
 
Vidhya G Nair, M. Manoharan 
RELIABILITY ANALYSIS OF A MULTI STATE SYSTEM 

RT&A, No 3 (50) 
Volume 13, September 2018  

82 

Reliability analysis of a multi state system with common 

cause failures using Markov Regenerative Process 
 

 Vidhya G Nair,  M. Manoharan 
 ● 

 Department of Statistics,   University of Calicut,  Kerala - 673 635 (India)  

 vidhyagn17@gmail.com, manumavila@gmail.com    

 

  

 

Abstract 
 

In this paper the dynamic reliability behaviour in terms of common cause failures 

is studied and a state space model has been formed for the evaluation of 

performance measures of multi state system. The concept of renewal is employed 

and the Markov Regenerative Process has been used for assessment of availability 

of the system. Using proposed technique we obtain the transition kernel and 

formulas for the steady state probabilities of the system. A numerical example is 

proposed to demonstrate the real possibility of the proposed technique.  
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I  Introduction 
 

Failures of multiple components of a system due to a common cause is called Common 

Cause Failures (CCF). CCF is the one of the most important issues in evaluation of system 

reliability. When compared to random failures, which affect individual components, the frequency 

of CCF has relatively low expectancy. According to Rausand and Hoyland [11] common cause 

failures is a dependent failure in which two or more component fault states exist simultaneously or 

within short time interval and are direct result of a shared cause. Beta(𝛽) factor model is the most 

commonly used model for common cause failures of the multi state system [3]. The 𝛽 factor model 

describes the correlation between the independent random component failures and common cause 

failures in a redundant multi state system. A set of powerful techniques that proved for the 

solution of non-Markovian models is based on the ideas grouped under the Markov renewal 

theory. The application of Markov renewal theory for finding reliability and availability of 

stochastic systems is discussed in [6]. Semi-Markov process is the most widely used and adopted 

non-Markovian model for evaluating reliability and availability of multi state system. A good 

reference on the semi-Markov process (SMP) is [8] which discusses the the theory of SMP very 

clearly, also gives examples which helps to understanding the theory and how to apply the model 

in many real life situations. The stationary character of Markov regeneratve process (MRGP) has 

been studied in [10]. Most of the theoretical foundations of Markov regeneratve process (MRGP) 

were discussed in [2] in which it is named as semi regenerative process. One of the first paper 

which consider semi-regenerative processes is in Russian (refer [13]). For a concise review on Semi-

regenerative, decomposable Semi-regenerative Processes and their applications one may refer to 

[12]. The transient and steady state analysis of stochastic petri nets are discussed analytically and 

numerically in [1]. MRGPs have been used to evaluating reliability and availability of the system. 

Some examples concerning reliability and availability of power plants and fault tree systems can 
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be found in [4,5,9,16]. Many other examples and applications of MRGP in the dependability 

context has been solved using SHARPE software [14] as demonstrated in [17]. Semi Markov, 

Markov regenerative models and Phase type expansion with a number of solved examples were 

discussed in [15]. The system-level reliability of a heterogeneous double redundant renewable 

system under Marshall-Olkin failure model in the case when repair times of its components have a 

general continuous distribution is studied in [7]. The mathematical model proposed therein allows 

to obtain the explicit expression in terms of Laplace transform for the system reliability function. 

 

II  Markov Regenerative Process 
 

Consider a stochastic process {𝑍(𝑡), 𝑡 ≥ 0} with state space Ω. Suppose every time a certain 

phenomena occurs, the future of the process Z after that time becomes a probabilistic replica of the 

future after time zero. Such time which is usually random is called regeneration time of Z. Such 

process is named as regeneration process. In a Markov Regenerative Process (MRGP) the stochastic 

evolution between two successive regeneration points depends only on the state of regeneration 

not on the evolution before regeneration. 

Following [1] a stochastic process {𝑍(𝑡), 𝑡 ≥ 0} on Ω is called an MRGP if there exist a 

Markov renewal sequence {(𝑌𝑛 , 𝑆𝑛), 𝑛 ≥ 0} of random variable such that all conditional finite 

dimensional distribution of {𝑍(𝑆𝑛 + 𝑡), 𝑡 ≥ 0} given {𝑍(𝑢),0 ≤ 𝑢 ≤ 𝑆𝑛 , 𝑌𝑛 = 𝑖} 𝑖 ∈ Ω are the same as 

those of {𝑍(𝑡), 𝑡 ≥ 0} given 𝑌0 = 𝑖. 

