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Abstract 

 

The Lindley and Weibull are the two most commonly used distributions for analyzing 

lifetime data. These distributions have several desirable properties and nice physical 

interpretations. This paper introduces a new distribution, which generalizes the well-

known Lindley and Weibull distribution, having Bathtub shaped failure rate. The 

Statistical properties of this distribution are discussed in this paper. Applications in 

reliability study are discussed. A real data set is analyzed and it is observed that the 

present distribution can provide a better than some other very well known distributions. 
 

 

Keywords: Reliability, Bathtub shaped failure rate, Weibull distribution, Lindley 

distribution. 

 

 

I. Introduction 
 

In order to apply suitable maintenance activities to a system or to apply reliability 

improvement procedures, one should know the dynamic behaviors of system reliability 

[2]. Increasing, decreasing and Bathtub curves are usually adopted to represent the failure 

rate of the system. Many statistical distributions are proposed in literature to model the 

Bathtub behavior of failure rate. The problem of getting optimal burn in time for the 

industrial burn in process is the major concern of industrial engineers. The failure rate of 

some engineering systems over time follows what is called the "bathtub" curve.  There is a 

high rate of infant mortality initial failures.  Then the failure rate drops, only to increase at 

the end of life due to wear out failures [3].  The reliability of a part can be enhanced by 

providing a burn-in at elevated temperatures prior to usage.  This burn-in is typically 

done at pre specified time.   It is also good to monitor the part performance during 

burning, so that the time point of failures can be detected.  That data can be used to set the 

optimum burn-in length. A continuous distribution with a bathtub-shaped failure rate 

function with desirable characteristics is quite appropriate in this context, [9,7]. 

In analyzing lifetime data one often uses the Exponential, Generalized Lindley and 

Weibull distributions. It is well known that Exponential can have only constant hazard 

function, Generalized Lindley has a bathtub shape hazard function whereas Weibull can 

have constant or monotone (increasing/decreasing) hazard functions. Unfortunately, in 

mailto:%20chackovm@gmail.com
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practice often one needs to consider non-monotonic function such as bathtub shaped 

hazard function also. In this paper we present a new simple distribution which may have 

bathtub shaped hazard function, with high initial failure rate, which decreases rapidly 

and then slowly increases. 

In this paper, we propose a new distribution whose failure rate function has 

monotone (increasing/decreasing) or bathtub shape. Section II discussed the definition of 

the Weibull-Lindley distribution (WLD). Section III discussed the statistical behaviours of 

the distribution. Section IV discussed the distribution of maximum and minimum. The 

maximum likelihood estimation of the parameters determined in section V. Section VI 

discussed three parameter Weibull-Lindley distribution (3WLD) and real data sets are 

analyzed in Section VII and the results are compared with existing distributions.  

Conclusions are given in Section VIII. 

 

II. The Weibull-Lindley Distribution 
 

Let X  be a random variable with the following cumulative distribution function (CDF) 

for 0,,   as follows; 

                                                    
  
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exF , 0x                       (2.1) 

Assume λ=1 and 0,  .Then, the probability density function (PDF) corresponding to 

Eq. (2.1) is given by 
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Here   is shape parameter. The distribution with PDF of form (2.2) is said to be Weibull-

Lindley distribution with parameters  ,  and will be denoted by  ,WLD . 
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Figure 1 provide the PDFs of  ,WLD  for different parameter values. From the below 

figures it is immediate that the PDFs are unimodal. 

 
Figure 1: Probability density function of the  ,WLD . 
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The survival function ),(xS  reversed failure rate function )(xr  and cumulative failure rate 

function )(xH  of X  are  
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and 
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As a result, the hazard rate function of the WL distribution can exhibit monotonically increasing, 

monotonically decreasing and bathtub shapes. We can see from that 

lim
𝑥→0

ℎ(𝑥) = {

∞, 𝛽 < 1
2𝛼, 𝛽 = 1
𝛼, 𝛽 > 1

 

 

Figure 2 provide the failure rate functions of  ,WLD  for different parameter values. From the 

below figures it is immediate that the failure rate function can be increasing, decreasing or bathtub 

shaped. 

 
Figure 2: Failure rate function of the  ,WLD . 

 

It is clear that the PDF and the failure rate function have many different shapes, which allows this 

distribution to fit different types of lifetime data. For fixed  , the failure rate function is (a) non-

decreasing function if ,1  and (b) non-increasing and bathtub function if .1  
 

III. Statistical Properties 
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Setting 5.0p  in Eq. (3.1), we get the median of WLD as follows. 
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px is the solution of above monotone increasing function. Software can be used to obtain the 

Quantiles/Percentiles 

Mode: Mode can be obtained as solution of  
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It is not possible to get an analytic solution in x to Eq. (3.3) in the general case. It has to be obtained 

numerically by using methods such as fixed-point or bisection method. 

Moments: If X  has WLD, we obtain the rth moment of WLD in the form 
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(3.3)

 If (3.3) is a convergent series for any 0r , therefore all the moments exist and for integer values 

of   and   (3.4) can be represented as a finite series representation. Therefore putting 1r , we 

obtain the mean as 
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and putting 2r , we obtain the second moment as 
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which in turn can be used to obtained the higher central moments and variance. 

 

Moment Generating Function and Characteristic function 

 

The moment generating function, ),(tM X  is 
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The characteristic function is 
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IV. Distribution of Maximum and Minimum 
 

Series, Parallel, Series-Parallel and Parallel-Series systems are general system structure of many 

engineering systems. The theory of order statistics provides a use-full tool for analysing life time 

data of such systems. Let X1, X2,...,Xn be a simple random sample from WLD with CDF and PDF as 

in (2.1) and (2.2), respectively. Let X(1), X(2),…, X(n) denote the order statistics obtained from this 

sample. The CDF of  rX  is given by, 
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                (4.1)                          

Reliability of a series system having n components with independent and identically distributed 

(iid) WLD distribution is  
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Reliability of a parallel system having n 

components with iid WLD distribution is  
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V. Parameter Estimation 
 

In this section, point estimation of the unknown parameters of the WLD are derived by using the 

method of maximum likelihood based on a complete sample data.  First partial derivatives of the 

log-likelihood function with respect to the two-parameters are 
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and 
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Setting the left side of the above two equations to zero, we get the likelihood equations as a system 

of two nonlinear equations in   and  . Solving this system in   and   gives the maximum 

likelihood estimates (MLE) of   and  . It is very easy to obtain estimates using R software by 

numerical methods. 

 

Asymptotic Confidence bounds 

 

In this section, we derive the asymptotic confidence intervals of these parameters when 0  and 

0  as the MLEs of the unknown parameters 0  and 0  cannot be obtained in closed 

forms, by using variance covariance matrix 
1I , where 

1I  is the inverse of the observed 

information matrix which defined as follows 
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The second partial derivatives as follows 



nL





2

2

 



 
V.M.Chacko, Deepthi K S, Beenu Thomas, Rajitha C 
WEIBULL-LINDLEY DISTRIBUTION 

RT&A, No 4 (51) 
Volume 13, December 2018  

14 

        

             
  



 






 










n

i
ii

iiiiiiiiiii

n

i

n

i

ii

x

ii

x

iii

xx

xxxxxxxxxxx

xxexxexxx
L

ii

1
21

2111211

1 1

222

2

2

11

log112log111

loglog1log
















 

 





 n

i

ii

x

i xxex
L

i

1

2

log1 


 

We can derive the   %1001   confidence intervals of the parameters 𝛼 and 𝛽 by using variance 

matrix as in the following forms 
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 percentile of the standard normal distribution. 

 

VI. Three parameter Weibull-Lindley Distribution 
 

In order to address scaling problem, as given in (2.1), this section considered the CDF of Three 

parameter Weibull-Lindley Distribution (3WLD), for 0,,   as follows; 

                                         

  










11 )(

1),,;(




xex

exF , 0x                                 (6.1) 

The probability density function (PDF) corresponding to Eq. (6.1) is given by 
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Here   is shape parameter and   is scale parameter. The distribution of this form with 

parameters ,,  and   and will be denoted by   ,,3WLD . 

The survival function ),,;( xS , failure rate function ),,;( xh , reversed failure 

rate function ),,;( xr  and cumulative failure rate function ),,;( xH of X are    
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respectively. 

 

Figure 3 and Figure 4 provide the PDFs and the failure rate functions of ),,( GoED for 

different parameter values. From the below figures it is immediate that the PDFs can be unimodel 

and the failure rate function can be increasing, decreasing or bathtub shaped 
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.  

Figure 3: Probability density function of the   ,,3WLD . 

 

It is clear that the PDF and the failure rate function have many different shapes, which allows this 

distribution to fit different types of lifetime data.   

 
Figure 4: Failure rate function of the   ,,3WLD . 

 

For fixed , the failure rate function is (a) non-decreasing function (IFR) if 1  and ,1  and (b) 

non-increasing (DFR) and bathtub function if 1 and .1  
 

Parameter Estimation 

 

In this section, point estimation of the unknown parameters of the 3WLD are derived by using the 

method of maximum likelihood based on a complete sample data. The first partial derivatives of 

the log-likelihood function with respect to the three-parameters are 
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and 
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Setting the left side of the above three equations to zero, we get the likelihood equations as a 

system of three nonlinear equations in  , and .  Solving this system in  , and   gives the 

maximum likelihood estimates (MLE) of  , and .  It is very easy to obtain estimates using R 

software by numerical methods. 

 

VII. Application 
 

In this section, we present the analysis of a real data set using the ),( WLD and ),(3 WLD  

model and compare it with the other bathtub models such as Generalized Lindley distributions 

(GLD), [7], Exponentiated Weibull distribution (EW), [9], using Kolmogorov-Smirnov (K-S) 

statistic. We considered the data sets are obtained strengths of 1.5 cm glass fibres data [10] and 

infection for AIDS data [4] to estimate the parameter values. 

 

Data Set 1: The data are the strengths of 1.5 cm glass fibres [10], measured at the National Physical 

Laboratory, England. Unfortunately, the units of measurement are not given in the paper. This 

data set 1 is in Table 1.  

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 

1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 

2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 

1.61, 1.63, 1.67, 1.7, 1.78 and 1.89. 

 

Table 2 gives MLEs of parameters of the WLD, GLD, EW and 3WLD and goodness of fit statistics. 

 

Table 2: MLEs of parameters, Log-likelihood. 

 

Model MLEs of parameters  log L K-S p-value 

WLD 
𝛼̂ = 0.02852 

𝛽̂= 1.8927 
-16.63882 0.13681 0.189 

GLD 
𝛼̂ = 26.17181 

𝜆̂ = 2.990087 
-30.61986 0.22639 0.003136 

EW 

𝛼̂ = 7.2847 

𝛽̂ = 0.67122 

𝜆̂ =0.58203 

-14.67552 0.14623 0.1352 

3WLD 

𝛼̂ = 0.000212 

𝛽̂=0.83783 

𝜆̂ =5.32574 

-14.42277 0.12564 0.273 

 

3WLD gives the largest Log-likelihood value and largest p value based on the KS statistic. 

The second largest Log-likelihood value and p value based on the KS statistic is given by the EW 

distribution. The third largest Log-likelihood value and p value based on the KS statistic is given 

by the WL distribution.  
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Figure 5 gives the form of the failure rate for the WLD and 3WLD which are used to fit the data 

after replacing the unknown parameters. 

 
Figure 5: Failure rate function for WLD and 3WLD 

 

 
Figure 6: Fitted pdfs of the three best fitting distributions for data set 1. 

 

 

 
 

Figure 7: PP plots of the three best fitting distributions for data set 1. 
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Data Set 2: The second data set are times to infection for AIDS for two hundred and ninety five 

patients. The data were taken from Section 1.19 of Klein and Moeschberger [4]. The two 

distributions were fitted to this data. The parameter estimates and the goodness of fit statistics are 

given in Table 3.  Table 3 gives MLEs of parameters of the WLD, GLD, EW and 3WLD and 

goodness of fit statistics. 

 

Table 3: MLEs of parameters, Log-likelihood 

 

Model MLEs of parameters log L K-S p-value 

WLD 
𝛼̂ = 0.03552611 

𝛽̂= 0.57122324 
-457.3015 0.077618 0.08931 

GLD 
𝛼̂ = 2.4144951 

𝜆̂ =  0.8924887 
-453.523 0.71652 2.22 10-16 

EW 

𝛼̂ = 1.9565778 

𝛽̂ = 0.9598033 

𝜆̂ = 0.3212501 

-450.1305 0.063912 0.2426 

3WLD 

𝛼̂ = 8.751896 10-04 

𝛽̂ = 0.2994  

𝜆̂ = 15.0999 

-451.8749 0.061941 0.2755 

 

Here, EW gives the largest Log-likelihood value and largest p value based on the KS 

statistic. The second largest Log-likelihood value and p value based on the KS statistic is given by 

the 3WL distribution. The third largest Log-likelihood value and p value based on the KS statistic 

is given by the WL distribution. 

Figure 8 and 9 gives the form of the failure rate for the WLD and 3WLD which are used to 

fit the data after replacing the unknown parameters. 

 

        
 

 Figure 8: Failure rate function for WLD 
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Figure 9: Failure rate function for 3WLD 

                                                                                   

 
 

Figure 10: Fitted pdfs of the three best fitting distributions for data set 2. 

 

 

 
 

Figure 11: PP plots of the three best fitting distributions for data set 2. 
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It is observed that 3WLD fits the best in the first data set whereas EW fits the best in the 

second data in terms of likelihood and in terms of KS Statistic. Therefore, it is not guaranteed the 

3WLD will behave always better than WLD or EW or GLD but at least it can be said in certain 

circumstances 3WLD might work better than WLD or EW or GLD. 

 

VIII. Conclusion 
 

A new distribution, Weibull-Lindley distribution (WLD), has been proposed and its properties 

studied. Three parameter Weibull-Lindley distribution (3WLD) is introduced for avoid scale 

problem. We have studied maximum likelihood estimators and the parameters estimation is 

carried out in the presence of real data. We present two real life data sets, where in one data set it is 

observed that 3WLD has a better fit compare to EW or WLD or GLD but in the other the EW has a 

better fit than 3WLD or WLD or GLD. 
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Abstract 
 

In account of the statistical methods used in advanced manufacturing process 

optimization, multi-response optimization is one of the key areas of focus. Previously 

multi-response optimization problems were solved by past experiences and 

engineering judgment by many industries which lead to uncertainty in the decision 

making & and less confidence in getting optimized process parameters to produce 

robust products. For identifying the optimal process parameters for a manufacturing a 

robust product in which multiple CTQ (Critical-to-Quality) characteristics need to be 

achieved, a systematic statistical optimization approach is required. This paper 

presents one of the practical systematic approaches for multi-response optimization of 

advanced manufacturing processes. This statistical methodology uses Taguchi DoE 

(Design of Experiment) based approach to optimize the process parameters for 

individual CTQ followed by a multi-response optimization using composite 

desirability functions to achieve multiple CTQs. 

 

Keywords: Multi-response optimization, Design of Experiments, Critical-to-Quality, 

Taguchi, Regression 

 

I. Introduction 
 

In general, advanced polymer manufacturing processes require extreme control over multiple 

process parameters (control factors) to achieve desired quality in the final product. Quality of the 

product manufactured by different processes like injection molding, blow molding, compression 

molding, thermoforming, extrusion etc., drastically varies with respect to change in set process 

parameters like temperature, cooling time, cooling rate, pressure, material flow rate, etc. Therefore, 

it is important to choose the right settings for each control factor to achieve the right critical-to-

quality (CTQ) parameter/properties. As the number of CTQs to be satisfied increases, the 

processing window becomes narrow. Hence, it is a challenging task for the engineers to arrive at 

the right process window when multiple CTQs need to be satisfied to achieve the desired quality. 

Various Design of Experiment (DoE) based approaches are used in the industry to identify 
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the right process window which would help to achieve the CTQs of the final product. In reality, 

the overall quality of the product is determined by multiple CTQs. It is almost impossible to 

achieve multiple CTQs using only one set of control factor values. Therefore, multiple control 

factors have to be optimized to get a balanced trade-off between all the CTQs, without 

compromising the overall performance. 

Taguchi is one of the popular DoE approaches, where multiple process parameters can be 

controlled to manufacture a robust product with minimum number of experimental runs [1]. 

Although Taguchi method helps to optimize multiple process parameters (control factors) to 

satisfy single CTQ (single response) at a time, it may not optimize the process parameters when 

multiple CTQs (multiple responses) are to be satisfied simultaneously. Traditionally, Analytical 

Hierarchical Process (AHP) is used to obtain balanced trade-off when the importance level of 

multiple CTQs is already known based on engineering judgement. This method might not be a 

recommended solution for multi-response optimization when the manufacturing process is 

complex and is very sensitive to minor changes in control factors. Other methods include fuzzy 

logic [2] which employs grey relational ranking analysis, ridge analysis [3] where single response 

is maximized while keeping the other responses constrained within certain targeted values, loss 

function based approach etc.  In the present work and alternative approach, where regression 

functions in combination with Taguchi responses was used to perform multi-response 

optimization. In this approach a regression functions was generated using Ordinary Least Squares 

regression (OLS) [4], Generalized Least Squares regression (GLS) [5], or Multivariate regression 

(MVR) [6] from the responses obtained from the minimum number of runs suggested by Taguchi 

method. Subsequently multi-response optimization is performed using the output functions 

obtained from the regression analysis through desirability function approach. 

 

II. Multi-response Optimization Procedure 
 

As described earlier, multi-response optimization is used specifically when there is a need to 

optimize the control factors in order to satisfy more than one CTQ at a time. It is all about 

determining a point or range in design space that helps to meet all the CTQ requirements. The 

system of equations become even more complex when there is interaction between the control 

factors.  

The step-by-step approach employed in this work for multi-response optimization is depicted 

in Figure 1 using Minitab statistical software. The procedure starts with obtaining responses for 

every CTQ using Taguchi runs. These multiple responses are fitted into regression models and are 

fed into desirability functions which perform multiple iterations to arrive at a set of desired control 

factor values. The desirability function provides a maximum possible desirable value for every 

CTQ with one set of optimized control factors. 

 

I. Identifications of Control factors 
 

It is very important to understand the process of advanced manufacturing to recognize the effect of 

control factors on typical CTQs of the product. The parameters which can lead to variations on 

multiple CTQ characteristics are identified and are used as the control factors in the DoE. 

 

II. Taguchi DoE 
 

Taguchi method is commonly used for optimizing the design parameters with less number of 

experimental runs [1] as compared to factorial designs. Taguchi DoE uses orthogonal arrays to 
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organize the parameters affecting (control factors) the process and the levels at which they should 

be varied. Based on the number of parameters and number of levels, appropriate orthogonal arrays 

can be selected, Table 1.  
 

III. Optimal Process Parameters for Individual CTQs using Taguchi DoE 
 

For example, if we consider a case with 4 control factors to be varied in 3 levels, an L9 orthogonal 

array with 9 runs is suggested by Taguchi method, Table 2. For each response (CTQ), the optimal 

control factor setting is obtained from the maximum S/N ratio (Signal–to-Noise ratio) value, while 

analyzing the DoE using Minitab. Depending upon whether to maximize or minimize the 

response, S/N ratio value was chosen as either smaller-the-better or larger-the-better or nominal-

the-better option, as represented in Figure 2. 

Determine the factors 

(Control and Noise)

Conduct Taguchi DOE

Analyze Taguchi to 

identify optimal process 

parameter for each CTQ 

Start

Generate transfer function 

for each CTQ considering 

the interaction effect

Allocate weightage, 

importance factor for each 

CTQ

Use response optimizer in 

Minitab to get multi-

response optimization

Met the individual 

CTQ requirement

Optimized 

process 

parameters

Plan few 

additional 

runs 

No

Yes

End
 

Figure 1: Multi-Response Optimization Procedure 
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IV. Optimal Process Parameters for Individual CTQs using Taguchi DoE 
 

For example, if we consider a case with 4 control factors to be varied in 3 levels, an L9 orthogonal 

array with 9 runs is suggested by Taguchi method, Table 2. For each response (CTQ), the optimal 

control factor setting is obtained from the maximum S/N ratio (signal–to-Noise ratio) value, while 

analyzing the DoE using Minitab. Depending upon whether to maximize or minimize the 

response, S/N ratio value was chosen as either smaller-the-better or larger-the-better or nominal-

the-better option, as represented in Figure 2. 

 

 
Table 1: Orthogonal Array selector for Taguchi 

 

 

 
 

Table 2: L9 (32) Orthogonal Arrays 

 Independent Variables 

Exp# Var 1 Var 2 Var 3 Var 4 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

 

 
 

Figure 2: Signal-to-Noise (S/N) Ratio (Smaller the Better) 

 

V. Transfer Function for Each CTQs using Regression 
 

In general the transfer function generated from the Taguchi DoE analysis is a Taylor Series 

approximation. In order to obtain an analytical transfer function, the optimal control factor value 

obtained for individual CTQ responses from Taguchi method is used to generate transfer function 

by regression analysis, using Minitab. Each regression based transfer function is validated with the 

parameter effects and responses of the CTQs. 
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VI. Allocation of the Weightage and Importance to Each CTQ 
 

The regression based transfer functions are allocated with weightages and importance based on 

the CTQs criticality. This will help in providing priority to certain CTQs over the other during the 

optimization process. 
 

VII. Multi-Response Optimization using Minitab 
 

Multi-response optimization is performed using the optimizer function inbuilt in the Minitab. The 

importance level of each CTQ is fed into the optimizer function [7]. This optimizer function 

performs iteration over the control factors and identifies an appropriate most favorable range 

which satisfies desired multiple responses using desirability function in the Minitab. Desirability in 

the response optimizer suggests the best combination of control factors which will satisfy the goals 

that are defined for the multiple CTQs. Individual desirability indicates how well single CTQ is 

satisfied whereas Composite desirability indicates how the requirements for multiple CTQs are 

satisfied simultaneously. Desirability has a range of 0 to 1 where 1 is the most favorable case and 0 

indicates that one or more CTQ’s are outside acceptable limits. The desirability function depends 

upon the weightage and important index given for each CTQ. The optimizer has a very important 

feature of visualizing the effect of each parameters on the CTQs which can be varied and cross 

verified; the below Figure 3 shows the response optimizer in Minitab as an example. 

 

 
 

Figure 2: Sample Response Optimizer in Minitab 

 

IV. Conclusion 
 

The approach described in the work was found to be more practical and simpler one which can be 

adopted for optimizing new manufacturing processes, where the process history is not fully 

known. Especially when the process is very complex, where more process parameters to 

controlled, which involves higher lead time and considerable budget for identifying the right 

process setting, this approach would be simpler to adapt. 
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Abstract 
 

A new one parameter lifetime distribution named, ‘Om distribution’ has been 

proposed and studied. Its various statistical properties including shapes for 

probability density, moments based measures, hazard rate function, mean residual 

life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves, 

distribution of order statistics, and stress-strength reliability have been discussed. 

Estimation of parameter has been discussed with the method of maximum 

likelihood. Applications of the distribution have been explained through two 

examples of real lifetime data from engineering and the goodness of fit found to be 

quite satisfactory over several one parameter lifetime distributions. 

 

Keywords: Lifetime distributions, Statistical Properties, Maximum likelihood 

estimation, Applications 

 

 

I. Introduction 
 

In the present world, the time to the occurrence of some event is of interest for some populations of 

individuals in almost every field of knowledge. The event may be death of a person or any living 

creature, failure of a piece of electronic equipment, development (or remission) of symptoms. In 

reliability analysis, the time to the occurrences of events are known as “lifetimes” or “survival 

times” or “failure times” according to the event of interest in the fields of study.  The modeling and 

statistical analysis of lifetime data has been a topic of considerable interest to statisticians and 

research workers in engineering, biomedical science, insurance, finance, amongst others. 

Applications of lifetime distributions range from investigations into the endurance of 

manufactured items in engineering to research involving human diseases in biomedical sciences.  

 

During recent decades, a number of one parameter and two-parameter lifetime distributions for 

modeling lifetime data have been introduced by different researchers in statistics. The popular one 

parameter lifetime distributions available in statistics literature are exponential distribution and 

Lindley distribution introduced by Lindley (1958). Recently Shanker (2015 a, 2015 b, 2016 a, 2016 b, 

2017 a, 2017 b, 2017 c, 2017 d) has proposed several one parameter lifetime distributions, namely 

Shanker, Akash, Sujatha, Aradhana, Rama, Akshaya, Amarendra and Devya, and it has been 

showed by Shanker that these distributions have advantages and disadvantages over the others.  

