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Abstract 
 

Usually, systems and components are described as being in one of two modes, “on” 

or “off.” Such systems are described using binary structure functions. In multistate 

systems (MSS), components can be in more than two states—for example, there can 

be partially failed or partially operating modes.  The system state can be described 

by continuously many values. A system that can have different task performance 

levels is named multi-state system (MSS).  In this paper, we present a technique for 

solving a family of Continuous MSS reliability problems. A universal generating 

function (UGF) method is proposed for fast reliability estimation of continuous 

MSSs. The UGF method provides the ability to estimate relatively quickly different 

MSS reliability indices for series-parallel, parallel-series and bridge structures. It can 

be applied to MSS with different physical nature of system performance measure. 

 

Keywords: multi-state system,  universal generating function, reliability  

 

 

I. Introduction 
 

Many technical systems are distinguished by their structural complexity. They can perform their 

task at several different levels like  the system failure can lead to decreased ability to perform the 

given task without moving to complete failure. Such a system element can also perform its task 

with some different levels in between perfect functioning to complete failure. Such systems are 

named as Multistate Systems (MSS). For example, the generating unit in power systems has its 

nominal generating capacity, which is fully available if there are no failures. Some types of failures 

can cause complete unit outage while other types of failures can cause a unit to work with reduced 

capacity.  For example, in a power generation system, the generator can produce 100MW, later on, 

due to some technical problem, it may produce 80MW and so on. The physical characteristics of 

the performance depend on physical nature of the system outcome. One need to choose reliability 

procedures according to the physical performance of system such as productivity, capacity etc. 

Therefore, it is important to measure performance rates of system components by their 

contribution into the entire MSS output performance. Continuous materials or energy transmission 

systems or oil transportation systems, power generation systems etc are examples of MSS. Billinton 

and Allan  (1996), Aven (1990) discussed the flow network problem, which provide the desired 

throughput or transmission capacity for continuous energy, material or information flow. There 
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may be components in series or parallel in the system. In redundancy optimization problems, data 

processing speed can also be considered as a performance measure and the main task of system is 

to complete the task within the desired time, see Levitin et.al (1998) and Lisnianski et.al (2000). 

Several type of  MSS were considered in Gnedenko and Ushakov (1995). Several properties of 

MSSs and importance measures in MSSs are considered in Chacko and Manoharan (2008, 2011).  

A rigorous work on Binary state system can be seen in Barlow and Proschan (1975). Many 

standard works on reliability theory adopt a framework in which systems and components can be 

in only one of two modes ‘on’ or ‘off’. Consequently, the system structure function is a binary 

function of binary variables. Most of the standard results in Barlow and Proschan (1975) are set in 

this framework. These structure functions fail to model important situations when systems have 

redundant standby components. Furthermore, if the components or systems can be in intermediate 

modes besides the two extremes of completely functioning or completely failed, the above 

framework does not suffice. To remedy this situation, authors such as Barlow and Wu (1978), El. 

Neweihi et al. (1978), and Griffith (1980) have considered situations in which components and 

systems can assume a finite number of values. In these works, the basic concepts of MSS reliability 

were formulated and  the system structure function was defined for coherent MSS.  The research 

on such systems – called ‘multi-state systems’ is still continuing. The aim of this research work is to 

advance the state-of-the art of the highly promising multi-state reliability theory so that it can be 

applied to design and maintenance of practical engineering systems. In Griffith (1980), the 

coherence definition was generalized and three types of coherence were studied. The reliability 

importance was extended to MSS from the binary state system in Butler (1979). Concepts of MSS 

importance are also discussed in Block and Savits (1982).  

The steady state behavior of Markov systems is very useful in reliability analysis. The 

steady-state behavior of multi-state monotone systems was considered by applying the theory for 

stationary and synchronous processes with embedded point process in Natvig and Streler (1984). 

The modeling technique was suggested by Wood (1985), which allows existing binary algorithms 

for block diagrams and fault trees to be applied to multi-state system.  The concept of equivalent 

behavior was introduced in Garriba et.al (1980) which provide the analysis of multiple-valued 

logic tree  aimed at eliciting prime implicants.  These prime implicants are the multiple-valued 

logic analogue of minimal cut sets encountered in binary fault trees. The prime implicants were 

also successfully used in dependability analysis of software controlled systems Yau (1998). As in 

the Binary state system reliability analysis availability and unavailability plays a very major role in 

system maintenance through corrective maintenance of MSSs. A method for the two-sided 

estimation of MSS unavailability was proposed  based on the binary model, Pouret et.al (1999).  