From the above definition we obtain embedded Markov chain (EMC) in {𝑍(𝑡), 𝑡 ≥ 0}. 

Global kernel 𝐾(𝑡) gives a description of the evolution of process from the Markovian regenerative 

moment without describing the happenings between regenerative moments.  
 𝐾(𝑡) = 𝐾𝑖𝑗(𝑡) = 𝑃𝑟{𝑌1 = 𝑗, 𝑆1 ≤ 𝑡/𝑌0 = 𝑖}∀𝑖, 𝑗 ∈ Ω 

 An MRGP can change states between two consecutive Markov renewal moments. 𝐸(𝑡) is the local 

kernel which explains the state probabilities of the process during the interval between successive 

Markov regenerative moments.  
 𝐸(𝑡) = 𝐸𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗, 𝑆1 > 𝑡/𝑌0 = 𝑖}∀𝑖, 𝑗 ∈ Ω 

 The matrix of conditional transition probabilities are given by  
 𝑉𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗/𝑍0 = 𝑖}∀𝑖, 𝑗 ∈ Ω 

 In many real life problems involving Markov Renewal Process our primary aim to compute 𝑉𝑖𝑗(𝑡) 

effectively and hence several performance measures of interest like Availability, Reliability based 

on 𝑉𝑖𝑗(𝑡) 

The conditional transition probabilities 𝑉𝑖𝑗(𝑡) at any instant t can be computed as  

 𝑉𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗, 𝑆1/𝑍0 = 𝑖} + ∑𝑘∈Ω′ ∫
𝑡

0
𝑑𝐾(𝑢)𝑉𝑘𝑗(𝑡 − 𝑢)∀𝑖, 𝑗 ∈ Ω 

A Markov renewal equation is defined by this set of integral equations. Equation can be expressed 

in Matrix form as  
 𝑉(𝑡) = 𝐸(𝑡) + 𝐾(𝑡). 𝑉(𝑡) 

 

Laplace-Steiltjes transform 𝐾(𝑠) and 𝐸(𝑠) of 𝐾(𝑡) and 𝐸(𝑡) respectively can obtained as  

 𝐾(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐾(𝑡) 

 𝐸(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐸(𝑡) 

 

Then  
 𝑉(𝑠) = 𝐸(𝑠) + 𝐾(𝑠)𝑉(𝑠) = [𝐼 − 𝐾(𝑠)]−1𝐸(𝑠) 

 

𝑉(𝑡) can be obtained by taking inverse laplace transform of 𝑉(𝑠)  
 𝑃(𝑡)1×Ω = 𝑃(0)1×Ω × 𝑉(𝑡)Ω×Ω 

 

For the purpose of the steady state analysis of an MRGP the following two matrices 𝛼 =
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[𝛼𝑖𝑗] and 𝜙 = [𝜙𝑖𝑗] should be calculated. 𝛼𝑖𝑗 is the Mean time the process from state 𝑖 spends in 

state 𝑗. 𝜙 = [𝜙𝑖𝑗] is the one step transition probability matrix of the embedded Markov chain. 

The two matrices are defined as  

 𝛼 = ∫
∞

𝑡=0
𝐸(𝑡)𝑑𝑡 = lim

𝑠→0

1

𝑠
𝐸(𝑠) (1) 

 𝜙 = lim
𝑡→∞

𝐾(𝑡) = lim
𝑠→0

𝐾(𝑠) (2) 

 To obtain the steady-state probabilities of the MRGP, at first we have to solve the steady-state 

probabilities of the embedded discrete time Markov chain by solving 

 
 𝜈 = 𝜈. 𝜙 

 
 𝜈. 𝑒 = 1 

where 𝑒 is a column vector with its elements equal to 1 and 𝜈 is a row vector. Steady state 

probability vector is  

 𝜈 = [𝜈1, 𝜈2, … 𝜈𝑘] where 𝑘 ∈ Ω  

 The steady state probability 𝜋 = [𝜋1, 𝜋2, … 𝜋𝑘] of the MRGP is given by 

 

 𝜋 =
𝜈𝛼

𝜈𝛼𝑒
 (3) 

 

Steady state Availability of system 

Let Ω = {0,1, … , 𝑘} be the set of all possible states of a system. Let Ω′ denote the subset of 

states in which the system is functioning and let 𝐹 = Ω − Ω′ denote the states in which the system 

is failed. The long term availability of the system is the mean proportion of time when the system 

is functioning. Steady state system availability can be obtained by  

 𝐴∞ = ∑𝑗∈Ω′ 𝜋𝑗 (4) 

 

 

III  Parallel System with Single Repair Facility and CCF 
 

Consider a system which consists of two components named A and B. A single repairman 

is assigned for the system with the First Come First Served (FCFS) scheduling policy for repair. 