The probability density function (pdf) and the cumulative distribution function (cdf) of 

exponential, Lindley, Shanker, Akash, Sujatha, Aradhana, Rama, Akshaya, Amarendra and Devya 

distributions along with their introducers and year have been presented in table 1.  
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Table 1: pdf and cdf of one parameter lifetime distributions 
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ns 

pdf and cdf Introducer(Year) 
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l  1 ; 1 ; 0, 0xF x e x      

Ghitany et al (2008) have discussed various statistical properties, estimation of parameter and 

application of Lindley distribution for modeling waiting time data in a bank. It has been observed 

that these lifetime distributions are not always suitable for modeling lifetime data from biomedical 

sciences and engineering. In the present paper an attempt has been made to propose a one 

parameter lifetime distribution named ‘Om distribution’ which gives better fit than all one 

parameter lifetime distributions. Its various statistical properties, estimations of parameter and 

applications for modeling two real lifetime data from engineering have been discussed. 

 

II. Om Distribution 

 

A new one parameter lifetime distribution named Om distribution can be defined by its pdf and 

cdf 

           
5

4

4 3 2
; 1 ; 0, 0

4 12 24 24

xf x x e x
 

   

   
   

                            (2.1) 

         
       

4 3 24 3 2

4 3 2

1 4 1 12 1 24 1 24
; 1

4 12 24 24

x
x x x x

F x e    


   


        

   
     

 

                                                                                                      ; 0 , 0x                    (2.2)      

    

The nature of the pdf and cdf of Om distribution for varying values of parameter   have been 

shown graphically in figures 1 and 2 respectively. 
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Fig. 1: Nature of the pdf of Om distribution for varying values of parameter   

 

 
Fig. 2: Nature of the cdf of Om distribution for varying values of parameter   

 

3. Moments and Associated measures 
 

The r th moment about origin of Om distributon (2.1) can be obtained as 

   

        
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(3.1)                                                                                                        

The first four moments about origin of Om distribution can be given as 
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Thus the moments about mean of the Om distribution (2.1) are obtained as 

        

 

8 7 6 5 4 3 2
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The coefficient of variation  .CV , coefficient of skewness  1 , coefficient of kurtosis  2 and 

Index of dispersion    of Om distribution (2.1) are thus obtained as 
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The behaviors of coefficient of variation, skewness, kurtosis and index of dispersion of Om 

distribution have been shown graphically for varying values of parameter   in figure 3. 
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Fig. 3: Behavior of coefficient of variation, skewness, kurtosis and index of dispersion of Om distribution for 

varying values of parameter   

 

 

The conditions of dispersion of Om distribution along with other one parameter lifetime 

distribution for values of the parameter    have been presented in table 2.  
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Table 2. Over-dispersion, equi-dispersion and under-dispersion of Om distribution and other one 

parameter lifetime distributions for varying values of their parameter   

 

Distributions Over-dispersion  

 2   

Equi-dispersion 

 2   

Under-dispersion 

 2   

Om 1.306113562   1.306113562   1.306113562   

Devya 1.451669994   1.451669994   1.451669994   

Amarendra 1.525763580   1.525763580   1.525763580   

Akshaya 1.327527885   1.327527885   1.327527885   

Rama 1.950164618   1.950164618   1.950164618   

Aradhana 1.283826505   1.283826505   1.283826505   

Sujatha 1.364271174   1.364271174   1.364271174   

Akash 1.515400063   1.515400063   1.515400063   

Shanker 1.171535555   1.171535555   1.171535555   

Lindley 1.170086487   1.170086487   1.170086487   

Exponential 1   1   1   

 

 

IV. Statistical Properties 
 

I. Survival function, Hazard rate function and Mean Residual life function 

 

Suppose  f x  and  F x  be the pdf and cdf of a continuous random variable X . The survival 

function,  S x ,  hazard rate function  h x (also known as the failure rate function) and the mean 

residual life function  m x  of X are respectively defined as  

     1S x P X x F x     
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 1
1 x
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F x



                                                       

The corresponding survival function  S x , hazard rate function,  h x and the mean residual life 

function,  m x of Om distribution are thus obtained as 

     
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       
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 It can be easily verified that    
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0 0
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h f
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. The behaviors of  h x  and  m x  of Om 

distribution have been shown in figures 4 and 5 respectively. 

 

 
 

Fig. 4: Behavior of  h x  of Om distribution for varying values of parameter   
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Fig. 5: Behavior of  m x  of Om distribution for varying values of parameter   

 

II. Mean deviations from the mean and the Median 

 

The amount of scatter in a population is measured to some extent by the totality of deviations 

usually from their mean and median. These are known as the mean deviation about the mean and 

the mean deviation about the median and are defined as 

        1

0

X x f x dx 


     and     2

0

X x M f x dx


  , respectively, where  E X   

and  Median M X . The measures  1 X  and  2 X can be computed using the following 

simplified relationships 

                                             1

0

2 2X F x f x dx



                                                    (4.2.1) 

  and                                     2

0

2

M

X x f x dx                                                            (4.2.2) 

Using pdf (2.1) and expression for the mean of Om distribution, we get  
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(4.2.3) 
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(4.2.4) 

Using expressions (4.2.1), (4.2.2), (4.2.3) and (4.2.4), the mean deviation about mean,  1 X  and 

the mean deviation about median,  2 X  of Om distribution (2.1),, after tedious algebraic 

simplification are obtained as 
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(4.2.5) 
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III. Bonferroni and Lorenz Curves 

 

The Bonferroni and Lorenz curves ( Bonferroni, 1930) and Bonferroni and Gini indices have 

applications not only in economics to study income and poverty, but also in other fields like 

reliability, demography, insurance and medicine. The Bonferroni and Lorenz curves are defined as 
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 and  

               
0 0

1 1 1
q

q q

L p x f x dx x f x dx x f x dx x f x dx
  

     
       

      
                 (4.3.2) 

respectively or equivalently  

                     1

0

1
p

B p F x dx
p

                                                                                      (4.3.3) 

 and 

                       1

0

1
p

L p F x dx


                                                                                      (4.3.4) 

respectively, where  E X   and  1q F p . 
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The Bonferroni and Gini indices are thus define 

                         
1

0

1B B p dp                                                                                        (4.3.5) 

                           
1

0

1 2G L p dp                                                                                    (4.3.6) 

respectively 

 Using pdf (2.1), we get  
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           


   



                                               

  (4.3.7) 

Now using equation (4.3.7) in (4.3.1) and (4.3.2), we get  
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 (4.3.8) 

 

   

     

5 4 3 2 5 4 3 2 4

3 2 3 2 2

4 3 2

4 6 4 5 16 18 8 1

20 48 36 8 60 96 36 120 96 120
1

8 36 96 120

q
q q q q q q q q q

e
q q q q q q

L p


 

  

   


          
 
            

   
                             

           

 (4.3.9) 

Now using equations (4.3.8) and (4.3.9) in (4.3.5) and (4.3.6), the Bonferroni and Gini indices of Om 

distribution (2.1) are obtained as 
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 (4.3.9) 
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 (4.3.10) 
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IV. Stochastic ordering 
 

Stochastic ordering of positive continuous random variables is an important tool for judging their 

comparative behavior. A random variable X is said to be smaller than a random variable Y in the  

(i) stochastic order  stX Y if    X YF x F x for all x  

(ii) hazard rate order  hrX Y if    X Yh x h x  for all x  

(iii) mean residual life order  mrlX Y if    X Ym x m x for all x  

(iv) likelihood ratio order  lrX Y if 
 

 
X

Y

f x

f x
 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known for establishing 

stochastic ordering of distributions 

                                   lr hr mrlX Y X Y X Y                                                 

                                                       
stX Y
  

The Om distribution is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in 

the following theorem: 

Theorem: Let X   Om distribution  1  and Y   Om distribution  2 . If 1 2  , then lrX Y

and hence hrX Y , mrlX Y and stX Y . 

Proof: We have  
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 This gives        
 

   1

2

;

1 2;
ln X

Y

f x

f x

d

dx




    .    Thus for 1 2  , 

 

 
1

2

;

;
ln 0X

Y

f x

f x

d

dx




 . This means that 

lrX Y and hence hrX Y , mrlX Y and stX Y . 

 

V.Distribution of Order Statistics 

Let 1 2, ,..., nX X X  be a random sample of size n  from Om distribution (2.1). Let 

     1 2
...

n
X X X   denote the corresponding order statistics. The pdf and the cdf of the k th 

order statistic, say  k
Y X are given by 

                 
   

      1!
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1 ! !

n kk
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 and  

                       1
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j k

n
F y F y F y

j





 
  

 
  

                             



 
Rama Shanker & Kamlesh Kumar Shukla 
OM DISTRIBUTION WITH PROPERTIES AND APPLICATIONS 

RT&A, No 4 (51) 
Volume 13, December 2018  

39 

                            
0

1
n jn

l j l

j k l

n n j
F y

j l




 
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  
 , 

    respectively, for 1, 2,3,...,k n . 

 

 Thus, the pdf and the cdf of k th order statistics of Om distribution (2.1) are obtained as 
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VI. Stress-Strength Reliability 
 

The stress- strength reliability describes the life of a component which has random strength X that 

is subjected to a random stressY . When the stress Y  applied to it exceeds the strength X , the 

component fails instantly and the component will function satisfactorily till X Y . Therefore, 

 R P Y X  is a measure of component reliability and is known as stress-strength reliability in 

statistical literature. It has wide applications in almost all areas of knowledge especially in 

engineering such as structures, deterioration of rocket motors, static fatigue of ceramic 

components, aging of concrete pressure vessels etc. 

 Let X and Y be independent strength and stress random variables having Om distribution (2.1) 

with parameter 1  and 2  respectively. Then the stress-strength reliability R of Om distribution 

can be obtained as 

         
0

| XR P Y X P Y X X x f x dx
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V.  Maximum likelihood estimation 
 

Let  1 2, ,..., nx x x be a random sample of size n  from Om distribution (2.1). The likelihood 

function L of Om distribution can be expressed as 

            
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The log likelihood function is thus given by 

             
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4 3 2
1

log log log 1 4 6 4
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L n x x x x n x
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    
 . 

The maximum likelihood estimates (MLE) ̂  of parameter   is the solution of the log-likelihood 

equation 
log

0
d L

d
 and is given by 

                    
 3 2

4 3 2

4 12 24 24log 5
0

4 12 24 24

nd L n
n x

d

  
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  
   

   
. 

This gives a fifth degree polynomial equation in   as 

       5 4 3 24 1 4 3 2 12 2 3 24 4 120 0x x x x x              . 

This equation can be easily solved using any numerical iterationmethod namely, Newton-Raphson 

method, Regula Falsi method or Bisection method. In this paper Newton-Raphson method has 

been used to estimate the parameter   from above equation. It should be noted that equating the 

population mean to the corresponding sample mean, the  method of moment estimate is the same 

as method of maximum likelihood. 

 

VI. Data analysis 
 

In this section the goodness of fit of Om distribution has been discussed with following two real 

lifetime datasets from engineering.  

 

Data Set 1: The data is given by Birnbaum and Saunders (1969) on the fatigue life of 6061 – T6 

aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. 

The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data (
310

) are presented below (after subtracting 65). 

 

5 25 31 32 34 35 38 39 39 40 42    43 

43 43 44 44 47 47 48 49 49 49        51  54 

55 55  55 56 56 56 58 59 59        59 59  59 

63 63 64  64 65 65 65 66        66 66 66  66 

67 67 67 68  69 69 69        69 71 71 72  73 

73 73 74 74 76  76        77 77 77 77 77  77 

79 79 80 81 83        83  84 86 86 87 90  91 

92 92 92 92       93 94 97  98 98 99 101  103 

105 109 136      147 
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Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller et al 

(1994) 

 

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 26.77 

 26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91 

 36.98 37.08 37.09 39.58 44.045 45.29 45.381   

 

For these two datasets, Om distribution has been fitted along with other one parameter lifetime 

distributions. The ML estimate, value of 2ln L , Akaike Information criteria (AIC),  K-S statistics 

and p-value  of the fitted distributions are presented in tables 3 and 4.. The AIC and K-S Statistics 

are computed using the following formulae: 2ln 2AIC L k    and  

   0K-S Sup n
x

F x F x  , where k  = the number of parameters, n  = the sample size ,  nF x is 

the empirical (sample) cumulative distribution function, and  0F x  is the theoretical cumulative 

distribution function. The best distribution is the distribution corresponding to lower values of 

2ln L , AIC, and K-S statistics and higher p-value 

 

Table 3: MLE’s, - 2ln L, AIC, K-S and p-values of the fitted distributions for dataset 1 

Distributions MLE  ̂  S.E  ̂  2log L  AIC K-S P-Value 

Om 0.07211 0.00322 924.64 926.64 0.138 0.043 

Shambhu 0.08755 0.00357 918.61 920.61 0.117 0.131 

Devya 0.07289 0.00326 924.26 926.26 0.333 0.000 

Amarendra 0.05824 0.00213 934.38 936.38 0.163 0.010 

Suja 0.07317 0.00327 924.21 926.21 0.136 0.049 

Akshaya 0.05769 0.00288 935.11 937.11 0.164 0.008 

Rama 0.05854 0.00293 934.05 934.05 0.162 0.012 

Aradhana 0.04327 0.00249 952.58 954.58 0.196 0.001 

Sujatha 0.04356 0.00251 951.78 953.78 0.195 0.001 

Akash 0.04387 0.00253 950.97 952.97 0.194 0.001 

Shanker 0.02925 0.00206 980.97 982.97 0.248 0.000 

Lindley 0.02887 0.00204 983.11 985.11 0.252 0.000 

Exponential 0.01463 0.00145 1044.87 1046.87 0.366 0.000 

 

Table 4: MLE’s, - 2ln L, AIC, K-S and p-values of the fitted distributions for dataset 2 

Distributions MLE  ̂  S.E  ̂  2log L  AIC K-S P-Value 

Om 0.15718 0.01262 228.81 230.81 0.230 0.061 

Shambhu 0.19339 0.01417 223.40 225.40 0.199 0.148 

Devya 0.16087 0.01292 227.68 229.68 0.422 0.000 

Amarendra 0.12829 0.01210 233.41 235.41 0.257 0.027 

Suja 0.16227 0.01303 227.25 229.25 0.223 0.077 

Akshaya 0.12574 0.01129 234.44 236.44 0.263 0.022 

Rama 0.12978 0.01165 232.79 234.79 0.253 0.030 

Aradhana 0.09432 0.00978 242.22 244.22 0.306 0.004 

Sujatha 0.09561 0.00990 241.50 243.50 0.303 0.005 

Akash 0.09706 0.01005 240.68 242.68 0.298 0.006 

Shanker 0.64716 0.00820 252.35 254.35 0.358 0.000 

Lindley 0.06299 0.00800 253.98 255.98 0.365 0.000 

Exponential 0.03245 0.00582 274.53 276.53 0.458 0.000 
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VII. Concluding remarks and future works 

 
This paper proposes a new one parameter lifetime distribution named, ‘Om distribution’. 

Statistical properties including shapes for probability density, moments based measures, hazard 

rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and 

Lorenz curves, distribution of order statistics, and stress-strength reliability have been discussed. 

Method of maximum likelihood has been discussed for estimating the parameter of the 

distribution.  Applications of the distribution have been explained through two examples of real 

lifetime data from engineering and the goodness of fit has been found to be quite satisfactory over 

several one parameter lifetime distributions. 

 

Since the present distribution is a new distribution in statistics literature, a lot of works can be 

done on the distribution. The future works to be done on the distribution includes Poisson mixture 

of the distribution, weighted version of the distribution, Power version of the distribution, 

discretization of the distribution using infinite series and survival function approach, 

exponentiation of the distribution, Bayesian method of estimation, some among others. All these 

works will appear in statistics literature with passage of time. 
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Abstract 
 

In this paper, we have presented an economic production inventory model 

considering non-linear demand depanding on selling price. Here, all imperfect 

quality items are reworked after the regular production process and the reworked 

items are considered as similar as good quality items. Rework is important in those 

businesses where last product is expensive and raw materials are insuficient. Now, 

our objective is to find out the optimal ordering lot size, optimal selling price and 

shortage, for which the profit of the system is maximum. A numerical example is 

presented to illustrate the validity of the model. Manageral implications has been 

presented based on sensitivity analysis.  
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1  Introduction 
 

Inventory control is an important part of business because it ensure quality control in 

business. Inventory management secure the business and help to smooth runing of business affair. 

Today, pricing and production strategies are two fundamental components of the daily operations 

for manufacturers, particularly in the presence of imperfect production system. Production system 

is one of the most important ascepts of company’s business strategy. To avoid the off overeges and 

shortages of products, firm should carefully design the production process to enrich the business. 

 As a consequence of this paper, the topic of pricing with production system has recently 

been the focus of acadmic research increase diverse as economics, marketing and operation 

managemant. There has been several studies analysing condition under which different pricing 

strategys optimize the compnies profitability Bose et al. (1995) desinged an economoc order 

quantity inventory model for deteriorating products with linear demand and positive trend under 

allowable shortage and backlogging. Chakrabarti and chauduri (1997) presented an inventory 

model for perishable items. In this model the demend was taken as linear function and shortage in 

each cycle. Wee (1999) developed an inventory model for deteriorating items. In which, shortage 

was partially backlogged at constant rate and demand was taken to be linear function of selling 

price. 
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The production is an essential part of inventory system and not produced hundred persent 

perfect items. Many researchers designed a production inventory model under backlogging 

situation such as Chern et al. (2008); Dye et al. (2007); Lodree (2007); Leung (2008) Goyal and Imran 

(2008); Thannyam and Uthayakumar (2008); Cardenas and Berson (2009); Taleizadeh (2011) Roy et 

al. (2011). Das et al. (2011) presented an economic order quantity model for imperfect quality items 

with partialy backlogging. In this model, they also considered the cost of lost sale. Taleizadeh et al. 

(2012) proposed an EOQ model in which they considered a special sale price along with partial 

backlogging, and customer may take the advantage of discount in price. Lee and Dye (2012) 

formulated an economic order quantity model with shortage, in that model demand was taken 

stock dependent. They also considered the optimal ordering and preservation policies to maximize 

the total profit. 

Several inventory model considered demand dependence on other factors such as product 

selling price and quality. Datta (2013) investigated an inventory model assuming that the demand 

depends on both the selling price and quality. Kumar et al.  (2013) proposed EOQ model under the 

consideration of price-dependent demand, where the carrying cost is a function of the trade credit 

for deteriorating products. Sana (2010) designed an economic order quantity (EOQ) model in that 

model, the demand was considered as function of selling price and they also assumed the 

deterioration rate of defective item is time proportional. Sana (2011) suggested an inventory model 

in which, they taken the demand function as quadratic function and the selling price increases in 

each cycle, but demand decreases quadraticly with selling price.  

By use of item preservation concept for deteriorating items, Khedlekar et al. (2016) 

conceptualized an EOQ in that model the demand was considered as function of selling price and 

linearly decreases. They considered as the profit is the concave function of the optimal selling 

price, also calculated the optimal selling price, the length of the replenishment cycle and the 

optimal preservation concept investment simultaneously. Mishra (2016) proposed a single-

manufacturer single-retailer inventory model by incorporating preservation technology cost for 

defective items and determined optimal retail price, replenishment cycle and the cost of 

preservation lechnology. 

 Taleizadeh and Noori-daryan (2016) studid a production inventory model with a three-

level decentralised supply chain with price sensitive demand. Haider et al. (2016) proposed an 

economic production quantity (EPQ) model from this they reveal if we make the discount in 

defective item and apply rework process then we get maximum profit. Teksan and Geunes (2016) 

reported an economic order quantity model for finished goods. In this model they they assumed 

that the demand rate was more price sensitive for supplier and customer both. Taleizadeh et al. 

(2017) outlined an imperfect production inventory model without shortages. Pal and Adhikari 

(2017) conceptualized an imperfect production inventory model with exponential partially 

backlogging with rework, in that model they assumed that all imperfect quality products are 

reworked after the regular production process and demand rate was price sensitive and it was 

monotonic decreasing function selling price. Among other researcher in the exposure, the 

notworthy contribution of Sarkar, Sana and Chaudhuri (2011); Yu, and Chen (2007); Wee, and Kuo 

(2013); Pal, Sana, and Chaudhuri (2014); Sarkar (2012, 2013); Haider, Salameh, and Nasr (2016); 

Tyyab and Sarkar (2016) should be mentioned. 

 We have considered an imperfect production model which depend on the selling price. 

We assumed, all the defective products are reworked just after the regular production process and 

no any scarp product is produced during production as well as reworking run time. Shortage 

occurs at the beginning of the cycle and production starts after backorder time and backlogging 

rate is variable. The price of goods is definitely shown to the customer at the beginning of time 

cycle in many situations. So it is very difficult to take the different price within same inventory 

cycle. In this paper we deal with the three issues: first, what will be selling price for the items, 

second one how much inventory should be produced and third one what time period shortage 

would be allowed in order to optimum profit. 
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2  Assumptions & Notations 

2.1  Assumptions 

  The model is designed for infinite time horizon,  This model is developed for single item,  

Production rate if perfect item 𝑝 is constant and production rate of defective items is 𝑝𝑑 = 𝑥𝑝, 

where 𝑥 is continuous randam variable,  In this model the shortages occur at the beginning of the 

cycle and during the shortage time interval a fraction of the demand varying with waiting time is 

backlogged for the clients, who have patience to wait, assume that customers impatient function 

by 

𝐵(𝜏) = 𝑒−𝛼𝜏, 𝛼 > 0,  After the continue production process all imperfect items are 

reworked,  The holding cost for both type (perfect and imperfect) items is the same,  Every 

constant costs as inspection cost and purchasing cost are included within the production cost of the 

items,  The demand function of the product is 𝐷(𝑠) = 𝜑𝑠−𝜂 ; 𝜂 > 0.   

2.2  Notations 

[𝐷(𝑠)] – Demand function for good products, 

[𝐼(𝑡)] – On-hand inventory of product at time 𝑡 in 𝑗𝑡ℎ cycle, 

[𝑝] – Production rate for perfect item per units per unit time, [ 𝑝𝑑] – Production rate for 

imperfect quantity items unit per unit time, [𝑥] – Percentage of produced imperfect quality items 

which is randam variable, [𝑓(𝑥)] – Probability density function of 𝑥, [𝑟] – Rework rate of imperfect 

quality item per unit per unit time, [𝜔] – Backorder level, [𝐵(𝜏)] – Customers impatient function, 

where 𝜏 is the waiting time for customer, [𝑐ℎ] – Holdig cost per item per unit time, [𝑐ℎ1] – Holdig 

cost of reworked item per item per unit time, [𝑐𝑝]– Production cost per unit of item, [𝑐𝑏]– 

Backorder cost per item, [𝑐𝑘]– Per production set-up cost, [𝑐𝑙]– Lost sale cost per item, [𝑠]– Selling 

price per item, [𝜑]– Stock dependent parameter, [ Π]– The total profit,   

    1.  – Average total profit,  

    2.  – Excepted average total profit.  

  

3  The Mathematical Model 
 

Suppose a business start with shortage of products which are partially backlogged. The 

backlogging rate is a function of customer waiting time as 𝐵(𝜏) = 𝑒−𝑎𝜏 , 𝑎 > 0, where 𝜏 is waiting 

time 𝜏 = 𝑡1 − 𝑡. Suppose the production start at time 𝑡1 and it continue up to time 𝑡3. Due to 

production run, all the products which are backlogged, during time period [0, 𝑡2] are provide at 

the time 𝑡2. The production rate is considered constant. The qx amount of defective item is 

produced by the total production. The rework rate of defective products is 𝑟, and these are 

reworked after the regular production process. 
𝑞𝑥

𝑟
 is the amount of time required for reworking of 

defective items, where 𝑞𝑥 is total items produced and 𝑟 is rework rate. There is the same price of 

good products and reworked product and demand rate is depend on selling price and defined as,  

 𝐷(𝑠) = 𝜑𝑠−𝜂 (1) 

 We take 𝑇𝑖 = 𝑡𝑖 − 𝑡𝑖−1. 

For the Time period 0 ≤ 𝑡 ≤ 𝑡1, the differential equation governing the inventory level is  

 
𝑑𝐼

𝑑𝑡
= −𝐷(𝑠)𝐵(𝜏) (2) 

 with the boundary condition𝐼(0) = 0 and 𝐼(𝑡1) = −𝜔 where 𝜏 = 𝑡1 − 𝑡. 

