On another approach to the analysis of the known problem of optimal stopping, p.3

A.S. Filatov

Lomonosov Moscow State University mailto: philatovandrey@mail.ru

Abstact

Part 3 implements the idea mentioned earlier in part 1 in the case of the small and even horizon n = 6: Again, the desired relationship between the objective function of the problem and the optimal moment of stopping time was very interesting and simple.

Keywords: the known optimal stopping problem, the relationship between its objective function and the optimal stopping time

1 Introduction

In [2] it is shown that in the particular case n = 5, p = q, and also on the assumption that f(s,t) > 0 for $\forall (s,t) \in D$, there is a connection between the form of the function f, i.e. the surface y = f(s,t), defined in the domain D of the integer lattice of the plane (s,t) and the optimal stopping time corresponding to it – an integer k, $0 \le k \le n$, in its simplified analogue of the known optimal stopping problem:

$$V = \max_{0 \le k \le n} V_k, \quad V_k = Ef(S_k, M_n).$$

In this paper it is shown in another particular case n = 6, p = q, and on the same assumptions related to the function f and the domain D.

2 Prolusion

As before, to write the required conditions, it suffices to write out all the expressions for V_k , $0 \le k \le n$. For this we use the formula of conditional expectation

$$V_k = \sum_{l,t} f(2l - k, t) P(S_k = 2l - k, M_n = t).$$

For extreme *k* the formulas for V_0 and V_n are easily written:

$$n = 2m + 1: \ 2^n V_0 = \sum_{t=0}^n C_n^{m+u+1} f(0,t); \quad n = 2m: \ 2^n V_0 = \sum_{t=0}^n C_n^{m+v} f(0,t),$$

where u = [t/2], v = [(t + 1)/2] (these formulas are given in [1]), and

$$2^{n}V_{n} = \sum_{l=0}^{n} \sum_{t=(2l-n)^{+}}^{l} f(2l-n,t) [C_{n}^{n-l+t} - C_{n}^{n-l+t+1}].$$

For other *k* in the case n = 6 it is easily done using the motion tree of particle or the table in [1]. In the following the expressions V_k are written out for $1 \le k \le 5$, because for k = 0 or *n* they are given higher:

$$\begin{split} &V_1 = 2^{-6} \{ [20f(-1,0) + 5f(-1,1) + 5f(-1,2) + f(-1,3) + f(-1,4)] \\ &+ [10f(1,1) + 10f(1,2) + 5f(1,3) + 5f(1,4) + f(1,5) + f(1,6)] \}, \end{split} \\ &V_2 = 2^{-6} \{ [14f(-2,0) + f(-2,1) + f(-2,2)] + [6f(0,0) + 14f(0,1) + 8f(0,2) + \\ &+ 2f(0,3) + 2f(0,4) + 6f(2,2) + 4f(2,3) + 4f(2,4) + f(2,5) + f(2,6)] \}, \end{split} \\ &V_3 = 2^{-6} \{ [8f(-3,0) + 12f(-1,0) + 9f(-1,1) + 3f(-1,2)] + [6f(1,1) + 12f(1,2) + \\ &+ 3f(1,2) + 3f(1,4) + 3f(3,3) + 3f(3,4) + f(3,5) + f(3,6)] \}, \end{split} \\ &V_4 = 2^{-6} \{ [4f(-4,0) + 12f(-2,0) + 4f(-2,1)] + [4f(0,0) + 11f(0,1) + 9f(0,2) + \\ &+ 6f(2,2) + 6f(2,3) + 4f(2,4) + 2f(4,4) + f(4,5) + f(4,6)] \}, \end{split}$$

As in [2], each of V_k , $0 \le k \le 6$, can be represented as a set of nodes of the integer lattice of the plane. Recall that, for example, the bold node (s, t) = (1,3) of the diagram with the number 2 next, corresponding to the expression V_5 , has the following context: in the expression for V_5 there is a term 2f(1,3). The remaining diagrams are related to the corresponding V_k in a similar way.

Remarks. 1. It can be seen in the diagrams shown above that for any k the total number of trajectories determining the value of the price V_k and passing through the nodes of the level t,

 $0 \le t \le 6$, is equal to

$$C_6^m$$
, $m = [(6-t)/2]$.

So it is defined by the numbers 20, 15, 6, 1 for the levels 0; 1,2; 3,4; 5,6.

2. As in the case n = 5 the nodes of all 7 sets of nodes "run through" the domain *D* of the definition of the function f(s, t) from [1]. This fact is clearly visible in the diagrams.

3 Optimality conditions

The stopping time $\tau = k$ is optimal if in some conditions for *f*

 $V_k > max_{l \neq k} V_l$.

