =

𝜓′′(𝜆(𝛼))

𝜓(𝜆(𝛼))
− 𝛼2 ≡ 𝜎𝛼

2 > 0, 

 
  𝑖𝑛  𝑜𝑡ℎ𝑒𝑟  𝑤𝑜𝑟𝑑𝑠   𝜎𝛼

2 = 𝑚′(𝜆(𝛼)). (16) 

In this case, any specific distribution further, i.e. representing it r.v. 𝜉, will have to be linked with 

𝑋1 here a bit differently in effect (8):  

 𝑋1 =
𝜉−𝐸𝜉

√𝐷𝜉
, 

compared to the alternative approach, it is higher. 

And then we consider 5 concrete distributions of r.v. 𝜉 and in each of them we distinguish 

3 parts: 1) introduction, in which we recall the known and necessary characteristics of the 

distribution, and then obtaining the elements of the representation 2) in (1) and 3) in (7). In 

conclusion, we give a table of (pairwise) representations (1) and (7) in each of 5 cases for 

comparison. 

 

2  Results 
 

  1. Geometric distribution  

 

In this case 𝑃(𝜉 = 𝑘) = 𝑝𝑞𝑘, 𝑘 = 0,1,2,⋯ , 𝑞 = 1 − 𝑝, 0 < 𝑝 < 1, 

and it is known that  

 𝐸𝜉 =
𝑞

𝑝
,      𝑑2 = 𝐷𝜉 =

𝑞

𝑝2
,      𝑓(𝑡) = 𝐸𝑒𝑡𝜉 =

𝑝

1−𝑞𝑒𝑡
. 

1.1 It follows that  

 𝜑(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−𝑞/𝑝) =
𝑝𝑒−𝜆𝑞/𝑝

1−𝑞𝑒𝜆
< ∞,    0 ≤ 𝜆 < ln(1/𝑞) = Δ, 

 

 𝜑′(𝜆) =
−𝑞𝑒−𝜆𝑞/𝑝(1−𝑞𝑒𝜆)+𝑞𝑒𝜆𝑝𝑒−𝜆𝑞/𝑝

(1−𝑞𝑒𝜆)2
=

𝑞𝑒−𝜆𝑞/𝑝(𝑒𝜆−1)

(1−𝑞𝑒𝜆)2
, 

 

 𝑚(𝜆) = 𝐸휁 =
𝜑′(𝜆)

𝜑(𝜆)
=

𝑞(𝑒𝜆−1)

𝑝(1−𝑞𝑒𝜆)
> 0,    0 < 𝜆 < Δ, 휁 = 휁(𝜆, 𝑋1), 

 

 𝜎2(𝜆) = 𝐷휁 = 𝑚′(𝜆) =
𝑞𝑒𝜆𝑝(1−𝑞𝑒𝜆)+𝑞𝑒𝜆𝑝𝑞(𝑒𝜆−1)

𝑝2(1−𝑞𝑒𝜆)2
=

𝑞𝑒𝜆

(1−𝑞𝑒𝜆)2
. 

Thus,  

 𝜎(𝑧) =
𝑒𝑧/2√𝑞

1−𝑞𝑒𝑧
,      𝜑(𝑧) =

𝑝𝑒−𝑧𝑞/𝑝

1−𝑞𝑒𝑧
,    (𝑧) =

𝑞(𝑒𝑧−1)

𝑝(1−𝑞𝑒𝑧)
,      0 < 𝑧 < Δ. 

Note that 𝛼(𝑧) is well-defined in(19) from [5], and 𝑐𝜎(𝑧)√2𝜋 = 𝑧𝜎(𝑧)√2𝜋𝑛.  
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1.2 In this case  

 𝜓(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝑝𝜉−𝑞)/√𝑞 =
𝑝𝑒−𝜆√𝑞

1−𝑞𝑒𝜆𝑝/√𝑞
< ∞,    0 ≤ 𝜆 < √𝑞

𝑝
ln(1/𝑞) = 𝜆+, 

 

 𝜓′(𝜆) =
−𝑝√𝑞𝑒

−𝜆√𝑞(1−𝑞𝑒𝜆𝑝/√𝑞)+𝑝√𝑞𝑒
𝜆𝑝/√𝑞𝑝𝑒−𝜆√𝑞

(1−𝑞𝑒𝜆𝑝/√𝑞)2
=

𝑝√𝑞𝑒
−𝜆√𝑞(𝑒𝜆𝑝/√𝑞−1)