The solution of above differential equation by using the boundary condition is 

 

 𝐼(𝑡) =
𝐷(𝑠)𝑒−𝑎𝑡−𝑒𝑎(𝑡1−𝑡)

𝑎
 (3) 
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 and using the boundary condition 𝐼(𝑡1) = −𝜔, we get  

 𝜔 =
𝐷(𝑠)(1−𝑒−𝑎𝑡1)

𝑎
 (4) 

 The backorder cost during 0 ≤ 𝑡 ≤ 𝑡1 is  

 𝑐𝑏 ∫
𝑡1
0
(𝐼(𝑡))𝑑𝑡 =

𝑐𝑏𝐷(𝑠){1−𝑎𝑡1𝑒
−𝑎𝑡1−𝑒−𝑎𝑡1}

𝑎2
 (5) 

 The demand rate is D(s), out of this only 𝐷(𝑠)𝑒−𝑎(𝑡1−𝑡) is fullfilld during [0, 𝑡1] and 𝐷(𝑠) −

𝐷(𝑠)𝑒−𝑎(𝑡1−𝑡) wich not fullfilld. Then the cost of lost sale is given by  

 𝑐𝑙 ∫
𝑡1
0
𝐷(𝑠){1 − 𝑒−𝑎(𝑡1−𝑡)}𝑑𝑡 =

𝑐𝑙𝐷(𝑠)(𝑎𝑡1−1+𝑒
−𝑎𝑡1)

𝑎
 (6) 

 For the time interval 𝑡1 ≤ 𝑡 ≤ 𝑡2, the governing differential equation of inventory level is  

 
𝑑𝐼

𝑑𝑡
= 𝑝 − 𝑝𝑑 − 𝐷(𝑠) (7) 

 with boundary condition 𝐼(𝑡1) = −𝜔, 𝐼(𝑡2) = 0 

Then the solution of above differential equation is 

 

 𝐼(𝑡) = {(1 − 𝑥)𝑝 − 𝐷(𝑠)}(𝑡 − 𝑡2) (8) 

 using the condition 𝐼(𝑡) = −𝜔, we have  

 𝜔 = {(1 − 𝑥)𝑝 − 𝐷(𝑠)}𝑇2, (9) 

 where 𝑇2 = 𝑡2 − 𝑡1 

The cost of backorder in time interval 𝑡1 ≤ 𝑡 ≤ 𝑡2 is  

 𝑐𝑏 ∫
𝑡1
0
(𝐼(𝑡))𝑑𝑡 =

𝑐𝑏𝜔𝑇2

2
 (10) 

 Eq. (9) & Eq. (10) leads the back order cost during 𝑡1 ≤ 𝑡 ≤ 𝑡2  

 =
𝑐𝑏𝜔

2

2{(1−𝑥)𝑝−𝐷(𝑠)}
 (11) 

 For the time interval 𝑡2 ≤ 𝑡 ≤ 𝑡3, the governing differential equation of inventory level is  

 
𝑑𝐼

𝑑𝑡
= 𝑝 − 𝑝𝑑 − 𝐷(𝑠) (12) 

 with boundary condition 𝐼(𝑡2) = 0, 𝐼(𝑡3) = 𝑧3 where 𝑧3, is inventory level of good product.  

Then the solution of above differential equation is 

 

 𝐼(𝑡) = {(1 − 𝑥)𝑝 − 𝐷(𝑠)}(𝑡 − 𝑡2) (13) 

 

using 𝐼(𝑡3) = 𝑧3, we get  

 𝑧3 = {(1 − 𝑥)𝑝 − 𝐷(𝑠)}𝑇3 (14) 

 The holding cost for good items in time period 𝑡2 ≤ 𝑡 ≤ 𝑡3 is  

 𝑐ℎ ∫
𝑡3
𝑡2
(𝐼(𝑡))𝑑𝑡 =

𝑐ℎ𝑧3𝑇3

2
 (15) 

 Now 𝑇2 + 𝑇3 =
𝑞

𝑝
, using the Eq. (9) & Eq. (14) the holding cost is 

 

 =
𝑐ℎ

2
{(1 − 𝑥)𝑝 − 𝐷(𝑠)}

𝑞2

𝑝2
−
𝑐ℎ𝑞𝜔

𝑝
+

𝑐ℎ𝜔
2

2{(1−𝑥)𝑝−𝐷(𝑠)}
 (16) 

 The differential equation for time period 𝑡3 ≤ 𝑡 ≤ 𝑡4, is 

 

 
𝑑𝐼

𝑑𝑡
= 𝑟 − 𝐷(𝑠) (17) 

 with boundary condition 𝐼(𝑡3) = 𝑧3, 𝐼(𝑡4) = 𝑧4, where 𝑧4 is the highest inventory level of good 

items  

 𝐼(𝑡) = 𝑧3 + {𝑟 − 𝐷(𝑠)}(𝑡 − 𝑡3) (18) 

 by using the condition 𝐼(𝑡4) = 𝑧4  

 𝑧4 − 𝑧3 = {𝑟 − 𝐷(𝑠)}𝑇4 (19) 

 After some simplification and putting 𝑇4 =
𝑞𝑥

𝑟
, we get  

 𝑧4 = 𝑞{1 −
𝐷(𝑠)(𝑟+𝑥)

𝑝𝑟
} − 𝜔 (20) 

 Holding cost for good poducts for the time interval 𝑡3 ≤ 𝑡 ≤ 𝑡4 is given by  

 𝑐ℎ ∫
𝑡3
𝑡2
(𝐼(𝑡))𝑑𝑡 =

𝑐ℎ

2
(𝑧3 + 𝑧4)𝑇4 (21) 

 Putting the value from Eq. (19) then holding cost  
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=
𝑐ℎ𝑇4

2
{𝑧3 + 𝑧3 + {𝑟 − 𝐷(𝑠)}𝑇4}

= 𝑐ℎ𝑇4𝑧3 +
𝑐ℎ{𝑟−𝐷(𝑠)}𝑇4

2

2

= 𝑐ℎ{(1 − 𝑥)𝑝 − 𝐷(𝑠)}𝑇3𝑇4    .2𝑐𝑚𝑏𝑦𝐸𝑞. (3.14)

= 𝑐ℎ{(1 − 𝑥)𝑝 − 𝐷(𝑠)}(
𝑞

𝑝
−

𝜔

{(1−𝑥)𝑝−𝐷(𝑠)}
)
𝑞𝑥

𝑟
+ {𝑟 − 𝐷(𝑠)}

𝑞2𝑥2

𝑟2

= 𝑐ℎ{(1 − 𝑥)𝑝 − 𝐷(𝑠)}
𝑞2𝑥

𝑝𝑟
−
𝑐ℎ𝜔𝑞𝑥

𝑟
+
𝑐ℎ

2
{𝑟 − 𝐷(𝑠)}

𝑞2𝑥2

𝑟2

 (22) 

 

Now it can be seen that the difective products produced during the time interval 𝑡1 ≤ 𝑡 ≤

𝑡3 at rate 𝑝𝑑. The defective products are reworked perfectly during the time interval [𝑡3, 𝑡4] by the 

rework rate 𝑟. In this system there is no defective items after time 𝑡 = 𝑡4. 

The differential equation for time period 𝑡4 ≤ 𝑡 ≤ 𝑡5, that show inventory level is  

 
𝑑𝐼

𝑑𝑡
= −𝐷(𝑠) (23) 

 with boundary conditions 𝐼(𝑡4) = 𝑧4 and 𝐼(𝑡5) = 0 

Then the solution of this differential equation  

 𝐼(𝑡) = 𝐷(𝑠)(𝑡5 − 𝑡) (24) 

  

 𝐵𝑦𝑢𝑠𝑖𝑛𝑔    .2𝑐𝑚𝐼(𝑡) = 𝑧4,    .5𝑐𝑚𝑧4 = 𝐷(𝑠)𝑇5 (25) 

 Holding cost for the time interval 𝑡4 ≤ 𝑡 ≤ 𝑡5 is given by 

 

 

𝑐ℎ ∫
𝑡4
𝑡4
(𝐼(𝑡))𝑑𝑡 =

𝑐ℎ

2
𝑧4𝑇5

=
𝑐ℎ𝑧4

2

2𝐷(𝑠)

=
𝑐ℎ

2𝐷(𝑠)
[𝑞{1 −

𝛽(𝑟+𝑥)

𝑝𝑟
} − 𝜔]

2

 (26) 

 The inventory of defective products is given figure(2) then the differential equation for time 

period 𝑡1 ≤ 𝑡 ≤ 𝑡3 

 

 
𝑑𝐼𝑑

𝑑𝑡
= 𝑝𝑑 ,    .2𝑐𝑚𝑤𝑖𝑡ℎ𝑏𝑜𝑢𝑑𝑎𝑟𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛    .2𝑐𝑚𝐼𝑑(𝑡1) = 0,    .2𝑐𝑚𝐼𝑑(𝑡3) = 𝑞𝑥 (27) 

 Then the solution is  

 𝐼𝑑(𝑡) = 𝑝𝑑(𝑡 − 𝑡1) (28) 

 Holding cost for the defective products is  

 𝑐ℎ ∫
𝑡3
𝑡1
(𝐼𝑑(𝑡))𝑑𝑡 =

𝑐ℎ𝑞
2𝑥

2𝑝
 (29) 

 For time interval 𝑡3 ≤ 𝑡 ≤ 𝑡4 the governing differential equation inventory level of the defective 

item, is given by  

 
𝑑𝐼𝑑

𝑑𝑡
= −𝑟,    .2𝑐𝑚𝑤𝑖𝑡ℎ𝑏𝑜𝑢𝑑𝑎𝑟𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛    .2𝑐𝑚𝐼𝑑(𝑡3) = 𝑞𝑥,    .2𝑐𝑚𝐼𝑑(𝑡4) = 0 (30) 

 Then the solution is  

 𝐼𝑑(𝑡) = 𝑟(𝑡4 − 𝑡) (31) 

 The holding cost of reworked items  

 𝑐ℎ𝑟 ∫
𝑡4
𝑡3
(𝐼𝑑(𝑡))𝑑𝑡 =

𝑐ℎ1𝑞
2𝑥2

2𝑟
 (32) 

 The total profit = Revenue - total cost 

 = Revenue - (backorder cost + cost of lost sale + holding cost for good and 

 defective products + holding cost for reworked items + purchase cost + 

 repairing cost for defective items + set-up cost)  



 
Uttam Kumar Khedlekar, Ram Kumar Tiwari 
IMPERFECT PRODUCTION MODEL FOR SENSITIVE DEMAND 

RT&A, No 4 (51) 
Volume 13, December 2018  

48 

 

Π(𝑞, 𝑡1, 𝑠) = 𝑠𝑞 −
𝑐𝑏𝐷(𝑠){1−𝑎𝑡1𝑒

−𝑎𝑡1−𝑒−𝑎𝑡1}

𝑎2
−
𝑐𝑙𝐷(𝑠)(𝑎𝑡1−1+𝑒

−𝑎𝑡1)

𝑎

−
𝑐𝑏𝜔

2

2{(1−𝑥)𝑝−𝐷(𝑠)}
−
𝑐ℎ

2
(1 − 𝑥)

𝑞2

𝑝
+
𝑐ℎ

2

𝐷(𝑠)𝑞2

𝑝2
+
𝑐ℎ𝑞𝜔

𝑝

−
𝑐ℎ𝜔

2

2{(1−𝑥)𝑝−𝐷(𝑠)}
− 𝑐ℎ{(1 − 𝑥)𝑝 − 𝐷(𝑠)}

𝑞2𝑥

𝑝𝑟
+
𝑐ℎ𝜔𝑞𝑥

𝑟

−
𝑐ℎ

2
{𝑟 − 𝐷(𝑠)}

𝑞2𝑥2

𝑟2
−

𝑐ℎ

2𝐷(𝑠)
[𝑞{1 −

𝛽(𝑟+𝑥)

𝑝𝑟
} − 𝜔]

2

−
𝑐ℎ𝑞

2𝑥

2𝑝
−
𝑐ℎ1𝑞

2𝑥2

2𝑟
− 𝑐𝑝𝑞 − 𝑐𝑟𝑞𝑥 − 𝑘

 (33) 

 The total average profit of the model  

 

Π𝑎̃𝑡𝑝 =
𝐷(𝑠)

𝑞
Π(𝑞, 𝑡1, 𝑠)

=
𝐷(𝑠)

𝑞
[𝑠𝑞 −

𝑐𝑏𝐷(𝑠){1−𝑎𝑡1𝑒
−𝑎𝑡1−𝑒−𝑎𝑡1}

𝑎2
−
𝑐𝑙𝐷(𝑠)(𝑎𝑡1−1+𝑒

−𝑎𝑡1)

𝑎

−
𝑐𝑏𝜔

2

2{(1−𝑥)𝑝−𝐷(𝑠)}
−
𝑐ℎ

2
(1 − 𝑥)

𝑞2

𝑝
+
𝑐ℎ

2

𝐷(𝑠)𝑞2

𝑝2
+
𝑐ℎ𝑞𝜔

𝑝

−
𝑐ℎ𝜔

2

2{(1−𝑥)𝑝−𝐷(𝑠)}
− 𝑐ℎ{(1 − 𝑥)𝑝 − 𝐷(𝑠)}

𝑞2𝑥

𝑝𝑟
+
𝑐ℎ𝜔𝑞𝑥

𝑟

−
𝑐ℎ

2
{𝑟 − 𝐷(𝑠)}

𝑞2𝑥2

𝑟2
−

𝑐ℎ

2𝐷(𝑠)
[𝑞{1 −

𝛽(𝑟+𝑥)

𝑝𝑟
} − 𝜔]

2

−
𝑐ℎ𝑞

2𝑥

2𝑝
−
𝑐ℎ1𝑞

2𝑥2

2𝑟
− 𝑐𝑝𝑞 − 𝑐𝑟𝑞𝑥 − 𝑘]

 (34) 

 The total expected average profit of the model  

 

Π𝑎̃𝑡𝑝 =
𝐷(𝑠)

𝑞
[𝑠𝑞 −

𝑐𝑏𝐷(𝑠){1−𝑎𝑡1𝑒
−𝑎𝑡1−𝑒−𝑎𝑡1}

𝑎2
−
𝑐𝑙𝐷(𝑠)(𝑎𝑡1−1+𝑒

−𝑎𝑡1)

𝑎

−
𝑐𝑏𝜔

2

2{(1−𝑚)𝑝−𝐷(𝑠)}
−
𝑐ℎ

2
(1 − 𝑚)

𝑞2

𝑝
+
𝑐ℎ

2

𝐷(𝑠)𝑞2

𝑝2
+
𝑐ℎ𝑞𝜔

𝑝

−
𝑐ℎ𝜔

2

2{(1−𝑚)𝑝−𝐷(𝑠)}
− 𝑐ℎ{(1 − 𝑚)𝑝 − 𝐷(𝑠)}

𝑞2𝑚

𝑝𝑟
+
𝑐ℎ𝜔𝑞𝑚

𝑟

−
𝑐ℎ

2
{𝑟 − 𝐷(𝑠)}

𝑞2(𝑚2+𝜎2)

𝑟2
−

𝑐ℎ

2𝐷(𝑠)
[𝑞{1 −

𝛽(𝑟+𝑚)

𝑝𝑟
} − 𝜔]

2

−
𝑐ℎ𝑞

2𝑚

2𝑝
−
𝑐ℎ1𝑞

2(𝑚2+𝜎2)

2𝑟
− 𝑐𝑝𝑞 − 𝑐𝑟𝑞𝑚 − 𝑘]

 (35) 

 Eq. (4) & Eq. (35) leads to  

 Π𝑒̃𝑎̃𝑡𝑝 = 𝑓1(𝑞, 𝑠, 𝑡1) = 𝑢0(𝑠) + 𝑢1(𝑠, 𝑡1) +
𝑢2(𝑠,𝑡1)

Ψ(𝑠)𝑞
 (36) 

 where  

 

𝑢0(𝑠) = 𝑥00 + 𝑥01𝐷(𝑠) + 𝑥02𝐷(𝑠)
2

𝑢1(𝑠, 𝑡1) = 𝑤1(𝑠) + 𝑤2(𝑠)𝑒
−𝑎𝑡1

𝑢2(𝑠, 𝑡1) = 𝑣1(𝑠)𝑒
−2𝑎𝑡1 + {𝑣2(𝑠) + 𝑡1𝑣3(𝑠)}𝑒

−𝑎𝑡1 + 𝑣4(𝑠)𝑡1 + 𝑣5(𝑠)

Ψ(𝑠) = 2𝑎2{(1 − 𝑚)𝑝 − 𝐷(𝑠)}

𝑣1(𝑠) = 𝜆11𝐷(𝑠)
2 + 𝜆12𝐷(𝑠)

3

𝑣2(𝑠) = 𝜆21𝐷(𝑠) + 𝜆22𝐷(𝑠)
2 + 𝜆22𝐷(𝑠)

3

𝑣3(𝑠) = 𝜆31𝐷(𝑠)
2 + 𝜆32𝐷(𝑠)

3

𝑣4(𝑠) = 𝜆41𝐷(𝑠)
2 + 𝜆42𝐷(𝑠)

3

𝑣5(𝑠) = 𝜆51𝐷(𝑠) + 𝜆52𝐷(𝑠)
2 + 𝜆53𝐷(𝑠)

3

𝑤1(𝑠) = 𝑥11𝐷(𝑠) + 𝑥12𝐷(𝑠)
2

𝑤2(𝑠) = 𝑥21𝐷(𝑠) + 𝑥22𝐷(𝑠)
2

𝜆11 = −𝑐ℎ𝑝(1 −𝑚); 𝜆12 = −𝑐𝑏; 𝜆21 = 0

𝜆22 = 2𝑐𝑏𝑝(1 − 𝑚) + 2{𝑐ℎ𝑝(1 − 𝑚) − 𝑐𝑙𝑝(1 − 𝑚)𝑎}; 𝜆23 = 2𝑐𝑙𝑎

𝜆31 = 2𝑐𝑏𝑝(1 − 𝑚)𝑎; 𝜆32 = −2𝑐𝑏𝑎; 𝜆41 = −2𝑐𝑙𝑝(1 − 𝑚)𝑎
2

𝜆51 = 2𝑘𝑝(1 − 𝑚)𝑎2; 𝜆52 = 2𝑐𝑏𝑝(1 − 𝑚) + {−𝑐ℎ𝑝(1 −𝑚) + 𝑐𝑙𝑝(1 −𝑚)𝑎}

𝜆53 = 𝑐𝑏 − 2𝑐𝑙𝑎; 𝑥00 =
−𝑐ℎ

2
;

𝑥01 = −
𝑐ℎ(1−𝑚)

2𝑝
−
𝑐ℎ𝑚

2𝑝
−
𝑐ℎ(1−𝑚)𝑚

𝑟
−
𝑐ℎ(𝑚

2+𝜎2)

2𝑟
−
𝑐ℎ1(𝑚

2+𝜎2)

2𝑟
+
𝑐ℎ(𝑚+𝑟)

𝑝𝑟

𝑥02 =
𝑐ℎ

2𝑝2
+
𝑐ℎ𝑚

𝑝𝑟
+
𝑐ℎ(𝑚

2+𝜎2)

2𝑟2
−
𝑐ℎ(𝑚+𝑟)

2

2𝑝2𝑟2
; 𝑥11 = −𝑐𝑝 + 𝑠 − 𝑐𝑟𝑚+

𝑐ℎ

𝑎

𝑥12 =
𝑐ℎ𝑚

𝑟𝑎
−
𝑐ℎ𝑚

𝑝𝑟𝑎
; 𝑥21 = −

𝑐ℎ

𝑎
; 𝑥22 = −

𝑐ℎ𝑚

𝑟𝑎
+
𝑐ℎ𝑚

𝑝𝑟𝑎
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Proposition. The profit function 𝑓1(𝑞, 𝑠, 𝑡1) is concave if the corresponding Hessian matrix 

H of expected profit function is negative definite. where  

 H= 

(

  
 

∂2𝑓1

∂𝑞2

∂2𝑓1

∂𝑠 ∂𝑞

∂2𝑓1

∂𝑞 ∂𝑡1

∂2𝑓1

∂𝑠 ∂𝑞

∂2𝑓1

∂𝑠2

∂2𝑓1

∂𝑡1 ∂𝑠

∂2𝑓1

∂𝑞 ∂𝑡1

∂2𝑓1

∂𝑡1 ∂𝑠

∂2𝑓1

∂𝑡1
2 )

  
 

  

 

Proof: We have  

 Π𝑒̃𝑎̃𝑡𝑝 = 𝑓1(𝑞, 𝑠, 𝑡1) = 𝑢0(𝑠) + 𝑢1(𝑠, 𝑡1) +
𝑢2(𝑠,𝑡1)

Ψ(𝑠)𝑞
 

  

 

∂𝑓1

∂𝑞
= 𝑥00 + 𝑥01𝐷(𝑠) + 𝑥02𝐷(𝑠)

2 −
𝑣1(𝑠)𝑒

−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒
−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)

𝑞2Ψ(𝑠)

∂𝑓1

∂𝑠
= 𝑤1

′(𝑠) + 𝑤2
′(𝑠)𝑒−𝑎𝑡1 + 𝑞{𝑥01𝐷

′(𝑠) + 2𝑥02𝐷
′(𝑠)𝐷(𝑠)}

−
{𝑣1(𝑠)𝑒

−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒
−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)}Ψ

′(𝑠)

𝑞Ψ(𝑠)2

+
𝑣1
′ (𝑠)𝑒−2𝑎𝑡1+{𝑣2

′ (𝑠)+𝑡1𝑣3
′(𝑠)}𝑒−𝑎𝑡1+𝑣4

′ (𝑠)𝑡1+𝑣5
′(𝑠)

𝑞Ψ(𝑠)

∂𝑓1

∂𝑡1
= −𝑎𝑤2(𝑠)𝑒

−𝑎𝑡1 +
−2𝑎𝑣1(𝑠)𝑒

−2𝑎𝑡1+𝑒−𝑎𝑡1𝑣3(𝑠)−{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑎𝑒
−𝑎𝑡1+𝑣4(𝑠)

𝑞Ψ(𝑠)

 

 Solve above equations by puting  

 
∂𝑓1

∂𝑞
= 0,

∂𝑓1

∂𝑠
= 0,

∂𝑓1

∂𝑡1
= 0 

 and get the values of variable 𝑞, 𝑠, 𝑡1  

 
𝑥00 + 𝑥01𝐷(𝑠) + 𝑥02𝐷(𝑠)

2 −
𝑣1(𝑠)𝑒

−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒
−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)

𝑞2Ψ(𝑠)
= 0

 

 Then  

 𝑞 = √
𝑣1(𝑠)𝑒

−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒
−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)

{𝑥00+𝑥01𝐷(𝑠)+𝑥02𝐷(𝑠)
2}Ψ(𝑠)

 (37) 

 Substituting the value of 𝑞 in the Eq. 
∂𝑓1

∂𝑠
= 0 & 

∂𝑓1

∂𝑡1
= 0 and solving them, we get the solution of 

decision variable 𝑞, 𝑠, 𝑡1 of the model. 

If the second order condition of of optimization method will be satisfied then above 

solution will be optimal. 