When the components A or B fails the repairman begins to repair if he is not busy. When one 

component is already under repair and the other component fails then the second component has 

to wait for repair till the repairman is free. The lifetime of components A and B are exponentially 

distributed with the rates 𝜆𝐴 and 𝜆𝐵 respectively. The distribution function of the repair times of 

components A and B are 𝐺𝐴(𝑡) and 𝐺𝐵(𝑡) respectively. Let 𝜇𝐴(𝑡) and 𝜇𝐵(𝑡) be the respective repair 

rates of components A and B. Also in this case common cause failure involving both components A 

and B can occur with probability 𝛽. Define the stochastic process 𝑍 = {𝑍(𝑡); 𝑡 ≥ 0} to represent the 

system state at any instant t. 𝑍(𝑡) ∈ {1,2,3,4,5} 

System is in state 

1, if both components are working at time t  

2, if component A is under repair while component B is working at time t 

3, if component B is under repair while component A is working at time t 

4, if component A is under repair while component B is waiting for repair at time t 

or due to common cause failure in which the repairman randomly selects component A is 

the first to be repaired 

5, if component B is under repair while component A is waiting for repair at time t 

or due to common cause failure in which the repairman randomly selects component B is 

the first to be repaired 

We can define that all state transitions correspond to Markov renewal moments 𝑆 =

{𝑆𝑛; 𝑛 ∈ 𝑁} and the embedded Markov chain 𝑌𝑛; 𝑛 ∈ 𝑁 such that 𝑌𝑛 is the state of the system at time 
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𝑆𝑛+(i.e,𝑌𝑛 = 𝑍(𝑆𝑛+)) 

 

 
Figure  1: State transition diagram 

  

Analysis of the above reliability transition diagram shows that Z is an MRGP with an 

embedded markov chain (EMC) defined by the states 1, 2 and 3. We can observe the transition to 

states 4 and 5 do not belong to the EMC since they are non-renewal moments. System is in state 1 if 

both A and B are up states and the repairman is free. Component A can fail at rate 𝜆𝐴 and reach 

state 2. The component A is repaired with cdf 𝐺𝐴(𝑡) to bring the system back to state 1. If 

component B fell down during repair time of component A , the system jumps to state 4. When the 

component B is down the system reaches the state 3 and when B is repaired with repair time cdf 

𝐺𝐵(𝑡) to back the system state 1. But the component A fail jumping the state 3 to state 5. To find the 

distribution of Z for MRGP we have to construct kernel matrices [global kernel matrix 𝐾(𝑡)and 

local kernel matrix 𝐸(𝑡)]. 𝑅𝐴, 𝑅𝐵 be the time to repair and 𝐿𝐴 and 𝐿𝐵 be the times to failure of A and 

B respectively. 

 

 𝐾(𝑡) = (

0 𝑘12(𝑡) 𝑘13(𝑡)

𝑘21(𝑡) 0 𝑘23(𝑡)
𝑘31(𝑡) 𝑘32(𝑡) 0

), 

 

𝐾12(𝑡) = Pr{If A fails before B or common cause failures occur and repairman chose to 

repair A first and completed the repair action} 

 
 = 𝑃𝑟{𝑍(𝑆1) = 2, 𝑆1 ≤ 𝑡/𝑍0 = 1} = 𝑃𝑟{(𝐿𝐴 ≤ 𝑡 ∩ 𝐿𝐵 > 𝐿𝐴) ∪ (𝑅𝐴 ≤ 𝑡 ∩ (𝐿𝐴 = 𝐿𝐵) ≤

𝑅𝐴)} 

 = (1 − 𝛽)𝜆𝐴 ∫
𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝑑𝑢 +

𝛽

2
(𝜆𝐴 + 𝜆𝐵) ∫

𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝐺𝐴(𝑡 − 𝑢)𝑑𝑢 

 

 

 𝐾13(𝑡) = (1 − 𝛽)𝜆𝐵 ∫
𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝑑𝑢 +

𝛽

2
(𝜆𝐴 + 𝜆𝐵) ∫

𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝐺𝐵(𝑡 − 𝑢)𝑑𝑢 

 𝐾21(𝑡) = Pr{Repair A is finished up to time t and B has not failed during repair A} 

