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Abstact

Part 3 implements the idea mentioned earlier in part 1 in the case of the small and even
horizon n = 6: Again, the desired relationship between the objective function of the problem
and the optimal moment of stopping time was very interesting and simple.
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1 Introduction

In [2] it is shown that in the particular case n = 5, p = g, and also on the assumption that
f(s,t) > 0 for V(s,t) € D, there is a connection between the form of the function f, i.e. the surface
y = f(s,t), defined in the domain D of the integer lattice of the plane (s,t) and the optimal
stopping time corresponding to it — an integer k, 0 < k < n, in its simplified analogue of the known
optimal stopping problem:

V = max Vk’ Vk = Ef(Sk,Mn)

0<ksn

In this paper it is shown in another particular case n = 6, p = q, and on the same assumptions
related to the function f and the domain D.

2 Prolusion

As before, to write the required conditions, it suffices to write out all the expressions for
Vi, 0 < k < n. For this we use the formula of conditional expectation

Vi =Xt fQRL=Kk,)P(S, =2l -k, M, =1t).
For extreme k the formulas for V, and V;, are easily written:
n=2m+1: 2"V, = Y&, CU*1F(0,1); n=2m: 2"V, =YL, C*Yf(0,1),
where u = [t/2], v = [(t + 1)/2] (these formulas are given in [1]), and

2"V, = Yi=o Zé:(Zl—n)"’ (21— n, t)[CR~1+ — cp-i+t+,
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For other k in the case n = 6 it is easily done using the motion tree of particle or the table in [1]. In
the following the expressions V, are written out for 1 < k <5, because for k = 0 or n they are
given higher:
V, = 275{[20f (—=1,0) + 5f(~1,1) + 5£(—=1,2) + f(—1,3) + f(~1,4)]
+H[10£(1,1) + 10£(1,2) + 5£(1,3) + 5F(14) + £(1,5) + FL6)]},
V, = 275{[14f (=2,0) + f(—2,1) + f(=2,2)] + [6£(0,0) + 14£(0,1) + 8 (0,2) +
+2£(0,3) + 2f(0,4) + 6 (2.2) + 4f (2,3) + 4f(24) + f(2.5) + F2.6)]},
Vs = 275([8F(—3,0) + 12f(—1,0) + 9f (—1,1) + 3f(—1,2)] + [6£(1,1) + 12f (1,2) +
+3£(1,2) + 3f(14) + 3f(3,3) + 3f(3.4) + F(3.5) + F3.6)]},
V, = 275{[4f (—4,0) + 12f(=2,0) + 4f (—2,1)] + [4£(0,0) + 11£(0,1) + 9£(0,2) +
+6£(2,2) + 6f(2,3) + 4f (2.4) + 2f (4,4) + f(4,5) + F(4,6)]},
Vs = 275{[2f (—5,0) + 8f(—3,0) + 2f (—3,1) + 10f(~1,0) + 8f (—1,1) + 2f(~1,2)] +
HSF(L1) + 13F(L,2) + 2f (1,3) + 4 (3,3) + 6 (3.4) + £(5,5) + £(5,6)]}.

As in [2], each of V}, 0 < k < 6, can be represented as a set of nodes of the integer lattice of the
plane. Recall that, for example, the bold node (s,t) = (1,3) of the diagram with the number 2 next,
corresponding to the expression Vs, has the following context: in the expression for Vg there is a
term 2f(1,3). The remaining diagrams are related to the corresponding V, in a similar way.

For Vj (o), Vi (-) ; For V5 (o), V3 ()
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Remarks. 1. It can be seen in the diagrams shown above that for any k the total number of
trajectories determining the value of the price V, and passing through the nodes of the level ¢,
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0 <t<6,isequal to

C¢", m=[(6—1)/2]
So it is defined by the numbers 20, 15, 6, 1 for the levels 0; 1,2; 3,4; 5,6.
2. As in the case n = 5 the nodes of all 7 sets of nodes “run through” the domain D of the

definition of the function f (s, t) from [1]. This fact is clearly visible in the diagrams.