Now the second order derivatives  

 
∂2𝑓1

∂𝑞2
=

2[𝑣1(𝑠)𝑒
−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒

−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)]

𝑞2Ψ(𝑠)
 (38) 

  

 
∂2𝑓1

∂𝑞 ∂𝑡1
= −

−2𝑣1(𝑠)𝑒
−2𝑎𝑡1+𝑣3(𝑠)𝑒

−𝑎𝑡1+𝑣4(𝑠)−{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑎𝑒
−𝑎𝑡1

𝑞2Ψ(𝑠)
 (39) 

  

 

∂2𝑓1

∂𝑠2
= −

2{𝑣1
′(𝑠)𝑒−2𝑎𝑡1+{𝑣2

′(𝑠)+𝑡1𝑣3
′ (𝑠)}𝑒−𝑎𝑡1+𝑣4

′(𝑠)𝑡1+𝑣5
′(𝑠)}Ψ′(𝑠)

𝑞Ψ(𝑠)2

+
2{𝑣1(𝑠)𝑒

−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒
−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)}{Ψ

′(𝑠)}2

𝑞Ψ(𝑠)3

+
𝑣1
′′(𝑠)𝑒−2𝑎𝑡1+{𝑣2

′′(𝑠)+𝑡1𝑣3
′′(𝑠)}𝑒−𝑎𝑡1+𝑣4

′′(𝑠)𝑡1+𝑣5
′′(𝑠)

𝑞Ψ(𝑠)

+𝑤1
′′(𝑠) + 𝑤2

′′(𝑠)𝑒−2𝑎𝑡1 + 𝑞[𝑥01𝐷
′′(𝑠) + 2𝑥02𝐷

′′(𝑠)𝐷(𝑠) + 2𝑥02{𝐷
′(𝑠)}2]

 (40) 

  

 

∂2𝑓1

∂𝑠 ∂𝑞
= −

{𝑣1
′ (𝑠)𝑒−2𝑎𝑡1+{𝑣2

′(𝑠)+𝑡1𝑣3
′(𝑠)}𝑒−𝑎𝑡1+𝑣4

′ (𝑠)𝑡1+𝑣5
′(𝑠)}

𝑞2Ψ(𝑠)

+
{𝑣1(𝑠)𝑒

−2𝑎𝑡1+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑒
−𝑎𝑡1+𝑣4(𝑠)𝑡1+𝑣5(𝑠)}{Ψ

′(𝑠)}

𝑞Ψ(𝑠)2

+2𝑥01𝑥02𝐷
′(𝑠) + 𝐷′(𝑠)𝐷(𝑠)

 (41) 
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∂2𝑓1

∂𝑡1
2 = 𝑎2𝑤2(𝑠)𝑒

−𝑎𝑡1 +
4𝑎2𝑣1(𝑠)𝑒

−2𝑎𝑡1−2𝑒−𝑎𝑡1𝑣3(𝑠)+{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑎
2𝑒−𝑎𝑡1

𝑞Ψ(𝑠)
 (42) 

  

 

∂2𝑓1

∂𝑠 ∂𝑡1
=

−2𝑎𝑣1
′(𝑠)𝑒−2𝑎𝑡1+𝑣3

′ (𝑠)𝑒−𝑎𝑡1+𝑣4
′ (𝑠)−{𝑣2

′ (𝑠)+𝑡1𝑣3
′(𝑠)}𝑎𝑒−𝑎𝑡1

𝑞Ψ(𝑠)
− 𝑎𝑤2

′(𝑠)𝑒−𝑎𝑡1

−
[−2𝑎𝑣1(𝑠)𝑒

−2𝑎𝑡1+𝑒−𝑎𝑡1𝑣3(𝑠)−{𝑣2(𝑠)+𝑡1𝑣3(𝑠)}𝑎𝑒
−𝑎𝑡1+𝑣4(𝑠)]Ψ

′(𝑠)

𝑞Ψ(𝑠)2

 (43) 

 putting all values of second derivatives in Hessian matrix  

 

 H= 

(

  
 

∂2𝑓1

∂𝑞2

∂2𝑓1

∂𝑠 ∂𝑞

∂2𝑓1

∂𝑞 ∂𝑡1

∂2𝑓1

∂𝑠 ∂𝑞

∂2𝑓1

∂𝑠2

∂2𝑓1

∂𝑡1 ∂𝑠

∂2𝑓1

∂𝑞 ∂𝑡1

∂2𝑓1

∂𝑡1 ∂𝑠

∂2𝑓1

∂𝑡1
2 )

  
 

  

 If all eigen values are nagetive i.e Hessian matrix H of expected profit function is negative 

definite, then the profit function is concave.  

 

4  Numerical Example & Sensitivity Analysis 
 

Consider a numerical example taking the demand function as given in Eq. (1)  

4.1  Example 

We consider the demand function 𝐷(𝑠) = 𝜑𝑠−𝜂 and the value of the parameter in 

appropriate units are as follows 𝜂 = 1.2, 𝑐𝑙 = 2 per unit per unit time, 𝑐𝑏 = 1.5 per unit per unit 

time, 𝑘 = 500, 𝑐ℎ = 1 per unit per unit time, 𝑐ℎ1 = 1 per unit per unit time, 𝑐𝑟 = 1.5 per unit, 𝑐𝑝 = 4 

per unit, 𝜑 = 3000, 𝑟 = 1200 units per unit time, 𝛼 = 1.6, 𝑚 = 0.05, 𝜎2 =
1

1200
, 𝑝 = 800 units per 

unit time, and randam variable follows uniform distribution in the interval (0,0.1). Then the 

optimal values for the model are 𝑓1
∗ = 1107.4, 𝑠∗ = 39.15, 𝑞∗ = 206, 𝑡1

∗ = 0.69. These values are 

optimal as the eigen value of the Hessian matrix 

(

  
 

∂2𝑓1

∂𝑞2

∂2𝑓1

∂𝑠 ∂𝑞

∂2𝑓1

∂𝑞 ∂𝑡1

∂2𝑓1

∂𝑠 ∂𝑞

∂2𝑓1

∂𝑠2

∂2𝑓1

∂𝑡1 ∂𝑠

∂2𝑓1

∂𝑞 ∂𝑡1

∂2𝑓1

∂𝑡1 ∂𝑠

∂2𝑓1

∂𝑡1
2 )

  
 

 are negative. i.e −31.88, 

−0.39, −0.002. So the profit function is concave.  

4.2  Sensitive Analysis 

We observed the sensitiveness of the key parameters which help the decision makers to 

take appropriate decision on their marketing strategy. 

From Table 1, we observed that, with the increasing values of holding cost of products 

there is a minor change in the optimal lot size and selling price, but the expected average profit 

decreases shortlly and there is negligible changes in the period of shortage. It is clear that higher 

holding cost reduce the lot size. So smaller commodity causes the increas in shortage period. In 

this situation the expected average total profit in decreasing order.  

From Table 2, we noticed that, the optomal lot size, shortage period and selling price are 

increasing with increasing production cost and we also fund that expected profit decreases with 

increasing the production cost.  

From Table 3, we observed that, with the increasing values of backorder cost there is a 

minor changes in the optimal lot size and selling price, and there is negligible changes in the 

expected profit and shortage period. 
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We observed that, with the increasing values of parameter 𝜂 there is a major change in the 

optimal lot size and selling price, the expected average profit decreases and there is negligible 

changes in the period of shortage (table 5). With the changes of parameter 𝑎, ther are minor change 

in optimal lot size, selling price and expected average profit with the increasing values of 

parameter 𝑎 shortage period decreases. (table 4). If the demand function parameter 𝜑 increases, the 

expected average profit, and lot size increases highly while the selling price and shortage period 

decreases (from table 6). 

Now we have followed graphical analysis method three-dimensional (3D) plots for the 

profit function Π𝑒̃𝑎̃𝑡𝑝̃, Figure 1 and 2 present the piecewise 3D plots for the profit function, Π𝑒̃𝑎̃𝑡̃𝑝̃, 

versus the two corresponding variables subsequently out of the three variables, 𝑠, 𝑞 and 𝑡1 . In each 

Figure 1 and 2, 3D plot of function, 𝑡1 using the other two variables, 𝑠 and 𝑞 at a fixed shortage 

time period 𝑡1 and 3D plot of function, Π𝑒̃𝑎̃𝑡𝑝̃, using the other two variables, 𝑠 and 𝑡1 at a fixed lot-

size 𝑞. 

 

Table  1: Changges in 𝑐ℎ 

   

 𝑐ℎ  s   𝑡1   q   𝑓1 

 1   39.15  0.69   206 1107.4  

1.1   39.49   0.72   195 1099.26  

.2   37.30   0.72   197 1090.8  

.3   25.69   0.70   275  1052.24  

 

     

Table  2: Changges in 𝑐𝑝 

   

 𝑐𝑝  s   𝑡1   q   𝑓1 

 3   31.30  0.64   240 1144.37  

4   39.15   0.69   106 1107.4  

  46.83   0.74   183 1074.41 

  54.39   0.78   166  1047.31  

 

Table  3: Changges in 𝑐𝑏 

   

 𝑐𝑏  s   𝑡1   q   𝑓1 

 .5   19.88  0.73   446 1027.81  

1   39.06   0.72   207 1107.82  

.5   39.15   0.64   206 1107.4  

  39.24   0.66   206  1107.01  

 

Table  4: Changges in 𝑎 

   

 𝑎  s   𝑡1   q   𝑓1 

 1.3   38.90  0.82 209 1109.22  

1.4   31.78   0.73   245 1103.37  

.5   32.62   0.70   240 1103.95  

.6   39.15   0.69   206  1107.4  
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Table  5: Changges in 𝜂 

   

 𝜂  s   𝑡1   q   𝑓1 

 1.1   77.56.15  0.78   167 1687.86  

1.2   39.15   0.69   206 1107.4  

.3   22.29   0.68   289 744.67  

.4   22.71   0.69   210  519.93  

 

Table  6: Changges in 𝜑 

   

 𝜑  s   𝑡1   q   𝑓1 

 3000   39.15  0.69   206 1107.4  

3500   37.77   0.65   235 1308.24  

  36.69   0.62   254 1510.38  

  35.83   0.59   277  1713.58  

 

  

 
 

Fig.1. Expected average total profit versus quantity and price 

 

 
 

Fig.2. Expected average total profit versus shortage time and price 
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5  Conclusion 
 

Several manufacturers have to call back their items after use and rework on them to make 

protect. satisfy the demands with new ones in recent years. This type of remanufacturing system 

may prevent disposal cost and reduce environment dilemmas. To overcome this problem, an 

economic production quantity model has been portrayed for imperfect items with rework and 

production. 

 We have presented an imperfect production inventory model by considering demand as 

nagetive power function of selling price. The shortage occurs in begning bears the more cost for 

inventory manager, but it helps to project the product and optimize the selling price also. We have 

also illustrated the model numerically for demand depending on selling price. In the sensitivity of 

parameters of the model, we observed that the optimal expected average profit decreases with 

higher holding cost of items and optimal expected average profit increases with higher value of 

parameter 𝜑.  
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Abstract 
 

The paper considers an accelerated test situation where the actual lifetimes of the 

items are not directly observable rather their status are known in the form of 

binary outcomes. By assuming two widely entertained models, namely the 

Weibull and the lognormal distributions, for the actual lifetimes, the paper 

provides full Bayesian analysis of the entertained models when both scale and 

shape parameters of the models are allowed to vary over the covariates involved 

in the study, thus giving rise to corresponding accelerated test models. The Bayes 

implementation is based on sample based approaches, namely the Metropolis 

algorithm and the Gibbs sampler using proper priors of the parameters where the 

prior elicitation is based on the expert testimonies. The situation involving 

missing items where actual status is also unknown is additionally entertained 

using the same modelling assumption. A comparison between the two entertained 

models is carried out using some standard Bayesian model comparison tools. 

Finally, numerical illustration is provided based on a given set of current status 

data and some relevant findings are reported. 

 

Keywords: Binary outcomes, Missing items, Accelerated testing, Weibull 

distribution, Lognormal distribution, Log-linear link function, Metropolis 

algorithm, Gibbs sampler, Model comparison. 

 

1  Introduction 
 

Generally, in life testing experiments, the items or equipments are put on test to observe their exact 

failure times and, based on the same; various reliability characteristics of the items under 

consideration are studied. There are situations, however, where exact lifetimes are not observable 

and the experimenter only happens to know the status of the items with regard to their failure or 

survival. That is the item is either surviving at the time of observation or found in the failed state. 

Thus the resulting data, often in the form of binary outcomes, may represent one of the two states 

of the items at the time of observation and generally referred to as the current status data. An 

mailto:skupadhyay@gmail.com
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important example includes time to occurrence of tumour in animal carcinogenicity experiments, 

where one might not be able to observe the exact time to appearance of tumour in the subject 

rather only observes status of the tumour at a particular time, that is, whether the tumour is 

present or not. Other examples include testing of electro explosive devices, missiles, rocket motors, 

air bags in cars, etc. (see Balakrishnan and Ling (2012, 2013)) where the items are found either in 

working state or in failed state at the time of observation. Thus in all these situations the actual 

lifetimes are unknown and the experimenter is only observing the status of the items or subjects at 

the time of observation. Also, while dealing with such life testing experiments, there is a possibility 

of getting some of the experimental units missing during experimentation due to some known or 

unknown reasons and, as such, the experimenter is even not in a position to know exactly if such 

items were surviving or already failed at the time of observation. Say, for example, in animal 

carcinogenicity experiments involving mice, some of the experimental units (mice) might not be 

available at their expected places at a specified point of time and, as such, it is not possible to know 

exactly about their current status even. A similar kind of situation was also studied by Sharma and 

Upadhyay (2018a) with regard to engineering experiments when the actual lifetimes and the status 

of some of the items are both unknown.  

Fan et al. (2009), Balakrishnan and Ling (2012) and Sharma and Upadhyay (2018a) are 

some of the important references on the analyses of current status data. Whereas Fan et al. (2009) 

and Sharma and Upadhyay (2018a) provide Bayesian analysis of such datasets, Balakrishnan and 

Ling (2012) deals mainly with the classical inferences. Other important references on the analysis of 

current status data include Balakrishnan and Ling (2013) and Balakrishnan and Ling (2014) where 

the authors used different lifetime models in their work on classical maximum likelihood (ML) 

estimation and observed that Weibull distribution stands better than other considered models.  

Before we come across some other relevant concepts, we need to consider the appropriate 

lifetime distributions that are capable of representing the actual lifetimes, which are not exactly 

known in the present scenario. It may be noted here that we do not have the actual lifetimes of 

items in the present situation rather only have information on the status of the units at the time of 

observation, that is, failed or surviving. Thus, if the time of observation is 𝑇, the actual lifetime 

either falls below 𝑇 or goes beyond 𝑇. Since the lifetimes are continuous variates, it is almost 

unlikely that the failure occurs exactly at 𝑇.  

Among the various lifetime models, the two-parameter Weibull distribution and the two-

parameter lognormal distribution, specified by their scale and shape parameters, are widely used 

lifetime models in the literature. The two-parameter Weibull distribution is a quite flexible and a 

rich family that has the capability of accommodating all three hazard rate shapes, that is, 

increasing, decreasing and constant. This is perhaps the reason that the model is highly explored 

model and used in a wide variety of situations (see, for example, Lawless (2002), Upadhyay 

(2010)). Similarly, the two-parameter lognormal distribution is known for its non-monotone hazard 

rate shape that initially increases and attains maxima. It then decreases and finally approaches to 

zero for large lifetimes and also at the initial lifetimes (see Lawless (2002)). It is often proclaimed 

that this decreasing nature of lognormal hazard rate with large lifetimes makes lognormal a less 

popular lifetime distribution regardless of its versatile hazard rate. However, in spite of this 

discouraging fact, the distribution receives the attention of a number of reliability practitioners, 

especially in situations where very large lifetimes are not of interest. We do not go into the details 

of various inferential developments related to these models due to paucity of space. The interested 

readers may, however, refer to Mann et al. (1974), Lawless (2002) and Singpurwalla (2006), among 

others, where the last reference primarily concerns with Bayesian developments.  

The Weibull and lognormal distributions differ in their tails and both may fit a dataset 

equally well in their middle ranges. In fact, when both the distributions are fitted to a lifetime data, 

the Weibull distribution has an earlier lower tail than the corresponding lognormal distribution. In 

other words, we can say that a low Weibull percentile is always below the corresponding 
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lognormal percentile making the Weibull distribution more pessimistic (see, for example, Nelson 

1990). In spite of several such comparative remarks, the two models are used simultaneously by a 

number of authors for a variety of lifetime data sets (see, for example, Dumonceaux et al. (1973), 

Wang (1999) and Upadhyay and Peshwani (2003)). The authors have concluded that the two 

models appear to be good contenders to each other and, therefore, each one can be used as an 

alternative to other in a variety of situations. The important classical references on the model 

comparison include Dumonceaux et al. (1973), Meeker (1984), Kim and Yum (2008), etc. Meeker 

(1984), however, extended the task of model comparison by focussing on accelerated test plans 

involving censored data for the two models. The Bayesian contributions on model comparison 

between Weibull and lognormal models include Kirn et al. (2000), Upadhyay and Peshwani (2003) 

and Araújo and Pereira (2007). It may be noted that some of these references provide extensive 

treatment on model comparison and conclude their findings based on various model comparison 

tools of Bayesian paradigm.  

Generally, the experimental units used for the considered situations are highly reliable 

and, therefore, laboratory based experimentation may result in a very few failures or even no 

failures in normal operating environment. As a matter of fact, the outcomes of such 

experimentation may provide one-sided information, that is, all the experimental units are 

surviving at the time of observation and none have failed. The problem can be resolved to a large 

extent if the experiment is conducted in an accelerated environment where we allow the items 

under test to operate at the accelerated levels of the stress(es) or covariates to induce early failures. 

Say, for instance, this might be the accelerated level of dose of the chemical responsible to induce 

the tumour with reference to the animal carcinogenicity experiment or the accelerated levels of the 

stresses such as temperature, humidity and voltage, etc., with reference to the testing of electro 

explosive devices, missiles, rocket motors, airbags in cars, etc. Moreover, although such 

experiments are performed in an accelerated environment, the primary objective remains drawing 

the inferences based on the observed data in the normal operating environment. This can, of 

course, be achieved by means of a suitable life-stress relationship used to relate the lifetimes with 

the applied covariate(s)/stress(es). Such relationships are generally decided based on several 

biological considerations in animal carcinogenicity experiment or physical considerations in 

engineering experiments (see, for example, Nelson (1990) and Lawless (2002)).  

A number of life-stress relationships are suggested in the literature of accelerated testing. 

Important among these are Arrhenius, Eyring, inverse power, exponential, exponential-power, 

quadratic and polynomial relationships, etc. These relationships are generally used when the 

characteristic life is assumed to be influenced by only one covariate or stress variable involved in 

the study. When multiple stresses or covariates are involved in the process, the most commonly 

used relationship is the log-linear relationship, which is formed under the assumption that the 

characteristic life has a log-linear relation with the stress(es). This relationship offers a generalized 

version although it can be used for the situation where one or two stresses affect the process. 

Another apparent advantage associated with the log-linear relationship is mathematical 

convenience in its use. These are some of the reasons that led to maximum usage of log-linear 

relationship in a variety of situations. A detailed discussion on life-stress relationships and the 

related issues can be had from Meeker and Escobar (1998), Wang (1999), Nelson (1990) and Sen 

(2016), etc. 

Most of the accelerated tests work under the assumption that only the scale parameter is 

influenced by the covariate(s)/stress(es) involved in the study whereas the shape parameter 

remains constant over the covariate(s)/stress(es) (see, for example, Nelson (1990)). However, this is 

not true in practice for all kinds of datasets and, therefore, the assumption of constant shape 

parameter with respect to the covariates may hide some important features of the units involved in 

the study. Meeter and Meeker (1994) is a good reference where applicability of non-constant shape 

parameter has been given by means of some examples (see also Balakrishnan and Ling (2013)).  
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The present paper provides Bayes analysis of both Weibull and lognormal based 

accelerated test models with an assumption that both the parameters of the two models are likely 

to be affected by the considered stress variates. The paper also considers missing data situation by 

assuming a hypothetical scenario in the assumed current status data although the hypothetical 

missing data scenario appears to be quite realistic in practice. Finally, the two models are 

compared using some standard Bayesian tools such as the deviance information criterion (DIC) 

and the expected posterior predictive loss (EPPL) criterion.  

The plan of the paper is as under. The next section provides the formulation of the 

likelihood function corresponding to two considered models for a general form of current status 

data when the experiment is subject to accelerated testing and both scale and shape parameters of 

the model are affected by the stress variables. Section 3 details the Bayesian model formulation and 

also comments on the implementation of the Metropolis and the Gibbs sampler algorithms to get 

the desired posterior based inferences in both non-missing and missing data situations. In section 

4, model selection criteria, namely the DIC and the EPPL are discussed in brief. This section is 

given for completeness only. Section 5 provides numerical illustration based on a real dataset. 

Finally, the paper ends with a brief conclusion given in the last section.  

 

2  The Models and the Likelihood Functions 
 

Let us consider a life testing experiment that involves 𝐼 experimental groups where 𝑖𝑡ℎ group 

consists of 𝐾𝑖 experimental units, 𝑖 = 1, 2, . . . , 𝐼. Thus, in all, the experiment involves testing of 

∑𝐼
𝑖=1 𝐾𝑖  experimental units. Besides, we also assume that in 𝑖𝑡ℎ experimental group, the 𝐾𝑖 units are 

observed for their status in terms of either failure or survival at time 𝑇𝑖  where the lifetime of each 

unit is affected by 𝐽 kinds of covariates, say 𝑥𝑖𝑗 ;  𝑖 = 1, 2, . . . , 𝐼, 𝑗 = 1, 2, . . . , 𝐽. Accordingly, the 

observed number of failures or survivors is recorded. Obviously, the resulting outcomes are 

available in the form of binary data where binary zero is used to represent the failed state and 

binary one for the state of survival. Let 𝑛𝑖 and 𝑟𝑖 = (𝐾𝑖 − 𝑛𝑖) denote the number of failures (count of 

binary zeros) and number of survivals (count of binary ones), respectively, observed at time 𝑇𝑖  in 

the 𝑖𝑡ℎ experimental group when each unit in the group subject to 𝐽 covariates or stresses, 𝑖 =

1, 2, . . . , 𝐼. The complete structure of the data is shown in Table 1. We have also considered missing 

data case but the same will be discussed separately.  

 

Table  1: Current status data observed at different points of time under different stresses or 

covariates (the values in parentheses correspond to missing data situation) 

 

Experimental 

group 

Number of 

experimental 

units 

Observation 

time 

Number 

of 

failures 

Number 

of 

survivals 

Number 

of 

missing 

units 

Covariates 

 1 𝐾1 𝑇1 𝑛1(𝑛′1) 𝑟1(𝑟′
1) (𝑚1) 𝑥11  ... 𝑥1𝐽 

2 𝐾2 𝑇2 𝑛2(𝑛′2) 𝑟2(𝑟′
2) (𝑚2) 𝑥21  ... 𝑥2𝐽 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 

I 𝐾𝐼  𝑇𝐼  𝑛𝐼(𝑛′𝐼) 𝑟𝐼(𝑟′𝐼) (𝑚𝐼) 𝑥𝐼1  ... 𝑥𝐼𝐽 

 

 

Now suppose 𝑡𝑖𝑘 denote the lifetime for the 𝑘𝑡ℎ experimental unit in the 𝑖𝑡ℎ experimental 

group, where 𝑖 = 1, 2, . . . , 𝐼 and 𝑘 = 1, 2, . . . , 𝐾. If the lifetimes 𝑡𝑖𝑘;  𝑖 = 1, 2, . . . , 𝐼, 𝑘 = 1, 2, . . . , 𝐾, are 

assumed to be the independent and identically distributed (iid) Weibull variates then the 

associated probability density function (pdf) can be written as  
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 𝑓𝑊(𝑡𝑖𝑘) = (
𝛽𝑖

𝜃
𝑖

𝛽𝑖
) 𝑡𝑖𝑘

𝛽𝑖−1
 exp {− (

𝑡𝑖𝑘

𝜃𝑖
)

𝛽𝑖
} ;  𝑡𝑖𝑘 > 0,  𝜃𝑖 ,  𝛽𝑖 > 0, ∀ 𝑖, 𝑘, (1) 

 

where 𝜃𝑖 and 𝛽𝑖 denote the scale and the shape parameters, respectively, associated with the 

Weibull model corresponding to 𝑖𝑡ℎ experimental group. Let us assume that both 𝜃𝑖 and 𝛽𝑖 are 

related to the covariates 𝑥𝑖𝑗 ;  𝑖 = 1, 2, . . . , 𝐼, 𝐽 = 1, 2, . . . , 𝐽, via means of log-linear relationship given 

as  

 𝜃𝑖 = exp(𝑎0 + ∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)   and    𝛽𝑖 = exp(𝑏0 + ∑𝐽

𝑗=1 𝑏𝑗𝑥𝑖𝑗);  𝑖 = 1, 2, . . . , 𝐼. (2) 

 

The parameters 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝐽) and 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑗) are the parameters associated 

with the log-linear relationships corresponding to the Weibull scale parameter 𝜃𝑖 and the shape 

parameter 𝛽𝑖, respectively, 𝑖 = 1, 2, . . . , 𝐼. Obviously, these parameters contribute in the model due 

to the involvement of covariates or stress variables in the study and the resulting Weibull model 

can be referred to as the accelerated Weibull model. More specifically, 𝑎0 corresponds to the 

constant effect of covariates on the scale parameter 𝜃𝑖 whereas the parameter 𝑎𝑗 gives the effect of 

covariate 𝑥𝑖𝑗  on the same, 𝑖 = 1, 2, . . . , 𝐼, 𝑗 = 1, 2, . . . , 𝐽. A similar interpretation can be given for the 

components of 𝑏 associated with 𝛽𝑖. Moreover, the components of 𝑎 and 𝑏 are assumed to be real 

on their support, an assumption that appears justified as well. 