(1−𝑞𝑒𝜆𝑝/√𝑞)2
, 

 

 𝑚(𝜆) =
𝜓′(𝜆)

𝜓(𝜆)
=

𝑝√𝑞𝑒
−𝜆√𝑞(𝑒𝜆𝑝/√𝑞−1)

(1−𝑞𝑒𝜆𝑝/√𝑞)2

(1−𝑞𝑒𝜆𝑝/√𝑞)

𝑝𝑒−𝜆√𝑞
= √𝑞(𝑒

𝜆𝑝/√𝑞−1)

1−𝑞𝑒𝜆𝑝/√𝑞
, 

 

 𝛼+ =
𝜓′(𝜆+)

𝜓(𝜆+)
= √𝑞(1/𝑞−1)

1−𝑞(1/𝑞)
= ∞. 

Let’s start further with obtaining 𝜆(𝛼) using the equation (13):  

 
𝜓′(𝜆(𝛼))

𝜓(𝜆(𝛼))
= 𝛼      ⇔     √

𝑞(𝑒𝜆𝑝/√𝑞−1)

1−𝑞𝑒𝜆𝑝/√𝑞
= 𝛼. 

 

 𝜆(𝛼) = √𝑞

𝑝
ln (

𝛼+√𝑞

𝛼𝑞+√𝑞
). 

Then use (12) to get Λ(𝛼):  

 𝑒−𝜆(𝛼)√𝑞 = √𝑞

𝑝
ln (

𝛼+√𝑞

𝛼𝑞+√𝑞
)
−
𝑞

𝑝
, 𝑒

𝜆(𝛼)
√𝑞

𝑝 =
𝛼+√𝑞

𝛼𝑞+√𝑞
, 1 − 𝑞𝑒

𝜆(𝛼)
√𝑞

𝑝 =
𝑝√𝑞

𝛼𝑞+√𝑞
, 

 

 𝜓(𝜆(𝛼)) = 𝑝 (
𝛼+√𝑞

𝛼𝑞+√𝑞
)
−
𝑞

𝑝 𝛼𝑞+√𝑞

𝑝√𝑞
=

1

√𝑞
(𝛼 + √𝑞)−𝑞/𝑝(𝛼𝑞 + √𝑞)1/𝑝, 

 

 Λ(𝛼) =
𝛼√𝑞

𝑝
ln (

𝛼+√𝑞

𝛼𝑞+√𝑞
) − ln {(

𝛼+√𝑞

𝛼𝑞+√𝑞
)
−
𝑞

𝑝
(𝛼𝑞 + √𝑞)} + ln√𝑞 = 

 

 √𝑞

𝑝
(𝛼 + √𝑞)ln(𝛼 + √𝑞) −

1

𝑝√𝑞
(𝛼𝑞 + √𝑞)ln(𝛼𝑞 + √𝑞) + ln√𝑞. 

You can check the expression found by using (14):  

 Λ(𝛼) = ∫  
𝛼

0
𝜆(𝑢)𝑑𝑢 = √𝑞

𝑝
(∫  

𝛼

0
ln(𝑢 + √𝑞)𝑑𝑢 − ∫  

𝛼

0
ln(𝑢𝑞 + √𝑞)𝑑𝑢), 

 

 ∫  
𝛼

0
ln(𝑢 + √𝑞)𝑑𝑢 = 𝛼ln(𝛼 + √𝑞) − 𝛼 + √𝑞(ln(𝛼 + √𝑞) − ln√𝑞), 

 

 ∫  
𝛼

0
ln(𝑢𝑞 + √𝑞)𝑑𝑢 = 𝛼ln(𝛼𝑞 + √𝑞) − 𝛼 +

1

√𝑞
(ln(𝛼𝑞 + √𝑞) − ln√𝑞), 

 

 Λ(𝛼) = √𝑞

𝑝
{𝛼ln(𝛼 + √𝑞) − 𝛼 + √𝑞(ln(𝛼 + √𝑞) − ln√𝑞) − 

 

 [𝛼ln(𝛼𝑞 + √𝑞) − 𝛼 +
1

√𝑞
(ln(𝛼𝑞 + √𝑞) − ln√𝑞)]}, 

 

 Λ(𝛼) = √𝑞

𝑝
(𝛼 + √𝑞)ln(𝛼 + √𝑞) −

1

𝑝√𝑞
(𝛼𝑞 + √𝑞)ln(𝛼𝑞 + √𝑞) + ln√𝑞. 