Large system analysis using extreme value theory is important in the MSS theory. An asymptotic 

approach to the MSS reliability evaluation was presented in Kolowrocki (2000). Chacko and 

Manoharan (2009), Chacko et. al. (2018) considered MSSs reliability problems like ageing 

properties with semi-Markov modeling. 

MSS reliability assessment are based on three different approaches Aven (1993): the 

structure function approach - where Boolean models are extended for the multi-valued case, the 

stochastic process (mainly Markov) approach, and Monte-Carlo simulation. The structure function 

approach is also extremely time consuming and difficult to deal with. The stochastic process 

method can be applied only to relatively small MSS, because the number of system states increases 

drastically with the increase in number of system components. A Monte-Carlo simulation model 

may be a fairly true representation of the real world, but the main disadvantage of the simulation 

technique is the time and expense involved in the development and execution of the model Aven 

(1993). This is an especially important drawback when the optimization problems are solved. In 

spite of these limitations, the above mentioned methods are often used by practitioners, for 

example in the field of power systems reliability analysis Pouret et.al. (1999). 
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MSSs reliability analysis is more complex in reality. In real-world problems of MSS reliability 

analysis, the great number of system states that need to be evaluated makes it difficult to use 

traditional techniques in various optimization problems. The universal generating function (UGF) 

technique is fast enough to be used in these problems in discrete state MSSs, Ushakov (1986) and 

Ushakov (1988). In addition, this technique allows practitioners to find the entire MSS performance 

distribution based on the performance distributions of its components. An engineer can find it by 

using the same procedures for MSS with different physical nature of performance. In the following 

sections the application of the UGF to MSS reliability analysis is considered especially for 

continuum state systems.  The discretization of continuous systems make variations in reliability 

analysis. The results of measure theory and probability theory will become applicable while using 

continuous performance variables. So it is necessary to study continuous MSSs and introduce  

analysis tools.  

Section II provided the UGF for continuous MSSs. Performance measure evaluation is given 

in section III. Numerical example is given in section IV. Conclusions are given in final section. 

 

II. Performance Measures of Continuous MSSs 
 

Consider a system consisting of n units. We suppose that any system unit i can have 

continuous states: from complete failure up to perfect functioning. The entire MSS system has 

continuous states as determined by the states of its units. Denote a MSS state at instance t as Y(t)

],0[ b , where Y(t)=0 corresponds to the worst state and Y(t)=b corresponds to the best state. The 

performance level Gy is associated with each state ],0[y b  and GyGs if y>s. The MSS behavior 

is characterized by its evolution in the space of states. To characterize numerically this evolution 

process, one has to determine the MSS reliability indices. These indices can be considered as 

extensions of the corresponding reliability indices for a binary-state system.  

The Continuum MSS reliability measures were systematically studied Brunelle and Kapur 

(1999). In this paper, we consider three measures which are most commonly used by engineers, 

namely MSS availability, MSS expected performance, and MSS expected unsupplied demand (lost 

throughput).  

MSS availability A(t) is the probability that the MSS will be in the states with performance 

level greater than or equal to W at a specified moment t>0, where the MSS initial state at the 

instance t=0 is the best state K or some other predetermined state M (G(y)>W).  For large t the 

initial state has practically no influence on the availability. Therefore, the index A is usually used 

for the steady state case and is called the stationary availability coefficient, or simply, the MSS 

availability. MSS availability is the function of required demand W. It may be defined as 





W

dyyf )(A(W)      (1) 

Where f(y) is the  probability density function of MSS performance state y. The resulting integral is 

taken only for the states where MSS performance is greater than or equal to the specified demand 

W.  

In practice, the system operation period T is often partitioned into M intervals, Tm 

(1mM) and each Tm has its own demand level Wm. The following generalization of the 

availability index as in Levitin et.al. (1998) is used in these cases: 

,.q)A(WE
M

1m

mmA 


    (2) 

where 
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



M

1m

mmm T/Tq      (3) 

is the steady state probability of demand level m. 

For example, in power system reliability analysis, the index (1-EA) is often used and treated 

as loss of load probability, see Billinton and Alen (1996). This measure is commonly used in power 

system reliability analysis. The MSS performance in this case is interpreted as power system 

generating capacity.  

The value of MSS expected performance could be determined as 

𝐸𝐺 = ∫ 𝐺(𝑦)𝑓(𝑦)𝑑𝑦
𝑏

𝑜
.   (4) 

One can note that expected MSS performance does not depend on demand W. EG defines the 

average productivity (capacity) or processing speed of the system.  