To proceed further, it may be noted that in the experiment considered here, we do not 

observe the actual lifetime data rather only get the information regarding the fact that if the actual 

lifetimes are either less than the observation time (that is, 𝑡𝑖𝑘 ≤ 𝑇𝑖) or exceed it (that is, 𝑡𝑖𝑘 > 𝑇𝑖), 𝑖 =

1,2, . . . , 𝐼 and 𝑘 = 1,2, . . . , 𝐾. The probabilities corresponding to these units under the assumption of 

Weibul lifetime distribution can be given as  

 

 𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖) = 1 − exp {− (
𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}, (3) 

and 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖) = 1 − 𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖). It may be further noted that the equality sign in (3) is used to 

avoid the discontinuity at time 𝑇𝑖 . Of course, this does not make any difference as 𝑡𝑖𝑘; 𝑖 =

1,2, . . . , 𝐼, 𝑘 = 1,2, . . . , 𝐾, are the continuous variates. The expression given in (3) is nothing but the 

cumulative distribution function (cdf) of the corresponding Weibull distribution and its 

complimentary probability 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖) is the corresponding reliability or survival probability. 

On the other hand, if we assume lognormal distribution for the iid random variates 𝑡𝑖𝑘; 𝑖 =

1,2, . . . , 𝐼, 𝑘 = 1,2, . . . , 𝐾, the corresponding pdf can be written as 

  

 𝑓𝐿𝑁(𝑡𝑖𝑘) =
1

𝑡𝑖𝑘𝜎𝑖√2𝜋
exp [−

1

2𝜎𝑖
2 (log𝑡𝑖𝑘 − 𝜇𝑖)

2] ;  𝑡𝑖𝑘 > 0, −∞ < 𝜇𝑖 < ∞, 𝜎𝑖 > 0, ∀ 𝑖, 𝑘, (4) 

 

where exp(𝜇𝑖), 𝜎𝑖 denote the scale and shape parameters, respectively, of the lognormal model for 

the 𝑖𝑡ℎ experimental group, 𝑖 = 1,2, . . . , 𝐼, and the script 𝐿𝑁 is used to distinguish the lognormal 

density with that of Weibull density. Analogous to (2), the parameters of lognormal distribution 

can be written as  

 𝜇𝑖 = 𝑎′0 + ∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗     and    𝜎𝑖 = exp(𝑏′0 + ∑𝐽

𝑗=1 𝑏′𝑗𝑥𝑖𝑗);  𝑖 = 1,2, . . . , 𝐼, (5) 

 

where 𝑎′ = (𝑎′0, 𝑎′1, . . . , 𝑎′𝐽) and 𝑏′ = (𝑏′0, 𝑏′1, . . . , 𝑏′𝑗) are the parameters associated with the log-

linear relationship corresponding to lognormal parameters 𝜇𝑖 and 𝜎𝑖, respectively, 𝑖 = 1,2, . . . , 𝐼. A 

detailed interpretation of such parameters is already given while discussing Weibull distribution 

and, therefore, we presume that the components of 𝑎′ and 𝑏′ can be similarly dealt. Obviously, 

substituting 𝜇𝑖 and 𝜎𝑖 from (5) into (4) results into accelerated lognormal lifetime model. 

The probability associated with the event 𝑡𝑖𝑘 ≤ 𝑇𝑖; 𝑖 = 1,2, . . . , 𝐼, 𝑘 = 1,2, . . . , 𝐾, under the 

assumption of lognormal distribution can be written analogous to (3) as 
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 𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖) = 𝜙 {
log𝑇𝑖−𝑎0−∑𝐽

𝑗=1 𝑎𝑗𝑥𝑖𝑗

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}, (6) 

 

 where 𝜙 is the standard normal cdf, 𝜙{𝑧} = ∫
𝑧

−∞

1

√2𝜋
 exp [−

𝜉2

2
] 𝑑𝜉. The other probability 𝑃𝐿𝑁(𝑡𝑖𝑘 >

𝑇𝑖) is simply 1 − 𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖). 

Once the model formulation is done as given above, the likelihood function for the model 

parameters 𝑎 and 𝑏 based on the counts of binary outcomes 𝑛𝑖 and 𝑟𝑖 under the assumption of 

Weibull lifetimes can be written as   

 

 

𝐿𝑊(𝑎, 𝑏|𝑛, 𝑟, 𝑇, 𝑥) = ∏𝐼
𝑖=1 [𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛𝑖[𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟𝑖

= ∏𝐼
𝑖=1 [1 − exp {− (

𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

    × [exp {− (
𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑
𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

.

 (7) 

 

It may be noted that the binary outcomes 𝑛𝑖 and 𝑟𝑖 are observed at time 𝑇𝑖  with corresponding 

covariates 𝑥𝑖𝑗 ;  𝑗 = 1,2, . . . , 𝐽, for the experimental groups 𝑖 = 1,2, . . . , 𝐼. In (7), we have used the 

notations 𝑛 for (𝑛1, 𝑛2, . . . , 𝑛𝐼), 𝑟 for (𝑟1, 𝑟2, . . . , 𝑟𝐼), 𝑇 for (𝑇1, 𝑇2, . . . , 𝑇𝐼) and 𝑥 for (𝑥.1, 𝑥.2, . . . , 𝑥.𝐽) where 

𝑥.𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝐼𝑗)′ for 𝑗 = 1,2, . . . , 𝐽. 

Analogous to (7), the likelihood function for the model parameters 𝑎′ and 𝑏′ under the 

assumption of lognormal lifetimes can be written as 

 

 

𝐿𝐿𝑁(𝑎′, 𝑏′|𝑛, 𝑟, 𝑇, 𝑥) = ∏𝐼
𝑖=1 [𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛𝑖[𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟𝑖

= ∏𝐼
𝑖=1 [𝜙 {

log𝑇𝑖−𝑎′0−∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

    × [1 − 𝜙 {
log𝑇𝑖−𝑎′0−∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

,

 (8) 

 

where the various notations used in (8) are already defined while discussing Weibull based 

likelihood. 

 

2.1  Missing data case 
 

To formalise the missing data situation informally introduced in Section 1, let us assume that 𝑚𝑖 is 

the observed number of missing units out of 𝐾𝑖 experimental units tested in 𝑖𝑡ℎ experimental 

group. As mentioned earlier, these 𝐾𝑖 units are scheduled to be observed at time 𝑇𝑖  for their status 

(failed or surviving) when operated under 𝐽 different types of covariates or stresses 𝑥𝑖𝑗 ;  𝑖 =

1,2, . . . , 𝐼,  𝐽 = 1,2, . . . , 𝐽 (see Table 1) but 𝑚𝑖 missing units are, of course, not observable. Obviously, 

𝑚𝑖 missing units will consist of two different kinds of units, failed or surviving, if they were 

continued on experimentation and not found missing. Suppose 𝑚′𝑖 ((𝑚𝑖 − 𝑚′𝑖)) corresponds to 

number of failed (surviving) units out of 𝑚𝑖 missing units where obviously 𝑚′𝑖 is unknown and so 

is (𝑚𝑖 − 𝑚′𝑖), 𝑖 = 1,2, . . . , 𝐼. Let 𝑛′𝑖 and 𝑟′𝑖 = (𝐾𝑖 − 𝑛′𝑖 − 𝑚𝑖) denote the observed number of failures 

(count of binary zeros) and survivals (count of binary ones), respectively, out of 𝐾𝑖 experimental 

units when tested in 𝑖𝑡ℎ experimental group and observed at the time 𝑇𝑖 . As usual, the covariates or 

stresses 𝑥𝑖𝑗 ;  𝑖 = 1,2, . . . , 𝐼, 𝐽 = 1,2, . . . , 𝐽, are assumed to have their effects in missing data case as 

well.  
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Now the likelihood function for the model parameters 𝑎 and 𝑏 based on the observed 

counts 𝑛′𝑖 ,  𝑟′𝑖  and 𝑚𝑖 under the assumption of Weibull lifetimes can be written as   

 

 

𝐿𝑊𝑚
(𝑎, 𝑏|𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥) = ∏𝐼

𝑖=1  [𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛′𝑖     [𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟′𝑖

    × [𝑃𝑊(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑚′𝑖     [𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖)]𝑚𝑖−𝑚′𝑖

= ∏𝐼
𝑖=1 [1 − exp {− (

𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑛′𝑖+𝑚′𝑖

    × [exp {− (
𝑇𝑖

exp(𝑎0+∑
𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑟′𝑖+𝑚𝑖−𝑚′𝑖

,

 (9) 

 

where the counts 𝑛′𝑖 , 𝑟′𝑖  and 𝑚𝑖 are observed at the time 𝑇𝑖  when the items under the test are 

exposed to covariates or stresses 𝑥𝑖𝑗; 𝑗 = 1,2, . . . , 𝐽, for the experimental groups 𝑖 = 1,2, . . . , 𝐼. In (9), 

we have used the notations 𝑛′ for (𝑛′1, 𝑛′2, . . . , 𝑛′𝐼), 𝑟′ for (𝑟′1, 𝑟′2, . . . , 𝑟′𝐼), 𝑚 for (𝑚1, 𝑚2, . . . , 𝑚𝐼) and 

the script 𝑚 with 𝑊 stands for Weibull likelihood corresponding to missing data case. 

Similarly, if we use the same notations as described for the Weibull case, the likelihood 

function for the model parameters 𝑎′ and 𝑏′ under the assumption of lognormal lifetimes and 

missing data situation can be written as 

 

 

𝐿𝐿𝑁𝑚
(𝑎′, 𝑏′|𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥) = ∏𝐼

𝑖=1  [𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑛′𝑖    [𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖)]𝑟′𝑖

    × [𝑃𝐿𝑁(𝑡𝑖𝑘 ≤ 𝑇𝑖)]𝑚′𝑖     [𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖)]𝑚𝑖−𝑚′𝑖

= ∏𝐼
𝑖=1 [𝜙 {

log𝑇𝑖−𝑎′0−∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑛′𝑖+𝑚′𝑖

    × [1 − 𝜙 {
log𝑇𝑖−𝑎′0−∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑟′𝑖+𝑚𝑖−𝑚′𝑖

,

 (10) 

 

where as usual the script 𝑚 with 𝐿𝑁 stands for lognormal likelihood corresponding to missing data 

case. 

The likelihoods given in (9) and (10) are incompletely specified in the sense that they 

involve unknown components 𝑚′ = (𝑚′1, 𝑚′2, . . . , 𝑚′𝐼) in 𝑚 but this is not a deterrent issue with 

regard to Bayesian implementation if attempted using sample based approaches (see, for example, 

Sharma and Upadhyay (2018a)). For this, we only need to generate the binary response data 

corresponding to the observed missing units and this can be easily done by generating the iid 

Bernoulli variates with success probabilities 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖) and 𝑃𝐿𝑁(𝑡𝑖𝑘 > 𝑇𝑖), for accelerated Weibull 

and lognormal lifetimes, respectively. Once the binary response data corresponding to the missing 

units are made available, availability of the unknown component 𝑚′ is obvious (see Sharma and 

Upadhyay (2018a)). The implementation has been briefed in the next section. It may be noted that 

the situation may not be straightforward if tried using the tools of classical paradigm. The details 

of Bayesian implementation for missing data case will be discussed in the next section. 

 

3  Bayesian Model Formulation 
 

As mentioned, the parameters 𝑎𝑗 and 𝑏𝑗;  𝑗 = 0,1, . . . , 𝐽, associated with the accelerated Weibull 

model are assumed to be real on their support and, therefore, we consider normal priors for these 

model parameters given as 

 

 𝑔𝑊(𝑎𝑗|𝜇𝑎𝑗
, 𝜎𝑎𝑗

) =
1

√2𝜋𝜎𝑎𝑗

 exp {−
1

2
(

𝑎𝑗−𝜇𝑎𝑗

𝜎𝑎𝑗

)

2

} ;  𝑗 = 0,1, . . . , 𝐽, (11) 
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 𝑔𝑊(𝑏𝑗|𝜇𝑏𝑗
, 𝜎𝑏𝑗

) =
1

√2𝜋𝜎𝑏𝑗

 exp {−
1

2
(

𝑏𝑗−𝜇𝑏𝑗

𝜎𝑏𝑗

)

2

} ;  𝑗 = 0,1, . . . , 𝐽, (12) 

 

where (𝜇𝑎𝑗
, 𝜎𝑎𝑗

) and (𝜇𝑏𝑗
, 𝜎𝑏𝑗

) are the hyperparameters associated with the prior distributions of 𝑎𝑗 

and 𝑏𝑗; 𝑗 = 0,1, . . . , 𝐽, respectively. Now assuming that the parameters 𝑎𝑗 and 𝑏𝑗;  𝑗 = 0,1, . . . , 𝐽, are a 

priori independent, the joint prior distribution can be written as  

 

 𝑔(𝑎, 𝑏|𝜇𝑎, 𝜎𝑎 , 𝜇𝑏 , 𝜎𝑏) = ∏𝐽
𝑗=0 𝑔(𝑎𝑗|𝜇𝑎𝑗

, 𝜎𝑎𝑗
) × 𝑔(𝑏𝑗|𝜇𝑏𝑗

, 𝜎𝑏𝑗
), (13) 

where           𝜇𝑎 = (𝜇𝑎0
, 𝜇𝑎1

, . . . , 𝜇𝑎𝐽
),         𝜎𝑎 = (𝜎𝑎0

, 𝜎𝑎1
, . . . , 𝜎𝑎𝐽

),          𝜇𝑏 = (𝜇𝑏0
, 𝜇𝑏1

, . . . , 𝜇𝑏𝐽
)        and 

𝜎𝑏0
= (𝜎𝑏0

, 𝜎𝑏1
, . . . , 𝜎𝑏𝐽

). 

For successful implementation of Bayesian techniques, the choice of hyperparameters 

becomes a significant issue. In case, the experimenter fails to have enough information to define an 

appropriate prior distribution, it is often recommended going for such choices that make the prior 

distributions essentially vague. Alternatively, one can attempt eliciting the prior hyperparameters 

based on the subjective opinion of the experts if the same are made available. To clarify, suppose 

the expert suggests that the parameters 𝑎𝑗 and 𝑏𝑗 are bounded within the finite intervals [𝑙𝑎𝑗
, 𝑢𝑎𝑗

] 

and [𝑙𝑏𝑗
, 𝑢𝑏𝑗

], respectively, 𝑗 = 0,1, . . . , 𝐽, and due to non-availability of any other significant 

information, it is assumed that each value within the intervals is equally likely (see Bousquet et al. 

(2006)). Thus presuming 𝑎𝑗 and 𝑏𝑗 to be uniformly distributed in the intervals [𝑙𝑎𝑗
, 𝑢𝑎𝑗

] and 

[𝑙𝑏𝑗
, 𝑢𝑏𝑗

], respectively, 𝑗 = 0,1, . . . , 𝐽, one can equate the means and variances of the assumed normal 

priors with those of the assumed uniform distributions over the corresponding intervals. As a 

result, the hyperparameters (𝜇𝑎𝑗
, 𝜎𝑎𝑗

) and (𝜇𝑏𝑗
, 𝜎𝑏𝑗

) associated with the prior distributions of 𝑎𝑗 and 

𝑏𝑗;  𝑗 = 0,1, . . . , 𝐽, can be obtained as 

 𝜇𝑎𝑗
=

𝑙𝑎𝑗
+𝑢𝑎𝑗

2
,        𝜎𝑎𝑗

= √
(𝑢𝑎𝑗

−𝑙𝑎𝑗
)2

12
;  𝑗 = 0,1, . . . , 𝐽, (14) 

 and 

 𝜇𝑏𝑗
=

𝑙𝑏𝑗
+𝑢𝑏𝑗

2
,        𝜎𝑏𝑗

= √
(𝑢𝑏𝑗

−𝑙𝑏𝑗
)2

12
;   𝑗 = 0,1, . . . , 𝐽. (15) 

 

The prior information formalized in equations (13) gets updated by the medium of 

likelihood (7) in order to give the joint posterior, which up to proportionality under the accelerated 

Weibull distribution is given as 

 

 

𝑝𝑊(𝑎, 𝑏|𝜇𝑎, 𝜎𝑎, 𝜇𝑏 , 𝜎𝑏 , 𝑛, 𝑟, 𝑇, 𝑥)

∝ ∏𝐼
𝑖=1 [1 − exp {− (

𝑇𝑖

exp(𝑎0+∑𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

    × [exp {− (
𝑇𝑖

exp(𝑎0+∑
𝐽
𝑗=1 𝑎𝑗𝑥𝑖𝑗)

)

exp(𝑏0+∑𝐽
𝑗=1 𝑏𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

    × ∏𝐽
𝑗=0

1

𝜎𝑎𝑗

 exp {−
1

2
(

𝑎𝑗−𝜇𝑎𝑗

𝜎𝑎𝑗

)

2

} ×
1

𝜎𝑏𝑗

 exp {−
1

2
(

𝑏𝑗−𝜇𝑏𝑗

𝜎𝑏𝑗

)

2

} .

 (16) 

 

One can similarly obtain the joint posterior distribution, up to proportionality, under the 

assumption of accelerated lognormal distribution and the same can be given as 
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𝑝𝐿𝑁(𝑎′, 𝑏′|𝜇𝑎′, 𝜎𝑎′, 𝜇𝑏′, 𝜎𝑏′, 𝑛, 𝑟, 𝑇, 𝑥)

∝ ∏𝐼
𝑖=1 [𝜙 {

log𝑇𝑖−𝑎′0−∑𝐽
𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑛𝑖

× [1 − 𝜙 {
log𝑇𝑖−𝑎′0−∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑖𝑗

exp(𝑏′0+∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑖𝑗)

}]

𝑟𝑖

    × ∏𝐽
𝑗=0

1

𝜎𝑎′𝑗

 exp {−
1

2
(

𝑎′𝑗−𝜇𝑎′𝑗

𝜎𝑎′𝑗

)

2

} ×
1

𝜎𝑏′𝑗

 exp {−
1

2
(

𝑏′𝑗−𝜇𝑏′𝑗

𝜎𝑏′𝑗

)

2

} ,

 (17) 

 

where the prior distributions for the parameters 𝑎′𝑗  and 𝑏′𝑗;  𝑗 = 0,1, . . . , 𝐽, are formed in a manner 

similar to those for the accelerated Weibull parameters but with hyperparameters (𝜇𝑎𝑗
′, 𝜎𝑎𝑗

′) and 

(𝜇𝑏𝑗
′, 𝜎𝑏𝑗

′), respectively. Likewise, we define 𝜇𝑎′ = (𝜇𝑎0
′, 𝜇𝑎1

′, . . . , 𝜇𝑎𝐽
′), 𝜎𝑎′ =

(𝜎𝑎0
′, 𝜎𝑎1

′, . . . , 𝜎𝑎𝐽
′), 𝜇𝑏′ = (𝜇𝑏0

′, 𝜇𝑏1
′, . . . , 𝜇𝑏𝐽

′) and 𝜎𝑏′ = (𝜎𝑏0
′, 𝜎𝑏1

′, . . . , 𝜎𝑏𝐽
′). 

Both (16) and (17) do not appear to offer closed form solutions. Therefore, we propose to 

consider sample based approaches to get the desired posterior based inferences (see, for example, 

Upadhyay et al. (2001) and the references cited therein). No doubt, the sample based approaches to 

Bayesian computation are beneficial in the sense that they are automatic and simultaneously 

capable of providing variety of inferential aspects in a routine manner. The commonly used 

sample based approaches are the Metropolis and the Gibbs sampler algorithms where the former 

is a more generalised version in the sense that it also includes latter as a special case. The 

implementation of Gibbs sampler algorithm requires the specification of full conditional 

distributions for all the generating variates and simultaneously necessitates the availability of such 

full conditionals from the viewpoint of easy generation of samples. On the other hand, the 

Metropolis algorithm does not require any such specification of full conditionals rather seeks 

alternative randomization mechanism for sample generation often in a multidimensional 

framework.  

The joint posterior given in (16) and (17) are the ((𝐽 + 1) + (𝐽 + 1)) dimensional 

distributions. If we look carefully on various associated full conditionals, it is obvious that the 

corresponding full conditionals are not easy from the viewpoint of sample generation and, 

therefore, Metropolis algorithm appears to be an obvious choice for simulating the samples from 

joint posterior (16) and (17). The Metropolis algorithm is a Markovian updating scheme that uses a 

suitably chosen candidate generating density, say 𝑞(𝜔, 𝜈), for sample generation where 𝜔 and 𝜈 are 

the realizations from 𝑞(𝜔, 𝜈) at 𝑠𝑡ℎ and (𝑠 + 1)𝑡ℎ stage, respectively. If the chosen kernel is 

symmetric, the value generated at each step from 𝑞(𝜔, 𝜈) follows a randomization step based on 

the probability of acceptance 𝛼(𝜔, 𝜈) = min {1,
𝑝(𝜈)

𝑝(𝜔)
} where 𝑝(. ) is the corresponding posterior 

distribution of possibly vector valued parameter (. ). If 𝜈 is accepted with probability 𝛼(𝜔, 𝜈), it is 

retained as the candidate point from the target posterior at 𝑠𝑡ℎ stage otherwise 𝜔 is retained as the 

candidate point from the target posterior at 𝑠𝑡ℎ stage. The commonly used candidate generating 

densities are multivariate normal, rectangular and t distributions, etc. (see also Upadhyay et al. 

(2001)). One can also use the non-symmetric candidate generating density and define a generalized 

version, known as the Metropolis-Hastings algorithm. We shall not discuss this version as it is 

beyond the scope of the present work. 

For the implementation of the algorithm on the posteriors under consideration, we 

consider a multivariate normal distribution (((𝐽 + 1) + (𝐽 + 1)) dimensional) as a candidate 

generating density. The multivariate normal distribution is chosen because it can be easily 

specified by its mean vector and covariance matrix, approximate values for the same can be 

guessed on the basis of ML estimates and the corresponding Hessian based approximation 

obtained at ML estimates. The calculation of ML estimates and the corresponding Hessian based 

approximations for the models under consideration cannot be directly obtained rather one requires 

going for an efficient optimisation technique. Balakrishan and Ling (2013) is an important reference 

that considers expectation maximization (EM) algorithm for the current status data under the 

assumed lifetime models. We, however, consider using simulated annealing (SA) optimisation 
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technique (see Robert and Casella (2010)) to obtain the ML estimates of the model parameters for 

both the accelerated Weibull and the accelerated lognormal distributions and accordingly obtain 

Hessian based approximations at corresponding ML estimates. Thus using the initial values in the 

form of ML estimates and corresponding Hessian based approximations, the implementation of 

the Metropolis algorithm can be done routinely through successive generations from (16) and (17) 

to get an iterative sequence of states. This sequence, after a long run, converges in distribution to a 

random sample from the true posterior distribution. The process is to be implanted separately on 

the two posteriors (see also Robert and Casella (2013) and Smith and Roberts (1993)).  

Next considering the aforesaid missing data situation, the joint posterior can be obtained 

by updating the prior distribution (13) with the likelihood (9) under the accelerated Weibull 

distribution. Let 𝑝𝑊𝑚
(𝑎, 𝑏|𝜇𝑎, 𝜎𝑎 , 𝜇𝑏 , 𝜎𝑏 , 𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥) denotes the posterior in this case. Obviously, 

this posterior does not behave similar to that for non-missing case given in (16) due to the 

involvement of an unknown component 𝑚′ in 𝑚. The situation can, however, be easily dealt with 

by constructing a cycle of Gibbs sampler algorithm for these additional unknowns. It may be noted 

here that the Gibbs sampler algorithm is also a Markovian updating scheme that requires 

successive generation from each of its full conditional distributions by using the most recent values 

of rest of the conditioning variates and the algorithm ultimately proceeds in a cyclic manner (see 

also Sharma and Upadhyay (2018a)). To implement the algorithm in the present case, we need to 

form two full conditional distributions. One of these full conditionals focuses on generation of 

count 𝑚′ given all other variates (𝑎, 𝑏, 𝜇𝑎, 𝜎𝑎, 𝜇𝑏 , 𝜎𝑏 , 𝑛′, 𝑟′, 𝑚, 𝑇, 𝑥). The other full conditional is the 

joint full conditional of the model parameters (𝑎, 𝑏) given all other variates including 𝑚′ that 

appears in 𝑚. The generation of count 𝑚′ (binary zeros) may be done by Bernoulli variate 

generation with success probability 𝑃𝑊(𝑡𝑖𝑘 > 𝑇𝑖), conditioned on the recently generated values of 

the model parameters. The generation from other full conditional can be achieved by 

implementation of the Metropolis algorithm that has already been discussed earlier for non-

missing case. As a result, the algorithm can routinely proceed to get the desired posterior samples 

for missing data case as well. The situation can be similarly detailed for the posterior arising from 

the accelerated lognormal distribution involving missing data. 

