On another approach to the analysis of the known problem of optimal stopping, p. 3

A.S. Filatov
Lomonosov Moscow State University
mailto: philatovandrey@mail.ru

Abstract

Abstact

Part 3 implements the idea mentioned earlier in part 1 in the case of the small and even horizon $n=6$: Again, the desired relationship between the objective function of the problem and the optimal moment of stopping time was very interesting and simple.

Keywords: the known optimal stopping problem, the relationship between its objective function and the optimal stopping time

1 Introduction

In [2] it is shown that in the particular case $n=5, p=q$, and also on the assumption that $f(s, t)>0$ for $\forall(s, t) \in D$, there is a connection between the form of the function f, i.e. the surface $y=f(s, t)$, defined in the domain D of the integer lattice of the plane (s, t) and the optimal stopping time corresponding to it - an integer $k, 0 \leq k \leq n$, in its simplified analogue of the known optimal stopping problem:

$$
V=\max _{0 \leq k \leq n} V_{k}, \quad V_{k}=E f\left(S_{k}, M_{n}\right) .
$$

In this paper it is shown in another particular case $n=6, p=q$, and on the same assumptions related to the function f and the domain D.

2 Prolusion

As before, to write the required conditions, it suffices to write out all the expressions for $V_{k}, 0 \leq k \leq n$. For this we use the formula of conditional expectation

$$
V_{k}=\sum_{l, t} f(2 l-k, t) P\left(S_{k}=2 l-k, M_{n}=t\right) .
$$

For extreme k the formulas for V_{0} and V_{n} are easily written:

$$
n=2 m+1: 2^{n} V_{0}=\sum_{t=0}^{n} C_{n}^{m+u+1} f(0, t) ; \quad n=2 m: 2^{n} V_{0}=\sum_{t=0}^{n} C_{n}^{m+v} f(0, t),
$$

where $u=[t / 2], v=[(t+1) / 2]$ (these formulas are given in [1]), and

$$
2^{n} V_{n}=\sum_{l=0}^{n} \sum_{t=(2 l-n)^{+}}^{l} f(2 l-n, t)\left[C_{n}^{n-l+t}-C_{n}^{n-l+t+1}\right] .
$$

For other k in the case $n=6$ it is easily done using the motion tree of particle or the table in [1]. In the following the expressions V_{k} are written out for $1 \leq k \leq 5$, because for $k=0$ or n they are given higher:

$$
\begin{gathered}
V_{1}=2^{-6}\{[20 f(-1,0)+5 f(-1,1)+5 f(-1,2)+f(-1,3)+f(-1,4)] \\
+[10 f(1,1)+10 f(1,2)+5 f(1,3)+5 f(1,4)+f(1,5)+f(1,6)]\}, \\
V_{2}=2^{-6}\{[14 f(-2,0)+f(-2,1)+f(-2,2)]+[6 f(0,0)+14 f(0,1)+8 f(0,2)+ \\
+2 f(0,3)+2 f(0,4)+6 f(2,2)+4 f(2,3)+4 f(2,4)+f(2,5)+f(2,6)]\}, \\
V_{3}=2^{-6}\{[8 f(-3,0)+12 f(-1,0)+9 f(-1,1)+3 f(-1,2)]+[6 f(1,1)+12 f(1,2)+ \\
+3 f(1,2)+3 f(1,4)+3 f(3,3)+3 f(3,4)+f(3,5)+f(3,6)]\}, \\
V_{4}=2^{-6}\{[4 f(-4,0)+12 f(-2,0)+4 f(-2,1)]+[4 f(0,0)+11 f(0,1)+9 f(0,2)+ \\
\quad+6 f(2,2)+6 f(2,3)+4 f(2,4)+2 f(4,4)+f(4,5)+f(4,6)]\}, \\
V_{5}=2^{-6}\{[2 f(-5,0)+8 f(-3,0)+2 f(-3,1)+10 f(-1,0)+8 f(-1,1)+2 f(-1,2)]+ \\
+
\end{gathered}
$$

As in [2], each of $V_{k}, 0 \leq k \leq 6$, can be represented as a set of nodes of the integer lattice of the plane. Recall that, for example, the bold node $(s, t)=(1,3)$ of the diagram with the number 2 next, corresponding to the expression V_{5}, has the following context: in the expression for V_{5} there is a term $2 f(1,3)$. The remaining diagrams are related to the corresponding V_{k} in a similar way.

