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Abstract 

 
 In this paper, we consider Markovian model of a two-station tandem network with 

the following feedback admission control policy: the first station rejects new arrivals 

when the queue size in the second station exceeds a certain threshold 𝑁. We provide 

necessary stability conditions of this model. Each station operates as a multiserver 

queuieng system, and thus work in part generalizes the results from the paper [1] in 

which single-server stations have been considered. The analysis is based on the 

Burke’s theorem and stochastic monotonicity of the Birth-Death process describing 

the number of customers in the second station.  
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I  Introduction 
 

We consider the following two-station queueing system with a feedback admission control policy. 

The input flow in this system is Poisson with the parameter 𝜆. Station 𝑖 has 𝑁𝑖 servers, and the 

service time of each server in station 𝑖 is exponentially distributed with parameter 𝜇𝑖 , 𝑖 = 1,2. 

We consider a  feedback admission control when the 1st station closes the admission gate 

provided the  queue size (number of customers) in the 2nd station exceeds a fixed threshold 𝑁 ≥ 1. 

When the queue length of the 2nd station falls below the threshold, admission gate opens again. 

With this non-idling control policy, the system losses arrivals during the period when the gate is 

closed. We assume the FIFO service discipline at both stations. (In general, under the same 

conditions, stability of the system holds true for any work-conserving service discipline.) The 

detailed motivation of this model can be found in [1].  

Our analysis is based on the dependencies between the rates of the flows, in particular, 

input rate and output rate from the first station, in stationary regime. Also the analysis is heavily 

based on the Burke’s theorem stating the equality of the input and output rates in the stationary 

(non-overloaded) multiserver first station. Finally, we apply stochastic monotonicity of the Birth-

Death (BD) process, describing the multiserver queuing system. 
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II Stability Conditions 
 

In this section, we establish the necessary stability conditions of the basic model described shortly 

above. 

First of all, we give more detailed description of the model. We consider the described 

above two-station tandem system with Piosson input with rate 𝜆 and feedback admission control, 

assuming that the first station operates as a queueing system 𝑀|𝑀|𝑁1 with 𝑁1 identical servers and 

infinite buffer. The second station is the system 𝑀|𝑀|𝑁2, also with infinity capacity buffer. The 

service rate is 𝜇𝑖 at each server of station 𝑖 = 1,2. Because all governing distributions are 

exponential, this feedback system is completely defined by the parameters 𝜆, 𝜇𝑖, 𝑁𝑖 , 𝑁. 

The dynamics of this model can be described by a continuous-time discrete-valued 

Markov process 𝑍(𝑡) =: (𝑧1(𝑡), 𝑧2(𝑡)), 𝑡 ≥ 0, where component 𝑧𝑖(𝑡) is the number of customers at 

station 𝑖 at instant 𝑡, 𝑖 = 1,2. Denote 𝑦(𝑡) the number of arrivals in the interval (0, 𝑡], 𝑦(0) = 0, in 

the Poisson input flow (with the intensity 𝜆), and define 𝑥(𝑡), the  actual number of arrivals to the 

1st station in interval (0, 𝑡], 𝑥(0) = 0. 

The following statement generalizes the necessary stability conditions found in [1] for the 

single-server stations. 

 Theorem 1.  Assume the Markov process 𝑍 is ergodic. If i) 𝑁1𝜇1 < 𝑁2𝜇2, then 𝜆 < 𝐹𝑁(𝑁1𝜇1); 

ii) otherwise, if 𝑁1𝜇1 ≥ 𝑁2𝜇2, that there are no other restrictions except 𝜆 < ∞. 

 Proof. Assume that the Markov process 𝑍 is in steady state, and denote 𝑃𝑁 = 𝑃(𝑧2(𝑡) > 𝑁) 

the stationary probability that there are at least 𝑁 customers in the 2nd station. The Poisson 

arrivals with the intensity 𝜆 enter the 1st station. Then, at an arrival instant a transition 𝑦(𝑡) →

𝑦(𝑡) + 1 happens , and moreover, transition 𝑥(𝑡) → 𝑥(𝑡) + 1 happens if and only if 𝑧2(𝑡) ≤ 𝑁. Thus, 

the transition rate 𝑥(𝑡) → 𝑥(𝑡) + 1 equals 𝜈:= 𝜆𝑃𝑁 . 

Therefore, for each 𝑡 and constant 𝑇, the number of customers entering the 1st station in 

interval [𝑡, 𝑡 + 𝑇) does not depend on the number of customers arriving in interval (0, 𝑡], 𝑡 > 0. 

Then it follows from [2], [3] that the rate of the arrivals entering the 1st station equals 𝜈 = 𝜆𝑃𝑁 as 

well. Since the flow of arrivals entering the 1st station is Poisson with rate 𝜈 and the process 𝑍 is 

ergodic, then the process 𝑧1(𝑡), 𝑡 ≥ 0, turns out to be ergodic also. As a result , the process 𝑧1(𝑡) is 

distributed as a BD process with the birth rate 𝜈 and the death rates 𝜇𝑘 = min(𝑘, 𝑁1)𝜇1 [§ 1.2][4]. It 

then follows from Karlin – McGregor criterion [6], we obtain the inequality 𝜈 < 𝑁1𝜇1. Because the 

stationary output from the 1st station is also Poisson process with the rate 𝜈 = 𝜆𝑃𝑁, then we may 

notation 𝑃𝑁 = 𝑃𝑁(𝜈) which is heavily used below. 