When penalty expenses are proportional to the unsupplied demand, the expected 

unsupplied demand EU may be used as a measure of system output performance. This index may 

be presented by the following expression: 

𝐸𝑈 = ∑ ∫ max(𝑊𝑚 − 𝐺(𝑦) , 0) 𝑓(𝑦)𝑑𝑦. 𝑞𝑚
𝑏

0
𝑀
𝑚=1 ,   (5) 

Examples of the EU measure are the unsupplied power in power distribution systems and 

expected output tardiness in information processing systems. In this case EU may be interpreted as 

expected electric power unsupplied to consumers. 

In the following section we consider MSS reliability assessment based on MSS reliability 

indices based on the UGF technique.  

 

III. Universal Generating Function of Continuous MSSs 

 
The UGF was introduced in Ushakov (1986) and principles of its application were formulated in 

Ushakov (1987) and Ushakov (1988). The most systematical description of mathematical aspects of 

the method can be found in Ushakov (2000), where the method is referred to as generalized 

generating sequences approach. A brief overview of the method with respect to its applications 

for MSS reliability assessment can be seen in Levitin et.al (1998). Chacko and Manoharan (2011) 

discussed application of UGF in finding joint importance measures of MSSs. The method was first 

applied to the real power system reliability assessment and optimization in Lisnianski et.al 

(1994,1996) 

For MSS which continuous states, there can be different levels of output performance at 

each time t: G(t)G={G} and the system output performance distribution (OPD) can be defined by 

two sets G and f(g(t)) . 

The u-function of a continuous  random variable Y is defined as  

,)()( dyyfzzu

b

a

y

     (6) 

where the variable G lies between a and b   and f(g) is the  is the probability density function of  

G.  u-function uj(z) can be introduced to represent the performance distribution of element j by 

relating the probabilities of each state yj,  0 ≤ 𝑦 ≤ 𝑏𝑗 , to the corresponding performance  𝐺𝑦𝑗  of the 

element in that state: 

.)()(
0


j

j

b

jj

y

j dyyfzzu      

  

 To obtain the u-function of a subsystem containing two elements, composition operators are 

introduced. All the composition operators take the form 
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ji

b b

jjii

yy

b

jjj

y

b

iiiji dydyyfyfzdyyfzdyyf
y

zzuzu
i j

ji

j

j

i

i

  
0 0

),(

00

)()()()()()(


 

     The definition of the function (.) strictly depends on the physical nature of the system 

performance measure and on the nature of the interaction of the system elements, for example for 

a series system, min(.,.)(.)  , and for a parallel system,  max(.,.).or(.,.)sum(.)   Because, 

the total performance of a pair of elements connected in parallel is equal to the sum of the 

performance rates (e.g. productivity and capacity) of the individual  and when several elements 

are connected in series, the element with the lowest performance becomes the bottleneck of the 

subsystem: in other words, the performance of the subsystem is equal to the minimum of the 

performances of the individual.  

 Consecutively applying the operators to all elements and  replacing pairs of macro-elements 

by equivalent elements one can obtain the u-function representing the performance distribution of 

the entire MSS. Obtain the u-functions of all of the system elements. If the system contains a pair of 

elements connected in parallel or in series, replace this pair with an equivalent macro-element with 

u-function obtained by ‘sum’ or ‘min’ operator for  (.). If the system contains more than one 

element, do it again and again. Then, determine the u-function of the entire series-parallel system 

as the u-function of the remaining single equivalent macro-element. The system probability and 

performance density functions f(.), g  are represented by the coefficients and exponents of this u-

function. 

 In order to use the UGF in evaluation in various reliability measures, we consider the 

following approach.  Let  𝑔𝑗𝑦𝑗 be the output performance of multistate system when  element j is in  

state 𝑦𝑗 while the rest of the elements evolve stochastically among their corresponding states with 

performance distributions. 𝑓𝑖(𝑦𝑖), 0 ≤ 𝑦𝑖 ≤ 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑛.  Assume that  the element j is in one of its 

states 𝑦𝑗 with performance not greater than  . We denote by 𝑦𝑗𝛼  
 the state  in the ordered set of 

states of element j whose performance 𝑔𝑗𝑦𝑗𝛼  is equal or immediately below  , i. e., 𝑔𝑗𝑦𝑗𝛼 ≤ 𝛼 ≤

𝑔𝑗𝑦𝑗𝛼+ . The conditional probability of the element j being in a generic state k characterized by  a 

performance 𝑔𝑗𝑦𝑗𝛼  
not greater than a pre-specified level threshold   is  

𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 ≤ 𝑔𝑗𝑦𝑗𝛼) =
𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
 

. 