 

 = 𝑃𝑟{𝑍(𝑆1) = 1, 𝑆1 ≤ 𝑡/𝑍0 = 2} == 𝑃𝑟{𝑅𝐴 ≤ 𝑡 ∩ 𝐿𝐵 > 𝑅𝐴} = ∫
𝑡

0
𝑒−𝜆𝐵𝑢𝑑𝐺𝐴(𝑢) 

 

𝐾23(𝑡) = Pr{Repair A is not finished up to time t and B failed during the repair A} 

 

 = 𝑃𝑟{𝑍(𝑆1) = 3, 𝑆1 ≤ 𝑡/𝑍0 = 2} = ∫
𝑡

0
(1 − 𝑒−𝜆𝐵𝑢)𝑑𝐺𝐴(𝑢) 

  

 𝐾31(𝑡) = 𝑃𝑟{𝑍(𝑆1) = 3, 𝑆1 ≤ 𝑡/𝑍0 = 3} = ∫
𝑡

0
𝑒−𝜆𝐴𝑢𝑑𝐺𝐵(𝑢) 
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 𝐾32(𝑡) = 𝑃𝑟{𝑍(𝑆1) = 2, 𝑆1 ≤ 𝑡/𝑍0 = 3} = ∫
𝑡

0
(1 − 𝑒−𝜆𝐴𝑢)𝑑𝐺𝐵(𝑢) 

 

 

 𝐸(𝑡) = (

𝐸11(𝑡) 0 0 𝐸14(𝑡) 𝐸15(𝑡)

0 𝐸22(𝑡) 0 𝐸24(𝑡) 0
0 0 𝐸33(𝑡) 0 𝐸35(𝑡)

), 

 

𝐸11(𝑡) = Pr{Remaining state 1 until time t}  

 = 𝑃𝑟{𝑍(𝑡) = 1, 𝑆1 > 𝑡/𝑍0 = 1} = (1 − 𝛽)𝑒−(𝜆𝐴+𝜆𝐵)𝑡 

 𝐸22(𝑡)=Pr{repair A is not finished up to time t and B has not failed}  

 = 𝑃𝑟{𝑍(𝑡) = 2, 𝑆1 > 𝑡/𝑍0 = 2} = (1 − 𝐺𝐴(𝑡))𝑒
−𝜆𝐵𝑡 

  

 𝐸33(𝑡) = (1 − 𝐺𝐵(𝑡)𝑒
−𝜆𝐴𝑡 

 𝐸14(𝑡) =
𝛽

2
𝑒−(𝜆𝐴+𝜆𝐵)𝑡 

 𝐸15(𝑡) =
𝛽

2
𝑒−(𝜆𝐴+𝜆𝐵)𝑡 

 𝐸24(𝑡) =Pr{repair A is not finished up to time t and B has not failed}  

 = (1 − 𝐺𝐴(𝑡))(1 − 𝑒
−𝜆𝐵𝑡) 

  

 𝐸35(𝑡) = (1 − 𝐺𝐵(𝑡))(1 − 𝑒
−𝜆𝐴𝑡) 

 Laplace-Steiltjes transform of Global Kernel Matrix is  

 𝐾(𝑠) =

(

 
 
0

(1−𝛽)𝜆𝐴

𝑠+𝜆𝐴+𝜆𝐵
+

𝛽(𝜆𝐴+𝜆𝐵)𝐺𝐴(𝑠)

2(𝑠+𝜆𝐴+𝜆𝐵)

(1−𝛽)𝜆𝐵

𝑠+𝜆𝐴+𝜆𝐵
+

𝛽(𝜆𝐴+𝜆𝐵)𝐺𝐴(𝑠)

2(𝑠+𝜆𝐴+𝜆𝐵)

𝐺𝐴(𝑠 + 𝜆𝐵) 0 𝐺𝐴(𝑠) − 𝐺𝐴(𝑠 + 𝜆𝐵)

𝐺𝐵(𝑠 + 𝜆𝐴) 𝐺𝐵(𝑠) − 𝐺𝐵(𝑠 + 𝜆𝐴) 0

)

 
 
, 

 

Laplace-Steiltjes transform of Local Kernel Matrix is  
 𝐸(𝑠) =

(

 
 
 

(1−𝛽)𝑠

𝑠+𝜆𝐴+𝜆𝐵
0 0

𝛽𝑠

2(𝑠+𝜆𝐴+𝜆𝐵)

