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Abstract 
Inliers (instantaneous or early failures) are natural occurrences of a life 

test, where some of the items fail immediately or within a short time of the 

life test due to mechanical failure, inferior quality or faulty construction of 

items and components. The inconsistency of such life data is modeled 

using a nonstandard mixture of distributions; where degeneracy can 

happen at discrete points at zero and one. In this paper, parameters 

estimation based on Type-II censored sample from a Pareto type II 

distribution with a discrete mass at zero and one is study. The Maximum 

Likelihood Estimators (MLE) are developed for estimating the unknown 

parameters. The Fisher information matrix, as well as the asymptotic 

variance-covariance matrix of the MLEs, are derived. Uniformly Minimum 

Variance Unbiased Estimate (UMVUE) of model parameters as well as 

UMVUE of the density function, reliability function, and some other 

parametric function are obtained along with the standard error of 

estimators. The model is implemented on various real data sets and 

compared with Weibull inliers model. 

 

Keywords: early failures; failure time distribution; infant mortality rate; 

inliers; instantaneous failures; type-II censored sample. 

 

I. Introduction 
 
There are a plethora of examples of phenomena concerning nature, life and human activities where 

the real data do not conform to the standard distributions. In such cases, we either use mixtures of 

standard distributions of similar types or non-standard mixtures of degenerate distribution and a 

standard distribution, which may be again a discrete or continuous one. Since inliers are 

inconsistent observations, which are generally the results of instantaneous and early failures, 

modeling with inliers involve non-standard mixtures of distributions. In the former case, the 

random variable will have a discrete probability mass at the origin (that is life will be zero) and 

some positive lifetimes, and in the latter case, the failure times may be smaller in relation to other 

lifetimes. These occurrences may be due to mechanical failure, inferior quality or faulty 

construction or defective parts of items and components. Such failures usually discard the 

assumption of a single mode distribution and hence the usual method of modeling and inference 

procedures may not be accurate in practice. [2] was the first to discuss the inference problem of 

instantaneous failures in life testing. The author has provided the efficient estimation of parametric 

functions under various probability models. [13] have introduced the term inliers in connection 

with the estimation of (𝑝, 𝜃) of early failure model with modified failure time distribution (FTD) 

being an exponential distribution with mean 𝜃 assuming 𝑝 known. Later on, many authors have 
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studied these kinds of models (see [18], [13] and [15]).    

There are many practical contexts, where inliers can be natural occurrences of the specific 

situations involved and degeneracy can happen at two discrete points and a positive distribution 

for the remaining lifetimes. Some of the situations are as follows: 

1. The size of tumor lesions is of interest to treat Hematologic malignancy patients. The 

measurement effect is zero who have lesions absent (or due to disappearance of tumor 

during treatment), though who have lesions present at baseline that are measurable but do 

not meet the definitions of measurable disease may be considered as measurement 1, 

otherwise lesions can be accurately measured as longest diameter to be recorded in at least 

one dimension by chest x-ray, with CT scan or with calipers by clinical examination. 

Similarly, in studies like Bone lesions, leptomeningeal disease, ascites, pleural/pericardial 

effusions, lymphangitis cutis/pulmonitis, inflammatory breast disease, and abdominal 

masses, either the effect is absent or present but not followed by CT or MRI, are considered 

as non-measurable otherwise accurately measurable on a continuous scale. 

2. In the mass production of technological components of hardware, intended to function 

over a period of time, some components may fail on installation and therefore have zero 

life lengths, some component that does not fail on installation but fails with negligible life 

(may be coded as one for simplicity), and others that will have a life length a positive 

random variable whose distribution may take different forms. 

3. In a clinical trial laboratory, a particular drug is designed and given to certain species of 

hens so that the new chicks have a weight greater than usual. The possible weight of 

chicks may be modeled as a continuous distribution, with discrete mass at ‘zero’ and ‘one’,  

where zero measures those chicks having no gain of weight, and one measures those 

chicks with negligible gain of weight than usual, and the remaining chicks having weight 

gain in some continuous measurement. 

4. The rainfall measurement at a place recorded during a season is modeled as a continuous 

distribution, with a discrete mass at ‘zero’ where zero measures those days having no 

rainfall, and at ‘one’, one measures those days with no rain but humid and cloudy 

conditions, and a continuous variable having some positive amount of rain. 

5. In the studies of genetic birth defects, children can be characterized by three variables: 

first, a discrete variable to indicate whether a child is affected and born dead; second, a 

child is affected and has a neonatal death; and third, a continuous variable measuring the 

survival time of affected children born alive. We may consider this as a nonstandard 

mixture of the mass point at “zero” (for children born dead), at “one” (for children born 

and neonatal death), and a nontrivial continuous distribution for other surviving children. 

Similarly, one can contemplate many such examples in practical situations involving 

degeneracy at two or more points and positive configurations of observations. Authors [16] and 

[17], have modeled the above situation using exponential distribution and Weibull distribution 

respectively. In this article, we model the inliers situation using the type-II censored lifetime data 

from a Pareto II distribution. As per the scheme, if  𝑛 units are placed on the test and the 

experiment is terminated after a prefixed number of failures say, 𝑐 < 𝑛, then the observed failure 

times are 𝑋(1), 𝑋(2), … , 𝑋(𝑐) where 𝑋(𝑐) < 𝑋(𝑛). The remaining 𝑛 − 𝑐 items are regarded as censored 

data. The family of the Pareto distribution is well known in the literature for its capability in 

modeling the heavy-tailed distributions. The Pareto Type II distribution (also called Lomax 

distribution with location parameter zero) has the probability distribution function (pdf)  

 

𝑓(𝑥, 𝛼) =
𝜃𝛽𝜃

(𝑥+𝛽)(1+𝜃)
, 𝑥 > 0, 𝛽 > 0, 𝜃 > 0      (1) 

 

where 𝛼 = (𝛽, 𝜃), 𝛽 > 0 is a scale parameter and 𝜃 > 0 is a shape parameter. The Pareto 

distribution has been used in connection with studies of income, property values, insurance risk, 

migration, size of cities and firms, word frequencies, business mortality, service time in queuing 
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systems, etc. The paper by [1] contains a detailed list of important areas where heavy-tailed 

distributions are found applicable. There are also recent applications of the Pareto distribution in 

data sets on earthquakes, forest fire areas, fault lengths on Earth and Venus, and on oil and gas 

fields sizes, see [22] for details.  

 The presentation of the paper is as follows: The model description is given in Section II. In 

Section III, we derive the MLE of the unknown parameters along with the interval estimation of 

parameters. The UMVU estimation of model parameters and various parametric functions are 

given in Section IV. For illustration, we consider four real datasets for implementing the proposed 

model in Section V.   

  

II. Model description 
 
If 0 and 1 are natural occurrence of a life test as described above with other positive observations, 

then the distribution function of such a inliers model can be written as: 

 

𝐻(𝑥; 𝑝1, 𝑝2, 𝛼) =

{
 
 

 
 
0,                                                                      𝑥 < 0        
𝑝1 ,                                                                     0 ≤ 𝑥 < 1
𝑝1 + 𝑝2,                                                            𝑥 = 1        

𝑝1 + 𝑝2 + (1 − 𝑝1−𝑝2)
𝐹(𝑥; 𝛼) − 𝐹(1; 𝛼)

1 − 𝐹(1; 𝛼)
,    𝑥 ≥ 1        

         (2) 

 

The fact is that the probability measure generated by H(.) is composed of three measures, say 𝜇1, 

𝜇2, and 𝜇3, where 𝜇3 is absolutely continuous with respect to the Lebesgue measure on 𝑅 and 𝜇1 

and 𝜇2 are singular with respect to the Lebesgue measure on 𝑅. The corresponding likelihood 

function of the model is 

 

ℎ(𝑥; 𝑝1, 𝑝2 , 𝛼) = {

𝑝1,                                            𝑥 = 0
𝑝2,                                            𝑥 = 1

(1 − 𝑝1−𝑝2)
𝑓(𝑥; 𝛼) 

1 − 𝐹(1; 𝛼)
,       𝑥 > 1

    (3) 

 

where 𝑝1 and 𝑝2 are the proportion of 0 and 1 observations respectively.  For 𝛽 =1, the Pareto Type 

II inliers distribution has the likelihood function  

 

ℎ(𝑥; 𝑝1, 𝑝2, 𝜃) = {

𝑝1 ,                                                        𝑥 = 0
𝑝2,                                                        𝑥 = 1

(1 − 𝑝1−𝑝2)
𝜃

(1+𝑥)
(

2

(1+𝑥)
)
𝜃

,          𝑥 > 1

   (4) 

 

The parameter estimates are obtained in the next section.  