Similarly, the conditional probability of the element j being in a generic state k 

characterized by  a performance 𝑔𝑗𝑦𝑗𝛼 
greater than a pre-specified level threshold  𝛼 is  

𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 > 𝑔𝑗𝑦𝑗𝛼) =
𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
 

In this model we  get jOPM 

 :  

 

𝑂𝑃𝑀≤𝛼
𝑗 = ∫ 𝑌𝑗

𝑔𝑗𝑦𝑗𝛼

0

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 ≤ 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑌𝑗

𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗  

, 

Similarly, we define as jOPM 
: 

. 

𝑂𝑃𝑀>𝛼
𝑗 = ∫ 𝑌𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 > 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑌𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗 

 In order to obtain the state space restricted measures, one has to modify the UGF of 

elements as follows, 

𝑈≤𝛼𝑗 = ∫ 𝑧𝑦𝑗
𝑔𝑗𝑦𝑗𝛼

0

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 ≤ 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑧𝑦𝑗
𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗 
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𝑈>𝛼𝑗 = ∫ 𝑧𝑦𝑗
𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 > 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑧𝑦𝑗
𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗 

 

𝑈𝑗,𝑘
≤𝛼,≤𝛽 = ∫ 𝑧𝑦𝑗

𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗∫ 𝑧𝑦𝑘

𝑔𝑘𝑦𝑘𝛽

0

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘 

𝑈𝑗,𝑘
>𝛼,>𝛽 = ∫ 𝑧𝑦𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗∫ 𝑧𝑦𝑘

𝑏𝑘

𝑔𝑘𝑦𝑘𝛽

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

1 − 𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘  

𝑈𝑗,𝑘
≤𝛼,>𝛽 = ∫ 𝑧𝑦𝑗

𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗∫ 𝑧𝑦𝑘

𝑏𝑘

𝑔𝑘𝑦𝑘𝛽

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

1 − 𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘 

𝑈𝑗,𝑘
>𝛼,≤𝛽 = ∫ 𝑧𝑦𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗  ∫ 𝑧𝑦𝑘

𝑔𝑘𝑦𝑘𝛽

0

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘 

 

when evaluating UGF of  

    
  ,,,, ,,,,,, ijijijijjjii OPMandOPMOPMOPMOPMOPMOPMOPM . 

   

Having MSS OPD, one can obtain the system availability for the arbitrary t and W using the 

following operator A: 

dyWtytyfWdytyfZWztUWtA

bb

y

AMSSA ))(())((),)((()),,((),(
00

         (7) 

where 









.0x,0
,0x,1

)x(                (8) 

The expected system output performance value during the operating time can be obtained for 

given UMSS(z) using the following G operator: 

dytyftydytyfZztUtE

bb

y

GMSSGG  
00

)(()())((()),(()(         (9) 

In order to obtain the expected unsupplied demand EU for the given UMSS(z) and constant demand 

W according to (4), the following U operator should be used: 

dytyftyWWdytyfZztUtUE

bb

y

UMSSU  
00

)(())(,0max(),)((()),(()( 

       





M

m

mMSSUm WzUqEU
1

)),(()( W ,                                                (10) 

where 

 

b

m

b

m

y

UmMSSUm dytyftyWWdytyfZWzUWEU
00

))(())(,0max(),)((()),(()( 

Consider, for example, two power system generators with nominal capacity 100 MW as two 

separate MSS, Billonton (1996). In the first generator some types of failures require the capacity to 

be reduced to 60 MW and some types lead to the complete generator outage. In the second one 

some types of failures require the capacity to be reduced to 80 MW, some types lead to capacity 

reduction to 40 MW and some types lead to the complete generator outage. So, there are three 

possible relative capacity levels that characterize the performance of the first generator: 

Universal Generating function (UGF) is found to be a useful toll in determining the system 

performance for the MSSs. Real world MSS are often very complex and consist of a large number 

of elements connected in different ways. To obtain the MSS OPD and the corresponding u-
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function, for the continuum state MSSs, we must develop some rules to determine the system u-

function based on the individual u-function of its elements.  

In order to obtain the u-function of a subsystem (component) containing a number of 

elements, composition operators are introduced. These operators determine the subsystem u-

function expressed as integral for a group of elements using simple algebraic operations over 

individual u-functions of elements. All the composition operators for two different elements take 

the form 

           

  
1 2

21

2

21

0 0

212211

))(),((

0

222

)(

1

0

11

)(

21 ))(())((]))((,))(([)),(),,((

b b

tyty

b

ty

b

ty
dudutyftyfZdytyfZdytyfZztuztu

i




,                                                                                                                                                                    

                                                                                                                                                     (11) 

where u1(t,z), u2(t,z)  are individual U-function of elements and (.) is a function that is defined 

according to the physical nature of the MSS performance and the interactions between MSS 

elements. The function (.) in composition operators expresses the entire performance of a 

subsystem consisting of different elements in terms of the individual performance of the elements. 

