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Abstract 
 

The paper considers an accelerated test situation where the actual lifetimes of the 

items are not directly observable rather their status are known in the form of 

binary outcomes. By assuming two widely entertained models, namely the 

Weibull and the lognormal distributions, for the actual lifetimes, the paper 

provides full Bayesian analysis of the entertained models when both scale and 

shape parameters of the models are allowed to vary over the covariates involved 

in the study, thus giving rise to corresponding accelerated test models. The Bayes 

implementation is based on sample based approaches, namely the Metropolis 

algorithm and the Gibbs sampler using proper priors of the parameters where the 

prior elicitation is based on the expert testimonies. The situation involving 

missing items where actual status is also unknown is additionally entertained 

using the same modelling assumption. A comparison between the two entertained 

models is carried out using some standard Bayesian model comparison tools. 

Finally, numerical illustration is provided based on a given set of current status 

data and some relevant findings are reported. 

 

Keywords: Binary outcomes, Missing items, Accelerated testing, Weibull 
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1  Introduction 
 

Generally, in life testing experiments, the items or equipments are put on test to observe their exact 

failure times and, based on the same; various reliability characteristics of the items under 

consideration are studied. There are situations, however, where exact lifetimes are not observable 

and the experimenter only happens to know the status of the items with regard to their failure or 

survival. That is the item is either surviving at the time of observation or found in the failed state. 

Thus the resulting data, often in the form of binary outcomes, may represent one of the two states 

of the items at the time of observation and generally referred to as the current status data. An 
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important example includes time to occurrence of tumour in animal carcinogenicity experiments, 

where one might not be able to observe the exact time to appearance of tumour in the subject 

rather only observes status of the tumour at a particular time, that is, whether the tumour is 

present or not. Other examples include testing of electro explosive devices, missiles, rocket motors, 

air bags in cars, etc. (see Balakrishnan and Ling (2012, 2013)) where the items are found either in 

working state or in failed state at the time of observation. Thus in all these situations the actual 

lifetimes are unknown and the experimenter is only observing the status of the items or subjects at 

the time of observation. Also, while dealing with such life testing experiments, there is a possibility 

of getting some of the experimental units missing during experimentation due to some known or 

unknown reasons and, as such, the experimenter is even not in a position to know exactly if such 

items were surviving or already failed at the time of observation. Say, for example, in animal 

carcinogenicity experiments involving mice, some of the experimental units (mice) might not be 

available at their expected places at a specified point of time and, as such, it is not possible to know 

exactly about their current status even. A similar kind of situation was also studied by Sharma and 

Upadhyay (2018a) with regard to engineering experiments when the actual lifetimes and the status 

of some of the items are both unknown.  

Fan et al. (2009), Balakrishnan and Ling (2012) and Sharma and Upadhyay (2018a) are 

some of the important references on the analyses of current status data. Whereas Fan et al. (2009) 

and Sharma and Upadhyay (2018a) provide Bayesian analysis of such datasets, Balakrishnan and 

Ling (2012) deals mainly with the classical inferences. Other important references on the analysis of 

current status data include Balakrishnan and Ling (2013) and Balakrishnan and Ling (2014) where 

the authors used different lifetime models in their work on classical maximum likelihood (ML) 

estimation and observed that Weibull distribution stands better than other considered models.  

Before we come across some other relevant concepts, we need to consider the appropriate 

lifetime distributions that are capable of representing the actual lifetimes, which are not exactly 

known in the present scenario. It may be noted here that we do not have the actual lifetimes of 

items in the present situation rather only have information on the status of the units at the time of 

observation, that is, failed or surviving. Thus, if the time of observation is 𝑇, the actual lifetime 

either falls below 𝑇 or goes beyond 𝑇. Since the lifetimes are continuous variates, it is almost 

unlikely that the failure occurs exactly at 𝑇.  

Among the various lifetime models, the two-parameter Weibull distribution and the two-

parameter lognormal distribution, specified by their scale and shape parameters, are widely used 

lifetime models in the literature. The two-parameter Weibull distribution is a quite flexible and a 

rich family that has the capability of accommodating all three hazard rate shapes, that is, 

increasing, decreasing and constant. This is perhaps the reason that the model is highly explored 

model and used in a wide variety of situations (see, for example, Lawless (2002), Upadhyay 

(2010)). Similarly, the two-parameter lognormal distribution is known for its non-monotone hazard 

rate shape that initially increases and attains maxima. It then decreases and finally approaches to 

zero for large lifetimes and also at the initial lifetimes (see Lawless (2002)). It is often proclaimed 

that this decreasing nature of lognormal hazard rate with large lifetimes makes lognormal a less 

popular lifetime distribution regardless of its versatile hazard rate. However, in spite of this 

discouraging fact, the distribution receives the attention of a number of reliability practitioners, 

especially in situations where very large lifetimes are not of interest. We do not go into the details 

of various inferential developments related to these models due to paucity of space. The interested 

readers may, however, refer to Mann et al. (1974), Lawless (2002) and Singpurwalla (2006), among 

others, where the last reference primarily concerns with Bayesian developments.  

The Weibull and lognormal distributions differ in their tails and both may fit a dataset 

equally well in their middle ranges. In fact, when both the distributions are fitted to a lifetime data, 

the Weibull distribution has an earlier lower tail than the corresponding lognormal distribution. In 

other words, we can say that a low Weibull percentile is always below the corresponding 
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lognormal percentile making the Weibull distribution more pessimistic (see, for example, Nelson 

1990). In spite of several such comparative remarks, the two models are used simultaneously by a 

number of authors for a variety of lifetime data sets (see, for example, Dumonceaux et al. (1973), 

Wang (1999) and Upadhyay and Peshwani (2003)). The authors have concluded that the two 

models appear to be good contenders to each other and, therefore, each one can be used as an 

alternative to other in a variety of situations. The important classical references on the model 

comparison include Dumonceaux et al. (1973), Meeker (1984), Kim and Yum (2008), etc. Meeker 

(1984), however, extended the task of model comparison by focussing on accelerated test plans 

involving censored data for the two models. The Bayesian contributions on model comparison 

between Weibull and lognormal models include Kirn et al. (2000), Upadhyay and Peshwani (2003) 

and Araújo and Pereira (2007). It may be noted that some of these references provide extensive 

treatment on model comparison and conclude their findings based on various model comparison 

tools of Bayesian paradigm.  

Generally, the experimental units used for the considered situations are highly reliable 

and, therefore, laboratory based experimentation may result in a very few failures or even no 

failures in normal operating environment. As a matter of fact, the outcomes of such 

experimentation may provide one-sided information, that is, all the experimental units are 

surviving at the time of observation and none have failed. The problem can be resolved to a large 

extent if the experiment is conducted in an accelerated environment where we allow the items 

under test to operate at the accelerated levels of the stress(es) or covariates to induce early failures. 

Say, for instance, this might be the accelerated level of dose of the chemical responsible to induce 

the tumour with reference to the animal carcinogenicity experiment or the accelerated levels of the 

stresses such as temperature, humidity and voltage, etc., with reference to the testing of electro 

explosive devices, missiles, rocket motors, airbags in cars, etc. Moreover, although such 

experiments are performed in an accelerated environment, the primary objective remains drawing 

the inferences based on the observed data in the normal operating environment. This can, of 

course, be achieved by means of a suitable life-stress relationship used to relate the lifetimes with 

the applied covariate(s)/stress(es). Such relationships are generally decided based on several 

biological considerations in animal carcinogenicity experiment or physical considerations in 

engineering experiments (see, for example, Nelson (1990) and Lawless (2002)).  

A number of life-stress relationships are suggested in the literature of accelerated testing. 

Important among these are Arrhenius, Eyring, inverse power, exponential, exponential-power, 

quadratic and polynomial relationships, etc. These relationships are generally used when the 

characteristic life is assumed to be influenced by only one covariate or stress variable involved in 

the study. When multiple stresses or covariates are involved in the process, the most commonly 

used relationship is the log-linear relationship, which is formed under the assumption that the 

characteristic life has a log-linear relation with the stress(es). This relationship offers a generalized 

version although it can be used for the situation where one or two stresses affect the process. 

Another apparent advantage associated with the log-linear relationship is mathematical 

convenience in its use. These are some of the reasons that led to maximum usage of log-linear 

relationship in a variety of situations. A detailed discussion on life-stress relationships and the 

related issues can be had from Meeker and Escobar (1998), Wang (1999), Nelson (1990) and Sen 

(2016), etc. 