It remains to find 𝜎𝛼
2. But  

 𝑚′(𝜆) = (√
𝑞(𝑒𝜆𝑝/√𝑞−1)

1−𝑞𝑒𝜆𝑝/√𝑞
) =

𝑝𝑒𝜆𝑝/√𝑞(1−𝑞𝑒𝜆𝑝/√𝑞)+𝑞𝑝𝑒𝜆𝑝/√𝑞(𝑒𝜆𝑝/√𝑞−1)

(1−𝑞𝑒𝜆𝑝/√𝑞)2
 

 

 =
𝑝2𝑒𝜆𝑝/√𝑞

(1−𝑞𝑒𝜆𝑝/√𝑞)2
,        

 

 𝜎𝛼
2 = 𝑚′(𝜆(𝛼)) =

𝑝2(𝛼+√𝑞)

𝛼𝑞+√𝑞
(
𝛼𝑞+√𝑞

𝑝√𝑞
)
2

=
1

𝑞
(𝛼 + √𝑞)(𝛼𝑞 + √𝑞) = 

 

 (𝛼/√𝑞 + 1)(𝛼√𝑞 + 1) = 𝛼2 + 𝛼(√𝑞 + 1/√𝑞) + 1 > (𝛼 + 1)2,      ∀𝑞, 0 < 𝑞 < 1. 
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  2. Poisson distribution  

 

In this case 𝑃(𝜉 = 𝑘) =
𝜈𝑘

𝑘!
 𝑒𝜈 ,      𝑘 = 0,1,2,⋯ ,      𝑛𝑢 > 0, and  

 𝐸𝜉 = 𝜈,      𝑑2 = 𝐷𝜉 = 𝜈,      𝑓(𝑡) = 𝐸𝑒𝑡𝜉 = 𝑒𝜈(𝑒
𝑡−1) < ∞,    > 0. 

2.1 It follows that  

 𝜑(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−𝜈) = 𝑒𝜈(𝑒
𝜆−𝜆−1) < ∞,    0 ≤ 𝜆 < ∞ = Δ, 

 

 𝜑′(𝜆) = 𝜈(𝑒𝜆 − 1)𝑒𝜈(𝑒
𝜆−𝜆−1), 

 

 𝑚(𝜆) = 𝐸휁 =
𝜑′(𝜆)

𝜑(𝜆)
= 𝜈(𝑒𝜆 − 1) > 0,      𝜆 > 0, 

 

 𝜎2(𝜆) = 𝐷휁 = 𝑚′(𝜆) = 𝜈𝑒𝜆. 

Thus  

 𝜎(𝑧) = √𝜈 𝑒𝑧/2,      𝜑(𝑧) = 𝑒𝜈(𝑒
𝑧−𝑧−1),    (𝑧) = 𝜈(𝑒𝑧 − 1),      0 < 𝑧 < ∞. 

2.2 In this case  

 𝜓(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−𝜈)/√𝜈 = 𝑒𝜈(𝑒
𝜆/√𝜈−𝜆/√𝜈−1) < ∞,      0 ≤ 𝜆 < ∞ = 𝜆+, 

 

 𝜓′(𝜆) = √𝜈(𝑒𝜆/√𝜈 − 1)𝑒𝜈(𝑒
𝜆/√𝜈−𝜆/√𝜈−1), 

 

 𝑚(𝜆) =
𝜓′(𝜆)

𝜓(𝜆)
= √𝜈(𝑒𝜆/√𝜈 − 1),        𝛼+ = 𝑚(𝜆+) = ∞. 

Let’s start further with obtaining 𝜆(𝛼) using the equation (13):  

 

 
𝜓′(𝜆(𝛼))

𝜓(𝜆(𝛼))
= 𝛼      ⇔     √𝜈(𝑒𝜆(𝛼)/√𝜈 − 1) = 𝛼. 

 

 𝜆(𝛼) = √𝜈ln(1 + 𝛼/√𝜈). 