Remarks. 1. It can be seen in the diagrams shown above that for any k the total number of trajectories determining the value of the price V_{k} and passing through the nodes of the level t,
$0 \leq t \leq 6$, is equal to

$$
C_{6}^{m}, \quad m=[(6-t) / 2] .
$$

So it is defined by the numbers $20,15,6,1$ for the levels $0 ; 1,2 ; 3,4 ; 5,6$.
2. As in the case $n=5$ the nodes of all 7 sets of nodes "run through" the domain D of the definition of the function $f(s, t)$ from [1]. This fact is clearly visible in the diagrams.

3 Optimality conditions

The stopping time $\tau=k$ is optimal if in some conditions for f

$$
V_{k}>\max _{l \nexists k} V_{l} .
$$

To substantiate 7 such statements, we will present prices in the form of sums

$$
\begin{aligned}
2^{6} V_{6} & =V_{60}+V_{61}+V_{62}+V_{63}+V_{64}+V_{65}+V_{66} \\
2^{6} V_{5} & =V_{50}+V_{51}+V_{52}+V_{53}+V_{54}+V_{55}+V_{56} \\
2^{6} V_{4} & =V_{40}+V_{41}+V_{42}+V_{43}+V_{44}+V_{45}+V_{46} \\
2^{6} V_{3} & =V_{30}+V_{31}+V_{32}+V_{33}+V_{34}+V_{35}+V_{36} \\
2^{6} V_{2} & =V_{20}+V_{21}+V_{22}+V_{23}+V_{24}+V_{25}+V_{26} \\
2^{6} V_{1} & =V_{10}+V_{11}+V_{12}+V_{13}+V_{14}+V_{15}+V_{16} \\
2^{6} V_{0} & =V_{00}+V_{01}+V_{02}+V_{03}+V_{04}+V_{05}+V_{06}
\end{aligned}
$$

where $V_{l t}$ is the sum of the functions $f(s, t)$ with the coefficients are available for them from the expression of $2^{6} V_{l}$ for all s, corresponding to the given t. Moreover, all 49 elements $V_{l t}$ are positive, because earlier we assumed that the function $f(s, t)$ is positive. The matrix $V=\left(V_{l t}\right)$ of these terms, given below and divided into 2 parts,

$l \backslash t$	0	1
6	$f(-6,0)+5 f(-4,0)+9 f(-2,0)+5 f(0,0)$	$f(-4,1)+5 f(-2,1)+9 f(0,1)$
5	$2 f(-5,0)+8 f(-3,0)+10 f(-1,0)$	$2 f(-3,1)+8 f(-1,1)+5 f(1,1)$
4	$4 f(-4,0)+12 f(-2,0)+4 f(0,0)$	$4 f(-2,1)+11 f(0,1)$
3	$8 f(-3,0)+12 f(-1,0)$	$9 f(-1,1)+6 f(1,1)$
2	$14 f(-2,0)+6 f(0,0)$	$f(-2,1)+14 f(0,1)$
1	$20 f(-1,0)$	$5 f(-1,1)+10 f(1,1)$
0	$20 f(0,0)$	$15 f(0,1)$