Most of the accelerated tests work under the assumption that only the scale parameter is 

influenced by the covariate(s)/stress(es) involved in the study whereas the shape parameter 

remains constant over the covariate(s)/stress(es) (see, for example, Nelson (1990)). However, this is 

not true in practice for all kinds of datasets and, therefore, the assumption of constant shape 

parameter with respect to the covariates may hide some important features of the units involved in 

the study. Meeter and Meeker (1994) is a good reference where applicability of non-constant shape 

parameter has been given by means of some examples (see also Balakrishnan and Ling (2013)).  
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The present paper provides Bayes analysis of both Weibull and lognormal based 

accelerated test models with an assumption that both the parameters of the two models are likely 

to be affected by the considered stress variates. The paper also considers missing data situation by 

assuming a hypothetical scenario in the assumed current status data although the hypothetical 

missing data scenario appears to be quite realistic in practice. Finally, the two models are 

compared using some standard Bayesian tools such as the deviance information criterion (DIC) 

and the expected posterior predictive loss (EPPL) criterion.  

The plan of the paper is as under. The next section provides the formulation of the 

likelihood function corresponding to two considered models for a general form of current status 

data when the experiment is subject to accelerated testing and both scale and shape parameters of 

the model are affected by the stress variables. Section 3 details the Bayesian model formulation and 

also comments on the implementation of the Metropolis and the Gibbs sampler algorithms to get 

the desired posterior based inferences in both non-missing and missing data situations. In section 

4, model selection criteria, namely the DIC and the EPPL are discussed in brief. This section is 

given for completeness only. Section 5 provides numerical illustration based on a real dataset. 

Finally, the paper ends with a brief conclusion given in the last section.  

 

2  The Models and the Likelihood Functions 
 

Let us consider a life testing experiment that involves 𝐼 experimental groups where 𝑖𝑡ℎ group 

consists of 𝐾𝑖 experimental units, 𝑖 = 1, 2, . . . , 𝐼. Thus, in all, the experiment involves testing of 

∑𝐼
𝑖=1 𝐾𝑖  experimental units. Besides, we also assume that in 𝑖𝑡ℎ experimental group, the 𝐾𝑖 units are 

observed for their status in terms of either failure or survival at time 𝑇𝑖  where the lifetime of each 

unit is affected by 𝐽 kinds of covariates, say 𝑥𝑖𝑗 ;  𝑖 = 1, 2, . . . , 𝐼, 𝑗 = 1, 2, . . . , 𝐽. Accordingly, the 

observed number of failures or survivors is recorded. Obviously, the resulting outcomes are 

available in the form of binary data where binary zero is used to represent the failed state and 

binary one for the state of survival. Let 𝑛𝑖 and 𝑟𝑖 = (𝐾𝑖 − 𝑛𝑖) denote the number of failures (count of 

binary zeros) and number of survivals (count of binary ones), respectively, observed at time 𝑇𝑖  in 

the 𝑖𝑡ℎ experimental group when each unit in the group subject to 𝐽 covariates or stresses, 𝑖 =

1, 2, . . . , 𝐼. The complete structure of the data is shown in Table 1. We have also considered missing 

data case but the same will be discussed separately.  

 

Table  1: Current status data observed at different points of time under different stresses or 

covariates (the values in parentheses correspond to missing data situation) 

 

Experimental 

group 

Number of 

experimental 

units 

Observation 

time 

Number 

of 

failures 

Number 

of 

survivals 

Number 

of 

missing 

units 

Covariates 

 1 𝐾1 𝑇1 𝑛1(𝑛′1) 𝑟1(𝑟′
1) (𝑚1) 𝑥11  ... 𝑥1𝐽 

2 𝐾2 𝑇2 𝑛2(𝑛′2) 𝑟2(𝑟′
2) (𝑚2) 𝑥21  ... 𝑥2𝐽 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 

I 𝐾𝐼  𝑇𝐼  𝑛𝐼(𝑛′𝐼) 𝑟𝐼(𝑟′𝐼) (𝑚𝐼) 𝑥𝐼1  ... 𝑥𝐼𝐽 

 

 

Now suppose 𝑡𝑖𝑘 denote the lifetime for the 𝑘𝑡ℎ experimental unit in the 𝑖𝑡ℎ experimental 

group, where 𝑖 = 1, 2, . . . , 𝐼 and 𝑘 = 1, 2, . . . , 𝐾. If the lifetimes 𝑡𝑖𝑘;  𝑖 = 1, 2, . . . , 𝐼, 𝑘 = 1, 2, . . . , 𝐾, are 

assumed to be the independent and identically distributed (iid) Weibull variates then the 

associated probability density function (pdf) can be written as  
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 𝑓𝑊(𝑡𝑖𝑘) = (
𝛽𝑖

𝜃
𝑖

𝛽𝑖
) 𝑡𝑖𝑘

𝛽𝑖−1
 exp {− (

𝑡𝑖𝑘

𝜃𝑖
)

𝛽𝑖
} ;  𝑡𝑖𝑘 > 0,  𝜃𝑖 ,  𝛽𝑖 > 0, ∀ 𝑖, 𝑘, (1) 

 

where 𝜃𝑖 and 𝛽𝑖 denote the scale and the shape parameters, respectively, associated with the 

Weibull model corresponding to 𝑖𝑡ℎ experimental group. Let us assume that both 𝜃𝑖 and 𝛽𝑖 are 

related to the covariates 𝑥𝑖𝑗 ;  𝑖 = 1, 2, . . . , 𝐼, 𝐽 = 1, 2, . . . , 𝐽, via means of log-linear relationship given 

as  

 𝜃𝑖 = exp(𝑎0 + ∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)   and    𝛽𝑖 = exp(𝑏0 + ∑𝐽

𝑗=1 𝑏𝑗𝑥𝑖𝑗);  𝑖 = 1, 2, . . . , 𝐼. (2) 

 

The parameters 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝐽) and 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑗) are the parameters associated 

with the log-linear relationships corresponding to the Weibull scale parameter 𝜃𝑖 and the shape 

parameter 𝛽𝑖, respectively, 𝑖 = 1, 2, . . . , 𝐼. Obviously, these parameters contribute in the model due 

to the involvement of covariates or stress variables in the study and the resulting Weibull model 

can be referred to as the accelerated Weibull model. More specifically, 𝑎0 corresponds to the 

constant effect of covariates on the scale parameter 𝜃𝑖 whereas the parameter 𝑎𝑗 gives the effect of 

covariate 𝑥𝑖𝑗  on the same, 𝑖 = 1, 2, . . . , 𝐼, 𝑗 = 1, 2, . . . , 𝐽. A similar interpretation can be given for the 

components of 𝑏 associated with 𝛽𝑖. Moreover, the components of 𝑎 and 𝑏 are assumed to be real 

on their support, an assumption that appears justified as well. 

To proceed further, it may be noted that in the experiment considered here, we do not 

observe the actual lifetime data rather only get the information regarding the fact that if the actual 

lifetimes are either less than the observation time (that is, 𝑡𝑖𝑘 ≤ 𝑇𝑖) or exceed it (that is, 𝑡𝑖𝑘 > 𝑇𝑖), 𝑖 =

1,2, . . . , 𝐼 and 𝑘 = 1,2, . . . , 𝐾. The probabilities corresponding to these units under the assumption of 

Weibul lifetime distribution can be given as  

 

 𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖) = 1 − exp {− (
𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}, (3) 

and 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖) = 1 − 𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖). It may be further noted that the equality sign in (3) is used to 

avoid the discontinuity at time 𝑇𝑖 . Of course, this does not make any difference as 𝑡𝑖𝑘; 𝑖 =

1,2, . . . , 𝐼, 𝑘 = 1,2, . . . , 𝐾, are the continuous variates. The expression given in (3) is nothing but the 

cumulative distribution function (cdf) of the corresponding Weibull distribution and its 

complimentary probability 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖) is the corresponding reliability or survival probability. 