Then use (12) to get Λ(𝛼):  

 𝜓(𝜆(𝛼)) = 𝑒𝜈(1+𝛼/√𝜈−ln(1+𝛼/√𝜈)−1) =
𝑒𝛼√𝜈

(1+𝛼/√𝜈)𝜈
, 

 

 ln𝜓(𝜆(𝛼)) = 𝜈(𝛼/√𝜈 − ln(1 + 𝛼/√𝜈)), 

 

 Λ(𝛼) = 𝛼√𝜈ln(1 + 𝛼/√𝜈) − 𝛼√𝜈 + 𝜈ln(1 + 𝛼/√𝜈) = 

 

 𝜈[(1 + 𝛼/√𝜈)ln(1 + 𝛼/√𝜈) − 𝛼/√𝜈]. 

Finding 𝜎𝛼
2 is easier this time:  

 𝑚′(𝜆) = 𝑒𝜆/√𝜈     ⇒     𝜎𝛼
2 = 𝑚′(𝜆(𝛼)) = 𝑒𝜆(𝛼)/√𝜈 = 1 + 𝛼/√𝜈. 

 

 

  3. Exponential distribution  

 

The density of this distribution is 𝑝(𝑥) = 𝜇𝑒−𝜇𝑥, 𝑥 ≥ 0  (𝜇 > 0), with  

 𝐸𝜉 = 1/𝜇,      𝑑2 = 𝐷𝜉 = 1/𝜇2,    𝑓(𝑡) = 𝐸𝑒𝑡𝜉 =
𝜇

𝜇−𝑡
< ∞,      0 < 𝑡 < 𝜇. 

3.1 It follows that  

 𝜑(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−1/𝜇) =
𝜇𝑒−𝜆/𝜇

𝜇−𝜆
< ∞,      0 < 𝜆 < 𝜇 = Δ, 

 

 𝜑′(𝜆) =
−𝑒−𝜆/𝜇(𝜇−𝜆)+𝜇𝑒−𝜆/𝜇

(𝜇−𝜆)2
=

𝜆𝑒−𝜆/𝜇

(𝜇−𝜆)2
, 
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 𝑚(𝜆) = 𝐸휁 =
𝜑′(𝜆)

𝜑(𝜆)
=

𝜆

𝜇(𝜇−𝜆)
, 

 

 𝜎2(𝜆) = 𝐷휁 = 𝑚′(𝜆) =
𝜇(𝜇−𝜆)+𝜆𝜇

𝜇2(𝜇−𝜆)2
=

1

(𝜇−𝜆)2
. 

Thus  

 𝜎(𝑧) =
1

𝜇−𝑧
,      𝜑(𝑧) =

𝜇𝑒−𝑧/𝜇

𝜇−𝑧
,    (𝑧) =

𝑧

𝜇(𝜇−𝑧)
. 

3.2 In this case  

 𝜓(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜇𝜉−1) =
𝜇𝑒−𝜆

𝜇−𝜆𝜇
=

𝑒−𝜆

1−𝜆
< ∞,      0 < 𝜆 < 1 = 𝜆+, 

 

 𝜓′(𝜆) =
−𝑒−𝜆(1−𝜆)+𝑒−𝜆

(1−𝜆)2
=

𝜆𝑒−𝜆

(1−𝜆)2
, 

 

 𝑚(𝜆) =
𝜆

1−𝜆
,          𝛼+ = 𝑚(𝜆+) = ∞. 

Let’s start further with obtaining 𝜆(𝛼) using the equation (13):  

 
𝜓′(𝜆(𝛼))

𝜓(𝜆(𝛼))
= 𝛼      ⇔     

𝜆

1−𝜆
= 𝛼  ⇒   𝜆(𝛼) =

𝛼

1+𝛼
. 

Then use (12) to get Λ(𝛼):  

 𝜓(𝜆(𝛼)) =
𝑒
−

𝛼
1+𝛼

1−
𝛼

1+𝛼

= (1 + 𝛼)𝑒−
𝛼

1+𝛼,    ln𝜓(𝜆(𝛼)) = ln(1 + 𝛼) −
𝛼

1+𝛼
, 

 

 Λ(𝛼) = 𝛼
𝛼

1+𝛼
+

𝛼

1+𝛼
− ln(1 + 𝛼) = 𝛼 − ln(1 + 𝛼). 

Finding 𝜎𝛼
2 is even easier this time: 𝜎𝛼

2 = 𝑚′(𝜆(𝛼)) = (1 + 𝛼)2. 