 

4  Bayesian Model Selection 
 

A number of model comparison tools are available in the literature. The logically appealing tools 

among these are those which take into accountability both goodness of fit and model complexity 

while deciding the model. The goodness of fit can obviously be summarized on the basis of 

deviance statistic whereas the model complexity can be based on the number of free parameters in 

the model. A few such tools are Akaike information criterion (AIC), Bayesian information criterion 

(BIC), DIC and the posterior predictive loss (PPL) criterion, etc. We, however, restrict ourselves to 

two most exploited and justified criteria, namely the DIC and EPPL where latter is nothing but 

PPL with slight change in the definition and nomenclature.  

 

 

4.1  The deviance information criterion 
 

Spiegelhalter et al. (2002) proposed a measure based on the posterior distribution of deviance that 

deals with both Bayesian measure of fit and complexity. This measure, known as DIC, obviously 

consists of two terms. The first term gives the measure of fit and the second term is used to 

measure the complexity involved in the entertained models. The DIC can be defined as  

 

 DIC = 𝐸[−2log(𝐿(𝜂|(. )))] + 𝑝𝐷 , (18) 
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where 𝑝𝐷 = 𝐸[−2log(𝐿(𝜂|(. )))] + 2log(𝐿(𝜂|(. ))), 𝜂 is a vector of parameters and 𝜂 is the 

corresponding posterior estimates that are usually taken as the posterior mean but posterior mode 

has also been recommended (see, for example, Upadhyay et al. (2013)). The term −2log(𝐿(𝜂|(. ))), 

considered as a function of 𝜂, is classical deviance and is defined as a measure of fit in classical 

modelling framework. In this light, the first term of (18) is defined to give the measure of fit, which 

is nothing but the posterior mean of classical deviance. On the other hand, the second terms 𝑝𝐷 is 

known as the effective number of parameters and is used to measure the complexity involved in 

the modelling. The model providing the least value of DIC is preferred over all other models. 

 

4.2  The expected posterior predictive loss 
 

Initially, the EPPL criterion was developed by Buck and Sahu (2000) for the multinomial cell 

frequencies and later on Sharma and Upadhyay (2018b) derived the same for the binomial counts. 

We shall use the same criterion as discussed by Sharma and Upadhyay (2018b) keeping in view the 

dataset given in Table 1. To discuss the criterion briefly, let 𝑟𝑖 and 𝑟𝑖
𝑝 denote the number of 

successes corresponding to observed and predicted future observations, respectively, out of 𝐾𝑖 

experimental units in the 𝑖𝑡ℎ experimental group, where 𝑖 = 1,2, . . . , 𝐼. The EPPL criterion derived 

in Sharma and Upadhyay (2018b) can be rewritten as 

 

 

𝐸{𝐿(𝑟, 𝑟𝑝)} = 2 ∑𝐼
𝑖=1 [𝑟𝑖 {log (

𝑟𝑖

𝐾𝑖
) − log(𝑝𝑖

∗)} + (𝐾𝑖 − 𝑟𝑖) {log (
𝐾𝑖−𝑟𝑖

𝐾𝑖
) − log(1 − 𝑝𝑖

∗)}]

    +2 ∑𝐼
𝑖=1 [𝑟𝑖 {log(𝑝𝑖

∗) − 𝐸 (log (
𝑟𝑖

𝑝

𝐾𝑖
))} + (𝐾𝑖 − 𝑟𝑖) {log(1 − 𝑝𝑖

∗) − 𝐸 (log (
𝐾−𝑟𝑖

𝑝

𝐾𝑖
))}] ,

(19) 

 

where 𝑟𝑝 = (𝑟1
𝑝

, 𝑟2
𝑝

, . . . , 𝑟𝐼
𝑝

), 𝑝𝑖
∗ = 𝐸 (

𝑟𝑖
𝑝

𝐾𝑖
) and 𝐿(𝑟, 𝑟𝑝) is the aggregated loss function over the 

components of 𝑟 and 𝑟𝑝. For the 𝑖𝑡ℎ experimental group, it is given by 

 

 𝐿(𝑟𝑖 , 𝑟𝑖
𝑝

) = 2 [𝑟𝑖log (
𝑟𝑖

𝑟
𝑖
𝑝) + (𝐾𝑖 − 𝑟𝑖)log (

𝐾𝑖−𝑟𝑖

𝐾−𝑟
𝑖
𝑝)] ;  𝑖 = 1,2, . . . , 𝐼. (20) 

 

It is to be noted here that the loss function (20) is derived under the binomial modelling 

assumption in each of the 𝑖𝑡ℎ experimental group for 𝑟𝑖 (𝑟𝑖
𝑝) number of successes corresponding to 

observed (predictive) dataset, in 𝐾𝑖 Bernoulli trials (see Sharma and Upadhyay (2018b)), where 𝑖 =

1,2, . . . , 𝐼. A careful look on (19) reveals the situation when we observe exactly zero or 𝐾𝑖; 𝑖 =

1,2, . . . , 𝐼, counts. This problem can be resolved by adding (subtracting) 
1

2
 when we observe exactly 

zero (𝐾𝑖) counts in the 𝑖𝑡ℎ experimental group, 𝑖 = 1,2, . . . , 𝐼. Moreover, in (19), expectation is taken 

with respect the posterior predictive distribution of the future observation 𝑟𝑖
𝑝

;  𝑖 = 1,2, . . . , 𝐼, given 

the observed data. One may note that for the situation considered here, the posterior predictive 

distribution is not available in analytically closed form although it is manageable with the help of 

simulated posterior samples. Say, for instance, we can easily generate the predictive samples from 

the considered distributions once the corresponding posterior samples are made available and 

hence the expectation in (19) can be obtained accordingly.  

The EPPL is a decision theoretic measure for model comparison that comprises of two 

types of losses. The first one being the loss due to fitting (LDF) also known as goodness of fit term 

and is given in terms of the likelihood ratio statistic (see the first term on RHS of (19)). The second 

one is the loss incurred due to complexity (LDC) of the model that may also be used to 

approximate the predictive variance (see the second term on RHS of (19)). Finally, the criterion 

recommends a model that has the least value of EPPL over all the entertained models. 
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5  Numerical Illustration 
 

The numerical illustration is based on a real dataset obtained from a survival/sacrifice experiment 

conducted at National center for toxicological research (NCTR). The subjects involved in the 

experiment were the male and female mice from two strains of offspring. The first strain F1 

consisted of offspring from mating of BALB/c males to C57BL/6 females. The second strain F2 

consisted of offspring from non brother-sister mating of the Fl progeny. The considered dataset is 

taken from Balakrishnan and Ling (2013) which is a compact form of the original dataset reported 

in Kodell and Nelson (1980). 

The dataset consisted of 823 male and female mice from two strains of offspring classified 

in 𝐼 = 51 experimental groups with varied number of mice in each group. The mice in different 

groups were subject to four different doses, 60 ppm, 120 ppm, 200 ppm and 400 ppm, of chemical 

benzidine dihydrochloride, responsible to develop tumours in the mice, where ppm stands for 

parts per million. The number of mice with tumours, say, 𝑛1, 𝑛2, . . . , 𝑛51, was then recorded in 

different groups at times 𝑇1, 𝑇2, . . . , 𝑇51, respectively. Besides, we also recorded the number of mice 

without tumours, say, 𝑟1, 𝑟2, . . . , 𝑟51, in each group . Obviously, the mice with (without) tumours 

correspond to the observed number of failures (survivals) at the time of observation. One may also 

note that the experiment involves three covariates, namely the two strains of offspring (say, F1=0 

and F2=1), sex of mice (say, F=0 for females and M=1 for males) and doses of chemical (60 ppm, 120 

ppm, 200 ppm and 400 ppm). The distribution of mice according to these three covariates are 

reported in Table 2.  

Let us now consider the case of missing data situation in the considered dataset and 

assume that some of the mice are found missing when observed at different times 𝑇1, 𝑇2, . . . , 𝑇51. In 

this case, we therefore observe three different categories, that is, number of mice with tumours 

(𝑛′𝑖), number of mice without tumours (𝑟′𝑖) and number of mice found missing (𝑚𝑖) at the time 𝑇𝑖  

in the 𝑖𝑡ℎ experimental group, where 𝑖 = 1,2, . . . , 𝐼. It may be noted that the number of mice 

considered in the 𝑖𝑡ℎ experimental group, 𝐾𝑖, is same as that for the non-missing case. Also, the 

mice in each group are subject to the same covariates as mentioned for the non-missing case. The 

corresponding dataset is shown in Table 2 where number of missing observations are taken 

hypothetically for illustration.  

 

Table  2: Observed number of failures 𝑛𝑖(𝑛′𝑖), survivals 𝑟𝑖(𝑟′𝑖) and missing units (𝑚𝑖) at time 𝑇𝑖  in 

the presence of covariates 𝑥𝑖1 (F1=0, F2=1), 𝑥𝑖2 (F=0, M=1) and 𝑥𝑖3 (dose of chemical in ppm), for the 

𝑖𝑡ℎ experimental group, 𝑖 = 1,2, . . . , 𝐼 (the values in parentheses correspond to missing data cases) 

 

Experimental 

group 

Number of 

experimental 

units 

Observation 

time 

(in months) 

Number 

of 

failures 

Number 

of 

survivals 

Number 

of 

missing 

units 

Covariates 

i 𝐾𝑖 𝑇𝑖  𝑛𝑖(𝑛′𝑖) 𝑟𝑖(𝑟′𝑖) (𝑚𝑖) 𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 

1  48   9.27  1 (1)  47 (41)  (6)  0  0  60  

2  24  9.37  0 (0)  24 (20)  (4)  0  0  60  

3  24  13.97  1 (1)  23 (21)  (2)  0  0  60  

4  24  9.37  0 (0)  24 (21)  (3)  0  0  120  

5  24  13.97  5 (3)  19 (16)  (5)  0  0  120  

6  23  14.03  9 (7)  14 (14)  (2)  0  0  120  

7  26  18.67  25 (20)  1 (3)  (3)  0  0  120  

8  48  9.27  0 (0)  48 (40)  (8)  0  1  120  

9  44  14.00  7 (6)  37 (33)  (5)  0  1  120  

10  22  18.73  7 (5)  15 (14)  (3)  0  1  120  
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Experimental 

group 

Number of 

experimental 

units 

Observation 

time 

(in months) 

Number 

of 

failures 

Number 

of 

survivals 

Number 

of 

missing 

units 

Covariates 

11  20  19.30  4 (4)  16 (14)  (2)  0  1  120  

12  24  9.27  0 (0)  24 (22)  (2)  1  1  60  

13  23  9.30  0 (0)  23 (20)  (3)  1  1  60  

14  21  9.37  0 (0)  21 (19)  (2)  1  1  60  

15  44  14.00  3 (3)  41 (34)  (7)  1  1  60  

16  18  18.67  2 (2)  16 (15)  (1)  1  1  60  

17  20  18.70  2 (2)  18 (16)  (2)  1  1  60  

18  1  16.53  1 (1)  0 (0)  (0)  0  0  120  

19  1  16.57  1 (1)  0 (0)  (0)  0  0  120  

20  1  16.90  1 (1)  0 (0)  (0)  0  0  120  

21  1  15.13  1 (1)  0 (0)  (0)  0  0  120  

22  1  15.40  1 (1)  0 (0)  (0)  0  0  120  

23  47  9.33  4 (4)  43 (38)  (5)  0  0  200  

24  45  14.00  38 (32)  7 (10)  (3)  0  0  200  

25  22  14.00  11 (8)  11 (13)  (1)  0  1  400  

26  15  18.70  11 (7)  4 (6)  (2)  0  1  400  

27  1  7.87  1 (1)  0 (0)  (0)  0  1  400  

28  1  14.73  1 (1)  0 (0)  (0)  0  1  400  

29  18  18.70  5 (5)  13 (12)  (1)  1  1  120  

30  1  9.57  1 (1)  0 (0)  (0)  1  1  120  

31  1  14.43  1 (1)  0 (0)  (0)  1  1  120  

32  1  17.87  1 (1)  0 (0)  (0)  1  1  120  

33  1  18.03  1 (1)  0 (0)  (0)  1  1  120  

34  1  5.13  0 (0)  1 (1)  (0)  1  1  120  

35  1  13.53  1 (1)  0 (0)  (0)  0  0  200  

36  1  14.03  1 (1)  0 (0)  (0)  0  0  200  

37  1  14.23  1 (1)  0 (0)  (0)  0  0  200  

38  1  18.67  1 (1)  0 (0)  (0)  0  0  200  

39  24  9.33  16 (11)  8 (10)  (3)  0  0  400  

40  10  14.00  9 (7)  1 (2)  (1)  0  0  400  

41  1  9.87  1 (1)  0 (0)  (0)  0  0  400  

42  1  17.13  0 (0)  1 (1)  (0)  1  0  60  

43  24  9.27  2 (2)  22 (19)  (3)  1  0  120  

44  22  9.37  0 (0)  22 (20)  (2)  1  0  120  

45  41  14.00  15 (12)  26 (25)  (4)  1  0  120  

46  1  15.43  1 (1)  0 (0)  (0)  1  1  200  

47  24  9.30  1 (1)  23 (20)  (3)  1  1  400  

48  21  14.00  4 (4)  17 (16)  (1)  1  1  400  

49  12  18.67  6 (5)  6 (6)  (1)  1  1  400  

50  1  11.90  1 (1)  0 (0)  (0)  1  1  400  

51  1  14.77  1 (1)  0 (0)  (0)  1  1  400  

 

Now, going back to Section 2, we can easily see that the present dataset involves 𝐽 = 3 

covariates and, therefore, the total number of associated parameters are ((𝐽 + 1) + (𝐽 + 1)) = 8. 

Out of these eight parameters, the first four, that is, 𝑎0, 𝑎1, 𝑎2, 𝑎3 are associated with the Weibull 
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scale parameter and the remaining four, that is, 𝑏0, 𝑏1, 𝑏2, 𝑏3 are associated with the Weibull shape 

parameter. Similarly, when one considers the analysis of lognormal distribution, the associated 

parameters are 𝑎′0, 𝑎′1, 𝑎′2, 𝑎′3 and 𝑏′0, 𝑏′1, 𝑏′2, 𝑏′3, respectively, with its scale and shape 

parameters. One may also note that the parameters 𝑎1, 𝑎2, 𝑎3 and 𝑎′1, 𝑎′2, 𝑎′3 affecting the scale 

parameters of the corresponding distributions are due to the covariates considered as strain of 

offspring, sex of mice and dose of the chemical, respectively. Similarly, the parameters 𝑏1, 𝑏2,𝑏3 

and 𝑏′1, 𝑏′2, 𝑏′3 causing the affect on shape parameters of the corresponding distributions enter 

into the modelling formulation due to the three covariates entertained in the analysis.  

To implement the Bayesian modelling formulation as given in Section 3, we first begin 

with the exact specification of the considered prior distributions for the model parameters of the 

two entertained models.  The prior distribution given in  (13) was evaluated based on the interval 

[-25, 25] specified by the experts for 𝑎𝑗and 𝑏𝑗;  𝑗 = 0,1,2,3, under the assumption of accelerated 

Weibull distribution. The hyperparameters (𝜇𝑎𝑗
, 𝜎𝑎𝑗

) and (𝜇𝑏𝑗
, 𝜎𝑏𝑗

) associated with 𝑎𝑗 and 𝑏𝑗 can be 

obvious from (14) and (15) for all 𝑗. The prior distributions associated with the accelerated 

lognormal parameters were also managed in an identical manner.  

We next considered simulation of posterior samples from (16) and (17) using Metropolis 

algorithm as per details given in Section 3, considering a single long run of the chain in each case. 

For the implementation of the Metropolis algorithm, we considered an eight-dimensional normal 

distribution with mean vector 𝜂 and covariance matrix Σ as a candidate generating density. We, 

however, used a scaling constant 𝑐𝑠 = 0.5 with Σ to minimize number of rejections of generated 

values from the candidate generating density (see also Upadhyay et al. (2001)). As initial values for 

starting the chain, we used 𝜂̂ as a vector of ML estimates of 𝜂 assuming 𝜂 = (𝑎, 𝑏) for the posterior 

based on accelerated Weibull distribution and 𝜂 = (𝑎′, 𝑏′) for the posterior based on accelerated 

lognormal distribution. Thus ML estimates were obtained using the likelihood functions given in 

(7) and (8) corresponding to Weibull and lognormal based accelerated models, respectively. 

Similarly, the initial values for Σ was obtained as Σ̂ in each case where Σ̂ is Hessian based 

approximation corresponding to (7) and (8) evaluated at corresponding ML estimates 𝜂̂. The ML 

estimates of the model parameters are also reported in Tables 3 and 4 for the accelerated Weibull 

and the accelerated lognormal distributions, respectively.  

Once the simulated chain started producing, we monitored the convergence based on 

ergodic averages. This was achieved at about 50K iterations for both the models. Once the 

convergence was achieved, we took a random sample of size 4K separately from the two posteriors 

by choosing every 10th observation. This gap among the generating variates made serial 

correlations almost negligible. Thus we finally obtain samples from the joint posteriors (16) and 

(17), each component of which will form samples from the corresponding marginal posterior. Once 

these samples are obtained, the desired sample based posterior inferences can be easily drawn (see 

also Upadhyay et al. (2001)). 

The simulation of posterior samples corresponding to missing data situation can be a 

routine extension of non-missing case described above. As mentioned in Section 3 (see also 

subsection 2.1), we need to create hybridization with the help of idea inherent in the Gibbs sampler 

algorithm where the corresponding full conditional distributions can be managed as discussed in 

Section 3 (see also Sharma and Upadhyay (2018a)).  

The estimated posterior modes for various parameters in the two models and the 

corresponding highest posterior density (HPD) intervals with coverage probability 0.95 are 

reported in Tables 3-4, where the values in parentheses correspond to the same for the missing 

data cases. It can be seen that the estimated posterior modes are, in general, close enough to the 

corresponding ML estimates, a conclusion that is normally appreciated by the classical 

statisticians. Besides, it conveys the fact that the subjective opinion provided by the experts does 

not lead to strong prior distributions and the inferences are mostly data dependent. We also 

observe that the estimates obtained under the missing data cases are, in general, close enough to 
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those corresponding to non-missing cases for both the models. This, in turn, ensures that we do not 

loose enough if some of the observations are missing during the experimentation. Among other 

important conclusions, it can be seen that the estimated 0.95 HPD intervals are mostly narrow 

reflecting small variability among the different variates. We do not go into the details of other 

conclusions although the same can be easily drawn once the posterior samples are made available.  

 

Table 3: ML estimates and estimated posterior characteristics for the parameters of accelerated 

Weibull distribution (the values in parentheses correspond to missing data case) 

 

 Parameter  ML estimate  Posterior mode  0.95 HPD interval 

𝑎0  2.944  2.950  

 (2.945)  

 2.878, 3.033  

 (2.877, 3.035)  

𝑎1  0.049  0.041 

 (0.039)  

 -0.065, 0.256  

 (-0.072, 0.262)  

𝑎2  0.622  0.594 

 (0.608)  

 0.398, 1.017  

 (0.412, 1.046)  

𝑎3  -0.002  -0.002 

 (-0.002)  

 -2.210e-03, -0.001  

 (-2.221e-03, -0.001)  

𝑏0  2.205  2.214 

 (2.207)  

 1.880, 2.572  

 (1.889, 2.573)  

𝑏1  -0.088  -0.128 

 (-0.116)  

 -0.620, 0.285  

 (-0.622, 0.279)  

𝑏2  -0.816  -0.755 

 (-0.836)  

 -1.422, -0.320  

 (-1.481, -0.318)  

𝑏3  -0.002  -0.002 

 (-0.002)  

 -0.004, -0.001  

 (-0.004, -0.001)  

 

 

Table  4: ML estimates and estimated posterior characteristics for the parameters of accelerated 

lognormal distribution (the values in parenthesis correspond to missing data case) 

 

 Parameter  ML estimate  Posterior mode  0.95 HPD interval 

𝑎′0  2.900  2.906  

 (2.932) 

 2.829, 3.005  

 (2.824, 3.035)  

𝑎′1  0.096  0.095 

 (0.087) 

 -0.037, 0.285  

 (-0.052, 0.344)  

𝑎′2  0.552  0.540 

 (0.567) 

 0.390, 0.781  

 (0.368, 0.957)  

𝑎′3  -0.002  -0.002 

 (-0.002) 

 -2.534e-03, -1.589e-03  

 (-2.485e-03, -0.001)  

𝑏′0  -1.720  -1.751 

 (-1.649) 

 -2.113, -1.406  

 (-2.088, -1.325)  

𝑏′1  0.283  0.307 

 (0.245) 

 -0.065, 0.771  

 (-0.128, 0.803)  

𝑏′2  0.787  0.768 

 (0.812) 

 0.407, 1.235  

 (0.362, 1.376)  

𝑏′3  0.001  0.001 

 (0.002) 

 -0.001, 0.003  

 (-8.421e-05, 0.004)  
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The simulated marginal posterior samples corresponding to the model parameters can be 

further utilized to obtain various survival characteristics such as the survival probability at a 

specified point of time, hazard rate and mean time to appearance of tumours (MTAT), etc. 

associated with the mice involved in testing. We have, however, worked out for MTAT only based 

on the final simulated posterior samples. The MTAT under the accelerated Weibull distribution is 

𝜃Γ (
1

𝛽
+ 1) where the scale parameter 𝜃 = exp(𝑎0 + ∑3

𝑗=1 𝑎𝑗𝑥𝑗) and the shape parameter 𝛽 =

exp(𝑏0 + ∑3
𝑗=1 𝑏𝑗𝑥𝑗). Similarly, the MTAT under the accelerated lognormal distribution is exp (𝜇 +

𝜎2

2
) where 𝜇 = 𝑎′0 + ∑𝐽

𝑗=1 𝑎′𝑗𝑥𝑗 and 𝜎 = exp(𝑏′0 + ∑𝐽
𝑗=1 𝑏′𝑗𝑥𝑗). It may be noted here that while 

writing the expression for MTAT, we have simplified the notations considerably. As a result, the 

term 𝑥𝑗 associated with the model parameters corresponds to the 𝑗𝑡ℎ covariate, where 𝑗 = 1,2,3. 

Thus 𝑥1 corresponds to two levels of strain (𝐹1=0 and 𝐹2=1), 𝑥2 corresponds to sex of mice (0 for 

females and 1 for males) and 𝑥3 corresponds to four doses of chemical (60 ppm, 120 ppm, 200 ppm 

and 400 ppm). 

The estimated posterior characteristics for MTAT at different levels of three covariates are 

reported in Table 5 under the assumption of accelerated Weibull distribution. The values in 

parentheses represent the results corresponding to missing data case. We have also reported the 

corresponding ML estimates for MTAT in order to have a comparison of our results with the 

classical ones (see Table 5). It can be seen that there is appreciable difference between the MTAT 

estimates corresponding to two sexes and the female mice are more susceptible to the chemically 

developed tumours than the male mice for both the levels of strains and all the four doses of the 

chemical. The results given in Table 5, however, do not stipulate appreciable difference between 

the two strains of offspring for both the sexes at all the four doses of chemical. There is yet another 

important finding that can be seen from Table 5. The mice receiving the higher dose of the 

chemical are more susceptible to the chemically developed tumour, a conclusion that is absolutely 

in accordance with dose-response relationship. Besides, we also obtained the estimates for MTAT 

under the assumption of accelerated lognormal distribution. More or less similar results were 

observed in this case as well except a few marginal differences in the estimates for male mice at 

two levels of strains of offspring. We do not report these results presuming that these are not going 

to offer any additional benefit rather unnecessarily increase the length of paper.  

We next focus on the estimates of MTAT in missing data case. We can see that both point 

and interval estimates are close enough to the corresponding estimates in non-missing data case 

when the considered distribution is accelerated Weibull (see Table 5). More or less similar 

observations were marked when the considered distribution was accelerated lognormal except for 

some of the estimated HPD intervals for male mice. These HPD intervals were found to be wider, 

in general, than the corresponding HPD intervals for non-missing data case. Obviously, this 

finding is important in the sense that it provides large variability among the MTAT estimates 

associated with the male mice in missing data case. In this very sense, the accelerated Weibull 

distribution can be visualized to be a better candidate than the accelerated lognormal distribution 

simply because the former distribution offers more or less stable estimates for MTAT almost in 

every considered situation. 