On the other hand, if we assume lognormal distribution for the iid random variates 𝑡𝑖𝑘; 𝑖 =

1,2, . . . , 𝐼, 𝑘 = 1,2, . . . , 𝐾, the corresponding pdf can be written as 

  

 𝑓𝐿𝑁(𝑡𝑖𝑘) =
1

𝑡𝑖𝑘𝜎𝑖√2𝜋
exp [−

1

2𝜎𝑖
2 (log𝑡𝑖𝑘 − 𝜇𝑖)

2] ;  𝑡𝑖𝑘 > 0, −∞ < 𝜇𝑖 < ∞, 𝜎𝑖 > 0, ∀ 𝑖, 𝑘, (4) 

 

where exp(𝜇𝑖), 𝜎𝑖 denote the scale and shape parameters, respectively, of the lognormal model for 

the 𝑖𝑡ℎ experimental group, 𝑖 = 1,2, . . . , 𝐼, and the script 𝐿𝑁 is used to distinguish the lognormal 

density with that of Weibull density. Analogous to (2), the parameters of lognormal distribution 

can be written as  

 𝜇𝑖 = 𝑎′0 + ∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗     and    𝜎𝑖 = exp(𝑏′0 + ∑𝐽

𝑗=1 𝑏′𝑗𝑥𝑖𝑗);  𝑖 = 1,2, . . . , 𝐼, (5) 

 

where 𝑎′ = (𝑎′0, 𝑎′1, . . . , 𝑎′𝐽) and 𝑏′ = (𝑏′0, 𝑏′1, . . . , 𝑏′𝑗) are the parameters associated with the log-

linear relationship corresponding to lognormal parameters 𝜇𝑖 and 𝜎𝑖, respectively, 𝑖 = 1,2, . . . , 𝐼. A 

detailed interpretation of such parameters is already given while discussing Weibull distribution 

and, therefore, we presume that the components of 𝑎′ and 𝑏′ can be similarly dealt. Obviously, 

substituting 𝜇𝑖 and 𝜎𝑖 from (5) into (4) results into accelerated lognormal lifetime model. 

The probability associated with the event 𝑡𝑖𝑘 ≤ 𝑇𝑖; 𝑖 = 1,2, . . . , 𝐼, 𝑘 = 1,2, . . . , 𝐾, under the 

assumption of lognormal distribution can be written analogous to (3) as 
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 𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖) = 𝜙 {
log𝑇𝑖−𝑎0−∑𝐽

𝑗=1 𝑎𝑗𝑥𝑖𝑗

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}, (6) 

 

 where 𝜙 is the standard normal cdf, 𝜙{𝑧} = ∫
𝑧

−∞

1

√2𝜋
 exp [−

𝜉2

2
] 𝑑𝜉. The other probability 𝑃𝐿𝑁(𝑡𝑖𝑘 >

𝑇𝑖) is simply 1 − 𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖). 

Once the model formulation is done as given above, the likelihood function for the model 

parameters 𝑎 and 𝑏 based on the counts of binary outcomes 𝑛𝑖 and 𝑟𝑖 under the assumption of 

Weibull lifetimes can be written as   

 

 

𝐿𝑊(𝑎, 𝑏|𝑛, 𝑟, 𝑇, 𝑥) = ∏𝐼
𝑖=1 [𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛𝑖[𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟𝑖

= ∏𝐼
𝑖=1 [1 − exp {− (

𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

    × [exp {− (
𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑
𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

.

 (7) 

 

It may be noted that the binary outcomes 𝑛𝑖 and 𝑟𝑖 are observed at time 𝑇𝑖  with corresponding 

covariates 𝑥𝑖𝑗 ;  𝑗 = 1,2, . . . , 𝐽, for the experimental groups 𝑖 = 1,2, . . . , 𝐼. In (7), we have used the 

notations 𝑛 for (𝑛1, 𝑛2, . . . , 𝑛𝐼), 𝑟 for (𝑟1, 𝑟2, . . . , 𝑟𝐼), 𝑇 for (𝑇1, 𝑇2, . . . , 𝑇𝐼) and 𝑥 for (𝑥.1, 𝑥.2, . . . , 𝑥.𝐽) where 

𝑥.𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝐼𝑗)′ for 𝑗 = 1,2, . . . , 𝐽. 

Analogous to (7), the likelihood function for the model parameters 𝑎′ and 𝑏′ under the 

assumption of lognormal lifetimes can be written as 

 

 

𝐿𝐿𝑁(𝑎′, 𝑏′|𝑛, 𝑟, 𝑇, 𝑥) = ∏𝐼
𝑖=1 [𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛𝑖[𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟𝑖

= ∏𝐼
𝑖=1 [𝜙 {

log𝑇𝑖−𝑎′0−∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

    × [1 − 𝜙 {
log𝑇𝑖−𝑎′0−∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

,

 (8) 

 

where the various notations used in (8) are already defined while discussing Weibull based 

likelihood. 

 

2.1  Missing data case 
 

To formalise the missing data situation informally introduced in Section 1, let us assume that 𝑚𝑖 is 

the observed number of missing units out of 𝐾𝑖 experimental units tested in 𝑖𝑡ℎ experimental 

group. As mentioned earlier, these 𝐾𝑖 units are scheduled to be observed at time 𝑇𝑖  for their status 

(failed or surviving) when operated under 𝐽 different types of covariates or stresses 𝑥𝑖𝑗 ;  𝑖 =

1,2, . . . , 𝐼,  𝐽 = 1,2, . . . , 𝐽 (see Table 1) but 𝑚𝑖 missing units are, of course, not observable. Obviously, 

𝑚𝑖 missing units will consist of two different kinds of units, failed or surviving, if they were 

continued on experimentation and not found missing. Suppose 𝑚′𝑖 ((𝑚𝑖 − 𝑚′𝑖)) corresponds to 

number of failed (surviving) units out of 𝑚𝑖 missing units where obviously 𝑚′𝑖 is unknown and so 

is (𝑚𝑖 − 𝑚′𝑖), 𝑖 = 1,2, . . . , 𝐼. Let 𝑛′𝑖 and 𝑟′𝑖 = (𝐾𝑖 − 𝑛′𝑖 − 𝑚𝑖) denote the observed number of failures 

(count of binary zeros) and survivals (count of binary ones), respectively, out of 𝐾𝑖 experimental 

units when tested in 𝑖𝑡ℎ experimental group and observed at the time 𝑇𝑖 . As usual, the covariates or 

stresses 𝑥𝑖𝑗 ;  𝑖 = 1,2, . . . , 𝐼, 𝐽 = 1,2, . . . , 𝐽, are assumed to have their effects in missing data case as 

well.  
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Now the likelihood function for the model parameters 𝑎 and 𝑏 based on the observed 

counts 𝑛′𝑖 ,  𝑟′𝑖  and 𝑚𝑖 under the assumption of Weibull lifetimes can be written as   

 

 

𝐿𝑊𝑚
(𝑎, 𝑏|𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥) = ∏𝐼

𝑖=1  [𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛′𝑖     [𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟′𝑖

    × [𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑚′𝑖     [𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖)]𝑚𝑖−𝑚′𝑖

= ∏𝐼
𝑖=1 [1 − exp {− (

𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑛′𝑖+𝑚′𝑖

    × [exp {− (
𝑇𝑖

exp(𝑎0+∑
𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑟′𝑖+𝑚𝑖−𝑚′𝑖

,

 (9) 

 

where the counts 𝑛′𝑖 , 𝑟′𝑖  and 𝑚𝑖 are observed at the time 𝑇𝑖  when the items under the test are 

exposed to covariates or stresses 𝑥𝑖𝑗; 𝑗 = 1,2, . . . , 𝐽, for the experimental groups 𝑖 = 1,2, . . . , 𝐼. In (9), 

we have used the notations 𝑛′ for (𝑛′1, 𝑛′2, . . . , 𝑛′𝐼), 𝑟′ for (𝑟′1, 𝑟′2, . . . , 𝑟′𝐼), 𝑚 for (𝑚1, 𝑚2, . . . , 𝑚𝐼) and 

the script 𝑚 with 𝑊 stands for Weibull likelihood corresponding to missing data case. 

Similarly, if we use the same notations as described for the Weibull case, the likelihood 

function for the model parameters 𝑎′ and 𝑏′ under the assumption of lognormal lifetimes and 

missing data situation can be written as 

 

 

𝐿𝐿𝑁𝑚
(𝑎′, 𝑏′|𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥) = ∏𝐼

𝑖=1  [𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛′𝑖    [𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟′𝑖

    × [𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑚′𝑖     [𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖)]𝑚𝑖−𝑚′𝑖

= ∏𝐼
𝑖=1 [𝜙 {

log𝑇𝑖−𝑎′0−∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑛′𝑖+𝑚′𝑖

    × [1 − 𝜙 {
log𝑇𝑖−𝑎′0−∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑟′𝑖+𝑚𝑖−𝑚′𝑖

,

 (10) 

 

where as usual the script 𝑚 with 𝐿𝑁 stands for lognormal likelihood corresponding to missing data 

case. 

The likelihoods given in (9) and (10) are incompletely specified in the sense that they 

involve unknown components 𝑚′ = (𝑚′1, 𝑚′2, . . . , 𝑚′𝐼) in 𝑚 but this is not a deterrent issue with 

regard to Bayesian implementation if attempted using sample based approaches (see, for example, 

Sharma and Upadhyay (2018a)). For this, we only need to generate the binary response data 

corresponding to the observed missing units and this can be easily done by generating the iid 

Bernoulli variates with success probabilities 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖) and 𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖), for accelerated Weibull 

and lognormal lifetimes, respectively. Once the binary response data corresponding to the missing 

units are made available, availability of the unknown component 𝑚′ is obvious (see Sharma and 

Upadhyay (2018a)). The implementation has been briefed in the next section. It may be noted that 

the situation may not be straightforward if tried using the tools of classical paradigm. The details 

of Bayesian implementation for missing data case will be discussed in the next section. 