 

  4. 𝝌𝟐 −distribution with 𝒌 degrees of freedom  

 

A random variable 𝜉 has such a distribution if its density  

 𝑝(𝑥) =
𝑒−𝑥/2

2𝑘/2Γ(𝑘/2)
 𝑥𝑘/2−1,    𝑥 > 0. 

In this case 𝐸𝜉 = 𝑘,      𝑑2 = 𝐷𝜉 = 2𝑘,    𝑓(𝑡) = 𝐸𝑒𝑡𝜉 = (1 − 2𝑡)−𝑘/2. 

4.1 It follows that  

 𝜑(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−𝑘) =
𝑒−𝜆𝑘

(1−2𝜆)𝑘/2
< ∞,      0 ≤ 𝜆 < 1/2 = Δ, 

 

 𝜑′(𝜆) =
−𝑘𝑒−𝜆𝑘(1−2𝜆)𝑘/2+𝑘(1−2𝜆)𝑘/2−1 𝑒−𝜆𝑘

(1−2𝜆)𝑘
=

2𝑘𝜆𝑒−𝜆𝑘

(1−2𝜆)𝑘/2+1
. 

 

 𝑚(𝜆) =
𝜑′(𝜆)

𝜑(𝜆)
=

2𝑘𝜆

1−2𝜆
, 𝜎2(𝜆) = 𝑚′(𝜆) =

2𝑘(1−2𝜆)+2[2𝑘𝜆]

(1−2𝜆)2
=

2𝑘

(1−2𝜆)2
. 

Thus  

 𝜎(𝑧) =
√2𝑘

1−2𝑧
,          𝜑(𝑧) =

𝑒−𝑘𝑧

(1−2𝑧)𝑘/2
,          𝑚(𝑧) =

2𝑘𝑧

1−2𝑧
. 

4.2 In this case 𝑏 = √𝑘/2  

 𝜓(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−𝑘)/√2𝑘 =
𝑒−𝜆𝑏

(1−𝜆/𝑏)𝑘/2
< ∞,      0 ≤ 𝜆 < 𝑏 = 𝜆+, 

 

 𝜓′(𝜆) =
−𝑏𝑒−𝜆𝑏(1−𝜆/𝑏)𝑏

2
+𝑏(1−𝜆/𝑏)𝑏

2−1𝑒−𝜆𝑏

(1−𝜆/𝑏)𝑘
=

𝜆𝑒−𝜆𝑏

(1−𝜆/𝑏)𝑘/2+1
, 

 

 𝑚(𝜆) = 𝐸휁 =
𝜑′(𝜆)

𝜑(𝜆)
=

𝜆

1−𝜆/𝑏
,        𝛼+ = 𝑚(𝜆+) = ∞. 

Let’s start further with obtaining 𝜆(𝛼) using the equation (13):  

 
𝜓′(𝜆(𝛼))

𝜓(𝜆(𝛼))
= 𝛼      ⇔     

𝜆

1−𝜆/𝑏
= 𝛼  ⇒   𝜆(𝛼) =

𝛼𝑏

𝛼+𝑏
. 

Then use (12) to get Λ(𝛼):  

 𝜓(𝜆(𝛼)) = (
𝛼+𝑏

𝑏
)
𝑏2

𝑒−
𝑏2𝛼

𝛼+𝑏,    ln𝜓(𝜆(𝛼)) = 𝑏2[ln(𝛼 + 𝑏) − ln𝑏] −
𝑏2𝛼

𝛼+𝑏
, 



 
Zhulenev S.  
THE PROBLEM OF LARGE DEVIATIONS. PART 1 

RT&A, No 2 (49) 
Volume 13, June 2018  

63 

 

 Λ(𝛼) =
𝛼2𝑏+𝛼𝑏2

𝛼+𝑏
− 𝑏2[ln(𝛼 + 𝑏) − ln𝑏] = 𝑏𝛼 − 𝑏2[ln(𝛼 + 𝑏) − ln𝑏]. 

Search 𝜎𝛼
2 and this time simple:  

 𝑚′(𝜆) =
1−𝜆/𝑏+𝜆/𝑏

(1−𝜆/𝑏)2
= (

𝑏

𝑏−𝜆
)
2

    ⇒   𝜎𝛼
2 = 𝑚′(𝜆(𝛼)) = (

𝛼+𝑏

𝑏
)
2

. 