 

III. The Maximum Likelihood Estimation of 𝜽 = (𝒑𝟏, 𝒑𝟐, 𝜽) 

 
Suppose 𝑛 items placed on life test, where 𝑟1 items have life zero where as 𝑟2 items have life 1 and 

remaining 𝑛 − 𝑟1 − 𝑟2 items have life greater than 1, is denoted by 𝑋1, 𝑋2, … , 𝑋𝑛−𝑟1−𝑟2 . By applying 

the technique of ‘Type-II censored sample’, the experiment terminates after prefixed number of 

failures 𝑛 − 𝑟1 − 𝑟2 − 𝑐 out of 𝑛 − 𝑟1 − 𝑟2 items, where, 𝑛 − 𝑟1 − 𝑟2 − 𝑐 < 𝑛 − 𝑟1 − 𝑟2. Clearly, if 𝑛 −

𝑟1 − 𝑟2 − 𝑐 = 𝑛 − 𝑟1 − 𝑟2, then the experiment is not terminated and all 𝑛 − 𝑟1 − 𝑟2 lifetimes are 

observed. Let 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗ = min (𝑛 − 𝑟1 − 𝑟2 − 𝑐, 𝑛 − 𝑟1 − 𝑟2) and 𝑋(1), 𝑋(2), … , 𝑋(𝑛−𝑟1−𝑟2−𝑐∗) 

denote ordered observed failure time of these 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗ items from ℎ ∈ ℋ as given in (4). 

Then the likelihood equation can be written as 

 

𝐿(𝑥; 𝜃) = ∏ ℎ(𝑥𝑖; 𝜃)
𝑛
𝑖=1   
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If we define 

 𝐼1(𝑥) = {
1,              𝑥 = 0           
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝐼2(𝑥) = {
1,              𝑥 = 1          
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Then the likelihood equation can be written as 

= 𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
(𝑛−𝑟1−𝑟2)

(𝑛 − 𝑟1 − 𝑟2)!

𝑐∗!
 𝜃𝑛−𝑟1−𝑟2−𝑐

∗
∏

1

1+ 𝑥(𝑖)

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1

 

  

𝑒
−𝜃{∑ [log(

1+𝑥(𝑖)

2
)]

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 +𝑐∗[log(
1+𝑥(𝑛−𝑟1−𝑟2−𝑐

∗)

2
)]}

  
 (5) 

  

where 𝑟1 = ∑ 𝐼1(𝑥(𝑖))
𝑛
𝑖=1  and  𝑟2 = ∑ 𝐼2(𝑥(𝑖))

𝑛
𝑖=1 , denotes the number of zero and one observations 

respectively. We now investigate the following four possible cases of likelihood estimates: 

 

Case (i). 𝑟2 = 0, that is 𝑟1 = 𝑛. The likelihood function simply reduces to 𝐿(𝑥; 𝜃) = 𝑝1
𝑛. Obviously, 

this is maximum when 𝑝1 = 1. This corresponds to the maximum likelihood estimator �̂�1 =
𝑟1

𝑛
 . 

Since 𝐿(𝑥; 𝜃) = 𝑝1
𝑛 is free from the other parameters, the maximum likelihood estimator of other 

parameters do not exist. 

Case (ii). 𝑟1 = 0, that is 𝑟2 = 𝑛. The likelihood function simply reduces to 𝐿(𝑥; 𝜃) = 𝑝2
𝑛. Obviously, 

this is maximum when 𝑝2 = 1. This corresponds to the maximum likelihood estimator �̂�2 =
𝑟2

𝑛
 . 

Since 𝐿(𝑥; 𝜃) = 𝑝2
𝑛 is free from the other parameters, the maximum likelihood estimator of other 

parameters do not exist. 

Case (iii). 𝑟1 < 𝑛, 𝑟2 < 𝑛 but  𝑟1 + 𝑟2 = 𝑛 . The likelihood function simply reduces to 𝐿(𝑥; 𝜃) = 𝑝1
𝑟1𝑝2

𝑟2 . 

Here 𝑝1 + 𝑝2 < 𝑛. Then the likelihood function 𝐿(𝑥; 𝜃) < (
𝑥1

𝑛
)
𝑟1
(
𝑥2

𝑛
)
𝑟2

  So �̂�1 =
𝑟1

𝑛
 and �̂�2 =

𝑟2

𝑛
. The 

maximum likelihood of other parameters do not exist. 

Case (iv). 𝑟1 + 𝑟2 < 𝑛. The log-likelihood function is given by 

 

log 𝐿(𝑥; 𝜃) = 𝑟1 log 𝑝1 + 𝑟2 log 𝑝2 +(𝑛 − 𝑟1 − 𝑟2) log(1 − 𝑝1 − 𝑝2) + log(𝑛 − 𝑟1 − 𝑟2)!  

−log 𝑐∗! + (𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗) log 𝜃 − ∑ log(1 + 𝑥(𝑖))

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1

 

−𝜃 {∑ [log (
1+𝑥(𝑖)

2
)]

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 + 𝑐∗ [log (
1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗)

2
)]}   (6) 

 

The maximum likelihood estimator of parameter 𝜃 = (𝑝1, 𝑝2, 𝜃) is obtained by solving the 

following likelihood equations: 

 
𝜕 log 𝐿(𝑥;𝜃 )

𝜕𝑝1
= 

𝑟1

𝑝1
−

𝑛−𝑟1−𝑟2

1−𝑝1−𝑝2
= 0       (7) 

 
𝜕 log 𝐿(𝑥; 𝜃)

𝜕𝑝2
= 

𝑟2

𝑝2
−

𝑛−𝑟1−𝑟2

1−𝑝1−𝑝2
= 0       (8) 

and 

   
𝜕 log 𝐿(𝑥; 𝜃)

𝜕𝜃
= 

𝑛−𝑟1−𝑟2−𝑐
∗

𝜃
− {∑ [log (

1+𝑥(𝑖)

2
)]

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 + 𝑐∗ [log (
1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗)

2
)]} = 0 (9) 

 

Solving (7) and (8) simultaneously, we get 

�̂�1 =
𝑟1

𝑛
            (10) 

�̂�2 =
𝑟2

𝑛
           (11) 

 From (9), the estimate of θ is 
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𝜃 =
𝑛−𝑟1−𝑟2−𝑐

∗

∑ [log(1+𝑥(𝑖))−log 2]
𝑛−𝑟1−𝑟2−𝑐

∗

𝑖=1
 + 𝑐∗[log(1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗))−log 2]

    (12) 

 

The approximate (1 − 𝛼)% confidence interval for 𝑝1,  𝑝2 and 𝜃 are respectively given by 

 

 �̂�1 ± 𝑧𝛼 2⁄   √
𝑝1(1−𝑝1)

𝑛
 , �̂�2 ± 𝑧𝛼 2⁄   √

𝑝2(1−𝑝2)

𝑛
  and �̂� ± 𝑧𝛼

2⁄   √
�̂�2

(𝑛−𝑐∗) 𝑝∗
  where, �̂�∗ = 1 − �̂�1 − �̂�2. 