3 Optimality conditions

The stopping time t = k is optimal if in some conditions for f
Vi, > max; ., V;.
To substantiate 7 such statements, we will present prices in the form of sums

25V = Vg +
25V = Voo +
2%V, = Vo +
25V, = V5o +
25V, = Vo +
2%V, = Vo +
25V = Voo +

Vs1

+ Ve + Vs +
+ Vs, + Vi3 +
+ Vi + Vs +
+ V3 + Vi3 +
+ Vo + Vo3 +
+ Vi, + Vi3 +
+ Voo + Vo3 +

+ Ves + Vgg
+ Vss + Vg
+ Vis + Vg
+ V35 + V3
+ Vo + Vo
+ Vis + Vi
+ Vos + Vs

where V}; is the sum of the functions f(s,t) with the coefficients are available for them from the
expression of 2°V; for all s, corresponding to the given t. Moreover, all 49 elements Vj, are positive,
because earlier we assumed that the function f (s, t) is positive. The matrix V = (V};) of these terms,

given below and divided into 2 parts,

1

I\t 0

6 £(=6,0) + 5£(—=4,0) + 9£(—2,0) + 5£(0,0) F(—=4,1) + 5f(=2,1) + 9£(0,1)

5 2f(=5,0) + 8f(=3,0) + 10f(—=1,0) 2f(=3,1) + 8f(=1,1) + 5£(1,1)

4 4F(—=4,0) + 12f(—2,0) + 4£(0,0) 4f(=2,1) + 11£(0,1)

3 8f(—3,0) + 12f(—1,0) 9f(=1,1) + 6f(1,1)

2 14£(=2,0) + 6£(0,0) f(=2,1) + 14£(0,1)

1 20£(—1,0) 5f(—=1,1) + 10£(1,1)

0 20£(0,0) 15£(0,1)
I\t 2 3 4 5 6
6 | f(=22)+5f(0,2) +9f(2,2) f(0,3) +5£(2,3) f(2,4) +5f(44) | f(45)] f(6,6)
5 2f(=1,2) + 13f(1,2) 2f(1,3) + 4£(3.,3) 6f(3,4) (55| £(5,6)
4 9£(0,2) + 6£(2,2) 6£(2,3) 4F(24) + 2f(44) | f(45)] F(4.6)
3 3f(=1,2) + 12f(1,2) 3f(1,3) +3f(3,3) | 3f(1,4) +3f34) | fF35) ] £(3,6)
2 | f(=2,2)+8£(0,2) + 6£(2,2) 2f(03)+4f(23) | 2f(04)+4f24) | F(2,5) ] f(2,6)
1 5f(—1,2) + 10£(1,2) F(=13)+5f(1,3) | f(-1,4)+57(14) | F(L5)] F(1,6)
0 15£(0,2) 6/(0,3) 6/(0,4) £(0,5] £(0,6)

we use to determine the connection between the form of the surface y = f(s,t) and optimality of

the stopping time k. The following lemmas are given for proving this statement.
As in [2], we assume everywhere below that the function f(s,t) in the domain D takes on

two values, and we use the diagrams of the second page for proving the lemmas, A > 0.

5.3mmLemma 1V, > max;_¢V,; if
f(s,t)=a, (s,t) € {s+6 =2t} f(s,t) = a — A out straight line.

Proof. Inside the table the numbers b, = Vg — Vi, L £ 6,0 <t < 6.
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I\t 0 1 2 3 4 5 6
6 A A A A A A A
5 A A A A 3A 0 A
4 A A A A A A A
3 A A 0 -A -3A A A
2 A A A A A A A
0 A A A 5A A A A

From here for b, = ¥¢_, b, 0 <1 < 5, we have

b\l
b, A 7A 0 7A 2A 7A

(e}
—_
N
[68]
i~
€]

This calculations show that on the assumptions of the lemma Vi =V, > max;.,¢V;.
However, it is easy to slightly change the conditions and get the declared result. Actually, under
the concerned conditions, the function f(s,t) has 2 levels: a and a — A. So, it's enough to increase
the values in some nodes (s, t) a little at the lower level a — A. For example, in 3 nodes let f(2,3) =
f(0,4) = f(4,4) = a — 0.9A. In this case it is easy to show that earlier b,; = —A, b,, = —34, and on
the new assumptions

b3 =a+5(a—09A) — [2a + 4(a —0.9A)] = —0.9A, by, = a + 5(a — 0.9A) — [2(a — 0.9A) + 4a] =
—2.7A.

Other b, remain the same. Therefore, instead of b, =0 we get b, = 0,4A > 0, which
proves the Lemma m

Thus, Lemma 1 establishes the required inequality Vg > max,.¢V; if the old surface
y = f(s,t) with 2 levels is replaced by a surface with 3 levels — the third in the three above
mentioned nodes. In all the following lemmas it suffices to have a 2-level surface y = f(s,t) to
obtain the desired result.

5.3mmLemma 2 V5 > max; sV, if f(s,t) = a, (s,t) E{s+5=2¢t, t <5},
f(5,6) =a; f(s,t) =a— Ain other nodes.

Proof. Inside the table the numbers b;; = Ve — Vi, L # 5,0 <t < 6.