𝛽𝑠

2(𝑠+𝜆𝐴+𝜆𝐵)

0
𝑠

𝑠+𝜆𝐵
(1 − 𝐺𝐴(𝑠 + 𝜆𝐵)) 0

𝜆𝐵

𝑠+𝜆𝐵
− 𝐺𝐴(𝑠) +

𝑠

𝑠+𝜆𝐵
𝐺𝐴(𝑠 + 𝜆𝐵) 0

0 0
𝑠

𝑠+𝜆𝐴
(1 − 𝐺𝐵(𝑠 + 𝜆𝐴)) 0

𝜆𝐴

𝑠+𝜆𝐴
− 𝐺𝐵(𝑠) +

𝑠

𝑠+𝜆𝐴
𝐺𝐵(𝑠 + 𝜆𝐴)

)

 
 
 
, 

 

IV  Numerical Illustration 
 

Consider a numerical example wherein the components have deterministic repair-times 

with distribution functions,  
 𝐺𝐴(𝑡) = 𝑢(𝑡 − 𝜇𝐴), 𝜇𝐴 > 0 
 𝐺𝐵(𝑡) = 𝑢(𝑡 − 𝜇𝐵), 𝜇𝐵 > 0 

 where u(t) is the unit step function. The units are hours for repair-time (parameters 𝜇𝐴 and 𝜇𝐵) and 

ℎ𝑜𝑢𝑟−1 for the failure rates (parameters 𝜆𝐴 and 𝜆𝐵). The values of parameters of the system are 

given below. 

  

Component 𝜆 𝜇 

A 0.01 5 

B 0.01 5 
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 𝐾(𝑠) =

(

 
 
0

(1−𝛽)0.01

𝑠+0.02
+

𝛽0.02𝑒−5𝑠

2(𝑠+0.02)

(1−𝛽)0.01

𝑠+0.02
+

𝛽0.02𝑒−5𝑠

2(𝑠+0.02)

𝑒−5(𝑠+0.01) 0 𝑒−5𝑠 − 𝑒−5(𝑠+0.01)

𝑒−5(𝑠+0.01) 𝑒−5𝑠 − 𝑒−5(𝑠+0.01) 0
)

 
 

  

 

 
 𝐸(𝑠) =

(

  
 

(1−𝛽)𝑠

𝑠+0.02
0 0

𝛽𝑠

2(𝑠+0.02)

𝛽𝑠

2(𝑠+0.02)

0
𝑠

𝑠+0.01
(1 − 𝑒−5(𝑠+0.01)) 0

0.01

𝑠+0.01
− 𝑒−5𝑠 +

𝑠

𝑠+0.01
𝑒−5(𝑠+0.01) 0

0 0
𝑠

𝑠+0.01
(1 − 𝑒−5(𝑠+0.01)) 0

0.01

𝑠+0.01
− 𝑒−5𝑠 +

𝑠

𝑠+0.01
𝑒−5(𝑠+0.01)

)

  
 

  

 

The Steady state probability vector is  

 [
𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5

] = 

[
0.892074(1 − 𝛽),0.045738,0.045738,0.446037𝛽 + 0.008225,0.446037𝛽 + 0.008225

]  

 

Steady state Availability  

 𝐴∞ = 𝜋1 + 𝜋2 + 𝜋3 = 0.98355(1 − 𝛽) (5) 

 Impact of the common cause failures on the system is evaluated for the corresponding model. The 

MRGP steady state availability can be calculated for varying common cause failure probability 𝛽 

value. By analyzing the MRGP for the above numerical values, the graph depicted in Fig. 2 is 

obtained. 

 

 
Figure  2: Steady state availability of the system for varying 𝛽 

  The graph reveals how the steady state availability (𝐴∞) of the system varies by changing 

the common cause failure probability 𝛽 from 0 to 0.5. On viewing the graph we can observe a clear 

linear trend of the 𝐴∞ with respect to 𝛽. 

 

V  Conclusion 
 

In this paper analytical techniques based on MRGP are explored for modeling and 

evaluation of availability of multi state system. A parallel system of two components with common 

cause failures were elaborated to show the applicability of MRGP in the evaluation of performance 



 
Vidhya G Nair, M. Manoharan 
RELIABILITY ANALYSIS OF A MULTI STATE SYSTEM 

RT&A, No 3 (50) 
Volume 13, September 2018  

88 

measures with numerical example. Since MRGP can overcome limitations of SMP to some extent, 

one can solve a wide range of problems in system reliability on similar lines. 
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