To substantiate 7 such statements, we will present prices in the form of sums

$2^{6}V_{6}$	=	V_{60}	+	V_{61}	+	V_{62}	+	V_{63}	+	V_{64}	+	V_{65}	+	V_{66}
$2^{6}V_{5}$	=	V_{50}	+	V_{51}	+	V_{52}	+	V_{53}	+	V_{54}	+	V_{55}	+	V_{56}
$2^{6}V_{4}$	=	V_{40}	+	V_{41}	+	V_{42}	+	V_{43}	+	V_{44}	+	V_{45}	+	V_{46}
$2^{6}V_{3}$	=	V_{30}	+	V_{31}	+	V_{32}	+	V_{33}	+	V_{34}	+	V_{35}	+	V_{36}
$2^{6}V_{2}$	=	V_{20}	+	V_{21}	+	V_{22}	+	V_{23}	+	V_{24}	+	V_{25}	+	V_{26}
$2^{6}V_{1}$	=	V_{10}	+	V_{11}	+	V_{12}	+	V_{13}	+	V_{14}	+	V_{15}	+	V_{16}
$2^{6}V_{0}$	=	V_{00}	+	V_{01}	+	V_{02}	+	V_{03}	+	V_{04}	+	V_{05}	+	V_{06}

where V_{lt} is the sum of the functions f(s, t) with the coefficients are available for them from the expression of 2^6V_l for all s, corresponding to the given t. Moreover, all 49 elements V_{lt} are positive, because earlier we assumed that the function f(s, t) is positive. The matrix $V = (V_{lt})$ of these terms, given below and divided into 2 parts,

$l \setminus t$	0	1
6	f(-6,0) + 5f(-4,0) + 9f(-2,0) + 5f(0,0)	f(-4,1) + 5f(-2,1) + 9f(0,1)
5	2f(-5,0) + 8f(-3,0) + 10f(-1,0)	2f(-3,1) + 8f(-1,1) + 5f(1,1)
4	4f(-4,0) + 12f(-2,0) + 4f(0,0)	4f(-2,1) + 11f(0,1)
3	8f(-3,0) + 12f(-1,0)	9f(-1,1) + 6f(1,1)
2	14f(-2,0) + 6f(0,0)	f(-2,1) + 14f(0,1)
1	20f(-1,0)	5f(-1,1) + 10f(1,1)
0	20f(0,0)	15f(0,1)

$l \setminus t$	2	3	4	5	6
6	f(-2,2) + 5f(0,2) + 9f(2,2)	f(0,3) + 5f(2,3)	f(2,4) + 5f(4,4)	f(4,5)	f(6,6)
5	2f(-1,2) + 13f(1,2)	2f(1,3) + 4f(3,3)	6 <i>f</i> (3,4)	f(5,5)	<i>f</i> (5,6)
4	9f(0,2) + 6f(2,2)	6 <i>f</i> (2,3)	4f(2,4) + 2f(4,4)	f(4,5)	<i>f</i> (4,6)
3	3f(-1,2) + 12f(1,2)	3f(1,3) + 3f(3,3)	3f(1,4) + 3f(3,4)	f(3,5)	<i>f</i> (3,6)
2	f(-2,2) + 8f(0,2) + 6f(2,2)	2f(0,3) + 4f(2,3)	2f(0,4) + 4f(2,4)	f(2,5)	<i>f</i> (2,6)
1	5f(-1,2) + 10f(1,2)	f(-1,3) + 5f(1,3)	f(-1,4) + 5f(1,4)	f(1,5)	<i>f</i> (1,6)
0	15f(0,2)	6 <i>f</i> (0,3)	6 <i>f</i> (0,4)	f(0,5)	<i>f</i> (0,6)

we use to determine the connection between the form of the surface y = f(s, t) and optimality of the stopping time *k*. The following lemmas are given for proving this statement.

As in [2], we assume everywhere below that the function f(s, t) in the domain D takes on two values, and we use the diagrams of the second page for proving the lemmas, $\Delta > 0$.

5.3mmLemma 1 $V_6 > max_{l \neq 6} V_l$ *if* $f(s,t) \equiv a, (s,t) \in \{s+6=2t\}; f(s,t) \equiv a - \Delta$ out straight line.

Proof. Inside the table the numbers $b_{lt} = V_{6t} - V_{lt}$, $l \neq 6$, $0 \le t \le 6$.