 

IV. Unbiased estimation 
 
Many authors have studied the problem of minimum variance unbiased estimation for different 

classes of distributions. [23], [12] and [5] have studied the estimation problem for power series 

distribution, [20] has studied the same for generalized power series distribution, [7] and [5] have 

studied for modified power series distribution. [19] has studied the UMVUE of parameters for the 

multivariate modified power series distribution. All these studies include discrete distributions 

only. [9] has studied the problem of MVU estimation in one parameter exponential family of 

distributions which includes power series distribution, modified power series distribution and 

univariate continuous distributions. Further, a characterization property of power series 

distribution using one and two moments was given by [14]. [8] extended this for the one-

parameter exponential family of distribution which includes all earlier cases. [10] have further 

studied MVU estimation in the multi-parameter exponential family of distributions.  Here, we 

propose the distributional properties of complete sufficient statistic and study UMVU estimation 

for various parametric functions of the model. 

The model in (4) can be expressed as 

 

ℎ(𝑥; 𝜃) = (
1

(1+𝑥)
)
(1−𝐼1(𝑥)−𝐼2(𝑥)) (

𝑝1 

𝜃(1−𝑝1−𝑝2)
)
𝐼1(𝑥)

(
 𝑝2 

𝜃(1−𝑝1−𝑝2)
)
𝐼2(𝑥)

(𝑒−𝜃)
{[log(

1+𝑥
2 )](1−𝐼1(𝑥)−𝐼2(𝑥))}

(
1

𝜃(1−𝑝1−𝑝2)
)

 =

(𝑎(𝑥))(1−𝐶1(𝑥)−𝐶2(𝑥))
∏ (ℎ𝑖(𝜃))

𝐶𝑖(𝑥)3
𝑖=1

𝑔(𝜃)
     (13) 

 

where, 𝑎(𝑋) =
1

(1+𝑋)
; ℎ1(𝜃) =

𝑝1 

𝜃(1−𝑝1−𝑝2)
; ℎ2(𝜃) =

 𝑝2 

𝜃(1−𝑝1−𝑝2)
; ℎ3(𝜃) = 𝑒

−𝜃; 𝑔(𝜃) =
1

𝜃(1−𝑝1−𝑝2)
; 𝐶1(𝑋) =

𝐼1(𝑋); 𝐶2(𝑋) = 𝐼2(𝑋) and 𝐶3(𝑋) = [log (
1+𝑋

2
)] (1 − 𝐼1(𝑋) − 𝐼2(𝑋)). Also 𝑎(𝑋) > 0, 𝐶𝑖(𝑋), 𝑖 = 1,2 and 3 

are nontrivial real- valued statistics, 𝑔(𝜃) and ℎ𝑖(𝜃) are at least twice differentiable functions of 

𝜃𝑖, 𝑖=1,2 and 3. Here  𝑔(𝜃) = ∫ (𝑎(𝑥))(1−𝐶1(𝑥)−𝐶2(𝑥))∏ (ℎ𝑖(𝜃))
𝐶𝑖(𝑥)3

𝑖=1 𝑑𝑥
𝑥>1

. The density in (13) so 

obtained is defined with respect to a measure 𝜇(𝑥) which is the sum of Lebesgue measure over 

(1,∞) a well-known form of a three parameter exponential family with natural parameters 

(𝜂1, 𝜂2, 𝜂3) = (log (
𝑝1 

𝜃(1−𝑝1−𝑝2)
)  , log (

 𝑝2 

𝜃(1−𝑝1−𝑝2)
)  , log(𝑒−𝜃)) generated by underlying indexing 

parameters 𝜃 = (𝑝1 , 𝑝2, 𝜃).  Hence 𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) = (𝐼1(𝑋), 𝐼2(𝑋), [log (
1+𝑋

2
)] (1 −

𝐼1(𝑋) − 𝐼2(𝑋))) is jointly complete sufficient for 𝜃 = (𝑝1, 𝑝2, 𝜃). The distributional properties of 

𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) are presented in appendix A. We now propose some uniformly 

minimum variance unbiased estimators for parameters and some parametric function of the model 

(13) in various subsections below.  

 

I. Uniformly Minimum Variance Unbiased Estimation of parameters 

For the Type-II censored sample discussed in the previous section, consider the following 

transformation 

𝑌1 = (𝑛 − 𝑟1 − 𝑟2) ([log (
1+𝑥(𝑖)

2
)]),  
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and 

𝑌𝑖 = (𝑛 − 𝑟1 − 𝑟2 − 𝑖 + 1) {[log (
1+𝑥(𝑖)

2
)] − [log (

1+𝑥(𝑖−1)

2
)]} ;      

       𝑖 = 2,3, … , 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗  (14) 

It can be seen that 

 

∑ 𝑌𝑖
𝑛−𝑟1−𝑟2−𝑐

∗

𝑖=1 = ∑ [log (
1+𝑥(𝑖)

2
)] 

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 +  𝑐∗ [log (
1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗)

2
)]    

and 

|𝐽| =
𝑐∗!  ∏ (1+𝑥(𝑖))

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1     

(𝑛−𝑟1−𝑟2)!
       

 (15)  

 

Using (14) and (15), 

 

ℎ (𝑦; 𝜃) = 𝑝1
𝑟1𝑝2

𝑟2  (1 − 𝑝1 − 𝑝2)
(𝑛−𝑟1−𝑟2) 𝜃(𝑛−𝑟1−𝑟2−𝑐

∗)  𝑒−θ ∑ 𝑦𝑖
𝑛−𝑟1−𝑟2−𝑐

∗

𝑖=1  (16) 

 

=
(

 𝑝1 

𝜃(1−𝑝1−𝑝2)
)
𝑧1
(

𝑝2 

𝜃(1−𝑝1−𝑝2)
)
𝑧2
(𝑒−𝜃)

𝑧3
(1−𝑝1−𝑝2)

𝑐∗

(
1  

𝜃(1−𝑝1−𝑝2)
)
𝑛−𝑐∗    

where  

 𝑍1 = ∑ 𝐶1(𝑋𝑖) = ∑ 𝐼1(𝑌𝑖) = 𝑟1
𝑛−𝑐∗

𝑖=1
𝑛
𝑖=1  

𝑍2 =∑𝐶2(𝑋𝑖) = ∑ 𝐼2(𝑌𝑖) = 𝑟2

𝑛−𝑐∗

𝑖=1

𝑛

𝑖=1

 

and  

𝑍3 = ∑ 𝐶3(𝑋𝑖) =
𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1   

 

Hence by Neyman Factorization theorem  𝑍 = (𝑍1, 𝑍2, 𝑍3) is jointly sufficient for  𝜃 = (𝑝1, 𝑝2, 𝜃).  