 

3  Bayesian Model Formulation 
 

As mentioned, the parameters 𝑎𝑗 and 𝑏𝑗;  𝑗 = 0,1, . . . , 𝐽, associated with the accelerated Weibull 

model are assumed to be real on their support and, therefore, we consider normal priors for these 

model parameters given as 

 

 𝑔𝑊(𝑎𝑗|𝜇𝑎𝑗
, 𝜎𝑎𝑗

) =
1

√2𝜋𝜎𝑎𝑗

 exp {−
1

2
(

𝑎𝑗−𝜇𝑎𝑗

𝜎𝑎𝑗

)

2

} ;  𝑗 = 0,1, . . . , 𝐽, (11) 
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 𝑔𝑊(𝑏𝑗|𝜇𝑏𝑗
, 𝜎𝑏𝑗

) =
1

√2𝜋𝜎𝑏𝑗

 exp {−
1

2
(

𝑏𝑗−𝜇𝑏𝑗

𝜎𝑏𝑗

)

2

} ;  𝑗 = 0,1, . . . , 𝐽, (12) 

 

where (𝜇𝑎𝑗
, 𝜎𝑎𝑗

) and (𝜇𝑏𝑗
, 𝜎𝑏𝑗

) are the hyperparameters associated with the prior distributions of 𝑎𝑗 

and 𝑏𝑗; 𝑗 = 0,1, . . . , 𝐽, respectively. Now assuming that the parameters 𝑎𝑗 and 𝑏𝑗;  𝑗 = 0,1, . . . , 𝐽, are a 

priori independent, the joint prior distribution can be written as  

 

 𝑔(𝑎, 𝑏|𝜇𝑎, 𝜎𝑎 , 𝜇𝑏 , 𝜎𝑏) = ∏𝐽
𝑗=0 𝑔(𝑎𝑗|𝜇𝑎𝑗

, 𝜎𝑎𝑗
) × 𝑔(𝑏𝑗|𝜇𝑏𝑗

, 𝜎𝑏𝑗
), (13) 

where           𝜇𝑎 = (𝜇𝑎0
, 𝜇𝑎1

, . . . , 𝜇𝑎𝐽
),         𝜎𝑎 = (𝜎𝑎0

, 𝜎𝑎1
, . . . , 𝜎𝑎𝐽

),          𝜇𝑏 = (𝜇𝑏0
, 𝜇𝑏1

, . . . , 𝜇𝑏𝐽
)        and 

𝜎𝑏0
= (𝜎𝑏0

, 𝜎𝑏1
, . . . , 𝜎𝑏𝐽

). 

For successful implementation of Bayesian techniques, the choice of hyperparameters 

becomes a significant issue. In case, the experimenter fails to have enough information to define an 

appropriate prior distribution, it is often recommended going for such choices that make the prior 

distributions essentially vague. Alternatively, one can attempt eliciting the prior hyperparameters 

based on the subjective opinion of the experts if the same are made available. To clarify, suppose 

the expert suggests that the parameters 𝑎𝑗 and 𝑏𝑗 are bounded within the finite intervals [𝑙𝑎𝑗
, 𝑢𝑎𝑗

] 

and [𝑙𝑏𝑗
, 𝑢𝑏𝑗

], respectively, 𝑗 = 0,1, . . . , 𝐽, and due to non-availability of any other significant 

information, it is assumed that each value within the intervals is equally likely (see Bousquet et al. 

(2006)). Thus presuming 𝑎𝑗 and 𝑏𝑗 to be uniformly distributed in the intervals [𝑙𝑎𝑗
, 𝑢𝑎𝑗

] and 

[𝑙𝑏𝑗
, 𝑢𝑏𝑗

], respectively, 𝑗 = 0,1, . . . , 𝐽, one can equate the means and variances of the assumed normal 

priors with those of the assumed uniform distributions over the corresponding intervals. As a 

result, the hyperparameters (𝜇𝑎𝑗
, 𝜎𝑎𝑗

) and (𝜇𝑏𝑗
, 𝜎𝑏𝑗

) associated with the prior distributions of 𝑎𝑗 and 

𝑏𝑗;  𝑗 = 0,1, . . . , 𝐽, can be obtained as 

 𝜇𝑎𝑗
=

𝑙𝑎𝑗
+𝑢𝑎𝑗

2
,        𝜎𝑎𝑗

= √
(𝑢𝑎𝑗

−𝑙𝑎𝑗
)2

12
;  𝑗 = 0,1, . . . , 𝐽, (14) 

 and 

 𝜇𝑏𝑗
=

𝑙𝑏𝑗
+𝑢𝑏𝑗

2
,        𝜎𝑏𝑗

= √
(𝑢𝑏𝑗

−𝑙𝑏𝑗
)2

12
;   𝑗 = 0,1, . . . , 𝐽. (15) 

 

The prior information formalized in equations (13) gets updated by the medium of 

likelihood (7) in order to give the joint posterior, which up to proportionality under the accelerated 

Weibull distribution is given as 

 

 

𝑝𝑊(𝑎, 𝑏|𝜇𝑎, 𝜎𝑎, 𝜇𝑏 , 𝜎𝑏 , 𝑛, 𝑟, 𝑇, 𝑥)

∝ ∏𝐼
𝑖=1 [1 − exp {− (

𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

    × [exp {− (
𝑇𝑖

exp(𝑎0+∑
𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

    × ∏𝐽
𝑗=0

1

𝜎𝑎𝑗

 exp {−
1

2
(

𝑎𝑗−𝜇𝑎𝑗

𝜎𝑎𝑗

)

2

} ×
1

𝜎𝑏𝑗

 exp {−
1

2
(

𝑏𝑗−𝜇𝑏𝑗

𝜎𝑏𝑗

)

2

} .

 (16) 

 

One can similarly obtain the joint posterior distribution, up to proportionality, under the 

assumption of accelerated lognormal distribution and the same can be given as 
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𝑝𝐿𝑁(𝑎′, 𝑏′|𝜇𝑎′, 𝜎𝑎′, 𝜇𝑏′, 𝜎𝑏′, 𝑛, 𝑟, 𝑇, 𝑥)

∝ ∏𝐼
𝑖=1 [𝜙 {

log𝑇𝑖−𝑎′0−∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

× [1 − 𝜙 {
log𝑇𝑖−𝑎′0−∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

    × ∏𝐽
𝑗=0

1

𝜎𝑎′𝑗

 exp {−
1

2
(

𝑎′𝑗−𝜇𝑎′𝑗

𝜎𝑎′𝑗

)

2

} ×
1

𝜎𝑏′𝑗

 exp {−
1

2
(

𝑏′𝑗−𝜇𝑏′𝑗

𝜎𝑏′𝑗

)

2

} ,

 (17) 

 

where the prior distributions for the parameters 𝑎′𝑗  and 𝑏′𝑗;  𝑗 = 0,1, . . . , 𝐽, are formed in a manner 

similar to those for the accelerated Weibull parameters but with hyperparameters (𝜇𝑎𝑗
′, 𝜎𝑎𝑗

′) and 

(𝜇𝑏𝑗
′, 𝜎𝑏𝑗

′), respectively. Likewise, we define 𝜇𝑎′ = (𝜇𝑎0
′, 𝜇𝑎1

′, . . . , 𝜇𝑎𝐽
′), 𝜎𝑎′ =

(𝜎𝑎0
′, 𝜎𝑎1

′, . . . , 𝜎𝑎𝐽
′), 𝜇𝑏′ = (𝜇𝑏0

′, 𝜇𝑏1
′, . . . , 𝜇𝑏𝐽

′) and 𝜎𝑏′ = (𝜎𝑏0
′, 𝜎𝑏1

′, . . . , 𝜎𝑏𝐽
′). 

Both (16) and (17) do not appear to offer closed form solutions. Therefore, we propose to 

consider sample based approaches to get the desired posterior based inferences (see, for example, 

Upadhyay et al. (2001) and the references cited therein). No doubt, the sample based approaches to 

Bayesian computation are beneficial in the sense that they are automatic and simultaneously 

capable of providing variety of inferential aspects in a routine manner. The commonly used 

sample based approaches are the Metropolis and the Gibbs sampler algorithms where the former 

is a more generalised version in the sense that it also includes latter as a special case. The 

implementation of Gibbs sampler algorithm requires the specification of full conditional 

distributions for all the generating variates and simultaneously necessitates the availability of such 

full conditionals from the viewpoint of easy generation of samples. On the other hand, the 

Metropolis algorithm does not require any such specification of full conditionals rather seeks 

alternative randomization mechanism for sample generation often in a multidimensional 

framework.  

