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Abstract 

  
We consider a Markovian queueing system with two identical servers subjected to 

catastrophes. When the system is not empty, catastrophes may occur and destroy all 

present customers in the system. Simultaneously the system is ready for new 

arrivals. The time dependent and the steady state solution are obtained explicitly. 

Further we have obtained some important performance measures of the studied 

queueing model. 
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1  Introduction 

 

During the last 40 years the attention of the queueing models has been focused on the effect 

of catastrophes, in particulars, birth and death models. The catastrophes arrive as negative 

customers to the system and their characteristic is to remove some or all of the regular 

customers in the system. The catastrophes may come either from outside the system or from 

another service station. For example, in computer networks, if a job infected with a virus, 

it transmits the virus to other processors and inactivities them [8]. Other interesting articles 

in this area include ([2],[6],[7]). In real life it is not necessary that a queueing system should 

have only one server. Practically they may have more than one server identical or non 

identical in their functioning .Krishna kumar et. al.[7] obtained the time dependent solution 

of two identical servers Markovian queueing system with catastrophes.Dharmaraja and 

kumar[3] consider a multi-server Markovian queueing system with heterogeneous servers 

and catastrophes.Jain and Bura [5]obtained the transient solution of an M/M/2/N queuing 

system with varying catastrophic intensity and restoration. We in this paper confine 

ourselves to a Markovian queueing system with two identical servers subjected to 

catastrophes. 

Rest of the paper is organized as follows:In section 3, we describe the mathematical 

form of the model and obtained the time dependent solution of the model. In section 4, we 

obtain the time dependent performance measures of the system. Section 5 provides the 

steady state probabilities. In section 6, we obtain the expression for steady state mean and 

variance. Finally, the conclusion have been given in section 6. 
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2  Model description and analysis 
 

We consider an 𝑀/𝑀/2/𝑁 queueing system with first come first out discipline that is 

subjected to catastrophes at the service station. Customers arrive in the system according 

to a Poisson stream with parameter 𝜆.The service time distribution is independently 

identically exponential with parameter 𝜇. When the system is not empty, catstrophes occur 

according to a Poisson process of rate 𝜉. Let 𝑋(𝑡) denote the number of customers in the 

system at time 𝑡. 

Define 𝑃𝑛(𝑡) = 𝑃(𝑋(𝑡) = 𝑛); 𝑛 = 0,1,2, . . . , 𝑁 be the transient state probability that 

there are 𝑛 customers in the system at time t, and 𝑃(𝑧, 𝑡) = ∑𝑁
𝑛=0 𝑃𝑛(𝑡)𝑧𝑛 be the probability 

generating function. 

From the above assumption, the probability satisfies the following system of the 

differential- difference equations:  

 𝑝0
′ (𝑡) = −𝜆𝑝0(𝑡) + 𝜇𝑝1(𝑡) + 𝜉[∑𝑁

𝑛=1 𝑝𝑛(𝑡)]           ; 𝑛 = 0 (2.1) 

 𝑝1
′ (𝑡) = −(𝜆 + 𝜇 + 𝜉)𝑝1(𝑡) + 𝜆𝑝0(𝑡) + 2𝜇𝑝2(𝑡)           ; 𝑛 = 1 (2.2) 

 𝑝𝑛
′ (𝑡) = −(𝜆 + 2𝜇 + 𝜉)𝑝𝑛(𝑡) + 𝜆𝑝𝑛−1(𝑡) + 2𝜇𝑝𝑛+1(𝑡)      ; 𝑛 = 2,3, . . . , (𝑁 − 1)

 (2.3) 

 𝑝𝑁
′ (𝑡) = −(2𝜇 + 𝜉)𝑝𝑁(𝑡) + 𝜆𝑝𝑁−1(𝑡) (2.4) 

 It is assumed that initially the system is empty i.e.  

 𝑃0(0) = 1                  𝑃𝑛(0) = 0  , 𝑛 = 1,2, . . . , 𝑁 (2.5) 

 After Multiplying equations (2.1) to (2.4) by 𝑧𝑛 for all 𝑛 ≥ 0, then summed on 𝑛 from 𝑛 = 0 

to 𝑁 and adding, we have  

 ∑𝑁
𝑛=0 𝑝𝑛

′ (𝑡)𝑧𝑛 = [𝜆𝑧 +
2𝜇

𝑧
− (𝜆 + 2𝜇 + 𝜉)]𝑃(𝑧, 𝑡) 

         +2𝜇(1 −
1

𝑧
)𝑝0(𝑡) + 𝜆𝑧𝑁(1 − 𝑧)𝑝𝑁(𝑡) + 𝜇𝑝1(𝑡)(𝑧 − 1) + 𝜉 (2.6) 