$l \backslash t$	2	3	4	5	6
6	$f(-2,2)+5 f(0,2)+9 f(2,2)$	$f(0,3)+5 f(2,3)$	$f(2,4)+5 f(4,4)$	$f(4,5)$	$f(6,6)$
5	$2 f(-1,2)+13 f(1,2)$	$2 f(1,3)+4 f(3,3)$	$6 f(3,4)$	$f(5,5)$	$f(5,6)$
4	$9 f(0,2)+6 f(2,2)$	$6 f(2,3)$	$4 f(2,4)+2 f(4,4)$	$f(4,5)$	$f(4,6)$
3	$3 f(-1,2)+12 f(1,2)$	$3 f(1,3)+3 f(3,3)$	$3 f(1,4)+3 f(3,4)$	$f(3,5)$	$f(3,6)$
2	$f(-2,2)+8 f(0,2)+6 f(2,2)$	$2 f(0,3)+4 f(2,3)$	$2 f(0,4)+4 f(2,4)$	$f(2,5)$	$f(2,6)$
1	$5 f(-1,2)+10 f(1,2)$	$f(-1,3)+5 f(1,3)$	$f(-1,4)+5 f(1,4)$	$f(1,5)$	$f(1,6)$
0	$15 f(0,2)$	$6 f(0,3)$	$6 f(0,4)$	$f(0,5)$	$f(0,6)$

we use to determine the connection between the form of the surface $y=f(s, t)$ and optimality of the stopping time k. The following lemmas are given for proving this statement.

As in [2], we assume everywhere below that the function $f(s, t)$ in the domain D takes on two values, and we use the diagrams of the second page for proving the lemmas, $\Delta>0$.
5.3mmLemma $1 V_{6}>\max _{l \neq 6} V_{l}$ if

$$
f(s, t) \equiv a,(s, t) \in\{s+6=2 t\} ; f(s, t) \equiv a-\Delta \text { out straight line. }
$$

Proof. Inside the table the numbers $b_{l t}=V_{6 t}-V_{l t}, l \neq 6,0 \leq t \leq 6$.

$l \backslash t$	0	1	2	3	4	5	6
6	Δ						
5	Δ	Δ	Δ	Δ	-3Δ	0	Δ
4	Δ						
3	Δ	Δ	0	$-\Delta$	-3Δ	Δ	Δ
2	Δ						
0	Δ	Δ	Δ	-5Δ	Δ	Δ	Δ

From here for $b_{l}=\sum_{t=0}^{6} b_{l t}, 0 \leq l \leq 5$, we have

$b_{l} \backslash l$	0	1	2	3	4	5
b_{l}	Δ	7Δ	0	7Δ	2Δ	7Δ

This calculations show that on the assumptions of the lemma $V_{6}=V_{2}>\max _{l \neq 2,6} V_{l}$. However, it is easy to slightly change the conditions and get the declared result. Actually, under the concerned conditions, the function $f(s, t)$ has 2 levels: a and $a-\Delta$. So, it's enough to increase the values in some nodes (s, t) a little at the lower level $a-\Delta$. For example, in 3 nodes let $f(2,3)=$ $f(0,4)=f(4,4)=a-0.9 \Delta$. In this case it is easy to show that earlier $b_{23}=-\Delta, b_{24}=-3 \Delta$, and on the new assumptions

$$
\begin{aligned}
b_{23}=a+5(a-0.9 \Delta)-[2 a+4(a-0.9 \Delta)]= & -0.9 \Delta, b_{24}=a+5(a-0.9 \Delta)-[2(a-0.9 \Delta)+4 a]= \\
& -2.7 \Delta .
\end{aligned}
$$

Other $b_{l t}$ remain the same. Therefore, instead of $b_{2}=0$ we get $b_{2}=0,4 \Delta>0$, which proves the Lemma

Thus, Lemma 1 establishes the required inequality $V_{6}>\max _{l \neq 6} V_{l}$ if the old surface $y=f(s, t)$ with 2 levels is replaced by a surface with 3 levels - the third in the three above mentioned nodes. In all the following lemmas it suffices to have a 2-level surface $y=f(s, t)$ to obtain the desired result.
5.3mmLemma $2 V_{5}>\max _{l \neq 5} V_{l}$ if $f(s, t) \equiv a,(s, t) \in\{s+5=2 t, t \leq 5\} ;$ $f(5,6) \equiv a ; \quad f(s, t) \equiv a-\Delta$ in other nodes.