Also, 

 

ℎ (𝑦; 𝜃) =
𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
 (𝑛−𝑟1−𝑟2)

𝜃(𝑛−𝑟1−𝑟2−𝑐
∗)

(
𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
)
 𝑒−𝜃∑ 𝑦𝑖

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1    

 
=  P(𝑍1 = 𝑟1, 𝑍2 = 𝑟2)  ℎ(𝑦; 𝜃|𝑍1 = 𝑟1, 𝑍2 = 𝑟2)   

 

Here distribution of (𝑍1, 𝑍2) is trinomial and is a complete family of distribution and 

ℎ (𝑦; 𝜃|𝑍1 = 𝑟1, 𝑍2 = 𝑟2) =
𝜃(𝑛−𝑟1−𝑟2−𝑐

∗) 𝑒
−𝜃∑ 𝑦𝑖

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1
 

(
𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
)

  

 

which belongs to the one-parameter exponential family. Hence 𝑍3|𝑍1, 𝑍2 is complete sufficient for 𝜃 

and also a member of the exponential family. The distribution of 𝑍3|𝑍1, 𝑍2 is Gamma with 

parameter (𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗, 𝜃) with pdf  

 

ℎ(𝑧3; 𝜃|𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗) =

𝑧3
(𝑛−𝑟1−𝑟2−𝑐

∗−1) 𝜃𝑛−𝑟1−𝑟2−𝑐
∗
 𝑒−𝜃 𝑧3

Γ𝑛−𝑟1−𝑟2−𝑐
∗ , 𝑧3 > 0;  𝜃 > 0   

 

which depends only on 𝜃 and is also a complete family of distribution. Therefore, using result of 

[11] 𝑍 = (𝑍1, 𝑍2, 𝑍3) is complete sufficient for 𝜃 = (𝑝1, 𝑝2, 𝜃). The Joint distribution of 𝑍 = (𝑍1, 𝑍2, 𝑍3) 

is 
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ℎ𝑍(𝑧; 𝜃) =  
𝑛!

𝑟1!   𝑟2!  (𝑛 − 𝑟1 − 𝑟2)! 
𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
 (𝑛−𝑟1−𝑟2)

𝑧3
(𝑛−𝑟1−𝑟2−𝑐

∗−1)

Γ𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗
𝜃𝑛−𝑟1−𝑟2−𝑐

∗
 𝑒−𝜃 𝑧3 ,

                                                                     0 ≤ 𝑟1, 𝑟2 ≤ 𝑛 − 𝑐
∗;  𝑧3 > 0;  0 ≤ 𝑝1, 𝑝2 ≤ 1;  𝜃 > 0

 

 = 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) 

∏ (ℎ𝑖(𝜃))
𝑧𝑖3

𝑖=1

𝑔(𝜃)
𝑛−𝑐∗ (1 − 𝑝1 − 𝑝2)

𝑐∗ 

where 

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) = {

𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 

𝑧3
(𝑛−𝑟1−𝑟2−𝑐

∗−1)

Γ𝑛−𝑟1−𝑟2−𝑐
∗ ,  𝑧3 > 0; 𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗

1,                                                             𝑧3 = 0;  𝑟1 = 0  𝑜𝑟 𝑟2 = 0

(17) 

 

𝑧𝑖 ∈ 𝑇(𝑛 − 𝑐
∗) ⊆ ℝ, 𝜃 ∈ Ω.  Here  𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  and 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) are such that 

 

𝑔(𝜃)
𝑛−𝑐∗

(1−𝑝1−𝑝2)
𝑐∗ = ∫ ∫ ∫ 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)
𝑧3∈𝑇(𝑛−𝑐

∗)𝑧2∈𝑇(𝑛−𝑐
∗)𝑧1∈𝑇(𝑛−𝑐

∗)
∏ (ℎ𝑖( 𝜃 ))

𝑧𝑖3
𝑖=1 𝑑𝑧1 𝑑𝑧2 𝑑𝑧3  

 

Since (𝐶1(𝑥)) = 𝑝1, 𝐸(𝐶2(𝑥)) = 𝑝2 and 𝐸(𝐶3(𝑥)) =
(1−𝑝1−𝑝2)

𝜃
 (see Appendix A for details). Hence, 

𝐸(𝑍1) = 𝐸(∑ 𝐶1(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 (𝐼1(𝑦𝑗))

𝑛−𝑐∗

𝑗=1 = (𝑛 − 𝑐∗) 𝑝1, 

𝐸(𝑍2) = 𝐸(∑ 𝐶2(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 (𝐼2(𝑦𝑗))

𝑛−𝑐∗

𝑗=1 = (𝑛 − 𝑐∗) 𝑝2, 

and 

𝐸(𝑍3) = 𝐸(∑ 𝐶3(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸(𝑌𝑖)

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 = (𝑛 − 𝑐∗)
(1−𝑝1−𝑝2)

𝜃
 , 

 

which in turn give UMVUE’s of 𝑝1, 𝑝2 and 𝜃 as 

 �̂�1 =
𝑍1

𝑛−𝑐∗
= 

𝑟1

𝑛−𝑐∗
         (18) 

�̂�2 =
𝑍2

𝑛−𝑐∗
= 

𝑟2

𝑛−𝑐∗
         (19) 

and 

�̂� =
(𝑛−𝑐∗)(1−𝑝1−𝑝2)

𝑍3
        

 (20) 

 

For variance computation, see Appendix A. Note that, the likelihood estimate and minimum 

variance unbiased estimate of the parameters coincides everywhere when 𝑐∗=0. 

 

II. Uniformly Minimum Variance Unbiased Estimation of parametric functions 

Let 𝑋1, 𝑋2, … , 𝑋𝑛−𝑐∗ be Type-II censored random sample from (13), then there exists an UMVUE of 

Φ( 𝜃 ) if and only if Φ( 𝜃 )[𝑔(𝜃)]
𝑛−𝑐∗

 can be expressed in the form 

Φ( 𝜃 )[𝑔(𝜃)]
𝑛−𝑐∗

(1 − 𝑝1 − 𝑝2)
𝑐∗

= ∫ ∫ ∫ 𝛼(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

𝑧3∈𝑇(𝑛−𝑐
∗)𝑧2∈𝑇(𝑛−𝑐

∗)𝑧1∈𝑇(𝑛−𝑐
∗)

∏(ℎ𝑖( 𝜃 ))
𝑧𝑖

3

𝑖=1

𝑑𝑧1 𝑑𝑧2 𝑑𝑧3 

 

Thus, the UMVUE of a function  Φ( 𝜃 ) of  𝜃 in ℎ(𝑥; 𝜃) is given by 

 

𝜓(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) =

𝛼(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛)

𝐵(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛)

, 𝐵(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) ≠ 0 

 

The following results are now obvious. 

Result 1 The UMVUE of ∏ (ℎ𝑖(𝜃))
𝑘𝑖 = (

1

𝜃(1−𝑝1−𝑝2)
)
𝑘1+𝑘2

𝑝1
𝑘1 𝑝2

𝑘2𝑒−𝜃𝑘33
𝑖=1   is given by 

𝐻𝑘1,𝑘2,𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1 − 𝑘1,  𝑧2 − 𝑘2,  𝑧3 − 𝑘3, 𝑐
∗, 𝑛)

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

 

    =
(𝑟1)𝑘1  (𝑟2)𝑘2   (1−

𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2−𝑐

∗−1)
  (𝑧3−𝑘3)

𝑘1+𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘1+𝑘2[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1+𝑘2

, 



 
Bavagosai Pratima, K. Muralidharan 
A PARETO II MODEL WITH INLIERS AT ZERO 

RT&A, No 3 (50) 
Volume 13, September 2018  

73 

 

where  𝑘1 ≤ 𝑟1;  𝑘2 ≤ 𝑟2;  𝑘3 ≤ 𝑧3;  𝑘1 + 𝑘2 ≤ 𝑛 −  𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗, and (𝑟)𝑘 =
𝑟!

(𝑟−𝑘)!
 , 

[𝑟]𝑘 =
Γ𝑟+𝑘

Γ𝑟
. 