Apply now a similar analysis to the 2nd station. Since the input to the 2nd station (output 

from the 1st station) is Poisson with rate 𝜈, and the process 𝑍 is ergodic then the process 𝑧2(𝑡), 𝑡 ≥

0, is ergodic also. 

As above then the process 𝑧2(𝑡) is distributed as a BD process with the birth rate 𝜈 and the 

death rates 𝜓𝑘 = min(𝑘, 𝑁2)𝜇2. Then, as above it follows from Karlin – McGregor criterion, that the 

inequality 𝜈 < 𝑁2𝜇2 holds. Thus, we obtain the following relations:  

 𝜈 = 𝜆𝑃𝑁 , 𝜈 < 𝑁1𝜇1, 𝜈 < 𝑁2𝜇2. (1) 

 Consider another BD process 𝑧2
′ (𝑡), 𝑡 ≥ 0, with the same death rates {𝜓𝑘} and a birth rate 𝜈′ > 𝜈. 

Moreover, we assume the same initial state in both processes, that is 𝑧2(0) = 𝑧2
′ (0). Then it follows 

from Theorem 4.2.1 in [8], that the following inequality holds:  

 lim
𝑡→∞

𝑃(𝑧2(𝑡) > 𝑁) = 𝑃𝑁(𝜈) ≥ lim
𝑡→∞

𝑃(𝑧2
′ 𝑡) > 𝑁) =: 𝑃𝑁(𝜈

′). (2) 

 Because 𝜓𝑗 = min(𝑗, 𝑁2)𝜇2, 𝑗 ≥ 1, then it follows from [5] (Chapter 2, Section 3), that for each fixed 

𝑁 > 0 and for all 𝜈, 0 < 𝜈 < 𝑁2𝜇2, the function 𝑃𝑁(𝜈) has the following explicit expression  

 𝑃𝑁(𝜈) = 1 + ∑
𝑁
𝑘=1 𝜈

𝑘/∏𝑘
𝑗=1 𝜓𝑗1 + ∑

∞
𝑘=1 𝜈

𝑘/∏𝑘
𝑗=1 𝜓𝑗 , 

and moreover, is monotonically decreasing (2) and continuous in 𝜈. Because, under condition 𝜈 ≥

𝑁2𝜇2, the process 𝑧2(𝑡) is not ergodic, then we obtain 𝑃𝑁(𝜈) = 0 for 𝜈 ≥ 𝑁2𝜇2. Therefore, for the 

fixed 𝑁 > 0, the function  

 𝐹𝑁(𝜈) =
𝜈

𝑃𝑁(𝜈)
 (3) 
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 is continuous and monotonically increases in 𝜈, as long as 0 < 𝜈 < 𝑁2𝜇2, while we put 𝐹𝑁(𝜈) = ∞ if 

𝜈 ≥ 𝑁2𝜇2. Then the equality  
 𝜈 = 𝜆𝑃𝑁(𝜈) = 𝐹𝑁(𝜈)𝑃𝑁(𝜈) 

in (1) can be rewritten as 𝜈 = 𝐹−1(𝜆), where 𝐹−1 is the inverse function to function 𝐹. Hence, by the 

monotonicity, we obtain from (1) that, for 𝑁1𝜇1 < 𝑁2𝜇2,  

 𝜆 < 𝐹𝑁(𝑁1𝜇1). (4) 

 Assume that 𝑁1𝜇1 ≥ 𝑁2𝜇2. Take an arbitrary 휀 ∈ (0, 𝑁2𝜇2). Then, by the ergodicity of the Markov 

process 𝑍(𝑡), 𝑡 ≥ 0, the inequality 𝜈 < 𝑁2𝜇2 − 휀 < 𝑁1𝜇1 follows, which in turn, is equivalent to the 

inequality 𝜈 < 𝑁2𝜇2 − 휀. The latter inequality implies 𝜆 < 𝐹𝑁(𝑁2𝜇2 − 휀) by the monotonicity of 

function 𝐹𝑁. Because 휀 is arbitrary and  
 𝐹𝑁(𝑁2𝜇2 − 휀) → 𝐹𝑁(𝑁2𝜇2) = ∞, 휀 → 0, 

then (4) becomes 𝝀 < ∞, and the proof is completed. 