Before we end the section, we compare the two accelerated distributions formally using 

DIC and EPPL measures discussed in Section 4. The DIC is evaluated on the basis of 4K posterior 

samples from each of the two posteriors (16) and (17) associated with the accelerated Weibull and 

the accelerated lognormal distributions, respectively. For the evaluation of EPPL, we generated 4K 

predictive data sets exactly in the same form and size as the observed data. It may be noted that 

these 4K predictive samples were obtained with the help of simulated posterior samples 

corresponding to each of the two considered distributions. DIC and EPPL were similarly evaluated 

for missing data case as well. The evaluated values of the two measures are reported in Table 6.  
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Table  5: ML estimates and estimated posterior characteristics for MTAT under the accelerated 

Weibull distribution (the values in parentheses correspond to missing data case) 

 

Strain Sex 

Dose of 

chemical  

(in ppm) 

ML estimate 
Posterior  

mode 

0.95 HPD 

interval 

F1  F  60  16.122  16.189 

 (16.237) 

 15.387, 17.198  

 (15.305, 17.146)  

 120  14.448  14.437 

 (14.495) 

 13.968, 15.085  

 (13.898, 15.031)  

 200  12.476  12.443 

 (12.429) 

 11.939, 12.919  

 (11.941, 12.915)  

 400  8.632  8.474 

 (8.545) 

 7.539, 9.435  

 (7.490, 9.360)  

F1   M  60  28.722  27.742 

 (27.851) 

 23.241, 42.981  

 (23.206, 44.484)  

 120  25.752  24.723 

 (25.005) 

 20.978, 38.108  

 (20.415, 38.900)  

 200  22.286  21.256 

 (21.681) 

 17.824, 32.919  

 (17.747, 33.388)  

 400  15.686  17.036 

 (15.692) 

 12.063, 27.602  

 (12.074, 28.903)  

F2  F  60  16.885  16.622 

 (16.665) 

 15.499, 20.234  

 (15.387, 20.385)  

 120  15.139  14.997 

 (14.932) 

 13.787, 17.981  

 (13.763, 18.152)  

 200  13.085  12.985 

 (12.854) 

 11.813, 15.706  

 (11.655,15.672)  

 400  9.077  8.901 

 (8.953) 

 7.535, 11.343  

 (7.365, 11.208)  

F2   M  60  30.052  30.757 

 (31.216) 

 25.030, 44.570  

 (24.330, 45.438)  

 120  26.958  27.639 

 (27.597) 

 22.464, 39.396  

 (22.039, 40.562)  

 200  23.354  23.829 

 (23.699) 

 19.539, 34.449  

 (19.515, 35.736)  

 400  16.531  17.563 

 (16.883) 

 13.652, 31.258  

 (13.692, 33.687)  

 

 

Table  6: DIC and EPPL values under the accelerated Weibull and the accelerated lognormal 

distributions (the values in parentheses correspond to missing data case) 

 

  Distribution   DIC  Under EPPL criterion  

 LDF   LDC   EPPL  

Accelerated Weibull  599.943  

 (600.012) 

 38.066 

 (38.009) 

 28.991 

 (29.110) 

 67.057  

 (67.119)  

Accelerated lognormal  600.276  

 (611.988) 

 38.315 

 (49.368) 

 28.306 

 (29.987) 

 66.621  

 (79.355)  
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As regards the results, it can be seen that the values of DIC and those of EPPL under the 

two distributions are almost close to each other and, therefore, one may consider either of the two 

distributions for the considered dataset. It may, however, be seen that the accelerated Weibull 

distribution performs better than the accelerated lognormal distribution even in case some of the 

observations are missing. So we prefer to conclude in favour of the accelerated Weibull 

distribution although it offers slight poor loss due to complexity and hence the overall loss for non-

missing data case. The difference is, however, marginal only when compared to the corresponding 

values obtained under the accelerated lognormal distribution. 

 

6  Conclusion 
 

The paper is a successful attempt of analyzing current status data when exact lifetimes are not 

observable rather the information is available only in the form of failure status or surviving. The 

other novel feature of the paper is the use of accelerated lifetime models, namely the two-

parameter Weibull and the two-parameter lognormal distributions when both the parameters are 

allowed to be affected by the covariates or the stress variables occurring in the experimentation. 

Normally, in such situations only the scale parameter of the model is allowed to be varied in 

accordance with the covariates and the other shape parameter is kept constant. Of course, the 

resulting distributions are complex but not a deterrent issue when allowed to be dealt by sample 

based approaches to Bayesian computation. The results on model comparison considered in the 

paper finally recommend the accelerated Weibull model when both missing and non-missing 

datasets are allowed to be entertained. If, however, there is no missing data in the experimentation, 

one can consider either of the two models for drawing the necessary inferences. 
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Abstract 
 

Usually, systems and components are described as being in one of two modes, “on” 

or “off.” Such systems are described using binary structure functions. In multistate 

systems (MSS), components can be in more than two states—for example, there can 

be partially failed or partially operating modes.  The system state can be described 

by continuously many values. A system that can have different task performance 

levels is named multi-state system (MSS).  In this paper, we present a technique for 

solving a family of Continuous MSS reliability problems. A universal generating 

function (UGF) method is proposed for fast reliability estimation of continuous 

MSSs. The UGF method provides the ability to estimate relatively quickly different 

MSS reliability indices for series-parallel, parallel-series and bridge structures. It can 

be applied to MSS with different physical nature of system performance measure. 

 

Keywords: multi-state system,  universal generating function, reliability  

 

 

I. Introduction 
 

Many technical systems are distinguished by their structural complexity. They can perform their 

task at several different levels like  the system failure can lead to decreased ability to perform the 

given task without moving to complete failure. Such a system element can also perform its task 

with some different levels in between perfect functioning to complete failure. Such systems are 

named as Multistate Systems (MSS). For example, the generating unit in power systems has its 

nominal generating capacity, which is fully available if there are no failures. Some types of failures 

can cause complete unit outage while other types of failures can cause a unit to work with reduced 

capacity.  For example, in a power generation system, the generator can produce 100MW, later on, 

due to some technical problem, it may produce 80MW and so on. The physical characteristics of 

the performance depend on physical nature of the system outcome. One need to choose reliability 

procedures according to the physical performance of system such as productivity, capacity etc. 

Therefore, it is important to measure performance rates of system components by their 

contribution into the entire MSS output performance. Continuous materials or energy transmission 

systems or oil transportation systems, power generation systems etc are examples of MSS. Billinton 

and Allan  (1996), Aven (1990) discussed the flow network problem, which provide the desired 

throughput or transmission capacity for continuous energy, material or information flow. There 
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may be components in series or parallel in the system. In redundancy optimization problems, data 

processing speed can also be considered as a performance measure and the main task of system is 

to complete the task within the desired time, see Levitin et.al (1998) and Lisnianski et.al (2000). 

Several type of  MSS were considered in Gnedenko and Ushakov (1995). Several properties of 

MSSs and importance measures in MSSs are considered in Chacko and Manoharan (2008, 2011).  

A rigorous work on Binary state system can be seen in Barlow and Proschan (1975). Many 

standard works on reliability theory adopt a framework in which systems and components can be 

in only one of two modes ‘on’ or ‘off’. Consequently, the system structure function is a binary 

function of binary variables. Most of the standard results in Barlow and Proschan (1975) are set in 

this framework. These structure functions fail to model important situations when systems have 

redundant standby components. Furthermore, if the components or systems can be in intermediate 

modes besides the two extremes of completely functioning or completely failed, the above 

framework does not suffice. To remedy this situation, authors such as Barlow and Wu (1978), El. 

Neweihi et al. (1978), and Griffith (1980) have considered situations in which components and 

systems can assume a finite number of values. In these works, the basic concepts of MSS reliability 

were formulated and  the system structure function was defined for coherent MSS.  The research 

on such systems – called ‘multi-state systems’ is still continuing. The aim of this research work is to 

advance the state-of-the art of the highly promising multi-state reliability theory so that it can be 

applied to design and maintenance of practical engineering systems. In Griffith (1980), the 

coherence definition was generalized and three types of coherence were studied. The reliability 

importance was extended to MSS from the binary state system in Butler (1979). Concepts of MSS 

importance are also discussed in Block and Savits (1982).  

The steady state behavior of Markov systems is very useful in reliability analysis. The 

steady-state behavior of multi-state monotone systems was considered by applying the theory for 

stationary and synchronous processes with embedded point process in Natvig and Streler (1984). 

The modeling technique was suggested by Wood (1985), which allows existing binary algorithms 

for block diagrams and fault trees to be applied to multi-state system.  The concept of equivalent 

behavior was introduced in Garriba et.al (1980) which provide the analysis of multiple-valued 

logic tree  aimed at eliciting prime implicants.  These prime implicants are the multiple-valued 

logic analogue of minimal cut sets encountered in binary fault trees. The prime implicants were 

also successfully used in dependability analysis of software controlled systems Yau (1998). As in 

the Binary state system reliability analysis availability and unavailability plays a very major role in 

system maintenance through corrective maintenance of MSSs. A method for the two-sided 

estimation of MSS unavailability was proposed  based on the binary model, Pouret et.al (1999).  

Large system analysis using extreme value theory is important in the MSS theory. An asymptotic 

approach to the MSS reliability evaluation was presented in Kolowrocki (2000). Chacko and 

Manoharan (2009), Chacko et. al. (2018) considered MSSs reliability problems like ageing 

properties with semi-Markov modeling. 

MSS reliability assessment are based on three different approaches Aven (1993): the 

structure function approach - where Boolean models are extended for the multi-valued case, the 

stochastic process (mainly Markov) approach, and Monte-Carlo simulation. The structure function 

approach is also extremely time consuming and difficult to deal with. The stochastic process 

method can be applied only to relatively small MSS, because the number of system states increases 

drastically with the increase in number of system components. A Monte-Carlo simulation model 

may be a fairly true representation of the real world, but the main disadvantage of the simulation 

technique is the time and expense involved in the development and execution of the model Aven 

(1993). This is an especially important drawback when the optimization problems are solved. In 

spite of these limitations, the above mentioned methods are often used by practitioners, for 

example in the field of power systems reliability analysis Pouret et.al. (1999). 
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MSSs reliability analysis is more complex in reality. In real-world problems of MSS reliability 

analysis, the great number of system states that need to be evaluated makes it difficult to use 

traditional techniques in various optimization problems. The universal generating function (UGF) 

technique is fast enough to be used in these problems in discrete state MSSs, Ushakov (1986) and 

Ushakov (1988). In addition, this technique allows practitioners to find the entire MSS performance 

distribution based on the performance distributions of its components. An engineer can find it by 

using the same procedures for MSS with different physical nature of performance. In the following 

sections the application of the UGF to MSS reliability analysis is considered especially for 

continuum state systems.  The discretization of continuous systems make variations in reliability 

analysis. The results of measure theory and probability theory will become applicable while using 

continuous performance variables. So it is necessary to study continuous MSSs and introduce  

analysis tools.  

Section II provided the UGF for continuous MSSs. Performance measure evaluation is given 

in section III. Numerical example is given in section IV. Conclusions are given in final section. 

 

II. Performance Measures of Continuous MSSs 
 

Consider a system consisting of n units. We suppose that any system unit i can have 

continuous states: from complete failure up to perfect functioning. The entire MSS system has 

continuous states as determined by the states of its units. Denote a MSS state at instance t as Y(t)

],0[ b , where Y(t)=0 corresponds to the worst state and Y(t)=b corresponds to the best state. The 

performance level Gy is associated with each state ],0[y b  and GyGs if y>s. The MSS behavior 

is characterized by its evolution in the space of states. To characterize numerically this evolution 

process, one has to determine the MSS reliability indices. These indices can be considered as 

extensions of the corresponding reliability indices for a binary-state system.  

The Continuum MSS reliability measures were systematically studied Brunelle and Kapur 

(1999). In this paper, we consider three measures which are most commonly used by engineers, 

namely MSS availability, MSS expected performance, and MSS expected unsupplied demand (lost 

throughput).  

MSS availability A(t) is the probability that the MSS will be in the states with performance 

level greater than or equal to W at a specified moment t>0, where the MSS initial state at the 

instance t=0 is the best state K or some other predetermined state M (G(y)>W).  For large t the 

initial state has practically no influence on the availability. Therefore, the index A is usually used 

for the steady state case and is called the stationary availability coefficient, or simply, the MSS 

availability. MSS availability is the function of required demand W.  It may be defined as 





W

dyyf )(A(W)      (1) 

Where f(y) is the  probability density function of MSS performance state y. The resulting integral is 

taken only for the states where MSS performance is greater than or equal to the specified demand 

W.  

In practice, the system operation period T is often partitioned into M intervals, Tm 

(1mM) and each Tm has its own demand level Wm. The following generalization of the 

availability index as in Levitin et.al. (1998) is used in these cases: 

,.q)A(WE
M

1m

mmA 


    (2) 

where 
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



M

1m

mmm T/Tq      (3) 

is the steady state probability of demand level m. 

For example, in power system reliability analysis, the index (1-EA) is often used and treated 

as loss of load probability, see Billinton and Alen (1996). This measure is commonly used in power 

system reliability analysis. The MSS performance in this case is interpreted as power system 

generating capacity.  

The value of MSS expected performance could be determined as 

𝐸𝐺 = ∫ 𝐺(𝑦)𝑓(𝑦)𝑑𝑦
𝑏

𝑜
.   (4) 

One can note that expected MSS performance does not depend on demand W. EG defines the 

average productivity (capacity) or processing speed of the system.  

When penalty expenses are proportional to the unsupplied demand, the expected 

unsupplied demand EU may be used as a measure of system output performance. This index may 

be presented by the following expression: 

𝐸𝑈 = ∑ ∫ max(𝑊𝑚 − 𝐺(𝑦) , 0) 𝑓(𝑦)𝑑𝑦. 𝑞𝑚
𝑏

0
𝑀
𝑚=1 ,   (5) 

Examples of the EU measure are the unsupplied power in power distribution systems and 

expected output tardiness in information processing systems. In this case EU may be interpreted as 

expected electric power unsupplied to consumers. 

In the following section we consider MSS reliability assessment based on MSS reliability 

indices based on the UGF technique.  

 

III. Universal Generating Function of Continuous MSSs 

 
The UGF was introduced in Ushakov (1986) and principles of its application were formulated in 

Ushakov (1987) and Ushakov (1988). The most systematical description of mathematical aspects of 

the method can be found in Ushakov (2000), where the method is referred to as generalized 

generating sequences approach. A brief overview of the method with respect to its applications 

for MSS reliability assessment can be seen in Levitin et.al (1998). Chacko and Manoharan (2011) 

discussed application of UGF in finding joint importance measures of MSSs. The method was first 

applied to the real power system reliability assessment and optimization in Lisnianski et.al 

(1994,1996) 

For MSS which continuous states, there can be different levels of output performance at 

each time t: G(t)G={G} and the system output performance distribution (OPD) can be defined by 

two sets G and f(g(t)) . 

The u-function of a continuous  random variable Y is defined as  

,)()( dyyfzzu

b

a

y

     (6) 

where the variable G lies between a and b   and f(g) is the  is the probability density function of  

G.  u-function uj(z) can be introduced to represent the performance distribution of element j by 

relating the probabilities of each state yj,  0 ≤ 𝑦 ≤ 𝑏𝑗 , to the corresponding performance  𝐺𝑦𝑗  of the 

element in that state: 

.)()(
0


j

j

b

jj

y

j dyyfzzu      

  

 To obtain the u-function of a subsystem containing two elements, composition operators are 

introduced. All the composition operators take the form 
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ji

b b

jjii

yy

b

jjj

y

b

iiiji dydyyfyfzdyyfzdyyf
y

zzuzu
i j

ji

j

j

i

i

  
0 0

),(

00

)()()()()()(


 

     The definition of the function (.) strictly depends on the physical nature of the system 

performance measure and on the nature of the interaction of the system elements, for example for 

a series system, min(.,.)(.)  , and for a parallel system,  max(.,.).or(.,.)sum(.)   Because, 

the total performance of a pair of elements connected in parallel is equal to the sum of the 

performance rates (e.g. productivity and capacity) of the individual  and when several elements 

are connected in series, the element with the lowest performance becomes the bottleneck of the 

subsystem: in other words, the performance of the subsystem is equal to the minimum of the 

performances of the individual.  

 Consecutively applying the operators to all elements and  replacing pairs of macro-elements 

by equivalent elements one can obtain the u-function representing the performance distribution of 

the entire MSS. Obtain the u-functions of all of the system elements. If the system contains a pair of 

elements connected in parallel or in series, replace this pair with an equivalent macro-element with 

u-function obtained by ‘sum’ or ‘min’ operator for  (.). If the system contains more than one 

element, do it again and again. Then, determine the u-function of the entire series-parallel system 

as the u-function of the remaining single equivalent macro-element. The system probability and 

performance density functions f(.), g  are represented by the coefficients and exponents of this u-

function. 

 In order to use the UGF in evaluation in various reliability measures, we consider the 

following approach.  Let  𝑔𝑗𝑦𝑗 be the output performance of multistate system when  element j is in  

state 𝑦𝑗 while the rest of the elements evolve stochastically among their corresponding states with 

performance distributions. 𝑓𝑖(𝑦𝑖), 0 ≤ 𝑦𝑖 ≤ 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑛.  Assume that  the element j is in one of its 

states 𝑦𝑗 with performance not greater than  . We denote by 𝑦𝑗𝛼  
 the state  in the ordered set of 

states of element j whose performance 𝑔𝑗𝑦𝑗𝛼  is equal or immediately below  , i. e., 𝑔𝑗𝑦𝑗𝛼 ≤ 𝛼 ≤

𝑔𝑗𝑦𝑗𝛼+ . The conditional probability of the element j being in a generic state k characterized by  a 

performance 𝑔𝑗𝑦𝑗𝛼  
not greater than a pre-specified level threshold   is  

𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 ≤ 𝑔𝑗𝑦𝑗𝛼) =
𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
 

. 

Similarly, the conditional probability of the element j being in a generic state k 

characterized by  a performance 𝑔𝑗𝑦𝑗𝛼 
greater than a pre-specified level threshold  𝛼 is  

𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 > 𝑔𝑗𝑦𝑗𝛼) =
𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
 

In this model we  get jOPM 

 :  

 

𝑂𝑃𝑀≤𝛼
𝑗 = ∫ 𝑌𝑗

𝑔𝑗𝑦𝑗𝛼

0

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 ≤ 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑌𝑗

𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗  

, 

Similarly, we define as jOPM 
: 

. 

𝑂𝑃𝑀>𝛼
𝑗 = ∫ 𝑌𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 > 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑌𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗 

 In order to obtain the state space restricted measures, one has to modify the UGF of 

elements as follows, 

𝑈≤𝛼𝑗 = ∫ 𝑧𝑦𝑗
𝑔𝑗𝑦𝑗𝛼

0

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 ≤ 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑧𝑦𝑗
𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗 
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𝑈>𝛼𝑗 = ∫ 𝑧𝑦𝑗
𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

 𝑓𝑗 (𝑌𝑗 = 𝑦𝑗|𝐺𝑗 > 𝑔𝑗𝑦𝑗𝛼) 𝑑𝑦𝑗 = ∫ 𝑧𝑦𝑗
𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗 

 

𝑈𝑗,𝑘
≤𝛼,≤𝛽 = ∫ 𝑧𝑦𝑗

𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗∫ 𝑧𝑦𝑘

𝑔𝑘𝑦𝑘𝛽

0

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘 

𝑈𝑗,𝑘
>𝛼,>𝛽 = ∫ 𝑧𝑦𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗∫ 𝑧𝑦𝑘

𝑏𝑘

𝑔𝑘𝑦𝑘𝛽

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

1 − 𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘  

𝑈𝑗,𝑘
≤𝛼,>𝛽 = ∫ 𝑧𝑦𝑗

𝑔𝑗𝑦𝑗𝛼

0

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗∫ 𝑧𝑦𝑘

𝑏𝑘

𝑔𝑘𝑦𝑘𝛽

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

1 − 𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘 

𝑈𝑗,𝑘
>𝛼,≤𝛽 = ∫ 𝑧𝑦𝑗

𝑏𝑗

𝑔𝑗𝑦𝑗𝛼

𝑓𝑗(𝑌𝑗 = 𝑦𝑗)

1 − 𝐹(𝑔𝑗𝑦𝑗𝛼)
𝑑𝑦𝑗  ∫ 𝑧𝑦𝑘

𝑔𝑘𝑦𝑘𝛽

0

𝑓𝑘(𝑌𝑘 = 𝑦𝑘)

𝐹(𝑔𝑘𝑦𝑘𝛽)
𝑑𝑦𝑘 

 

when evaluating UGF of  

    
  ,,,, ,,,,,, ijijijijjjii OPMandOPMOPMOPMOPMOPMOPMOPM . 

   

Having MSS OPD, one can obtain the system availability for the arbitrary t and W using the 

following operator A: 

dyWtytyfWdytyfZWztUWtA

bb

y

AMSSA ))(())((),)((()),,((),(
00

         (7) 

where 









.0x,0
,0x,1

)x(                (8) 

The expected system output performance value during the operating time can be obtained for 

given UMSS(z) using the following G operator: 

dytyftydytyfZztUtE

bb

y

GMSSGG  
00

)(()())((()),(()(         (9) 

In order to obtain the expected unsupplied demand EU for the given UMSS(z) and constant demand 

W according to (4), the following U operator should be used: 

dytyftyWWdytyfZztUtUE

bb

y

UMSSU  
00

)(())(,0max(),)((()),(()( 

       





M

m

mMSSUm WzUqEU
1

)),(()( W ,                                                (10) 

where 

 

b

m

b

m

y

UmMSSUm dytyftyWWdytyfZWzUWEU
00

))(())(,0max(),)((()),(()( 

Consider, for example, two power system generators with nominal capacity 100 MW as two 

separate MSS, Billonton (1996). In the first generator some types of failures require the capacity to 

be reduced to 60 MW and some types lead to the complete generator outage. In the second one 

some types of failures require the capacity to be reduced to 80 MW, some types lead to capacity 

reduction to 40 MW and some types lead to the complete generator outage. So, there are three 

possible relative capacity levels that characterize the performance of the first generator: 

Universal Generating function (UGF) is found to be a useful toll in determining the system 

performance for the MSSs. Real world MSS are often very complex and consist of a large number 

of elements connected in different ways. To obtain the MSS OPD and the corresponding u-
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function, for the continuum state MSSs, we must develop some rules to determine the system u-

function based on the individual u-function of its elements.  

In order to obtain the u-function of a subsystem (component) containing a number of 

elements, composition operators are introduced. These operators determine the subsystem u-

function expressed as integral for a group of elements using simple algebraic operations over 

individual u-functions of elements. All the composition operators for two different elements take 

the form 

           

  
1 2
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0 0
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                                                                                                                                                     (11) 

where u1(t,z), u2(t,z)  are individual U-function of elements and (.) is a function that is defined 

according to the physical nature of the MSS performance and the interactions between MSS 

elements. The function (.) in composition operators expresses the entire performance of a 

subsystem consisting of different elements in terms of the individual performance of the elements. 

The definition of the function (.) strictly depends on the type of connection between the elements 

in the reliability diagram sense, i.e. on the topology of the subsystem structure. It also depends on 

the physical nature of system performance measure.  

For example in MSS, where performance measure is defined as capacity or productivity 

(MSSc), the total capacity of a pair of elements connected in parallel is equal to the sum of the 

capacities of elements. Therefore, the function (.) in composition operator takes the form: 

(g1,g2)=g1+g2.     (12) 

For a pair of elements connected in series the element with the least capacity becomes the 

bottleneck of the system. In this case, the function (.) takes the form: 

(g1,g2)=min(g1,g2).    (13) 

In MSS where the performances of elements are characterized by their processing speed 

(MSSs) and parallel elements cannot share their work, the task is assumed to be completed by the 

group of parallel elements when it is completed by at least one of elements. The entire group 

processing speed is defined by the maximum element processing speed: 

           (g1,g2)=max(g1,g2).                     (14) 

If a system contains two elements connected in series, the total processing time is equal to the 

sum of processing times t1 and t2 of individual elements:                      T=t1+t2=g-11+g-12.

 Therefore, the total processing speed of the system can be obtained as T-1=g1g2/(g1+g2) and 

the (.) function for a pair of elements is defined as follows: 

(g1,g2)=g1g2/(g1+g2).    (15) 

 operators were determined in Levitin et.al (1998), Lisnianski et.al (2000) for several important 

types of series-parallel systems MSS. Some additional composition operators were also derived for 

bridge structures Levitin and Lianianski (1998). 