 It is easily seen that the probability generating function 𝑃(𝑧, 𝑡) satisfies the following 

differential equation:  

 
∂

∂𝑡
[𝑃(𝑧, 𝑡)] = [𝜆𝑧 +

2𝜇

𝑧
− (𝜆 + 2𝜇 + 𝜉)]𝑃(𝑧, 𝑡) 

         +2𝜇(1 −
1

𝑧
)𝑝0(𝑡) + 𝜆𝑧𝑁(1 − 𝑧)𝑝𝑁(𝑡) + 𝜇𝑝1(𝑡)(𝑧 − 1) + 𝜉 (2.7) 

 with the initial condition  

 𝑃(𝑍, 0) = 1 (2.8) 

 The equation (2.7) can be considered as a first order differential equation in 𝑃(𝑧, 𝑡) and by 

finding the integrating factor and using the initial condition (2.8),the solution of the 

equation (2.7) is obtained as  

 𝑃(𝑧, 𝑡) = 2𝜇(1 −
1

𝑧
) ∫

𝑡

0
𝑃0(𝑡 − 𝑢)𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 

         +𝜆𝑧𝑁(1 − 𝑍) ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 

         +𝜇(𝑍 − 1) ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 

         +𝜉 ∫
𝑡

0
𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 + 𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑡𝑒−(𝜆+2𝜇+𝜉)𝑡 (2.9) 

 Using the Bessel function identity, if 𝛼 = 2√𝜆2𝜇 and 𝛽 = √
𝜆

2𝜇
 then,  

 

 𝑒𝑥𝑝(𝜆𝑧 +
2𝜇

𝑧
)𝑡 = ∑∞

𝑛=−∞ 𝐼𝑛(𝛼𝑡)(𝛽𝑧)𝑛 

 where 𝐼𝑛(. ) is the moddified Bessel function of order 𝑛. Substituting this equation in (2.9) 

and compairing the coefficient of 𝑧𝑛 on either side, we have, for 𝑛 = 0,1, . . . , 𝑁  

 𝑃𝑛(𝑡) = 2𝜇𝛽𝑛 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼𝑛(𝛼𝑢) − 𝛽𝐼𝑛+1(𝛼𝑢)]𝑑𝑢 
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         +𝜆𝛽𝑛 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−𝑁𝐼𝑁−𝑛(𝛼𝑢) − 𝛽−(𝑁+1)𝐼(𝑁+1)−𝑛(𝛼𝑢)]𝑑𝑢 

         +𝜇𝛽𝑛 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼𝑛−1(𝛼𝑢) − 𝐼𝑛(𝛼𝑢)]𝑑𝑢 

         +𝜉𝛽𝑛 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼𝑛(𝛼𝑢)𝑑𝑢 + 𝛽𝑛𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼𝑛(𝛼𝑡) (2.10) 

 where we have used 𝐼−𝑛(. ) = 𝐼𝑛(. ) 

Here, we have obtained 𝑃𝑛(𝑡) for 𝑛 = 1, . . . , 𝑁 − 1. However, this expression 

depends upon 𝑃0(𝑡) and 𝑃𝑁(𝑡). In order to determine, 𝑃0(𝑡) and 𝑃𝑁(𝑡) we introduce the 

Laplace transform. In the sequel, for any function 𝑓(. ), let 𝑓∗(𝑠) denote its Laplace 

transform i.e. , 𝑓∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 

Substitute 𝑛 = 0, in equation (2.10) we get  

 𝑃0(𝑡) = 2𝜇 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼0(𝛼𝑢) − 𝛽𝐼1(𝛼𝑢)]𝑑𝑢 

         +𝜆 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−𝑁𝐼𝑁(𝛼𝑢) − 𝛽−(𝑁+1)𝐼(𝑁+1)(𝛼𝑢)]𝑑𝑢 

         +𝜇 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼1(𝛼𝑢) − 𝐼0(𝛼𝑢)]𝑑𝑢 

         +𝜉 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼0(𝛼𝑢)𝑑𝑢 + 𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼0(𝛼𝑡) (2.11) 

 Taking Laplace transform on both sides of equation (2.11) and solving for, 𝑃0
∗(𝑠) we obtain,  

 

 [
𝜔+√𝜔2−𝛼2

2
− 2𝜇] 𝑃0

∗(𝑠) = 𝜆𝑃𝑁
∗ (𝑠) (

𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁

 

         [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 

         +𝜇𝑃1
∗(𝑠) [(

𝜔−√𝜔2−𝛼2

2𝜆
) − 1] +

𝜉

𝑠
+ 1 

 where 𝜔 = 𝑠 + 𝜆 + 2𝜇 + 𝜉. After some algebra, the above equation can be expressed as  

 [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 𝑃0

∗(𝑠) =
𝜆

2𝜇
𝑃𝑁

∗ (𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

 