 

III  A Generalization 
 

 In the paper [1], also the following more general 𝑚-station system, 𝑚 ≥ 2, is considered: the 

external input (with rate 𝜆) is rejected at the first station, if the number of customers 𝑧𝑘(𝑡) in each 

remaining station 𝑘 exceeds a given threshold 𝑁(𝑘). Moreover, the output from station 𝑘 is the 

input to station 𝑘 + 1, 𝑘 = 1,… ,𝑚 − 1. Denote 𝑧𝑘(𝑡) the number of customers at station 𝑘 at instant 

𝑡. In more detail, keeping other notation, consider an 𝑚 - station exponential queueing system, in 

which station 𝑘 has 𝑁𝑘 (stochastically equivalent) servers with exponential service time with rate 

𝜇𝑘, 𝑘 = 1,… ,𝑚. It is assumed that a customer of the external Poisson input is rejected if the 

following inequalities hold true:  

 𝑧2(𝑡) > 𝑁
(2), … , 𝑧𝑚(𝑡) > 𝑁(𝑚). 

The dynamics of this system is described by the following 𝑚-dimensional Markov process  
 𝑍 = (𝑧1(𝑡), … , 𝑧𝑚(𝑡)), 𝑡 ≥ 0. 

 Theorem 2.  Assume the process 𝑍 is ergodic. If  
 𝑁1𝜇1 < min

2≤𝑘≤𝑚
𝑁𝑘𝜇𝑘, 

then 𝜆 < 𝐹𝑁(𝑁1𝜇1). Otherwise, if  
 𝑁1𝜇1 ≥ min

2≤𝑘≤𝑚
𝑁𝑘𝜇𝑘, 

that only requirement is 𝜆 < ∞. 

 Proof. Denote 𝜈 the output rate of the (Poisson) flow of each station 1,… ,𝑚. (This rate is 

the same for all stations by the ergodicity.) By the product-form theorem for stationary regime [9], 

the joint stationary distribution of the basic process satisfies  

 𝑃(𝑧2(𝑡) > 𝑁(2), … , 𝑧𝑚(𝑡) > 𝑁
(𝑚)) = ∏𝑚

𝑘=2 𝑃(𝑧𝑘(𝑡) > 𝑁(𝑘)) =: 𝑃𝑁(2),…,𝑁(𝑚)(𝜈). (5) 

 The component processes 𝑧2(𝑡), … , 𝑧𝑚(𝑡) are the BD processes. Moreover, the process 𝑧𝑘(𝑡) has the 

birth rate 𝜈 and, if 𝑧𝑘(𝑡) = 𝑖, the death rate 𝜇𝑘,𝑖 = min(𝑖, 𝑁𝑘)𝜇𝑘 , 𝑘 = 2,… ,𝑚. It follows by Theorem 

4.2.1 [8] and from analysis of the proof of Theorem 1 above, that the 𝑘th multiplier 𝑃(𝑧𝑘(𝑡) > 𝑁
(𝑘)) 

in (5) (as function of 𝜈) is continuous and decreases for all 𝜈, 0 < 𝜈 < 𝑁𝑘𝜇𝑘, 𝑘 = 2,… ,𝑚. Thus, 

function 𝑃𝑁(2),…,𝑁(𝑚)(𝜈) is monotonically decreasing (and continuous) in 𝜈 as long as  

 0 < 𝜈 < min
2≤𝑘≤𝑚

𝑁𝑘𝜇𝑘. 

Because the process 𝑍 is ergodic, then the rate of the (Poisson) process entering the 1st station is 

𝜈 = 𝜆𝑃𝑁(2),…,𝑁(𝑚) . Furthermore, the output flows of all stations in the system are Poisson with the 

same rate 𝜈. Now, repeating the arguments used in the proof of Theorem 1, we obtain the 

following relations  

 𝜈 = 𝜆𝑃𝑁(2),…,𝑁(𝑚)(𝜈), 𝜈 < 𝑁1𝜇1, … , 𝜈 < 𝑁𝑚𝜇𝑚. (6) 

 At that, the equality  
 𝜈 = 𝜆𝑃𝑁(2),…,𝑁(𝑚)(𝜈) =: 𝐹𝑁(2),…,𝑁(𝑚)(𝜈) 

in (6) can be rewritten as  

 𝜈 = 𝐹
𝑁(2),…,𝑁(𝑚)
−1 (𝜆), 

where 𝐹
𝑁(2),…,𝑁(𝑚)
−1  is the inverse function to function 𝐹𝑁(2),…,𝑁(𝑚) . Now, by the monotonicity, we 
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obtain from (6), for 𝑁1𝜇1 < min2≤𝑘≤𝑚𝑁𝑘𝜇𝑘, the following inequality  

 𝜆 < 𝐹𝑁(2),…,𝑁(𝑚)(𝑁1𝜇1). (7) 

 If 𝑁1𝜇1 ≥ min2≤𝑘≤𝑚𝑁𝑘𝜇𝑘, then again repeating arguments used in the proof of Theorem 1, we 

obtain finally the inequality 𝜆 < ∞, which completes the proof. 

 

IV  Conclusion 
 

The necessary stability conditions of the Markovian model of a two-station tandem queueing 

network with a special type of feedback are found. Under this feedback, the input to the first 

station is rejected as long as the queue size in the second station exceeds a predefined fixed level. 

The analysis is based on the introduction of a function expressing the dependence between the 

rates of input and output at the first station. We apply stochastic monotonicity of the Birth-Death 

process describing the dynamics of the system, to obtain the necessary conditions in an explicit 

form. Analysis of the two-station system is then generalized to multi-station system. 
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