The joint posterior given in (16) and (17) are the ((𝐽 + 1) + (𝐽 + 1)) dimensional 

distributions. If we look carefully on various associated full conditionals, it is obvious that the 

corresponding full conditionals are not easy from the viewpoint of sample generation and, 

therefore, Metropolis algorithm appears to be an obvious choice for simulating the samples from 

joint posterior (16) and (17). The Metropolis algorithm is a Markovian updating scheme that uses a 

suitably chosen candidate generating density, say 𝑞(𝜔, 𝜈), for sample generation where 𝜔 and 𝜈 are 

the realizations from 𝑞(𝜔, 𝜈) at 𝑠𝑡ℎ and (𝑠 + 1)𝑡ℎ stage, respectively. If the chosen kernel is 

symmetric, the value generated at each step from 𝑞(𝜔, 𝜈) follows a randomization step based on 

the probability of acceptance 𝛼(𝜔, 𝜈) = min {1,
𝑝(𝜈)

𝑝(𝜔)
} where 𝑝(. ) is the corresponding posterior 

distribution of possibly vector valued parameter (. ). If 𝜈 is accepted with probability 𝛼(𝜔, 𝜈), it is 

retained as the candidate point from the target posterior at 𝑠𝑡ℎ stage otherwise 𝜔 is retained as the 

candidate point from the target posterior at 𝑠𝑡ℎ stage. The commonly used candidate generating 

densities are multivariate normal, rectangular and t distributions, etc. (see also Upadhyay et al. 

(2001)). One can also use the non-symmetric candidate generating density and define a generalized 

version, known as the Metropolis-Hastings algorithm. We shall not discuss this version as it is 

beyond the scope of the present work. 

For the implementation of the algorithm on the posteriors under consideration, we 

consider a multivariate normal distribution (((𝐽 + 1) + (𝐽 + 1)) dimensional) as a candidate 

generating density. The multivariate normal distribution is chosen because it can be easily 

specified by its mean vector and covariance matrix, approximate values for the same can be 

guessed on the basis of ML estimates and the corresponding Hessian based approximation 

obtained at ML estimates. The calculation of ML estimates and the corresponding Hessian based 

approximations for the models under consideration cannot be directly obtained rather one requires 

going for an efficient optimisation technique. Balakrishan and Ling (2013) is an important reference 

that considers expectation maximization (EM) algorithm for the current status data under the 

assumed lifetime models. We, however, consider using simulated annealing (SA) optimisation 
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technique (see Robert and Casella (2010)) to obtain the ML estimates of the model parameters for 

both the accelerated Weibull and the accelerated lognormal distributions and accordingly obtain 

Hessian based approximations at corresponding ML estimates. Thus using the initial values in the 

form of ML estimates and corresponding Hessian based approximations, the implementation of 

the Metropolis algorithm can be done routinely through successive generations from (16) and (17) 

to get an iterative sequence of states. This sequence, after a long run, converges in distribution to a 

random sample from the true posterior distribution. The process is to be implanted separately on 

the two posteriors (see also Robert and Casella (2013) and Smith and Roberts (1993)).  

Next considering the aforesaid missing data situation, the joint posterior can be obtained 

by updating the prior distribution (13) with the likelihood (9) under the accelerated Weibull 

distribution. Let 𝑝𝑊𝑚
(𝑎, 𝑏|𝜇𝑎, 𝜎𝑎 , 𝜇𝑏 , 𝜎𝑏 , 𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥) denotes the posterior in this case. Obviously, 

this posterior does not behave similar to that for non-missing case given in (16) due to the 

involvement of an unknown component 𝑚′ in 𝑚. The situation can, however, be easily dealt with 

by constructing a cycle of Gibbs sampler algorithm for these additional unknowns. It may be noted 

here that the Gibbs sampler algorithm is also a Markovian updating scheme that requires 

successive generation from each of its full conditional distributions by using the most recent values 

of rest of the conditioning variates and the algorithm ultimately proceeds in a cyclic manner (see 

also Sharma and Upadhyay (2018a)). To implement the algorithm in the present case, we need to 

form two full conditional distributions. One of these full conditionals focuses on generation of 

count 𝑚′ given all other variates (𝑎, 𝑏, 𝜇𝑎, 𝜎𝑎, 𝜇𝑏 , 𝜎𝑏 , 𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥). The other full conditional is the 

joint full conditional of the model parameters (𝑎, 𝑏) given all other variates including 𝑚′ that 

appears in 𝑚. The generation of count 𝑚′ (binary zeros) may be done by Bernoulli variate 

generation with success probability 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖), conditioned on the recently generated values of 

the model parameters. The generation from other full conditional can be achieved by 

implementation of the Metropolis algorithm that has already been discussed earlier for non-

missing case. As a result, the algorithm can routinely proceed to get the desired posterior samples 

for missing data case as well. The situation can be similarly detailed for the posterior arising from 

the accelerated lognormal distribution involving missing data. 

 

4  Bayesian Model Selection 
 

A number of model comparison tools are available in the literature. The logically appealing tools 

among these are those which take into accountability both goodness of fit and model complexity 

while deciding the model. The goodness of fit can obviously be summarized on the basis of 

deviance statistic whereas the model complexity can be based on the number of free parameters in 

the model. A few such tools are Akaike information criterion (AIC), Bayesian information criterion 

(BIC), DIC and the posterior predictive loss (PPL) criterion, etc. We, however, restrict ourselves to 

two most exploited and justified criteria, namely the DIC and EPPL where latter is nothing but 

PPL with slight change in the definition and nomenclature.  

 

 

4.1  The deviance information criterion 
 

Spiegelhalter et al. (2002) proposed a measure based on the posterior distribution of deviance that 

deals with both Bayesian measure of fit and complexity. This measure, known as DIC, obviously 

consists of two terms. The first term gives the measure of fit and the second term is used to 

measure the complexity involved in the entertained models. The DIC can be defined as  

 

 DIC = 𝐸[−2log(𝐿(𝜂|(. )))] + 𝑝𝐷 , (18) 
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where 𝑝𝐷 = 𝐸[−2log(𝐿(𝜂|(. )))] + 2log(𝐿(𝜂|(. ))), 𝜂 is a vector of parameters and 𝜂 is the 

corresponding posterior estimates that are usually taken as the posterior mean but posterior mode 

has also been recommended (see, for example, Upadhyay et al. (2013)). The term −2log(𝐿(𝜂|(. ))), 

considered as a function of 𝜂, is classical deviance and is defined as a measure of fit in classical 

modelling framework. In this light, the first term of (18) is defined to give the measure of fit, which 

is nothing but the posterior mean of classical deviance. On the other hand, the second terms 𝑝𝐷 is 

known as the effective number of parameters and is used to measure the complexity involved in 

the modelling. The model providing the least value of DIC is preferred over all other models. 

 

4.2  The expected posterior predictive loss 
 

Initially, the EPPL criterion was developed by Buck and Sahu (2000) for the multinomial cell 

frequencies and later on Sharma and Upadhyay (2018b) derived the same for the binomial counts. 

We shall use the same criterion as discussed by Sharma and Upadhyay (2018b) keeping in view the 

dataset given in Table 1. To discuss the criterion briefly, let 𝑟𝑖 and 𝑟𝑖
𝑝 denote the number of 

successes corresponding to observed and predicted future observations, respectively, out of 𝐾𝑖 

experimental units in the 𝑖𝑡ℎ experimental group, where 𝑖 = 1,2, . . . , 𝐼. The EPPL criterion derived 

in Sharma and Upadhyay (2018b) can be rewritten as 

 

 

𝐸{𝐿(𝑟, 𝑟𝑝)} = 2 ∑𝐼
𝑖=1 [𝑟𝑖 {log (

𝑟𝑖

𝐾𝑖
) − log(𝑝𝑖

∗)} + (𝐾𝑖 − 𝑟𝑖) {log (
𝐾𝑖−𝑟𝑖

𝐾𝑖
) − log(1 − 𝑝𝑖

∗)}]

    +2 ∑𝐼
𝑖=1 [𝑟𝑖 {log(𝑝𝑖

∗) − 𝐸 (log (
𝑟𝑖

𝑝

𝐾𝑖
))} + (𝐾𝑖 − 𝑟𝑖) {log(1 − 𝑝𝑖

∗) − 𝐸 (log (
𝐾−𝑟𝑖

𝑝

𝐾𝑖
))}] ,

(19) 