 

 

  5. Triangular distribution on the segment [𝒂, 𝒃]  

 

In this case, the density of r.v. 𝜉 and other indicators are  

 𝑝(𝑥) =
2

𝑏−𝑎
(1 −

|𝑎+𝑏−2𝑥|

𝑏−𝑎
) ,      𝑥 ∈   [𝑎, 𝑏], 

 

 𝐸𝜉 =
𝑎+𝑏

2
,    𝐷𝜉 =

(𝑏−𝑎)2

24
= 𝑑2, (𝑡) = 𝐸𝑒𝑡𝜉 = [

2(𝑒𝑡𝑏/2−𝑒𝑡𝑎/2)

𝑡(𝑏−𝑎)
]
2

. 

 

5.1 At this time (𝑐 = (𝑎 + 𝑏)/2, 𝛿 = (𝑏 − 𝑎)/2)  

 𝜑(𝜆) = 𝐸𝑒𝜆(𝜉−𝑐) = [
2(𝑒𝜆𝛿/2−𝑒−𝜆𝛿/2)

𝜆(𝑏−𝑎)
]
2

= [
(𝑒𝜆𝛿/2−𝑒−𝜆𝛿/2)

𝜆𝛿
]
2

, 

 

 𝜑′(𝜆) = 2(
𝑒
𝜆𝛿
2 −𝑒

−
𝜆𝛿
2

𝜆𝛿
)
𝛿

2
(𝑒
𝜆𝛿
2 +𝑒

−
𝜆𝛿
2 )𝜆𝛿−𝛿(𝑒

𝜆𝛿
2 −𝑒

−
𝜆𝛿
2 )

𝜆2𝛿2
= 

 

 
𝑒𝜆𝛿−𝑒−𝜆𝛿

𝜆2𝛿
−

2(𝑒𝜆𝛿/2−𝑒−𝜆𝛿/2)2

𝜆3𝛿2
, (𝜆) = 𝛿 (

𝑒𝜆𝛿/2+𝑒−𝜆𝛿/2

𝑒𝜆𝛿/2−𝑒−𝜆𝛿/2
) −

2

𝜆
, 

 

 𝜎2(𝜆) = 𝐷휁 = 𝑚′(𝜆) =
𝛿2

2
[1 − (

𝑒𝜆𝛿/2+𝑒−𝜆𝛿/2

𝑒𝜆𝛿/2−𝑒−𝜆𝛿/2
)
2

] +
2

𝜆2
, 

5.2 In this case (𝛾 = 𝛿/2𝑑 = √3/2)  

 𝜓(𝜆) = 𝐸𝑒𝜆𝑋1 = 𝐸𝑒𝜆(𝜉−𝑐)/𝑑 = (
𝑒𝜆𝛾−𝑒−𝜆𝛾

2𝜆𝛾
)
2

< ∞,    0 ≤ 𝜆 < ∞ = 𝜆+, 

 

 𝜓′(𝜆) = 2 (
𝑒𝜆𝛾−𝑒−𝜆𝛾

2𝜆𝛾
) [

𝛾(𝑒𝜆𝛾+𝑒−𝜆𝛾)2𝜆𝛾−2𝛾(𝑒𝜆𝛾−𝑒−𝜆𝛾)

(2𝜆𝛾)2
] = 

 

 
2

𝜆
[
𝑒2𝜆𝛾−𝑒−2𝜆𝛾

4𝜆𝛾
− (

𝑒𝜆𝛾−𝑒−𝜆𝛾

2𝜆𝛾
)
2

], 

 

 𝑚(𝜆) =
𝜓′(𝜆)

𝜓(𝜆)
=

2

𝜆
(
𝜆𝛾(𝑒𝜆𝛾+𝑒−𝜆𝛾)

𝑒𝜆𝛾−𝑒−𝜆𝛾)
− 1) , 𝛼+ = 𝑚′(𝜆+) = ∞. 

 

 𝑚′(𝜆) = 2𝛾2 [1 −
(𝑒𝜆𝛾+𝑒−𝜆𝛾)2

(𝑒𝜆𝛾−𝑒−𝜆𝛾)2
+

1

(𝜆𝛾)2
], 

Basic rates 𝜆(𝛼), Λ(𝛼), 𝜎𝛼
2 are defined from the equality:  

 𝑚(𝜆(𝛼)) = 𝛼,      𝜎𝛼
2 = 𝑚′(𝜆(𝛼)),    Λ(𝛼) = 𝛼𝜆(𝛼) − ln 𝜓(𝜆(𝛼)). 