 

Corollary 1 If  𝑘1 ≠ 0,  𝑘2 = 0 and  𝑘3 = 0, then UMVUE of  (ℎ1(𝜃))
𝑘1
= (

 𝑝1

𝜃(1−𝑝1−𝑝2)
)
𝑘1

 is given by 

𝐻𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1−𝑘1,𝑧2,𝑧3,𝑐
∗,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑐
∗,𝑛)

   

                      =
(𝑟1)𝑘1   𝑧3

𝑘1

[𝑛−𝑟1−𝑟2+1]𝑘1[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1

, 

𝑘1 ≤ 𝑟1;  𝑘1 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;   𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗  

 

Corollary 2 If  𝑘1 = 0, 𝑘2 ≠ 0 and 𝑘3 = 0, then UMVUE of (ℎ2(𝜃))
𝑘2
= (

𝑝2

𝜃(1−𝑝1−𝑝2)
)
𝑘2

is given by 

𝐻𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1,𝑧2−𝑘2,𝑧3,𝑐
∗,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑐
∗,𝑛)

  

 =
(𝑟2)𝑘2   𝑧3

𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘2[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘2

, 𝑘2 ≤ 𝑟2;  𝑘2 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Corollary 3 If 𝑘1 = 0, 𝑘2 = 0 and 𝑘3 ≠ 0, then UMVUE of (ℎ3(𝜃))
𝑘3
= 𝑒−𝜃𝑘3  is given by 

𝐻𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1, 𝑧2, 𝑧3 − 𝑘3, 𝑐
∗, 𝑛)

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

 

= (1 −
𝑘3

 𝑧3
)
𝑛− 𝑟1− 𝑟2−𝑐

∗−1

, 𝑘3 ≤ 𝑧3;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Result 2 The UMVUE of the variance of 𝐻𝑘1,𝑘2,𝑘3(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by  

𝑣𝑎�̂�[𝐻𝑘1,𝑘2,𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘1,𝑘2,𝑘3

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘1,2𝑘2,2𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= [
(𝑟1)𝑘1(𝑟2)𝑘2   (1−

𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2−𝑐

∗−1)
(𝑧3−𝑘3)

𝑘1+𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘1+𝑘2[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1+𝑘2

]

2

     

            −
(𝑟1)2𝑘1(𝑟2)2𝑘2   (1−

2𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2−𝑐

∗−1)
(𝑧3−2𝑘3)

2(𝑘1+𝑘2) 

[𝑛−𝑟1−𝑟2+1]2(𝑘1+𝑘2)[𝑛−𝑟1−𝑟2−𝑐
∗]2(𝑘1+𝑘2)

,

   

where 2𝑘1 ≤ 𝑟1;  2𝑘2 ≤ 𝑟2;  2𝑘3 ≤ 𝑧3;  2(𝑘1 + 𝑘2) ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;   𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗.  

 

Corollary 4 The UMVUE of the variance of 𝐻𝑘1(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by 

𝑣𝑎�̂�[𝐻𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘1

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= [
(𝑟1)𝑘1   𝑧3

𝑘1

[𝑛−𝑟1−𝑟2+1]𝑘1[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1
]
2

−
(𝑟1)2𝑘1     𝑧3

2𝑘1

[𝑛−𝑟1−𝑟2+1]2𝑘1[𝑛−𝑟1−𝑟2−𝑐
∗]2𝑘1

’  

2𝑘1 ≤ 𝑟1;  2𝑘1 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗ 

  

Corollary 5 The UMVUE of the variance of 𝐻𝑘2(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by  

 𝑣𝑎�̂�[𝐻𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘2

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= [
(𝑟2)𝑘2   𝑧3

𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘2  [𝑛−𝑟1−𝑟2−𝑐
∗]𝑘2
]
2

−
(𝑟2)2𝑘2     𝑧3

2𝑘2

[𝑛−𝑟1−𝑟2+1]2𝑘2    [𝑛−𝑟1−𝑟2−𝑐
∗]2𝑘2

,  

2𝑘2 ≤ 𝑟2;  2𝑘2 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Corollary 6 The UMVUE of the variance of 𝐻𝑘3(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by  

𝑣𝑎�̂�[𝐻𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘3

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= (1 −
𝑘3

 𝑧3
)
2(𝑛− 𝑟1− 𝑟2−𝑐

∗−1)

− (1 −
2𝑘3

 𝑧3
)
𝑛− 𝑟1− 𝑟2−𝑐

∗−1

,  

       2𝑘3 ≤ 𝑧3;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗   

 

Result 3 The UMVUE of [𝑔(𝜃)]
𝑘
= (

1

𝜃(1−𝑝1−𝑝2)
)
𝑘

, 𝑘 ≠ 0   as per the model given in (13) is 
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𝐺𝑘(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛 + 𝑘)

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

 

   =
[𝑛+1]𝑘     𝑧3

𝑘

[𝑛−𝑟1−𝑟2+1]𝑘    [𝑛−𝑟1−𝑟2−𝑐
∗]𝑘

, 𝑘 ≤ 𝑛−𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Result 4 The UMVUE of the variance of  𝐺𝑘(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) is given by 

𝑣𝑎�̂�[𝐺𝑘(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐺𝑘
2(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛) − 𝐺2𝑘(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)  

=[
[𝑛+1]𝑘       𝑧3

𝑘

[𝑛−𝑟1−𝑟2+1]𝑘    [𝑛−𝑟1−𝑟2−𝑐
∗]𝑘
]
2

−
[𝑛+1]2𝑘       𝑧3

2𝑘

[𝑛−𝑟1−𝑟2+1]2𝑘    [𝑛−𝑟1−𝑟2−𝑐
∗]2𝑘
 , 

2𝑘 ≤ 𝑛−𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗   

 

Result 5 For fixed x, the UMVUE of the density given in (13) is  

𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) = 𝑎(𝑥)

𝐵(𝑧1−𝐶1(𝑥), 𝑧2−𝐶2(𝑥), 𝑧3−𝐶3(𝑥),𝑐
∗,𝑛−1)

𝐵(𝑧1,𝑧2,𝑧3,𝑐
∗,𝑛)

  

= (
1

1+𝑥
)
(𝑟1)𝐼1(𝑥) (𝑟2)𝐼2(𝑥) (𝑛−𝑟1−𝑟2)(1−𝐼1(𝑥)−𝐼2(𝑥)) 

(𝑛−𝑟1−𝑟2−𝑐
∗−1)(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛 [ 𝑧3−[log(
1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))]

(1−𝐼1(𝑥)−𝐼2(𝑥))   

(1 −
[log(

1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)

(𝑛−𝑟1−𝑟2−𝑐
∗−1)

, 𝑧3 > [log (
1+𝑥

2
)] ;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗  

 

Result 6 The UMVUE of the variance of 𝜙𝑥(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) is given by 

𝑣𝑎�̂�[𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝜙𝑥

2(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)  

−𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) 𝜙𝑥(𝑧1 − 𝐶1(𝑥),  𝑧2 − 𝐶2(𝑥),  𝑧3 − 𝐶3(𝑥), 𝑐

∗, 𝑛 − 1) 

 = 𝜙𝑥
2(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛) − (
1

1+𝑥
)
2

 
(𝑟1)2𝐼1(𝑥) (𝑟2)2𝐼2(𝑥) (𝑛−𝑟1−𝑟2)2(1−𝐼1(𝑥)−𝐼2(𝑥))

 (𝑛−𝑟1−𝑟2−𝑐
∗−1)2(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛(𝑛−1)[ 𝑧3−2[log(
1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥)]

2(1−𝐼1(𝑥)−𝐼2(𝑥))
  

(1 −
2[log(

1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)

(𝑛−𝑟1−𝑟2−𝑐
∗−1)

, 𝑧3 > 2 [log (
1+𝑥

2
)] ;   𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗   

    

Result 7 For a fixed  𝑧 =  (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛), the UMVUE of the survival function  𝑆(𝑥)  =  𝑝(𝑋 > 𝑥),