         [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 

         −𝜇𝑃1
∗(𝑠) (

𝜔−√𝜔2−𝛼2

2𝜆
) 

         [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] (

1

2𝜇
) 

         + (
𝜉

𝑠
+ 1) (

𝜔−√𝜔2−𝛼2

2𝜆
) (

1

2𝜇
) (2.12) 

 By solving equation (2.12), we get,  

 𝑃0
∗(𝑠) =

𝜆

2𝜇
𝑃𝑁

∗ (𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

−
𝑃1

∗(𝑠)

2
(

𝜔−√𝜔2−𝛼2

2𝜆
) 

         + (
𝜉

𝑠
+ 1) (

1

2𝜇
) [

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)] (2.13) 

 On inversion, this equation yields an expression for 𝑃0(𝑡) which depends upon 𝑃𝑁(𝑡).  

 𝑃0(𝑡) = 𝑒−𝜉𝑡 + (
2𝜇

𝜆
)

𝑁−1

2
∫

𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢 (

𝑁+1

𝑢
) 𝐼𝑁+1(𝛼𝑢)𝑑𝑢 

         (
2𝜇

𝜆
)

1

2
∫

𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢 (

1

2𝑢
) 𝐼1(𝛼𝑢)𝑑𝑢 

         +𝜉 [𝑒−𝜉𝑡 − √
𝜆

2𝜇
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢) 𝐼1(𝛼𝑢)

𝑢
𝑑𝑢] 

         −√
𝜆

2𝜇
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢) 𝐼1(𝛼𝑢)

𝑢
𝑑𝑢 (2.14) 

 Substituting n=1 in equation (2.10), we get  

 𝑃1(𝑡) = 2𝜇𝛽 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼1(𝛼𝑢) − 𝛽𝐼2(𝛼𝑢)]𝑑𝑢 

         +𝜆𝛽 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−𝑁𝐼𝑁−1(𝛼𝑢) − 𝛽−(𝑁+1)𝐼𝑁(𝛼𝑢)]𝑑𝑢 
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         +𝜇𝛽 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼0(𝛼𝑢) − 𝐼1(𝛼𝑢)]𝑑𝑢 

         +𝜉𝛽 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼1(𝛼𝑢)𝑑𝑢 + 𝛽𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼1(𝛼𝑡) (2.15) 

 Taking Laplace transform on both sides of equation (2.15) and solving for, 𝑃1
∗(𝑠) we obtain,  

 

 𝑃1
∗(𝑠) [√𝜔2 − 𝛼2 − 𝜇 {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)}] = 2𝜇 {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)} 

         (
𝜔−√𝜔2−𝛼2

4𝜇
) 𝑃0

∗(𝑠) 

 +𝜆 (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁−1

{1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)} 𝑃𝑁

∗ (𝑠) + (
𝜉

𝑠
+ 1) 

 (
𝜔−√𝜔2−𝛼2

4𝜇
) (2.16) 

 Substituting n=N in equation (2.10), we get  

 𝑃𝑁(𝑡) = 2𝜇𝛽𝑁 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼𝑁(𝛼𝑢) − 𝛽𝐼𝑁+1(𝛼𝑢)]𝑑𝑢 

         +𝜆 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼0(𝛼𝑢) − 𝛽−1𝐼1(𝛼𝑢)]𝑑𝑢 

         +𝜇𝛽𝑁 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼𝑁−1(𝛼𝑢) − 𝐼𝑁(𝛼𝑢)]𝑑𝑢 

         +𝜉𝛽𝑁 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼𝑁(𝛼𝑢)𝑑𝑢 + 𝛽𝑁𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼𝑁(𝛼𝑡) (2.17) 

 By taking Laplace transform and solving for 𝑃𝑁
∗ (𝑠), we obtain from equation (2.17),  

 (
𝜔+√𝜔2−𝛼2

2
− 𝜆) 𝑃𝑁

∗ (𝑠) = 2𝜇 {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} (

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁

 

 [
𝜆

2𝜇
(

𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

𝑃𝑁
∗ (𝑠) (2.18) 

 − (
𝜔−√𝜔2−𝛼2

2𝜆
) +

1

2𝜇
(

𝜉

𝑠
+ 1)] 

 After some algebra, equation (2.18) can be expressed as  

 [1 − 𝑓∗(𝑠)]𝑃𝑁
∗ (𝑠) = 𝑔∗(𝑠) (2.19) 

 where  

 𝑓∗(𝑠) = (
𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

(
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

 

         {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} + (

𝜔−√𝜔2−𝛼2

2𝜇
) (2.20) 

  

 𝑔∗(𝑠) =
1

𝜆
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

(
𝜉

𝑠
+ 1) 

         [1 + {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)}] 