I\t 0 1 2 3 4 5 6
6 2A 2A 2A 2A 6A A A
5 2A 2A 2A 2A 6A A A
4 2A 2A -A -A 3A A A
3 2A 2A 2A 2A 6A A A
2 2A 2A -3A -3A 6A A A
0 2A 2A 2A 6A 6A A A
Therefore for b, = ¥¢_, by, | # 5, we have
b\l 0 1 2 3 4 6
b, 16A 6A 16A 7A 16A 16A

And this proves the Lemma m
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5.3mmLemma 3 V, > max,_,V; if f(s,t) = a — 4 in nodes D, different
from {(—4,0), (—2,1),(0,2), (2,3), (2,4), (4,5), (4,6)}, where f(s,t) = a.

Proof. Inside the table the numbers by, =V, —V;;,, I #4,0<t < 6.

I\t 0 1 2 3 4 5 6
6 -A -A 4A A 3A 0 A
5 4A 4A 9A 6A 4A A A
4 4A 4A 9A 6A 4A A A
3 4A 3A A 2A 0 A A
2 4A 4A 9A 6A 4A A A
0 4A 4A -6/ 6A 4A A A

From here it follows that for b, = ¥.¢_, b, | = 4, we have

b\l 0 1 2 3 5 6
b, 14A 29A 12A 29A 29A 7A
This proves the Lemma =
Lemma 4 V; > max,.;V, if f(s,t) = a — A in nodes D, different
from {(—3,0), (—1,1), (—1,2),(1,3),(1,4), (3,5), (3,6)}, where f(s,t) = a.

Proof. Inside the table the numbers b;; = Vo — Vi, L #£3,0 <t < 6.
I\t 0 1 2 3 4 5 6
6 8A 9A 3A 3A 3A A A
5 0 A A A 3A A A
4 8A 9A 3A 3A 3A A A
3 8A 9A 3A 3A 3A A A
2 8A 4A -2A -2A -2A A A
0 8A 9A 3A 3A 3A A A

Therefore for b, = ¥.¢_, by, | = 3, we have

b\l 0 1 2 4 5 6
b, 28A 8A 28A 28A 8A 28A

As was to be proved m

5.3mmLemma 5V, > max;.,V, if f(s,t) = a — A in nodes D, different

from {(—2,0), (—2,1), (0,2),(0,3), (0,4), (2,5),(2,6)}, where f(s,t) = a.
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Proof. Inside the table the numbers by, = Vo, — Vi, L #2,0 <t < 6.

I\t 0 1 2 3 4 5 6
6 5A -4A 3A A 2A A A
5 14A A 8A 2A 2A A A
4 2A -3A -A 2A 2A A A
3 14A A 8A 2A 2A A A
2 14A A 8A 2A 2A A A
0 14A A -7A -4A -4A A A

From here for b, = ¥2_, by, | = 2, we have

b\l 0 1 3 4 5 6
b, 2A 29A 29A 4A 29A 9A
As was to be proved m
5.3mmLemma 6 V; > max;_,V, if f(s,t) = a — 4 in nodes D, different
from {(—1,0), (-1,1), (—1,2),(1,3),(1,4), (1,5), (1,6)}, where f(s,t) = a.

Proof. Inside the table the numbers by, = Vi, — Vi, L 1,0 <t < 6.
I\t 0 1 2 3 4 5 6
6 20A 5A 5A 5A 5A A A
5 10A -3A 3A 3A 5A A A
4 20A 5A 5A 5A 5A A A
3 8A -4A 2A 2A 2A A A
2 20A 5A 5A 5A 5A A A
0 20A 5A 5A 5A 5A A A

From here for b, = Y¢_, by, | = 1, we have

b\l 0 2 3 4 5 6
b, 42A 42A 12A 42A 20A 42A

As was to be proved m

The last Lemma is given without proof (it can be justified in a similar way), since it is a
consequence of the theorem 2 in [1]. We still assume that A > 0, a —A > 0.

5.3mmLemma 7 V, > max,_,V; if
Vt,0<t<6:a—A=f(st) <f(0,t) =afors#0,(st)€D.
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4 Results

The results of the lemmas are illustrated in the diagrams below. In them 7, — optimal time
(optimal moment — OM), and the nodes of the domain D, in which the values f(s,t) are maximal,
i.e. are equal a, are marked in black. With that, as in [2], at least 2 moments emphasize the
connection between the OM and the shape of the surface y = f (s, t). First, the length between the
projections of the extreme black nodes to the abscissa axis is 6k, k = 7.. And secondly, the tangent
of the slope of the straight line passing through the extreme nodes, tgg = 6/2k.
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5 Conclusion

The idea expressed in [1] was confirmed in this article for the particular and small even
value n = 6. But it is also confirmed in the case of the small odd value n =5 in [2]. Moreover, as
noted in [2], the manner of the proof allows us to hope for a relatively easy generalization to even
and odd values of n about 20-30, that will speak of the practical usefulness of the realized idea.
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