Proof. Inside the table the numbers $b_{l t}=V_{5 t}-V_{l t}, l \neq 5,0 \leq t \leq 6$.

$l \backslash t$	0	1	2	3	4	5	6
6	2Δ	2Δ	2Δ	2Δ	6Δ	Δ	Δ
5	2Δ	2Δ	2Δ	2Δ	6Δ	Δ	Δ
4	2Δ	2Δ	$-\Delta$	$-\Delta$	3Δ	Δ	Δ
3	2Δ	2Δ	2Δ	2Δ	6Δ	Δ	Δ
2	2Δ	2Δ	-3Δ	-3Δ	6Δ	Δ	Δ
0	2Δ	2Δ	2Δ	6Δ	6Δ	Δ	Δ

Therefore for $b_{l}=\sum_{t=0}^{6} b_{l t}, l \neq 5$, we have

$b_{l} \backslash l$	0	1	2	3	4	6
b_{l}	16Δ	6Δ	16Δ	7Δ	16Δ	16Δ

And this proves the Lemma
5.3mmLemma $3 V_{4}>\max _{l>4} V_{l}$ if $f(s, t) \equiv a-\Delta$ in nodes D, different
from $\{(-4,0),(-2,1),(0,2),(2,3),(2,4),(4,5),(4,6)\}$, where $f(s, t) \equiv a$.

Proof. Inside the table the numbers $b_{l t}=V_{4 t}-V_{l t}, l \neq 4,0 \leq t \leq 6$.

$l \backslash t$	0	1	2	3	4	5	6
6	$-\Delta$	$-\Delta$	4Δ	Δ	3Δ	0	Δ
5	4Δ	4Δ	9Δ	6Δ	4Δ	Δ	Δ
4	4Δ	4Δ	9Δ	6Δ	4Δ	Δ	Δ
3	4Δ	3Δ	Δ	2Δ	0	Δ	Δ
2	4Δ	4Δ	9Δ	6Δ	4Δ	Δ	Δ
0	4Δ	4Δ	-6Δ	6Δ	4Δ	Δ	Δ

From here it follows that for $b_{l}=\sum_{t=0}^{6} b_{l t}, l \neq 4$, we have

$b_{l} \backslash l$	0	1	2	3	5	6
b_{l}	14Δ	29Δ	12Δ	29Δ	29Δ	7Δ

This proves the Lemma

Lemma $4 V_{3}>\max _{l \geq 3} V_{l}$ if $f(s, t) \equiv a-\Delta$ in nodes D, different from $\{(-3,0),(-1,1),(-1,2),(1,3),(1,4),(3,5),(3,6)\}$, where $f(s, t) \equiv a$.

Proof. Inside the table the numbers $b_{l t}=V_{3 t}-V_{l t}, l \neq 3,0 \leq t \leq 6$.

$l \backslash t$	0	1	2	3	4	5	6
6	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ
5	0	Δ	Δ	Δ	3Δ	Δ	Δ
4	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ
3	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ
2	8Δ	4Δ	-2Δ	-2Δ	-2Δ	Δ	Δ
0	8Δ	9Δ	3Δ	3Δ	3Δ	Δ	Δ

Therefore for $b_{l}=\sum_{t=0}^{6} b_{l t}, l \neq 3$, we have

$b_{l} \backslash l$	0	1	2	4	5	6
b_{l}	28Δ	8Δ	28Δ	28Δ	8Δ	28Δ

As was to be proved
5.3mmLemma $5 V_{2}>\max _{l \ni 2} V_{l}$ if $f(s, t) \equiv a-\Delta$ in nodes D, different
from $\{(-2,0),(-2,1),(0,2),(0,3),(0,4),(2,5),(2,6)\}$, where $f(s, t) \equiv a$.