As you can see, the main thing is the definition of 𝜆(𝛼) from the first equation. We haven’t decided 

yet. 

 

 

  Two types of representations that arise  

 

1. Representation  

 𝑃(𝑆𝑛 > 𝑥𝑠𝑛) =
𝜑𝑛(𝑧)𝑒−𝜆𝑥

𝑐𝜎(𝑧)√2𝜋
(1 + 𝛿𝑛(𝜆)), (1) 

in which the main parameter 𝑥 is associated with the auxiliary 𝜆 by equality  
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 𝑥 =
𝑛

𝑠𝑛
 𝑚(𝑧), 𝑧 = 𝜆/𝑠𝑛 , 

is true under (3), (4) for any 0 < 𝜆 < 𝑠𝑛Δ = 𝑑Δ√𝑛.  

By virtue of theorem 1 of [6], the first term 𝛿𝑛(𝜆) is 𝑂(1/√𝑛), and the smallness of the 

second determines fast convergence 𝐽(𝑥) ↑ 1, 𝑥 ↦ ∞. So below in (1) we can put 𝛿𝑛(𝜆) = 0,  

2. Asymptotic equivalence  

 𝑃(𝑆𝑛 ≥ 𝑦)~
1

𝜎𝛼𝜆(𝛼)√2𝜋𝑛
 exp{−𝑛Λ(𝛼)},      𝛼 = 𝑦/𝑛, (7) 

occurs if the conditions (8)-(10) are met and also ch.f 𝜑𝑚(𝑡), for example (𝜑(𝑡) = 𝐸𝑒𝑖𝑡𝜉), is 

integrable for some whole 𝑚 ≥ 1.  

And now let us present the representations of (1) and (7) in each of 5 cases, and indicate 

the form 𝛿𝑛(𝜆)) in (1) we will not, assuming it is zero and thus turning into "similar" (7) 

equivalence.  

 

 1. Geometric distribution  

 1.1  𝑃(𝑆𝑛 > 𝑥𝑠𝑛)~ (
𝑝𝑒−𝑞𝑧/𝑝

1−𝑞𝑒𝑧
)
𝑛

 
𝑑(1−𝑞𝑒𝑧)𝑒−𝜆𝑥

𝜆𝑒𝑧/2√2𝜋𝑞
,      Δ = ln(1/𝑞), 

 

 𝑥 =
𝑞(𝑒𝑧−1)√𝑛

𝑑𝑝(1−𝑞𝑒𝑧)
. 

 

 1.2  (𝜆+ =
√𝑞

𝑝
ln(1/𝑞), 𝛼+ = ∞)      −     𝑃(𝑆𝑛 ≥ 𝑦)~ 

 

 
exp{−𝑛[

√𝑞

𝑝
(𝛼+√𝑞)ln(𝛼+√𝑞)−

1

𝑝√𝑞
(𝛼𝑞+√𝑞)ln(𝛼𝑞+√𝑞)+ln√𝑞]}

(𝛼/√𝑞+1)(𝛼√𝑞+1)
√𝑞

𝑝
ln(

𝛼+√𝑞

𝛼𝑞+√𝑞
)√2𝜋𝑛

. 

 

 2. Poisson distribution  

 2.1  𝑃(𝑆𝑛 > 𝑥𝑠𝑛)~
𝑑exp(𝜇𝑛(𝑒𝑧−𝑧−1)−𝜆𝑥)

𝜆𝑒𝑧/2√2𝜋𝜇
, 𝑥 =

√𝑛

𝑑
𝜇(𝑒𝑧 − 1), Δ = ∞. 

 

 2.2  𝑃(𝑆𝑛 ≥ 𝑦)~
exp(−𝑛𝜇[(1+𝛼/√𝜇)ln(1+𝛼/√𝜇)−𝛼√𝜇])

(1+𝛼/√𝜇)(√𝜇ln(1+𝛼√𝜇)√2𝜋𝑛)
, 

 
 𝜆+ = ∞ = 𝛼+. 