𝑥 ≥ 0 is obtained as 

 �̂�(𝑥) = (
(𝑟1)𝐼1(𝑥)(𝑟2)𝐼2(𝑥)(𝑛−𝑟1−𝑟2)(1−𝐼1(𝑥)−𝐼2(𝑥))

(𝑛−𝑟1−𝑟2−𝑐
∗−1)(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛 [(𝑛−𝑟1−𝑟2−𝑐
∗)−(1−𝐼1(𝑥)−𝐼2(𝑥))] 

) 

(𝑍3 − [log (
1+𝑥

2
)] (1 − 𝐼1(𝑥) − 𝐼2(𝑥)))

(𝐼1(𝑥)+𝐼2(𝑥))

(1 −
[log(

1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑍3
)

(𝑛−𝑟1−𝑟2−𝑐
∗−1)

,    

𝑍3 > [log (
1+𝑥

2
)] ;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Result 8 For the fixed 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛), the UMVUE of the 𝑣𝑎𝑟(�̂�(𝑥)), is obtained as 

𝑣𝑎�̂�(�̂�(𝑥)) = [�̂�(𝑥)]
2
− 

1

𝑛(𝑛−1)
(1 −

2[log(
1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)

(𝑛−𝑟1−𝑟2−𝑐∗−1)

  

(
(𝑟1)2𝐼1(𝑥)(𝑟2)2𝐼2(𝑥)(𝑛−𝑟1−𝑟2)2(1−𝐼1(𝑥)−𝐼2(𝑥))

 (𝑛−𝑟1−𝑟2−𝑐−1
∗)2(1−𝐼1(𝑥)−𝐼2(𝑥))

[(𝑛−𝑟1−𝑟2−𝑐
∗)−2(1−𝐼1(𝑥)−𝐼2(𝑥))][(𝑛−𝑟1−𝑟2−𝑐

∗+1)−2(1−𝐼1(𝑥)−𝐼2(𝑥))]
)  

( 𝑧3 − 2 [log (
1+𝑥

2
)] (1 − 𝐼1(𝑥) − 𝐼2(𝑥))

2(𝐼1(𝑥)+𝐼2(𝑥))

 , 

𝑍3 > 2 [log
(1+𝑥)

2
] ;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗  

 

III. Real data illustration 

 

In this section, we have considered four inliers prone data set to illustrate our proposed work. The 

motivation behind considering a different variety of data sets is to show the flexibility of the 

proposed model in different situations. The detailed description regarding the data sets is given 

below: 

 

Dataset 1: The data in Table 1 shows the loss ratios (yearly data) for earthquake insurance in 
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California from 1971 through 1993. The data are taken from [6] and also used by [4] for their study. 

Note that, for four years there was no loss for earthquake insurance and the information where 

loss of less than 1 billion dollars per year is considered as 1, for simplicity. The analysis of this data 

is carried out at the end of this section. 

 

 

 

Table 1. California earthquake insurance data 

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 

Loss ratios 17.4 0.0 0.6 3.4 0.0 0.0 0.7 1.5 2.2 9.2 0.9 0.0 

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993  

Loss ratios 2.9 5.0 1.3 9.3 22.8 11.5 129.8 47.0 17.2 12.8 3.2  

 

Dataset 2: The National Family Health Survey (NFHS) is a large-scale, multi-round survey 

conducted in a representative sample of households throughout India. The First National Family 

Health Survey (NFHS-1) was conducted in 1992-93, the Second National Family Health Survey 

(NFHS-2) was conducted in 1998-99 and the Third National Family Health Survey (NFHS-3) was 

carried out in 2005-06. The survey is based on a sample of households that is representative at the 

national and state levels. The NFHS-3 fieldwork, conducted by 18 research organizations between 

December 2005 and August 2006, interviewed women at age 15-49. We consider the data on child’s 

age at death from the woman’s questionnaire of NFHS-3. For comprehensive data, one may visit 

[24]. For Gujarat state, there are 15 stillbirths (the death of a baby before or during the birth after 28 

weeks of gestation) considered as observation 0, 37 neonatal deaths (the death of a baby within the 

first 28 days of life) considered as observation 1 and other observations of age at death in days as: 

30, 30, 30, 31, 31, 60, 62, 62, 62, 90, 90, 90, 92, 93, 150, 182, 213, 242, 272, 273, 300, 303, 333, 334, 335, 

356, 360, 365, 366, 450, 730, 731, 732, 732 and 1462. This is a perfect data for inliers model with two 

discrete point at zero and one. Authors of this paper had already modeled this data using 

exponential and Weibull distribution. The analysis based on Pareto Type II distribution is 

presented below. 

Dataset 3: [23] have analyzed and quantified forest burnt area in India using AWiFS data for the 

year 2014. The burnt area map from AWiFS data involves Forest type map of 2013 at 56 m 

resolution prepared as part of the national carbon project. India has a geographical area of about 

3,287,263 sq. km. It comprises 29 states and 7 union territories. The country has 21% of the 

geographical area under forest cover. Forest fires occur in India mainly between January and June. 

They are more frequent between February and May in different biogeographic zones of India. 

State/Union Territory-wise analysis of the percentage of forest burnt area (area in sq. km) is 

available in [23], page 1531. We consider State/Union Territory burnt area from February to May 

2014. There are six State/Union Territory (Delhi, Andaman and Nicobar, Chandigarh, Daman and 

Diu, Lakshadweep and Pondicherry) having burnt area zero, five State/Union Territory (Goa(0.04) 

, Jammu and Kashmir (0.11), Dadra and Nagar Haveli (0.23), Punjab (0.85) and Himachal Pradesh 

(0.91)) having percentage burnt area less than 1 sq. Km. conveniently considered here as 

observation 1, and the remaining 25 State/Union Territory burnt area in sq. Km. are: 6611.86, 

102.70, 941.11, 1773.22, 4606.69, 487.81, 1.84, 2587.40, 1920.35, 82.01, 3342.66, 5066.66, 1974.23, 

457.50, 421.03, 975.79, 8186.46, 364.17, 2.50, 4275.64, 2955.23, 739.00, 459.07, 42.01 and 386.37. The 

analysis is reported below. 

Dataset 4: This data is about the amount of snowfall in all 50 states of US. According to the 

National Climatic Data Center, the data were populated considering the average snowfall for 

almost three decades from 1981 to 2010, available at [25]. The average amount snowfall per year (in 

inches) for 50 states of US are: 5.2, 0.5, 1.6, 74.5, 0.3, 0.0, 19.1, 40.5, 20.2, 0.0, 0.7, 0.0, 19.2, 24.6, 25.9, 

34.9, 14.7, 12.5, 0.0, 61.8, 20.2, 43.8, 51.1, 54, 0.9, 17, 38.1, 25.9, 21.8, 60.8, 16.5, 9.6, 123.8, 7.6, 51.2, 

27.5, 7.8,3, 28.2, 33.8, 43.9, 6.3, 1.5, 56.2, 81.2, 10.3, 5.0, 62.0, 50.9 and 91.4. It is observed that there 

https://www.ncdc.noaa.gov/
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are three decades having an average amount of snowfall zero and for four states having decades 

average amount of snowfall less than 1 inches (coded as observation1).  

For all the data sets above we have calculated parameter estimates, goodness-of-fit criteria 

values, goodness-of-fit statistics and corresponding 𝑝-values (see Table 2 for details) for positive 

observations only. It may be noted from the table that for all the considered data sets, the Pareto 

Distribution fits well (see 𝑝-values).  

 

 

 

Table 2. The parameter estimates, goodness-of-fit criteria and corresponding 𝑝-value for various datasets 

(Pareto distribution). 