 

where 𝑟𝑝 = (𝑟1
𝑝

, 𝑟2
𝑝

, . . . , 𝑟𝐼
𝑝

), 𝑝𝑖
∗ = 𝐸 (

𝑟𝑖
𝑝

𝐾𝑖
) and 𝐿(𝑟, 𝑟𝑝) is the aggregated loss function over the 

components of 𝑟 and 𝑟𝑝. For the 𝑖𝑡ℎ experimental group, it is given by 

 

 𝐿(𝑟𝑖 , 𝑟𝑖
𝑝

) = 2 [𝑟𝑖log (
𝑟𝑖

𝑟
𝑖
𝑝) + (𝐾𝑖 − 𝑟𝑖)log (

𝐾𝑖−𝑟𝑖

𝐾−𝑟
𝑖
𝑝)] ;  𝑖 = 1,2, . . . , 𝐼. (20) 

 

It is to be noted here that the loss function (20) is derived under the binomial modelling 

assumption in each of the 𝑖𝑡ℎ experimental group for 𝑟𝑖 (𝑟𝑖
𝑝) number of successes corresponding to 

observed (predictive) dataset, in 𝐾𝑖 Bernoulli trials (see Sharma and Upadhyay (2018b)), where 𝑖 =

1,2, . . . , 𝐼. A careful look on (19) reveals the situation when we observe exactly zero or 𝐾𝑖; 𝑖 =

1,2, . . . , 𝐼, counts. This problem can be resolved by adding (subtracting) 
1

2
 when we observe exactly 

zero (𝐾𝑖) counts in the 𝑖𝑡ℎ experimental group, 𝑖 = 1,2, . . . , 𝐼. Moreover, in (19), expectation is taken 

with respect the posterior predictive distribution of the future observation 𝑟𝑖
𝑝

;  𝑖 = 1,2, . . . , 𝐼, given 

the observed data. One may note that for the situation considered here, the posterior predictive 

distribution is not available in analytically closed form although it is manageable with the help of 

simulated posterior samples. Say, for instance, we can easily generate the predictive samples from 

the considered distributions once the corresponding posterior samples are made available and 

hence the expectation in (19) can be obtained accordingly.  

The EPPL is a decision theoretic measure for model comparison that comprises of two 

types of losses. The first one being the loss due to fitting (LDF) also known as goodness of fit term 

and is given in terms of the likelihood ratio statistic (see the first term on RHS of (19)). The second 

one is the loss incurred due to complexity (LDC) of the model that may also be used to 

approximate the predictive variance (see the second term on RHS of (19)). Finally, the criterion 

recommends a model that has the least value of EPPL over all the entertained models. 
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5  Numerical Illustration 
 

The numerical illustration is based on a real dataset obtained from a survival/sacrifice experiment 

conducted at National center for toxicological research (NCTR). The subjects involved in the 

experiment were the male and female mice from two strains of offspring. The first strain F1 

consisted of offspring from mating of BALB/c males to C57BL/6 females. The second strain F2 

consisted of offspring from non brother-sister mating of the Fl progeny. The considered dataset is 

taken from Balakrishnan and Ling (2013) which is a compact form of the original dataset reported 

in Kodell and Nelson (1980). 

The dataset consisted of 823 male and female mice from two strains of offspring classified 

in 𝐼 = 51 experimental groups with varied number of mice in each group. The mice in different 

groups were subject to four different doses, 60 ppm, 120 ppm, 200 ppm and 400 ppm, of chemical 

benzidine dihydrochloride, responsible to develop tumours in the mice, where ppm stands for 

parts per million. The number of mice with tumours, say, 𝑛1, 𝑛2, . . . , 𝑛51, was then recorded in 

different groups at times 𝑇1, 𝑇2, . . . , 𝑇51, respectively. Besides, we also recorded the number of mice 

without tumours, say, 𝑟1, 𝑟2, . . . , 𝑟51, in each group . Obviously, the mice with (without) tumours 

correspond to the observed number of failures (survivals) at the time of observation. One may also 

note that the experiment involves three covariates, namely the two strains of offspring (say, F1=0 

and F2=1), sex of mice (say, F=0 for females and M=1 for males) and doses of chemical (60 ppm, 120 

ppm, 200 ppm and 400 ppm). The distribution of mice according to these three covariates are 

reported in Table 2.  

Let us now consider the case of missing data situation in the considered dataset and 

assume that some of the mice are found missing when observed at different times 𝑇1, 𝑇2, . . . , 𝑇51. In 

this case, we therefore observe three different categories, that is, number of mice with tumours 

(𝑛′𝑖), number of mice without tumours (𝑟′𝑖) and number of mice found missing (𝑚𝑖) at the time 𝑇𝑖  

in the 𝑖𝑡ℎ experimental group, where 𝑖 = 1,2, . . . , 𝐼. It may be noted that the number of mice 

considered in the 𝑖𝑡ℎ experimental group, 𝐾𝑖, is same as that for the non-missing case. Also, the 

mice in each group are subject to the same covariates as mentioned for the non-missing case. The 

corresponding dataset is shown in Table 2 where number of missing observations are taken 

hypothetically for illustration.  

 

Table  2: Observed number of failures 𝑛𝑖(𝑛′𝑖), survivals 𝑟𝑖(𝑟′𝑖) and missing units (𝑚𝑖) at time 𝑇𝑖  in 

the presence of covariates 𝑥𝑖1 (F1=0, F2=1), 𝑥𝑖2 (F=0, M=1) and 𝑥𝑖3 (dose of chemical in ppm), for the 

𝑖𝑡ℎ experimental group, 𝑖 = 1,2, . . . , 𝐼 (the values in parentheses correspond to missing data cases) 

 

Experimental 

group 

Number of 

experimental 

units 

Observation 

time 

(in months) 

Number 

of 

failures 

Number 

of 

survivals 

Number 

of 

missing 

units 

Covariates 

i 𝐾𝑖 𝑇𝑖  𝑛𝑖(𝑛′𝑖) 𝑟𝑖(𝑟′𝑖) (𝑚𝑖) 𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 

1  48   9.27  1 (1)  47 (41)  (6)  0  0  60  

2  24  9.37  0 (0)  24 (20)  (4)  0  0  60  

3  24  13.97  1 (1)  23 (21)  (2)  0  0  60  

4  24  9.37  0 (0)  24 (21)  (3)  0  0  120  

5  24  13.97  5 (3)  19 (16)  (5)  0  0  120  

6  23  14.03  9 (7)  14 (14)  (2)  0  0  120  

7  26  18.67  25 (20)  1 (3)  (3)  0  0  120  

8  48  9.27  0 (0)  48 (40)  (8)  0  1  120  

9  44  14.00  7 (6)  37 (33)  (5)  0  1  120  

10  22  18.73  7 (5)  15 (14)  (3)  0  1  120  
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Experimental 

group 

Number of 

experimental 

units 

Observation 

time 

(in months) 