Proof. Inside the table the numbers $b_{l t}=V_{2 t}-V_{l t}, l \neq 2,0 \leq t \leq 6$.

$l \backslash t$	0	1	2	3	4	5	6
6	5Δ	-4Δ	3Δ	Δ	2Δ	Δ	Δ
5	14Δ	Δ	8Δ	2Δ	2Δ	Δ	Δ
4	2Δ	-3Δ	$-\Delta$	2Δ	2Δ	Δ	Δ
3	14Δ	Δ	8Δ	2Δ	2Δ	Δ	Δ
2	14Δ	Δ	8Δ	2Δ	2Δ	Δ	Δ
0	14Δ	Δ	-7Δ	-4Δ	-4Δ	Δ	Δ

From here for $b_{l}=\sum_{t=0}^{6} b_{l t}, l \neq 2$, we have

$b_{l} \backslash l$	0	1	3	4	5	6
b_{l}	2Δ	29Δ	29Δ	4Δ	29Δ	9Δ

As was to be proved
5.3mmLemma $6 V_{1}>\max _{l \rightarrow 1} V_{l}$ if $f(s, t) \equiv a-\Delta$ in nodes D, different from $\{(-1,0),(-1,1),(-1,2),(1,3),(1,4),(1,5),(1,6)\}$, where $f(s, t) \equiv a$.

Proof. Inside the table the numbers $b_{l t}=V_{1 t}-V_{l t}, l \neq 1,0 \leq t \leq 6$.

$l \backslash t$	0	1	2	3	4	5	6
6	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ
5	10Δ	-3Δ	3Δ	3Δ	5Δ	Δ	Δ
4	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ
3	8Δ	-4Δ	2Δ	2Δ	2Δ	Δ	Δ
2	20Δ	5Δ	5Δ	5Δ	5Δ	Δ	Δ
0	$2 \Delta \Delta$	5Δ	5Δ	5Δ	5Δ	Δ	Δ

From here for $b_{l}=\sum_{t=0}^{6} b_{l t}, l \neq 1$, we have

$b_{l} \backslash l$	0	2	3	4	5	6
b_{l}	42Δ	42Δ	12Δ	42Δ	20Δ	42Δ

As was to be proved
The last Lemma is given without proof (it can be justified in a similar way), since it is a consequence of the theorem 2 in [1]. We still assume that $\Delta>0, a-\Delta>0$.
5.3mmLemma $7 V_{0}>\max _{l \neq 0} V_{l}$ if

$$
\forall t, 0 \leq t \leq 6: a-\Delta=f(s, t)<f(0, t)=a \text { for } s \neq 0,(s, t) \in D
$$

4 Results

The results of the lemmas are illustrated in the diagrams below. In them τ_{*} - optimal time (optimal moment - OM), and the nodes of the domain D, in which the values $f(s, t)$ are maximal, i.e. are equal a, are marked in black. With that, as in [2], at least 2 moments emphasize the connection between the OM and the shape of the surface $y=f(s, t)$. First, the length between the projections of the extreme black nodes to the abscissa axis is $6 k, k=\tau_{*}$. And secondly, the tangent of the slope of the straight line passing through the extreme nodes, $\operatorname{tg} \varphi=6 / 2 k$.

5 Conclusion

The idea expressed in [1] was confirmed in this article for the particular and small even value $n=6$. But it is also confirmed in the case of the small odd value $n=5$ in [2]. Moreover, as noted in [2], the manner of the proof allows us to hope for a relatively easy generalization to even and odd values of n about 20-30, that will speak of the practical usefulness of the realized idea.

References

[1] Zhulenev S.V. On another approach to the analysis of the known problem of optimal stopping, p.1, this collection, pp. 71-76.
[2] Zhulenev S.V. On another approach to the analysis of the known problem of optimal stopping, p.2, this collection, pp. 77-83.