Data MLE (SE) AIC BIC 
K-S 

(𝑝-value) 

CVM 

(𝑝-value) 

AD 

(𝑝-value) 

Earthquak

e 

insurance  

�̂�= 19.5743 (19.2742) 

�̂�= 2.0113 (1.4153) 
124.7323 126.2778 

0.1213 

(0.9498) 

0.0362 

(0.9563) 

0.2901 

(0.9448) 

NFHS-3 
�̂�=18557.4806 (34321.4861) 

�̂�= 65.5015 (119.8512) 
470.3576 473.4683 

0.1210 

(0.6848) 

0.0898 

(0.6400) 

0.6150 

(0.6327) 

Forest 

burnt area  

�̂�=3418.3510 (4828.3362) 

�̂�= 2.6249 (2.7363) 
431.6623 434.1000 

0.1446 

(0.6214) 

0.0984 

(0.5964) 

1.0663 

(0.3236) 

Snow fall 
�̂�=2907.8650 (8293.9850) 

�̂�= 87.5320 (247.1416) 
383.029 386.5043 

0.1049 

(0.7447) 

0.0933 

(0.6208) 

0.5532 

(0.6922) 

 
(* Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K-S)  

        Statistic, Cramer-Von Mises (CVM) statistics, Anderson-Darling (AD) statistic). 

 

 

The plot of pdf, ℎ(𝑥) and survival function, 𝑆(𝑥) for all four datasets under study, is displayed in 

Figure 1 and Figure 2 respectively for varying censoring schemes under Pareto II and the Weibull 

distribution. For the data sets under study, the summary of the various estimates of parameters 

and parametric functions along with their standard error (shown in bracket) and 95 % confidence 

interval considering censoring schemes at value 𝑐∗ is given in Table 3.  Whereas Table 4 shows, the 

UMVU estimate of pdf and survival function with Pareto II and the Weibull distribution for 

varying censoring schemes. It is observed that Pareto distribution has a heavier tail than Weibull.   
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Fig. 1 Density plot to various data sets censored at value 𝑐∗ 

 

 
 

 

Fig. 2 Survival function plot to various data sets censored at value 𝑐∗ 
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Table 3. Summary of estimates of parameters/parametric functions of Pareto II distribution censored at 𝑐∗. 

Parameter/Parametric function 

Earthquake 

insurance data 
NFHS-3 data 

Forest fire burnt 

area data 
Snowfall data 

𝑐∗=1 𝑐∗=5 𝑐∗=1 𝑐∗=2 

MLE (SE) of 𝑝1 0.17391 (0.07904) 0.17241 (0.04050) 0.16667 (0.06212) 0.08000 (0.03837) 

MLE (SE) of 𝑝2 0.13043 (0.07022) 0.42529 (0.05300) 0.13889 (0.05764) 0.08000 (0.03837) 

MLE (SE) of 𝜃 0.61420 (0.15857) 0.19539 (0.03402) 0.16667 (0.03380) 0.38550 (0.06095) 

95% CI of  𝑝1 (0.01901, 0.32882) (0.09304, 0.25179) (0.04493, 0.28841) (0.00480, 0.15520) 

95% CI of 𝑝2 (0.00000, 0.26807) (0.32140, 0.52917) (0.02592, 0.25186) (0.00480, 0.15520) 

95% CI of 𝜃 (0.30648, 0.92191) (0.12871, 0.26206) (0.10041, 0.23292) (0.26651, 0.50449) 

UMVUE (SE) of 𝑝1 0.18182 (0.08223) 0.18293 (0.04269) 0.17143 (0.06370) 0.08333 (0.03989) 

UMVUE (SE) of 𝑝2 0.13636 (0.07317) 0.45122 (0.05495) 0.14286 (0.05915) 0.08333 (0.03989) 

UMVUE (SE) of 𝜃 0.61420 (0.13812) 0.19539 (0.02791) 0.16667 (0.02967) 0.38550 (0.05643) 

95% CI of UMVUE 𝑝1 (0.02065, 0.34299) (0.09925, 0.26660) (0.04657, 0.29629) (0.00515, 0.16152) 

95% CI of UMVUE of 𝑝2 (0.00000, 0.27976) (0.34351, 0.55892) (0.02693, 0.25879) (0.00515, 0.16152) 

95% CI of UMVUE 𝜃 (0.34348 0.88492) (0.14069, 0.25008) (0.10850, 0.22483) (0.27489, 0.49610) 

∏(ℎ𝑖(𝜃))
𝑘𝑖

3

𝑖=1

= (
𝜃

1 − 𝑝1 − 𝑝2
)
2

𝑝1𝑝2𝑒
−
1
𝜃 

𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 1 

0.04992 (0.04299) 8.62541 (4.73007) 1.240801 (0.89610) 3.07667 (0.02775) 

ℎ1(𝜃) =
𝜃 𝑝1

1−𝑝1−𝑝2
, 𝑘1 = 1, 𝑘2 = 0, 𝑘3 = 0 0.38309 (0.22204) 2.13250 (0.74236) 1.38463 (0.66351) 0.24131 (0.12880) 

ℎ2(𝜃) =
𝜃 𝑝2

1−𝑝1−𝑝2
, 𝑘1 = 0, 𝑘2 = 1, 𝑘3 = 0 0.28732 (0.18391) 5.26018 (1.52329) 1.15386 (0.58886) 0.24131 (0.12880) 

ℎ3(𝜃) = 𝑒
−
1

𝜃, 𝑘1 = 0, 𝑘2 = 0, 𝑘3 = 1 0.55693 (0.08844) 0.82738 (0.00109) 0.85191 (0.02856) 0.68545 (0.04162) 

𝑔(𝜃) =
𝜃

1−𝑝1−𝑝2
, 𝑘 = 1 2.29856 (0.64068) 12.51070 (2.73276) 8.53853 (1.92013) 3.07667 (0.51361) 

 

Table 4. Summary of estimates of pdf and reliability function of the various data sets censored at 𝑐∗. 

Function 

Earthquake insurance data NFHS-3 data Forest fire burnt area data Snowfall data 

𝑐∗=1 𝑐∗=5 𝑐∗=1 𝑐∗=2 

Pareto-II Weibull Pareto-II Weibull Pareto-II Weibull Pareto-II Weibull 

pdf  

𝜙10 = 

0.01415 

(0.00185) 

𝜙10 = 

0.02091 

(0.00295) 

 

𝜙100 = 

0.00030 

(5.043e-05) 

𝜙100 = 0.0011 

(1.968e-04) 

 

𝜙650 = 

6.912e-05 

(7.524e-06) 

𝜙650 = 

0.00022 

(3.235e-05) 

 

𝜙25 = 

0.00469 

(0.00028) 

𝜙25 = 

0.01383 

(0.00114) 

 

𝜙15 = 

0.00784 

(0.00112) 

𝜙15 = 

0.01317 

(0.00113) 

 

𝜙500 = 

5.473e-05 

(7.032e-06) 

𝜙500 = 0.0003 

(6.096e-05) 

 

𝜙1350 = 

2.966e-05 

(3.199e-06) 

𝜙1350 = 

0.00012 

(8.101e-06) 

 

𝜙50 = 

0.00186 

(0.00013) 

𝜙50 = 

0.00676 

(0.00068) 

 

𝜙40 = 

0.00175 

(0.00046) 

𝜙40 = 

0.00273 

(0.00046) 

 

𝜙1000 = 

2.387e-05   

(3.185e-06) 

𝜙1000 = 

1.851e-05 

(1.282e-05) 

 

𝜙2500 = 

1.451e-05 

(1.624e-06) 

𝜙2500 = 

6.421e-05 

(3.185e-06) 

𝜙100 = 

0.00072 

(7.193e-05) 