Number 

of 

failures 

Number 

of 

survivals 

Number 

of 

missing 

units 

Covariates 

11  20  19.30  4 (4)  16 (14)  (2)  0  1  120  

12  24  9.27  0 (0)  24 (22)  (2)  1  1  60  

13  23  9.30  0 (0)  23 (20)  (3)  1  1  60  

14  21  9.37  0 (0)  21 (19)  (2)  1  1  60  

15  44  14.00  3 (3)  41 (34)  (7)  1  1  60  

16  18  18.67  2 (2)  16 (15)  (1)  1  1  60  

17  20  18.70  2 (2)  18 (16)  (2)  1  1  60  

18  1  16.53  1 (1)  0 (0)  (0)  0  0  120  

19  1  16.57  1 (1)  0 (0)  (0)  0  0  120  

20  1  16.90  1 (1)  0 (0)  (0)  0  0  120  

21  1  15.13  1 (1)  0 (0)  (0)  0  0  120  

22  1  15.40  1 (1)  0 (0)  (0)  0  0  120  

23  47  9.33  4 (4)  43 (38)  (5)  0  0  200  

24  45  14.00  38 (32)  7 (10)  (3)  0  0  200  

25  22  14.00  11 (8)  11 (13)  (1)  0  1  400  

26  15  18.70  11 (7)  4 (6)  (2)  0  1  400  

27  1  7.87  1 (1)  0 (0)  (0)  0  1  400  

28  1  14.73  1 (1)  0 (0)  (0)  0  1  400  

29  18  18.70  5 (5)  13 (12)  (1)  1  1  120  

30  1  9.57  1 (1)  0 (0)  (0)  1  1  120  

31  1  14.43  1 (1)  0 (0)  (0)  1  1  120  

32  1  17.87  1 (1)  0 (0)  (0)  1  1  120  

33  1  18.03  1 (1)  0 (0)  (0)  1  1  120  

34  1  5.13  0 (0)  1 (1)  (0)  1  1  120  

35  1  13.53  1 (1)  0 (0)  (0)  0  0  200  

36  1  14.03  1 (1)  0 (0)  (0)  0  0  200  

37  1  14.23  1 (1)  0 (0)  (0)  0  0  200  

38  1  18.67  1 (1)  0 (0)  (0)  0  0  200  

39  24  9.33  16 (11)  8 (10)  (3)  0  0  400  

40  10  14.00  9 (7)  1 (2)  (1)  0  0  400  

41  1  9.87  1 (1)  0 (0)  (0)  0  0  400  

42  1  17.13  0 (0)  1 (1)  (0)  1  0  60  

43  24  9.27  2 (2)  22 (19)  (3)  1  0  120  

44  22  9.37  0 (0)  22 (20)  (2)  1  0  120  

45  41  14.00  15 (12)  26 (25)  (4)  1  0  120  

46  1  15.43  1 (1)  0 (0)  (0)  1  1  200  

47  24  9.30  1 (1)  23 (20)  (3)  1  1  400  

48  21  14.00  4 (4)  17 (16)  (1)  1  1  400  

49  12  18.67  6 (5)  6 (6)  (1)  1  1  400  

50  1  11.90  1 (1)  0 (0)  (0)  1  1  400  

51  1  14.77  1 (1)  0 (0)  (0)  1  1  400  

 

Now, going back to Section 2, we can easily see that the present dataset involves 𝐽 = 3 

covariates and, therefore, the total number of associated parameters are ((𝐽 + 1) + (𝐽 + 1)) = 8. 

Out of these eight parameters, the first four, that is, 𝑎0, 𝑎1, 𝑎2, 𝑎3 are associated with the Weibull 
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scale parameter and the remaining four, that is, 𝑏0, 𝑏1, 𝑏2, 𝑏3 are associated with the Weibull shape 

parameter. Similarly, when one considers the analysis of lognormal distribution, the associated 

parameters are 𝑎′0, 𝑎′1, 𝑎′2, 𝑎′3 and 𝑏′0, 𝑏′1, 𝑏′2, 𝑏′3, respectively, with its scale and shape 

parameters. One may also note that the parameters 𝑎1, 𝑎2, 𝑎3 and 𝑎′1, 𝑎′2, 𝑎′3 affecting the scale 

parameters of the corresponding distributions are due to the covariates considered as strain of 

offspring, sex of mice and dose of the chemical, respectively. Similarly, the parameters 𝑏1, 𝑏2,𝑏3 

and 𝑏′1, 𝑏′2, 𝑏′3 causing the affect on shape parameters of the corresponding distributions enter 

into the modelling formulation due to the three covariates entertained in the analysis.  

To implement the Bayesian modelling formulation as given in Section 3, we first begin 

with the exact specification of the considered prior distributions for the model parameters of the 

two entertained models.  The prior distribution given in  (13) was evaluated based on the interval 

[-25, 25] specified by the experts for 𝑎𝑗and 𝑏𝑗;  𝑗 = 0,1,2,3, under the assumption of accelerated 

Weibull distribution. The hyperparameters (𝜇𝑎𝑗
, 𝜎𝑎𝑗

) and (𝜇𝑏𝑗
, 𝜎𝑏𝑗

) associated with 𝑎𝑗 and 𝑏𝑗 can be 

obvious from (14) and (15) for all 𝑗. The prior distributions associated with the accelerated 

lognormal parameters were also managed in an identical manner.  

We next considered simulation of posterior samples from (16) and (17) using Metropolis 

algorithm as per details given in Section 3, considering a single long run of the chain in each case. 

For the implementation of the Metropolis algorithm, we considered an eight-dimensional normal 

distribution with mean vector 𝜂 and covariance matrix Σ as a candidate generating density. We, 

however, used a scaling constant 𝑐𝑠 = 0.5 with Σ to minimize number of rejections of generated 

values from the candidate generating density (see also Upadhyay et al. (2001)). As initial values for 

starting the chain, we used 𝜂̂ as a vector of ML estimates of 𝜂 assuming 𝜂 = (𝑎, 𝑏) for the posterior 

based on accelerated Weibull distribution and 𝜂 = (𝑎′, 𝑏′) for the posterior based on accelerated 

lognormal distribution. Thus ML estimates were obtained using the likelihood functions given in 

(7) and (8) corresponding to Weibull and lognormal based accelerated models, respectively. 

Similarly, the initial values for Σ was obtained as Σ̂ in each case where Σ̂ is Hessian based 

approximation corresponding to (7) and (8) evaluated at corresponding ML estimates 𝜂̂. The ML 

estimates of the model parameters are also reported in Tables 3 and 4 for the accelerated Weibull 

and the accelerated lognormal distributions, respectively.  

Once the simulated chain started producing, we monitored the convergence based on 

ergodic averages. This was achieved at about 50K iterations for both the models. Once the 

convergence was achieved, we took a random sample of size 4K separately from the two posteriors 

by choosing every 10th observation. This gap among the generating variates made serial 

correlations almost negligible. Thus we finally obtain samples from the joint posteriors (16) and 

(17), each component of which will form samples from the corresponding marginal posterior. Once 

these samples are obtained, the desired sample based posterior inferences can be easily drawn (see 

also Upadhyay et al. (2001)). 

The simulation of posterior samples corresponding to missing data situation can be a 

routine extension of non-missing case described above. As mentioned in Section 3 (see also 

subsection 2.1), we need to create hybridization with the help of idea inherent in the Gibbs sampler 

algorithm where the corresponding full conditional distributions can be managed as discussed in 

Section 3 (see also Sharma and Upadhyay (2018a)).  

The estimated posterior modes for various parameters in the two models and the 

corresponding highest posterior density (HPD) intervals with coverage probability 0.95 are 

reported in Tables 3-4, where the values in parentheses correspond to the same for the missing 

data cases. It can be seen that the estimated posterior modes are, in general, close enough to the 

corresponding ML estimates, a conclusion that is normally appreciated by the classical 

statisticians. Besides, it conveys the fact that the subjective opinion provided by the experts does 

not lead to strong prior distributions and the inferences are mostly data dependent. We also 

observe that the estimates obtained under the missing data cases are, in general, close enough to 



S.K. Upadhyay, Reema Sharma 
A BAYES ANALYSIS AND COMPARISON OF WEIBULL AND 
LOGNORMAL BASED ACCELERATED TEST MODELS 

RT&A, No 4(51) 
Volume 13, December2018 

 

69 

those corresponding to non-missing cases for both the models. This, in turn, ensures that we do not 

loose enough if some of the observations are missing during the experimentation. Among other 

important conclusions, it can be seen that the estimated 0.95 HPD intervals are mostly narrow 

reflecting small variability among the different variates. We do not go into the details of other 

conclusions although the same can be easily drawn once the posterior samples are made available.  

 

Table 3: ML estimates and estimated posterior characteristics for the parameters of accelerated 

Weibull distribution (the values in parentheses correspond to missing data case) 

 

 Parameter  ML estimate  Posterior mode  0.95 HPD interval 

𝑎0  2.944  2.950  

 (2.945)  

 2.878, 3.033  

 (2.877, 3.035)  

𝑎1  0.049  0.041 

 (0.039)  

 -0.065, 0.256  

 (-0.072, 0.262)  

𝑎2  0.622  0.594 

 (0.608)  

 0.398, 1.017  

 (0.412, 1.046)  

𝑎3  -0.002  -0.002 

 (-0.002)  

 -2.210e-03, -0.001  

 (-2.221e-03, -0.001)  

𝑏0  2.205  2.214 

 (2.207)  

 1.880, 2.572  

 (1.889, 2.573)  

𝑏1  -0.088  -0.128 

 (-0.116)  

 -0.620, 0.285  

 (-0.622, 0.279)  

𝑏2  -0.816  -0.755 

 (-0.836)  

 -1.422, -0.320  

 (-1.481, -0.318)  

𝑏3  -0.002  -0.002 

 (-0.002)  

 -0.004, -0.001  

 (-0.004, -0.001)  

 

 

Table  4: ML estimates and estimated posterior characteristics for the parameters of accelerated 

lognormal distribution (the values in parenthesis correspond to missing data case) 

 

 Parameter  ML estimate  Posterior mode  0.95 HPD interval 

𝑎′0  2.900  2.906  

 (2.932) 

 2.829, 3.005  

 (2.824, 3.035)  

𝑎′1  0.096  0.095 

 (0.087) 

 -0.037, 0.285  

 (-0.052, 0.344)  

𝑎′2  0.552  0.540 

 (0.567) 

 0.390, 0.781  

 (0.368, 0.957)  