 

 3. Exponential distribution  

 3.1  𝑃(𝑆𝑛 > 𝑥𝑠𝑛)~
𝑑𝜇𝑛𝑒𝑧𝑛/𝜇−𝜆𝑥

𝜆(𝜇−𝑧)𝑛−1√2𝜋
,      𝑥 =

𝜆

𝜇𝑑2(𝜇−𝑧)
,      Δ = 𝜇. 

 

 3.2  𝑃(𝑆𝑛 ≥ 𝑦)~
(1+𝛼)𝑛𝑒−𝑛𝛼

𝛼√2𝜋𝑛
,      𝜆+ = 1, 𝛼+ = ∞ 

 

 4. Chi-square distribution  

 4.1  𝑃(𝑆𝑛 > 𝑥𝑠𝑛)~
𝑑𝑒−(𝑛𝑘𝑧+𝑥𝜆)

2𝜆(1−2𝑧)𝑛𝑘/2−1√𝜋𝑘
;       𝑥 =

2𝑘𝑧√𝑛

𝑑(1−2𝑧)
, Δ = 1/2. 

 

 4.2  𝑃(𝑆𝑛 ≥ 𝑦)~
𝑒−𝑛𝑏𝛼

𝛼√2𝜋𝑛
(
𝛼+𝑏

𝑏
)
𝑛𝑏2

,      𝜆+ = 𝑏 = √𝑘/2,    𝛼+ = ∞. 

 

 5. Triangular distribution  

 5.1  (𝑥 =
√𝑛

𝑑
{𝛿 (

𝑒𝑧𝛿/2+𝑒−𝑧𝛿/2

𝑒𝑧𝛿/2−𝑒−𝑧𝛿/2
) −

2

𝑧
} ,    Δ = ∞)  −   𝑃(𝑆𝑛 > 𝑥𝑠𝑛)~ 

 

 
𝑑𝑒−𝜆𝑥

𝜆
(
𝑒𝑧𝛿/2−𝑒−𝑧𝛿/2

𝑧𝛿
)
2𝑛

{(
𝛿2

2
[1 − (

𝑒𝑧𝛿/2+𝑒−𝑧𝛿/2

𝑒𝑧𝛿/2−𝑒−𝛿/2
)
2

] +
2

𝑧2
) 2𝜋𝑛}

−1/2

 

5.2 In this case, 𝜆+ = 𝛼+ = ∞, and the values Λ(𝛼) and 𝜎𝛼
2 are easily found when 𝜆(𝛼) is known. But 
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it is determined from the equation  

 
2

𝜆
(
𝜆𝛾(𝑒𝜆𝛾+𝑒−𝜆𝛾)

𝑒𝜆𝛾−𝑒−𝜆𝛾
− 1) = 𝛼        (17) 

regarding 𝜆, which cannot be solved yet.  

3  Conclusion 
 

The aim of this work was only to compare the representations of the two types and the 

difficulty of obtaining them, and not to consider other issues, the occurrence of which is natural, 

especially since the comparison itself proved to be very cumbersome. Thus, it was possible 

⋅ to transform the equation (17) in some way to obtain its approximate solution in some 

area of the parameter 𝛼,  

⋅ or to try to simplify the expressions themselves in the views, for example, replacing 𝑧 by 

𝜆 or 𝛼 by 𝑦,  

⋅ or to bring a table for better comparison of views, etc.  

 

 1 2 3 4 5 

Δ ln(1/𝑞) ∞ 𝜇 1/2 ∞ 

𝜆+ 
√𝑞

𝑝
ln(1/𝑞) ∞ 1 √𝑘/2 ∞ 

𝛼+ ∞ ∞ ∞ ∞ ∞ 

 

(in it, the numbers at the top represent the numbers of the distributions in the text).  

It must be admitted, however, that after receiving the first submissions, the duality became 

clear set goal. On the one hand, complicated calculations led to certain expressions, but on the 

other the parties are immediately found not only their "uncircumcised" form, i.e. there is a problem 

of optimizing the type of representations, but also one more and more important point: to 

understand the practical usefulness, it will be necessary to carry out their serious analysis, and in 

other words, time. Therefore, we will limit ourselves to the simplest conclusions.  

The receipt of all submissions (1) was notably simpler than all submissions (7). On the 

other hand, the right side of the submissions is approximately the same in cases 3. and 4. for both 

types, is much more cumbersome in cases 1. and 2. for submission (7) and finally, an alternative 

submission in case 5. managed to get (unlike the classic), although it turned out to be a bulky slick. 
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