Applying the  operators in sequence, one can obtain the u-function representing the system 

performance distribution for an arbitrary number of elements connected in series, in parallel, or 

forming bridge structure. 

If Y1 follows Exp(θ) and Y2 follows Exp(μ), then   
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for parallel structure 
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Putting z=1, we get output performance for parallel structure. Similarly for  series system. 
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IV. Numerical Example 
 

Time to failure of two components an a system is given in table 1. The availability  is 

estimated if the components are connected in series and in parallel. Both of the data follows 

exponential distribution, since the failures are due to shocks occurred during operation. The 

parameters are estimated and availability formula is obtained. 

 

The data is found to be follows Exponential distribution with mean 19.22 and 27.54 respectively. 

 

If the components are connected in series, the availability would be, at  w,
w

Series eztuztuA 76.46
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 If the components are connected in parallel, the availability would be, at  w,
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The availability for various w values van be easily obtained.  

 

Table 1: Time to failure of two components (1 and 2) 

 

Time of failure (Component 1) Time of failure (Component 2) 

4.6 15.0 

5.6 7.2 

6.6 8.5 

7.6 9.8 

8.6 11.2 

9.7 32.0 

10.8 14.0 

11.9 15.5 

13.1 18.0 

14.3 18.5 

17.0 17.0 

16.7 21.8 

18.0 53.0 

19.4 72.0 

20.8 27.0 

22.2 30.0 

22.0 22.0 

25.2 32.7 

26.8 35.0 

28.4 36.9 

31.0 31.0 

31.9 41.4 

33.7 43.8 

36.0 36.0 

39.0 39.0 

 

V. Conclusions 
         

 The Universal Generating Function for continuous performance distributions are introduced. 

Discretization of continuous system becomes sometimes more unrealistic inferences. Method for 

analyzing continuous MSSs is desired.  In this paper, we have made an attempt to deal with 

continuous MSSs, which will guide to obtain performance measures of complex MSSs. More 

analysis has to be explored in future.  
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Abstract 

 

Mission-based subsystem reliability requirements are derived for a parent 

distributed network monitoring system operating under circumstances that differ 

from standard analytical constructs in a number of ways.  First, the system 

comprises a hierarchy of elements of different functionalities individually adhering 

to distinct operational profiles.  Second, some constituent elements only need to 

perform during relatively small and non-predetermined portions of the overall 

system mission accomplishment window.  Third, failed elements can be restored or 

replaced in time to enable additional opportunities for satisfying mission needs.   
 

Keywords: Distributed Network Monitoring System, Subsystem reliability, 

Operational profile, Mean time between operational mission failures 

 

I. Introduction 
 

A distributed network monitoring system (DNMS) is to be integrated into the current architecture 

of an existing computer network supporting operations across an extensively dispersed 

organization.  The DNMS will provide the capability to regularly check and report on the security 

posture of the devices on the parent network.  A challenge is to establish credible performance 

requirements for the constituent elements of the DNMS – to aid design and implementation 

planning, and to enable reliability demonstration analyses that can accommodate historical DNMS 

element reliability data as well as dedicated DNMS test results at both the element and system 

levels.  To that end, this paper formulates tractable analytical models that plausibly represent 

anticipated DNMS operational and maintenance profiles, which vary by DNMS element type, and 

link DNMS mission performance specifications, as prescribed by organization management, to 

reliability requirements for the individual classes of DNMS elements.   

This setting deviates from standard calculations of system reliability requirements in three 

fundamental ways.  First, the DNMS comprises a hierarchy of subordinate elements of different 

functionalities individually adhering to distinct mission-based operational profiles.  Second, some 

constituent elements only need to perform during relatively small and non-predetermined 

portions of the overall DNMS mission accomplishment window.  Third, a failed element can be 

restored or replaced in time to enable additional chances for satisfying DNMS mission needs, with 

the number of opportunities depending on sub-system and prevailing network support processes.   

mailto:john@smith.com
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While much of the operational functionality of a DNMS element is software centric, the 

composition of DNMS elements includes both dedicated hardware and software whose 

configurations, both in numbers and design, contribute to the reliability ascribed to particular 

ensembles.  For example, higher quality parts and/or redundancy of supporting integral 

equipment and operational processes can be built in to enhance system reliability.  Accordingly, it 

is appropriate to pursue more traditional reliability formulations [1, 2] vice focusing on software 

engineering perspectives [3]. 

Section II sketches the general structure of a DNMS.  Section III describes associated 

operational and maintenance profiles and translates them into tractable reliability modeling 

approaches.  The discussions presented in Section IV elaborate on the analytical constructs and 

outline potential follow-on and related reliability analyses.   

 

II. Architecture 
 

The notional DNMS depicted in Figure 1 is composed conceptually of four constituent element 

types:  

1. Individual automated sensors that scan network hardware and software objects for 

specified defects.  Different types of sensors search for distinctive classes of network 

defects.  For each type of sensor, multiple copies are needed to scan the entire network 

in a reasonably time-efficient manner. 

2. A data interface and integration layer that standardizes, processes, and transmits 

information collected by the automated sensors to base-level dashboards. 

3. Base dashboards that process local network scanning data and display aggregated 

statistics to attendant network security monitors and administrators.   

4. A master dashboard that encapsulates summaries from lower level dashboards and 

enables top-level organization management to track the security posture across the 

entire network.  A back-up master dashboard, operating in a warm standby mode, 

provides redundancy. 

Note that the execution steps essential to DNMS performance are mutually independent 

across the four layers.  Further, within any given layer there are no dependencies among 

individual elements. 

The domain for a single base dashboard encompasses a natural subdivision of the 

network, e.g., a particular division, component, agency, sub-organization, or geographical location.  

In addition to receiving data from subordinate dashboards, the master dashboard supports 

communications down to lower level dashboards and the associated staff.  The redundancy 

provided by the back-up master dashboard enhances organization leadership’s access to DNMS 

information at any critical time point.  Dashboards cannot continuously provide real-time status 

reports for the whole organization, as that would necessitate constant sensor scanning across the 

entire network.  Some acceptable data latency period (e.g., less than a nominal number of 

prescribed business days) is tolerable and is reflected in DNMS operating profiles. 

From the user viewpoint, the new DNMS, while adding modestly to the day-to-day 

operational mission workload of the parent organization, enhances existing network security 

processes.  In particular, dashboard displays illuminate categories of detected network security 

defects and characterize their incidence and distribution across the network.  These promote the 

development of mitigation strategies and prioritized implementations, both at the overall and 

localized network levels.  
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Figure 1: Notional DNMS structure 

 

III. Modeling 
 

The modeling approaches presented here are simplistic, favoring analytical tractability and ease of 

exposition.  (Section IV offers additional discussions.)  For any real world application, one could of 

course incorporate the specifics that characterize the subject network.   

The operational mission of a DNMS is to systematically monitor and regularly report on 

the cybersecurity health of the organization’s network.  This entails regularly scanning the 

network, updating detailed data on detected defects, and summarizing results in dashboard 

displays.  All of these activities are to be accomplished every d days within the backdrop of 

ongoing organization business activities.  The organization-level requirement is that with some 

prescribed high probability, P, the DNMS will successfully complete each of its fundamental 

mission functions within any d-day operational window.  For large networks, nominal values of d 

might be as long as 5-7 days or as short as 2-3 days. To support DNMS design decompositions and 

prospects for reliability inference based on disparate information sources, the mission success 

probability P is parsed into subsystem and component element performance requirements.  Begin 

by writing P = P1 P2 P3 P4, where each distinct Pi, i = 1,2,3,4, is the probability that the i-th level of 

the DNMS (as defined in Section II and portrayed  
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In Figure 1) will successfully execute each of its mission essential functions within an operational 

performance window.  Imposing equal apportionment translates to setting P1 = P2 = P3 = P4 and 

obtaining Pi = 𝑃1/4, i = 1,2,3,4.  This simplification enjoys the practical advantage of framing 

subsequent calculations in terms of a single parameter to be provided by the organization’s 

management.  The subsequent derivations examine each DNMS level separately, consider relevant 

operational and maintenance profiles, and obtain associated performance probability and element 

reliability requirements.  These are translated to specifications of mean time between operational 

mission failures (MTBOMF) for individual DNMS element types, i.e., reliability requirements, a 

format that is more amenable for classes of subsystem design and testing analyses.  

III.i. Sensors 
 

A single sensor is tasked to scan a designated portion of the entire network sometime within each 

d-day performance window, record the collected data, and disseminate to the integration layer.  

These primary functions must be accomplished in time to allowing adequate opportunity for the 

integration layer and dashboards to complete their related data processing within that same d-day 

span.  Accordingly, it is plausible to assume that the sensor undertakes an initial execution attempt 

relatively early within the operational performance window, the probability of it being successful 

in its initial foray is p1, and that success entails operating without fault for t1 consecutive hours 

(small compared to 24d hours).  If the initial attempt is successful, no further sensor operation is 

required until the next d-day performance window arrives.  If unsuccessful, a failure event, or lack 

of a success event, is automatically registered and diagnostic steps are initiated to determine the 

failure cause and restore or replace the sensor to an as good as new state.  This conceptually 

includes the possibility of temporarily reassigning another sensor to complete the subject sensor’s 

original obligations. The subsequent attempt likewise may be successful or fail, with the same 

probabilistic characteristics.  It is assumed that the value of t1 and the capabilities of the DNMS-

specific logistical support processes, including consideration of availability and restoration times, 

could enable up to a1 attempts for the sensor to complete a suitable execution within the desired 

timeframe.  Nominal values of a1 may be in the vicinity of d/2. 

The probability that the sensor successfully completes its operational mission takes the 

form                                                                                                                                       

                                                              1 − (1 − 𝑝1)
𝑎1 =  1 − (1 − 𝑒−𝑡1 𝜃1⁄ )

𝑎1
,                                                    (1)                     

upon imposing a standard exponential time to failure distribution and set the associated MTBOMF 

value equal to θ1.  This result holds for a single sensor.  The DNMS, however, comprises different 

sensor types and varying counts for each.  Say the total number of sensors is n1 (which could be 

hundreds for a large network).  Treating their behaviors as being identical and independent, the 

probability that the entire sensor layer successfully executes a d-day operational mission is   

                                            [1 − (1 − 𝑒−𝑡1 𝜃1⁄ )
𝑎1
]
𝑛1

.                                                (2)                   

Equating this to the prescribed DNMS mission performance requirement of P1 = P1/4, one deduces 

the associated MTBOMF value, i.e., the reliability requirement for a DNMS sensor element:                                                                                                                 

                                                                  𝜃1 = −𝑡1 𝑙𝑛 [1 − (1 − 𝑃
1 4𝑛1⁄ )

1/𝑎1
]⁄ .                                                 (3)    

(Some adhere to the common definition that reliability is the probability that an item will perform 

its intended function for a specified time interval under stated conditions [4] – which, in this 

paper’s setting, aligns more closely to the formulation 𝑝1 = 𝑒
−𝑡1 𝜃1⁄ .)  For the representative set of 

values 𝑡1 = 4 hours, 𝑃 = 0.999, 𝑛1 = 500, and 𝑎1 = 2, (3) yields 𝜃1 = 5654 hours. 
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III.ii. Integration Layer 

 

Three different concepts for how a DNMS integration layer may be structured are considered here.  

Each description is accompanied by its own derivation of the associated MTBOMF requirement 

ascribed to a single resident element. 

 One conceivable structure of an integration layer, Design I, connects each sensor via a 

directed pathway to its assigned base dashboard.  There are n2 = n1 such conduits, each 

determining an individual integration layer element, and the parameter definitions and logic 

underlying the development of (3) transfer straightforwardly to obtain                                                                                                

                               𝜃2,I = −𝑡2 𝑙𝑛 [1 − (1 − 𝑃
(1 4𝑛2)⁄ )

1/𝑎2
]⁄ .                                         (4) 

Considering the values 𝑡2 = 4 hours, 𝑃 = 0.999, 𝑛2 = 500, and 𝑎2 = 3, which vary from their sensor 

level counterparts only in that the number of attempts has been increased from 2 to 3, (4) leads to a 

reduced MTBOMF requirement of 𝜃2,I = 502 hours. 

    A variation of the preceding construct incorporates a set of additional elements, data 

aggregation devices, one interfacing with each unique base dashboard.  The data flow 

corresponding to Design II is sensor  pathway  data aggregation device  base dashboard.  

The equal apportionment principle allocates a mission success probability of 𝑃2
1/2
 to each class of 

elements in Design II.  For an individual conduit element, the required MTBOMF threshold thus 

can be read directly from (4):       

                                                            𝜃2,II(c) = −𝑡2 𝑙𝑛 [1 − (1 − 𝑃
(1 8𝑛2)⁄ )

1/𝑎2
]⁄ .                                        (5)  

Retaining the input specifications from the immediately preceding numerical example, insertion 

into (5) leads to the higher MTBOMF requirement of 𝜃2,II(c) =  633 hours (consistent with the notion 

that the 𝑃 in (4) effectively is increased to 𝑃1/2 in (5)).  For the data aggregation devices, the 

appropriate count of elements is n3, the number of base dashboards (which is substantially smaller 

than n2).  Thus the associated MTBOMF requirement for a single data aggregator is simply 

                                                             𝜃2,II(a) = −𝑡2 𝑙𝑛 [1 − (1 − 𝑃
(1 8𝑛3)⁄ )

1/𝑎2
]⁄ .                                         (6)   

For illustration purposes consider the same set of input parameters as in the two preceding 

examples, but substantially reduce the number of elements down by two orders of magnitude to 

𝑛3 = 5.  The resultant MTBOMF requirement declines considerably to 𝜃2,II(a) = 135 hours.  The 

pairing (5) and (6) assume that their values for the functional operational times and numbers of 

attempts available within the operational performance window are identical to their respective 

counterparts in (4).  If need be, these can be adjusted appropriately.   

Design III retains the presence of the data aggregation devices and accompanying 

assumptions, but excludes the antecedent pathways.  Accordingly, the form of (4) holds and 

revising the relevant count of elements yields 

                                              𝜃2,III = −𝑡2 𝑙𝑛 [1 − (1 − 𝑃
(1 4𝑛3)⁄ )

1/𝑎2
]⁄ .                                        (7) 

Relative to (6), the power of 𝑃 has been increased by a factor of two and the value of 𝜃2,III will 

decrease commensurably.  For the identical parameterization, the application of (7) gives 𝜃2,III =

 107 hours.
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III.iii. Base Dashboards 

 

For modeling purposes, the layout of base dashboards parallels that of Design III for the 

integration layer – as there is a one-to-one correspondence between data aggregation devices and 

base dashboards.  Rewriting (7) to allow for possible changes in operations times and allowable 

number of tries to complete those operations, it follows that                                 

                                                                 𝜃3 = −𝑡3 𝑙𝑛 [1 − (1 − 𝑃
(1 4𝑛3)⁄ )

1/𝑎3
]⁄ ,                                       (8) 

which differs from (7) merely by the multiplicative factor 𝑡3/𝑡2.  Here the value of 𝑡3 includes the 

time needed to ingest the data from the integration layer as well as system on-time for displaying 

data summaries and supporting user needs.  Setting 𝑡3 = 10 hours (2.5 times 𝑡2), 𝑃 = 0.999, 𝑛3 = 5, 

and 𝑎3 = 3, (8) yields a MTBOMF requirement of 𝜃3 = 267 hours – an increase of 150 percent 

compared to the comparable value given for (7). 

 

III.iv. Master Dashboard 

 

The operational profile for the master dashboard includes ingesting summary level data from each 

of the base dashboards, updating the backup master dashboard with that content, enabling 

bilateral information flows with the subordinate dashboards, and supporting continuous 

monitoring of the state of cybersecurity across the entire organization.  The associated number of 

operating hours is 𝑡4 hours per business day, totaling 𝑡4𝑑 hours over a d-day performance window.  

A nominal value for 𝑡4 is 10 hours.  If the master dashboard loses some essential functionality, the 

backup master dashboard will be fully activated to serve as a substitute and maintain operations.  

Since the backup is running in a warm standby mode, the timing and nature of the manifested 

failure will determine whether the up-to-date summary data already has been mirrored in the 

backup, can be transferred from the “failed” master dashboard to the backup, or needs to be 

ingested anew by the backup.   

A pragmatic perspective, consistent with the explicit design choice of a warm standby 

backup vice a hot standby, would not consider a one to two hour period for users of the master 

dashboard being deprived of wholly updated summary data as constituting an operational 

mission failure (OMF).  The corresponding likelihood of mission success is the Poisson probability 

of no more than one failure occurring over the prescribed mission time, and the associated 

MTBOMF requirement value is the unique solution to the equation     

                                                                     𝑃1/4 = 𝑒−(𝑡4𝑑 𝜃4⁄ )[1 + (𝑡4𝑑 𝜃4⁄ )].                                                    (9) 

The right-hand-side of (9) is the standard formula for hot standby reliability [5], and is appropriate 

here under the relaxed interpretation of a master dashboard OMF.  For the values 𝑃 = 0.999, 𝑡4 = 

10 hours, and 𝑑 = 5 days, (9) yields 𝜃1 = 2219 hours. 

To support the development of a model representation that accommodates broader 

definitions of OMFs, the parameter α is introduced to denote the probability that when 

operationalized the backup master dashboard need not ingest updated summary from the base 

dashboards.  Additionally, a harsher definition of master dashboard success is imposed, 

demanding no break in the currency of data summary presentations.  Under this construct, a 

simple generalization of (9) follows:                 

                                                                    𝑃1/4 = 𝑒−(𝑡4𝑑 𝜃4⁄ )[1 + α(𝑡4𝑑 𝜃4⁄ )].                                        (10)                                    

The limiting value α = 1 recovers (9), while the other extreme α = 0 gives no credit whatsoever for 

redundancy.  Setting α = 0.5 and retaining the immediately preceding example inputs, (10) 

determines a substantially higher MTBOMF requirement of 𝜃1 = 99,963 hours.  Even for α = 0.9, 

the calculated MTBOMF is 20191 hours, more than nine times the corresponding threshold 
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presented earlier for (9).  Clearly the stricter interpretation of a master dashboard OMF establishes 

considerably  

 

higher reliability requirements and could motivate transitioning to a hot standby design. 
 

III.v. Combined Dashboards Perspective 

 

Under some circumstances, it may be reasonable in reliability calculations to treat the base and 

master dashboards as being identical.  Relevant considerations include commonality of software 

platforms, software modules, and hardware components, and similarity of failure mode histories.  

When plausible, paired equations from III.3 and III.4 can be consolidated into a single equation 

representative of dashboards as a whole – after reapportionment of the DNMS mission success 

probability.  For example, combining (9) with the appropriate transformation of (8) leads to the 

formulation                                                              

                                           𝑃1/2 = [1 − (1 − 𝑒−𝑡3 𝜃3,4⁄ )
𝑎3
]
𝑛3
𝑒−(𝑡4𝑑 𝜃3,4⁄ )[1 + (𝑡4𝑑 𝜃3,4⁄ )],                (11)          

where the new notation 𝜃3,4 denotes the common MTBOMF value ascribed to all of the 

dashboards.  As the right-hand-side is a monotonically increasing function of 𝜃3,4, (11) possesses a 

unique solution.  From the collection of example input values presented earlier, 𝑃 = 0.999, 𝑡3 = 10, 

𝑎3 = 3, 𝑛3 = 5, 𝑡4 = 10, and 𝑑 = 5, it follows that 𝜃3,4 = 1567 hours.  This determination of the 

MTBOMF requirement lies between the two separate MTBOMF requirements calculated 

previously for (8) and (9), but is considerably closer to the latter, i.e., the influence of the master 

dashboard dominates.  This would be even more so the case if the role of (9) in this example were 

to be replaced by the more demanding (10).  

 

IV. Discussion 
 

This paper develops tractable models for the reliability of a DNMS architecture comprised of four 

distinct levels with varying operational and maintenance profiles.  They offer informative insights 

to contractors responsible for proposing, designing, deploying, and supporting the DNMS, seeking 

to balance design and operational implementation investments against formally prescribed system 

performance demands or possibly even subject to potential monetary penalties were the deployed 

DNMS to incur operational performance shortfalls.  The straightforward model representations 

also can be utilized by DNMS host organizations to establish formal reliability demonstration 

requirements and to guide the development of operational and logistical support processes.   

Additionally, both integrators and customers can utilize the framework to assess emerging 

reliability data from a deployed DNMS and to contemplate specific types of potential design 

refinements, both architectural and procedural.  When conducting dedicated reliability 

demonstrations or scoring emerging results, care must be taken in defining what constitutes an 

OMF.  For example, minor technical glitches that are nearly immediately remedied via automated 

or manually induced system reboots may be practically inconsequential.  Also, follow-on DNMS 

integration activities naturally will occur over the deployed lifetime of the DNMS (e.g., coincident 

with changes to the organization’s landscape or the application of routine software upgrades for 

individual classes of DNMS elements), and these can be expected to engender some initial sets of 

misconfiguration problems and start-up failures.  Whether these should count as OMFs against the 

DNMS or as a separate category of system failures may depend on the purpose of the immediate 

reliability analyses and the specifics of any relevant formal requirements contractually imposed on 

DNMS integrator teams.    

 An alternative to relying on simple models of the type that constructed in this paper 

would be to pursue detailed simulation modeling of end-to-end DNMS performance steps over the 
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course of a subject d-day performance window.  In addition to incurring requisite time and 

resource costs, such an approach would be confronted by several analytical challenges.  First, 

definitive operating  

 

profiles cannot be readily discerned.  Recall that DNMS is an addition to an organization’s existing 

functionalities and primary operational missions.  From that perspective, the daily implementation 

of DNMS is of secondary importance and there are numerous options, depending on the 

organization’s current operational priorities, of when and how DNMS will be activated and 

utilized during a particular d-day cycle.  Likewise, maintenance events integral to DNMS 

diagnostic, replace, and restore processes cannot be precisely characterized.   

The modeling constructs in this paper account for DNMS employment uncertainties via 

simplified but plausible representations that embrace DNMS implementation realities.  The 

emphasis is on total operational time for each DNMS element type, vice detailed event-to-event 

sequencing.  Further, the derivations focus on the number of attempts available to an element for 

completing its assigned operational mission, instead of modeling the detailed specifics of how 

logistical support processes enable multiple tries to be realized.  This is compatible with 

conventional expressions of operational maintenance requirements (e.g., resolve help desk tickets 

by the end of the next business day) and can embrace formulations of a spectrum of support 

responsiveness.  To pursue analytical objectives beyond those explicitly considered in this paper, 

the current model forms could be embedded, as appropriate, into simple simulations tied to 

coarsely defined events (e.g., operational days or manifested OMFs).  For instance, the effects of 

dynamically evolving support processes readily could be played out over extended operational 

periods.  Other analytical issues that could be addressed by similar methods are discussed below. 

 One simplifying assumption made consistently herein is that times to failures are 

governed by memoryless one-parameter exponential distributions.  This is a common pragmatic 

approach for setting reliability requirements [2].  Alternative time-to-failure distributions could be 

postulated, in which case consideration would need to be given to the impact of 

repair/restore/replace maintenance events and the interpretation of reliability for planning and 

assessment purposes.  In particular, different classes of recurring events may convert the ‘fixed’ 

DNMS element to ‘good-as-new’ or ‘bad-as-old’ states [5].  If the former holds universally, then the 

choice of the distribution is irrelevant as far as the probability of mission accomplishment 

calculations are concerned.  Specific choices for distributions and innate parameters may, however, 

be of interest for tracking the demonstrated capabilities of deployed systems and projecting future 

performance.   

 Throughout the derivations, each d-day performance window implicitly is treated as 

probabilistically independent and identical.  When d = 5, corresponding to a standard work week, 

the weekend days can be expected to offer ample time to recover before the onset of the next 

window.  For values of d < 5, the lack of an early mission success in a given operational period 

may precipitate additional renewal efforts to prepare adequately for the advent of a follow-on 

performance window.  If the assumption of independence cannot be defended plausibly, Markov 

chain methods [6] may be appropriate.   

 This paper’s modeling framework conceptually could be expanded to incorporate explicit 

considerations of cost criteria encompassing design, operation, and supportability expenses, 

especially within the context of financial incentives associated with demonstrated operational 

performance of the DNMS over time.  For example, contractor models relating design costs to 

DNMS element reliabilities can be utilized to trade off investments against possible performance-

based penalties or bonuses.  Similarly, the developer may determine that directly funding 

additional logistical support capabilities may be cost-effective in the long run. 
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