𝑎′3  -0.002  -0.002 

 (-0.002) 

 -2.534e-03, -1.589e-03  

 (-2.485e-03, -0.001)  

𝑏′0  -1.720  -1.751 

 (-1.649) 

 -2.113, -1.406  

 (-2.088, -1.325)  

𝑏′1  0.283  0.307 

 (0.245) 

 -0.065, 0.771  

 (-0.128, 0.803)  

𝑏′2  0.787  0.768 

 (0.812) 

 0.407, 1.235  

 (0.362, 1.376)  

𝑏′3  0.001  0.001 

 (0.002) 

 -0.001, 0.003  

 (-8.421e-05, 0.004)  
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The simulated marginal posterior samples corresponding to the model parameters can be 

further utilized to obtain various survival characteristics such as the survival probability at a 

specified point of time, hazard rate and mean time to appearance of tumours (MTAT), etc. 

associated with the mice involved in testing. We have, however, worked out for MTAT only based 

on the final simulated posterior samples. The MTAT under the accelerated Weibull distribution is 

𝜃Γ (
1

𝛽
+ 1) where the scale parameter 𝜃 = exp(𝑎0 + ∑3

𝑗=1 𝑎𝑗𝑥𝑗) and the shape parameter 𝛽 =

exp(𝑏0 + ∑3
𝑗=1 𝑏𝑗𝑥𝑗). Similarly, the MTAT under the accelerated lognormal distribution is exp (𝜇 +

𝜎2

2
) where 𝜇 = 𝑎′0 + ∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑗 and 𝜎 = exp(𝑏′0 + ∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑗). It may be noted here that while 

writing the expression for MTAT, we have simplified the notations considerably. As a result, the 

term 𝑥𝑗 associated with the model parameters corresponds to the 𝑗𝑡ℎ covariate, where 𝑗 = 1,2,3. 

Thus 𝑥1 corresponds to two levels of strain (𝐹1=0 and 𝐹2=1), 𝑥2 corresponds to sex of mice (0 for 

females and 1 for males) and 𝑥3 corresponds to four doses of chemical (60 ppm, 120 ppm, 200 ppm 

and 400 ppm). 

The estimated posterior characteristics for MTAT at different levels of three covariates are 

reported in Table 5 under the assumption of accelerated Weibull distribution. The values in 

parentheses represent the results corresponding to missing data case. We have also reported the 

corresponding ML estimates for MTAT in order to have a comparison of our results with the 

classical ones (see Table 5). It can be seen that there is appreciable difference between the MTAT 

estimates corresponding to two sexes and the female mice are more susceptible to the chemically 

developed tumours than the male mice for both the levels of strains and all the four doses of the 

chemical. The results given in Table 5, however, do not stipulate appreciable difference between 

the two strains of offspring for both the sexes at all the four doses of chemical. There is yet another 

important finding that can be seen from Table 5. The mice receiving the higher dose of the 

chemical are more susceptible to the chemically developed tumour, a conclusion that is absolutely 

in accordance with dose-response relationship. Besides, we also obtained the estimates for MTAT 

under the assumption of accelerated lognormal distribution. More or less similar results were 

observed in this case as well except a few marginal differences in the estimates for male mice at 

two levels of strains of offspring. We do not report these results presuming that these are not going 

to offer any additional benefit rather unnecessarily increase the length of paper.  

We next focus on the estimates of MTAT in missing data case. We can see that both point 

and interval estimates are close enough to the corresponding estimates in non-missing data case 

when the considered distribution is accelerated Weibull (see Table 5). More or less similar 

observations were marked when the considered distribution was accelerated lognormal except for 

some of the estimated HPD intervals for male mice. These HPD intervals were found to be wider, 

in general, than the corresponding HPD intervals for non-missing data case. Obviously, this 

finding is important in the sense that it provides large variability among the MTAT estimates 

associated with the male mice in missing data case. In this very sense, the accelerated Weibull 

distribution can be visualized to be a better candidate than the accelerated lognormal distribution 

simply because the former distribution offers more or less stable estimates for MTAT almost in 

every considered situation. 

Before we end the section, we compare the two accelerated distributions formally using 

DIC and EPPL measures discussed in Section 4. The DIC is evaluated on the basis of 4K posterior 

samples from each of the two posteriors (16) and (17) associated with the accelerated Weibull and 

the accelerated lognormal distributions, respectively. For the evaluation of EPPL, we generated 4K 

predictive data sets exactly in the same form and size as the observed data. It may be noted that 

these 4K predictive samples were obtained with the help of simulated posterior samples 

corresponding to each of the two considered distributions. DIC and EPPL were similarly evaluated 

for missing data case as well. The evaluated values of the two measures are reported in Table 6.  
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Table  5: ML estimates and estimated posterior characteristics for MTAT under the accelerated 

Weibull distribution (the values in parentheses correspond to missing data case) 

 

Strain Sex 

Dose of 

chemical  

(in ppm) 

ML estimate 
Posterior  

mode 

0.95 HPD 

interval 

F1  F  60  16.122  16.189 

 (16.237) 

 15.387, 17.198  

 (15.305, 17.146)  

 120  14.448  14.437 

 (14.495) 

 13.968, 15.085  

 (13.898, 15.031)  

 200  12.476  12.443 

 (12.429) 

 11.939, 12.919  

 (11.941, 12.915)  

 400  8.632  8.474 

 (8.545) 

 7.539, 9.435  

 (7.490, 9.360)  

F1   M  60  28.722  27.742 

 (27.851) 

 23.241, 42.981  

 (23.206, 44.484)  

 120  25.752  24.723 

 (25.005) 

 20.978, 38.108  

 (20.415, 38.900)  

 200  22.286  21.256 

 (21.681) 

 17.824, 32.919  

 (17.747, 33.388)  

 400  15.686  17.036 

 (15.692) 

 12.063, 27.602  

 (12.074, 28.903)  

F2  F  60  16.885  16.622 

 (16.665) 

 15.499, 20.234  

 (15.387, 20.385)  

 120  15.139  14.997 

 (14.932) 

 13.787, 17.981  

 (13.763, 18.152)  

 200  13.085  12.985 

 (12.854) 

 11.813, 15.706  

 (11.655,15.672)  

 400  9.077  8.901 

 (8.953) 

 7.535, 11.343  

 (7.365, 11.208)  

F2   M  60  30.052  30.757 

 (31.216) 

 25.030, 44.570  

 (24.330, 45.438)  

 120  26.958  27.639 

 (27.597) 

 22.464, 39.396  

 (22.039, 40.562)  

 200  23.354  23.829 

 (23.699) 

 19.539, 34.449  

 (19.515, 35.736)  

 400  16.531  17.563 

 (16.883) 

 13.652, 31.258  

 (13.692, 33.687)  

 

 

Table  6: DIC and EPPL values under the accelerated Weibull and the accelerated lognormal 

distributions (the values in parentheses correspond to missing data case) 

 

  Distribution   DIC  Under EPPL criterion  

 LDF   LDC   EPPL  

Accelerated Weibull  599.943  

 (600.012) 

 38.066 

 (38.009) 

 28.991 

 (29.110) 

 67.057  

 (67.119)  

Accelerated lognormal  600.276  

 (611.988) 

 38.315 

 (49.368) 

 28.306 

 (29.987) 

 66.621  

 (79.355)  
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As regards the results, it can be seen that the values of DIC and those of EPPL under the 

two distributions are almost close to each other and, therefore, one may consider either of the two 

distributions for the considered dataset. It may, however, be seen that the accelerated Weibull 

distribution performs better than the accelerated lognormal distribution even in case some of the 

observations are missing. So we prefer to conclude in favour of the accelerated Weibull 

distribution although it offers slight poor loss due to complexity and hence the overall loss for non-

missing data case. The difference is, however, marginal only when compared to the corresponding 

values obtained under the accelerated lognormal distribution. 

 

6  Conclusion 
 

The paper is a successful attempt of analyzing current status data when exact lifetimes are not 

observable rather the information is available only in the form of failure status or surviving. The 

other novel feature of the paper is the use of accelerated lifetime models, namely the two-

parameter Weibull and the two-parameter lognormal distributions when both the parameters are 

allowed to be affected by the covariates or the stress variables occurring in the experimentation. 

Normally, in such situations only the scale parameter of the model is allowed to be varied in 

accordance with the covariates and the other shape parameter is kept constant. Of course, the 

resulting distributions are complex but not a deterrent issue when allowed to be dealt by sample 

based approaches to Bayesian computation. The results on model comparison considered in the 

paper finally recommend the accelerated Weibull model when both missing and non-missing 

datasets are allowed to be entertained. If, however, there is no missing data in the experimentation, 

one can consider either of the two models for drawing the necessary inferences. 
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