𝜙100 = 

0.00108 

(0.00044) 

Survival 

function  

�̂�10 = 0.25585 

(0.07038) 

�̂�10 = 0.17398 

(0.05400) 

 

�̂�100 = 0.18996 

(0.03638) 

�̂�100 = 0.29777 

(0.04249) �̂�650 = 0.27042 

(0.07114) 

�̂�650 = 0.40038 

(0.06434) 

�̂�25 = 

0.31647 

(0.05347) 

�̂�25 = 

0.43451 

(0.05291) 

 

�̂�15 = 20013 

(0.07279) 

 

�̂�15 = 0.00183 

(0.04218) 

 

�̂�500 = 0.13903 

(0.03296) 

�̂�500 = 0.05063 

(0.02039) 

 

�̂�1350 = 

0.23941 

(0.06868) 

�̂�1350 = 

0.05022 

(0.06206) 

 

�̂�50 = 

0.24389 

(0.05082) 

�̂�50 = 

0.18368 

(0.04572) 

 

�̂�40 = 0.10957 

(0.05592) 

�̂�40 = 2.139e-

06 (0.00953) 

�̂�1000 = 

0.12136 

(0.03136)  

 

�̂�1000 = 

0.00293 

(0.02039) 

 

�̂�2500 = 

0.21592 

(0.05811) 

�̂�2500 = 

0.01212 

(0.05510) 

�̂�100 = 

0.18692 

(0.04659) 

�̂�100 = 

0.02462 

(0.01331) 
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Appendix A. Distributional properties of 𝑪(𝑿) 
 

Since the moments of 𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) are functions of 𝜃 = (𝑝1, 𝑝2, 𝜃), and 𝛽 assumed 

known, they are MVUE’s of these functions.  Hence, in order to find the moments, differentiating 

𝑔(𝜃) partially with respect to 𝑝1, 𝑝2 and 𝜃 under the regularity conditions, we get  

 

𝐺 = 𝐴 𝜇 , |𝐴| ≠ 0        (i) 

where 

𝐺 =

[
 
 
 
 
 
 
𝜕 log 𝑔(𝜃)

𝜕𝑝1
𝜕 log 𝑔(𝜃)

𝜕𝑝2
𝜕 log 𝑔(𝜃)

𝜕𝜃 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

1

1 − 𝑝1 − 𝑝2
1

1 − 𝑝1 − 𝑝2

−
1

𝜃 ]
 
 
 
 
 
 

 

 

𝜇 = [

𝐸(𝐶1(𝑥))

𝐸(𝐶2(𝑥))

𝐸(𝐶3(𝑥))

] =

[
 
 
 

𝐸(𝐼1(𝑥))

𝐸(𝐼2(𝑥))

𝐸 ([log(1 + 𝑥) − log 2](1 − 𝐼1(𝑥) − 𝐼2(𝑥)))]
 
 
 
 

and 

 𝐴 =

[
 
 
 
 
 
𝜕 log  ℎ1(𝜃)

𝜕𝑝1

𝜕 log ℎ2(𝜃)

𝜕𝑝1

𝜕 log ℎ3(𝜃)

𝜕𝑝1

𝜕 log  ℎ1(𝜃)

𝜕𝑝2

𝜕 log ℎ2(𝜃)

𝜕𝑝2

𝜕 log ℎ3(𝜃)

𝜕𝑝2

𝜕 log  ℎ1(𝜃)

𝜕𝜃

𝜕 log ℎ2(𝜃)

𝜕𝜃

𝜕 log ℎ3(𝜃)

𝜕𝜃 ]
 
 
 
 
 

=

[
 
 
 
 
1

𝑝1
+

1

1−𝑝1−𝑝2

1

1−𝑝1−𝑝2
0

1

1−𝑝1−𝑝2

1

𝑝2
+

1

1−𝑝1−𝑝2
0

−
1

𝜃
−
1

𝜃
−1]
 
 
 
 

 

 

Equation (i) gives 

𝐸(𝐶𝑖(𝑥)) =
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2 𝑎𝑛𝑑 3  

 

where 𝐴𝑖 is obtained by replacing ith column of A by the elements of 𝐺. Hence, 

 

𝜇 = [

𝐸(𝐶1(𝑥))

𝐸(𝐶2(𝑥))

𝐸(𝐶3(𝑥))

] = [

𝑝1
𝑝2

(1−𝑝1−𝑝2)

𝜃

]       (ii) 

 

Now joint moments of 𝐶1
𝑘1(𝒙),  𝐶2

𝑘2(𝑥) and 𝐶3
𝑘3(𝑥) are given as 

 

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙)) = ∫𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙) 𝑎(𝑥)
∏ (ℎ𝑖(𝜃))

𝐶𝑖(𝑥)3
𝑖=1

𝑔(𝜃)
𝑑𝑥

𝑥

 

 

which on differentiating with respect to 𝑝1, 𝑝2 and 𝜃 and using (iv), gives a system of three non-

homogeneous equations 

 

 𝐺1 = 𝐴 𝑉 , |𝐴| ≠ 0        

 (iii) 

 

where 
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𝐺1 =

[
 
 
 
 
 
 
 𝜕 log 𝐸(𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))

𝜕𝑝1

𝜕 log 𝐸(𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝜕𝑝2

𝜕 log 𝐸(𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝜕𝜃 ]
 
 
 
 
 
 
 

  

 

𝑉 =

[
 
 
 
 𝐸 (𝐶1

𝑘1+1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙)) − 𝐸(𝐶1(𝑥))𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2+1(𝒙) 𝐶3
𝑘3(𝒙)) − 𝐸(𝐶2(𝑥))𝐸 (𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3+1(𝒙)) − 𝐸(𝐶3(𝑥))𝐸 (𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))]
 
 
 
 

= [

𝜎1(1,2,3)
𝜎2(1,2,3)
𝜎3(1,2,3)

], (say). 

 

Using Cramer’s rule for the solution of a system of linear equations (iii) gives  

 

𝜎𝑖(1,2,3) = 
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2 𝑎𝑛𝑑 3  

 

where 𝐴𝑖 is obtained by replacing ith column of A by the elements of 𝐺1. For 𝑘𝑖 = 1 and 𝑘𝑗 = 0 ∀ 𝑖 ≠

𝑗 = 1,2 𝑎𝑛𝑑 3,  we get covariance between 𝐶𝑖(𝑥) and  𝐶𝑗(𝑥) as 

 

𝜎𝑖(1,2,3) = 
|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗

|𝐴|
.  

 

Thus, we have the variance-covariance matrix 𝑉 as 

  V = [𝜎𝑖𝑗]3×3 =
(|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗

)

|𝐴|
 

 

If 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗  of A, then  

 

 |𝐴𝑖  |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗=1,2,3 = 𝐴1𝑖
𝜕

𝜕𝑝1
𝐸(𝐶𝑖(𝑥)) + 𝐴2𝑖

𝜕

𝜕𝑝2
𝐸(𝐶𝑖(𝑥)) + 𝐴3𝑖

𝜕

𝜕𝜃
𝐸(𝐶𝑖(𝑥)) 

and hence 

V = [

𝑝1(1 − 𝑝1) −𝑝1𝑝2 −𝜃 𝑝1(1 − 𝑝1 − 𝑝2)

−𝑝1𝑝2 𝑝2(1 − 𝑝2) −𝜃 𝑝2(1 − 𝑝1 − 𝑝2)

−
 𝑝1(1−𝑝1−𝑝2)

𝜃
−
 𝑝2(1−𝑝1−𝑝2)

𝜃

[1−(𝑝1+𝑝2)
2]

𝜃2

]    (iv) 

where |𝐴| =  
1

  𝑝1 𝑝2  (1−𝑝1−𝑝2)
. 
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