Filatov A. OPTIMAL SHOPING PROBLEM, P3

$l \setminus t$	0	1	2	3	4	5	6
6	Δ	Δ	Δ	Δ	Δ	Δ	Δ
5	Δ	Δ	Δ	Δ	-3Δ	0	Δ
4	Δ	Δ	Δ	Δ	Δ	Δ	Δ
3	Δ	Δ	0	-Δ	-3Δ	Δ	Δ
2	Δ	Δ	Δ	Δ	Δ	Δ	Δ
0	Δ	Δ	Δ	-5Δ	Δ	Δ	Δ

From here for $b_l = \sum_{t=0}^{6} b_{lt}$, $0 \le l \le 5$, we have

$b_l \setminus l$	0	1	2	3	4	5
b_l	Δ	7Δ	0	7Δ	2Δ	7Δ

This calculations show that on the assumptions of the lemma $V_6 = V_2 > \max_{l \neq 2,6} V_l$. However, it is easy to slightly change the conditions and get the declared result. Actually, under the concerned conditions, the function f(s, t) has 2 levels: a and $a - \Delta$. So, it's enough to increase the values in some nodes (s, t) a little at the lower level $a - \Delta$. For example, in 3 nodes let f(2,3) = $f(0,4) = f(4,4) = a - 0.9\Delta$. In this case it is easy to show that earlier $b_{23} = -\Delta$, $b_{24} = -3\Delta$, and on the new assumptions

 $b_{23} = a + 5(a - 0.9\Delta) - [2a + 4(a - 0.9\Delta)] = -0.9\Delta, b_{24} = a + 5(a - 0.9\Delta) - [2(a - 0.9\Delta) + 4a] = -2.7\Delta.$

Other b_{lt} remain the same. Therefore, instead of $b_2 = 0$ we get $b_2 = 0.4\Delta > 0$, which proves the Lemma

Thus, Lemma 1 establishes the required inequality $V_6 > \max_{l \neq 6} V_l$ if the old surface y = f(s,t) with 2 levels is replaced by a surface with 3 levels – the third in the three above mentioned nodes. In all the following lemmas it suffices to have a 2-level surface y = f(s,t) to obtain the desired result.

5.3mmLemma 2 $V_5 > max_{l \neq 5} V_l$ if $f(s, t) \equiv a$, $(s, t) \in \{s + 5 = 2t, t \le 5\}$; $f(5,6) \equiv a$; $f(s, t) \equiv a - \Delta$ in other nodes.

$l \setminus t$	0	1	2	3	4	5	6
6	2Δ	2Δ	2Δ	2Δ	6Δ	Δ	Δ
5	2Δ	2Δ	2Δ	2Δ	6Δ	Δ	Δ
4	2Δ	2Δ	-Δ	-Δ	3Δ	Δ	Δ
3	2Δ	2Δ	2Δ	2Δ	6Δ	Δ	Δ
2	2Δ	2Δ	-3Δ	-3Δ	6Δ	Δ	Δ
0	2Δ	2Δ	2Δ	6Δ	6Δ	Δ	Δ

Proof. Inside the table the numbers $b_{lt} = V_{5t} - V_{lt}$, $l \neq 5$, $0 \le t \le 6$.

Therefore for $b_l = \sum_{t=0}^{6} b_{lt}$, $l \neq 5$, we have

$b_l \setminus l$	0	1	2	3	4	6
b _l	16Δ	6Δ	16Δ	7Δ	16Δ	16Δ

And this proves the Lemma

5.3mmLemma 3 $V_4 > max_{l \neq 4} V_l$ if $f(s, t) \equiv a - \Delta$ in nodes *D*, different from {(-4,0), (-2,1), (0,2), (2,3), (2,4), (4,5), (4,6)}, where $f(s, t) \equiv a$.

$l \setminus t$	0	1	2	3	4	5	6
6	-Δ	-Δ	4Δ	Δ	3Δ	0	Δ
5	4Δ	4Δ	9Δ	6Δ	4Δ	Δ	Δ
4	4Δ	4Δ	9Δ	6Δ	4Δ	Δ	Δ
3	4Δ	3Δ	Δ	2Δ	0	Δ	Δ
2	4Δ	4Δ	9Δ	6Δ	4Δ	Δ	Δ
0	4Δ	4Δ	-6Δ	6Δ	4Δ	Δ	Δ

Proof. Inside the table the numbers $b_{lt} = V_{4t} - V_{lt}$, $l \neq 4$, $0 \le t \le 6$.

From here it follows that for $b_l = \sum_{t=0}^{6} b_{lt}$, $l \neq 4$, we have

$b_l \setminus l$	0	1	2	3	5	6
b _l	14Δ	29Δ	12Δ	29Δ	29Δ	7Δ

This proves the Lemma

Lemma 4 $V_3 > max_{l \neq 3}V_l$ if $f(s, t) \equiv a - \Delta$ in nodes *D*, different from {(-3,0), (-1,1), (-1,2), (1,3), (1,4), (3,5), (3,6)}, where $f(s, t) \equiv a$.