The definition of the function (.) strictly depends on the type of connection between the elements 

in the reliability diagram sense, i.e. on the topology of the subsystem structure. It also depends on 

the physical nature of system performance measure.  

For example in MSS, where performance measure is defined as capacity or productivity 

(MSSc), the total capacity of a pair of elements connected in parallel is equal to the sum of the 

capacities of elements. Therefore, the function (.) in composition operator takes the form: 

(g1,g2)=g1+g2.     (12) 

For a pair of elements connected in series the element with the least capacity becomes the 

bottleneck of the system. In this case, the function (.) takes the form: 

(g1,g2)=min(g1,g2).    (13) 

In MSS where the performances of elements are characterized by their processing speed 

(MSSs) and parallel elements cannot share their work, the task is assumed to be completed by the 

group of parallel elements when it is completed by at least one of elements. The entire group 

processing speed is defined by the maximum element processing speed: 

           (g1,g2)=max(g1,g2).                     (14) 

If a system contains two elements connected in series, the total processing time is equal to the 

sum of processing times t1 and t2 of individual elements:                      T=t1+t2=g-11+g-12.

 Therefore, the total processing speed of the system can be obtained as T-1=g1g2/(g1+g2) and 

the (.) function for a pair of elements is defined as follows: 

(g1,g2)=g1g2/(g1+g2).    (15) 

 operators were determined in Levitin et.al (1998), Lisnianski et.al (2000) for several important 

types of series-parallel systems MSS. Some additional composition operators were also derived for 

bridge structures Levitin and Lianianski (1998). 

Applying the  operators in sequence, one can obtain the u-function representing the system 

performance distribution for an arbitrary number of elements connected in series, in parallel, or 

forming bridge structure. 

If Y1 follows Exp(θ) and Y2 follows Exp(μ), then   

 
 




0 0

21

)()()()(

21
2121)),(),,(( dydyeZztuztu

tytytyty 

 

for parallel structure 



 
V M Chacko 
CONTINUOUS MULTISTATE SYSTEM UNIVERSAL GF 

RT&A, No 4 (51) 
Volume 13, December 2018  

81 

 
 




0 0

21

)()())(),(min(

21
2121)),(),,(( dydyeZztuztu

tytytyty 

 

for series structure 

 
 




0 0

21

)()(log)]()([

21
2121)),(),,(( dydyeeztuztu

tytyZtyty 

 

 

)log)(log(
)),(),,((

0 0

21

)()log()()log(

21
21

ZZ
dydyeztuztu

tyZtyZ


  

 






 



 

Putting z=1, we get output performance for parallel structure. Similarly for  series system. 
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IV. Numerical Example 
 

Time to failure of two components an a system is given in table 1. The availability  is 

estimated if the components are connected in series and in parallel. Both of the data follows 

exponential distribution, since the failures are due to shocks occurred during operation. The 

parameters are estimated and availability formula is obtained. 

 

The data is found to be follows Exponential distribution with mean 19.22 and 27.54 respectively. 

 

If the components are connected in series, the availability would be, at  w,
w
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The availability for various w values van be easily obtained.  

 

Table 1: Time to failure of two components (1 and 2) 

 

Time of failure (Component 1) Time of failure (Component 2) 

4.6 15.0 

5.6 7.2 

6.6 8.5 

7.6 9.8 

8.6 11.2 

9.7 32.0 

10.8 14.0 

11.9 15.5 

13.1 18.0 

14.3 18.5 

17.0 17.0 

16.7 21.8 

18.0 53.0 

19.4 72.0 

20.8 27.0 

22.2 30.0 

22.0 22.0 

25.2 32.7 

26.8 35.0 

28.4 36.9 

31.0 31.0 

31.9 41.4 

33.7 43.8 

36.0 36.0 

39.0 39.0 

 

V. Conclusions 
         

 The Universal Generating Function for continuous performance distributions are introduced. 

Discretization of continuous system becomes sometimes more unrealistic inferences. Method for 

analyzing continuous MSSs is desired.  In this paper, we have made an attempt to deal with 

continuous MSSs, which will guide to obtain performance measures of complex MSSs. More 

analysis has to be explored in future.  
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