Proof. Inside the table the numbers $b_{lt} = V_{3t} - V_{lt}$, $l \neq 3$, $0 \le t \le 6$.

$l \setminus t$	0	1	2	3	4	5	6
6	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ
5	0	Δ	Δ	Δ	3Δ	Δ	Δ
4	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ
3	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ
2	8Δ	4Δ	-2Δ	-2Δ	-2Δ	Δ	Δ
0	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ

Therefore for $b_l = \sum_{t=0}^{6} b_{lt}$, $l \neq 3$, we have

$b_l \setminus l$	0	1	2	4	5	6
b _l	28Δ	8Δ	28Δ	28Δ	8Δ	28Δ

As was to be proved ■

5.3mmLemma 5 $V_2 > max_{l \neq 2} V_l$ if $f(s, t) \equiv a - \Delta$ in nodes *D*, different from {(-2,0), (-2,1), (0,2), (0,3), (0,4), (2,5), (2,6)}, where $f(s, t) \equiv a$.

$l \setminus t$	0	1	2	3	4	5	6
6	5Δ	-4Δ	3Δ	Δ	2Δ	Δ	Δ
5	14Δ	Δ	8Δ	2Δ	2Δ	Δ	Δ
4	2Δ	-3Δ	-Δ	2Δ	2Δ	Δ	Δ
3	14Δ	Δ	8Δ	2Δ	2Δ	Δ	Δ
2	14Δ	Δ	8Δ	2Δ	2Δ	Δ	Δ
0	14Δ	Δ	-7Δ	-4Δ	-4Δ	Δ	Δ

Proof. Inside the table the numbers $b_{lt} = V_{2t} - V_{lt}$, $l \neq 2$, $0 \le t \le 6$.

From here for $b_l = \sum_{t=0}^{6} b_{lt}$, $l \neq 2$, we have

$b_l \setminus l$	0	1	3	4	5	6
b _l	2Δ	29Δ	29Δ	4Δ	29Δ	9Δ

As was to be proved ■

5.3mmLemma 6 $V_1 > max_{l \neq 1}V_l$ if $f(s, t) \equiv a - \Delta$ in nodes *D*, different from {(-1,0), (-1,1), (-1,2), (1,3), (1,4), (1,5), (1,6)}, where $f(s, t) \equiv a$.

Proof. Inside the table the numbers $b_{lt} = V_{1t} - V_{lt}$, $l \neq 1$, $0 \le t \le 6$.

$l \setminus t$	0	1	2	3	4	5	6
6	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ
5	10Δ	-3Δ	3Δ	3Δ	5Δ	Δ	Δ
4	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ
3	8Δ	-4Δ	2Δ	2Δ	2Δ	Δ	Δ
2	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ
0	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ

From here for $b_l = \sum_{t=0}^{6} b_{lt}$, $l \neq 1$, we have

$b_l \setminus l$	0	2	3	4	5	6
b _l	42Δ	42Δ	12Δ	42Δ	20Δ	42Δ

As was to be proved

The last Lemma is given without proof (it can be justified in a similar way), since it is a consequence of the theorem 2 in [1]. We still assume that $\Delta > 0$, $a - \Delta > 0$.

5.3mmLemma 7 $V_0 > max_{l \neq 0} V_l$ if $\forall t, 0 \le t \le 6: a - \Delta = f(s, t) < f(0, t) = a \text{ for } s \ne 0, (s, t) \in D.$

4 Results

The results of the lemmas are illustrated in the diagrams below. In them τ_* – optimal time (optimal moment – OM), and the nodes of the domain *D*, in which the values f(s, t) are maximal, i.e. are equal *a*, are marked in black. With that, as in [2], at least 2 moments emphasize the connection between the OM and the shape of the surface y = f(s, t). First, the length between the projections of the extreme black nodes to the abscissa axis is 6k, $k = \tau_*$. And secondly, the tangent of the slope of the straight line passing through the extreme nodes, $tg\varphi = 6/2k$.

5 Conclusion

The idea expressed in [1] was confirmed in this article for the particular and small even value n = 6. But it is also confirmed in the case of the small odd value n = 5 in [2]. Moreover, as noted in [2], the manner of the proof allows us to hope for a relatively easy generalization to even and odd values of n about 20-30, that will speak of the practical usefulness of the realized idea.

References

- [1] Zhulenev S.V. On another approach to the analysis of the known problem of optimal stopping, p.1, this collection, pp. 71-76.
- [2] Zhulenev S.V. On another approach to the analysis of the known problem of optimal stopping, p.2, this collection, pp. 77-83.