         +
𝜇

𝜆
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

[(
𝜔−√𝜔2−𝛼2

4𝜇
)

−1

− 1] 𝑃1
∗(𝑠) 

         −
𝜇

𝜆
(

𝜔−√𝜔2−𝛼2

2𝜆
) [1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)] 

         (
𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

𝑃1
∗(𝑠) (2.21) 

 equation (2.21) can be written as  

 𝑔∗(𝑠) =
1

𝜆
(

𝜉

𝑠
+ 1) ℎ∗(𝑠) (2.22) 

 where  

 ℎ∗(𝑠) = (
𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

 

         [1 + {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

2𝜇

𝜔+√𝜔2−𝛼2
)}] 
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         +
𝜇

𝜆
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

𝑃1
∗(𝑠) 

         [{(
𝜔−√𝜔2−𝛼2

4𝜇
)

−1

− 1} − (
𝜔−√𝜔2−𝛼2

2𝜆
) {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)}] (2.23) 

 On inversion, the equation (2.20), (2.23) and (2.22) yield an expression for 𝑓(𝑡),ℎ(𝑡) and 

𝑔(𝑡) given by  

 𝑓(𝑡) = √
𝜆

2𝜇
𝑒−(𝜆+2𝜇+𝜉)𝑡 𝐼1(𝛼𝑡)

𝑡
+ 𝑒−(𝜆+2𝜇+𝜉)𝑡(2𝑁 + 2)

𝐼2𝑁+2(𝛼𝑡)

𝑡
 

         −√
𝜆

2𝜇
𝑒−(𝜆+2𝜇+𝜉)𝑡(2𝑁 + 3)

𝐼2𝑁+3(𝛼𝑡)

𝑡
 (2.24) 

 ℎ(𝑡) = (
𝜆

2𝜇
)

(𝑁+1)

2
𝑒−(𝜆+2𝜇+𝜉)𝑡(𝑁 + 1)

𝐼𝑁+1(𝛼𝑡)

𝑡
+ (

𝜆

2𝜇
)

(𝑁+1)

2
 

         [∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢) {2𝜇(𝑁 + 1)

𝐼𝑁+1(𝛼𝑢)

𝑢
− 𝛼(𝑁 + 2)

𝐼𝑁+2(𝛼𝑢)

𝑢
} 𝑑𝑢] 

         + (
𝜆

2𝜇
)

(𝑁+1)

2
𝜆 ∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢)(𝑁 + 3)

𝐼𝑁+3(𝛼𝑢)

𝑢
𝑑𝑢 

         +
𝜇

𝜆
(

𝜆

2𝜇
)

𝑁

2
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑁

𝐼𝑁(𝛼𝑢)

𝑢
𝑃1(𝑡 − 𝑢)𝑑𝑢 

         −
𝜇

𝜆
(

𝜆

2𝜇
)

𝑁+1

2
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢(𝑁 + 1)

𝐼𝑁+1(𝛼𝑢)

𝑢
𝑃1(𝑡 − 𝑢)𝑑𝑢 

         +2𝑒−(𝜆+2𝜇+𝜉)𝑡 𝐼2(𝛼𝑡)

𝑡
 (2.25) 

  

 𝑔(𝑡) =
1

𝜆
(𝜉 + 1)ℎ(𝑡) (2.26) 

 Since 0 ≤ 𝑓∗(𝑠) < 1 so equation (2.19) can be written as  

 𝑃𝑁
∗ (𝑠) = 𝑔∗(𝑠) ∑∞

𝑟=0 [𝑓∗(𝑠)]𝑟 (2.27) 

 On inversion, this equation yields an expression for 𝑃𝑁(𝑡) given by  

 𝑃𝑁(𝑡) = 𝑔(𝑡) ∗ ∑∞
𝑟=0 [𝑓(𝑡)]∗𝑟 (2.28) 

 where [𝑓(𝑡)]∗𝑟 is the r-fold convolution of 𝑓(𝑡) with itself. We note that 
[𝑓(𝑡)]∗0 = 1  

 

 

3  Performance measures 
 Mean  

 

we know that  

 𝑚(𝑡) = 𝐸[𝑋(𝑡)] = ∑𝑁
𝑛=1 𝑛𝑃𝑛(𝑡) 

 𝑚(0) = ∑𝑁
𝑛=1 𝑛𝑃𝑛(0) = 0 

 𝑚′(𝑡) = ∑𝑁
𝑛=1 𝑛𝑃𝑛

′(𝑡) 

 From equation (3.2), (3.3) and (3.4),  

 𝑚′(𝑡) = (𝜆 + 2𝜇 + 𝜉) ∑𝑁
𝑛=1 𝑛𝑃𝑛(𝑡) + 𝜆𝑁𝑃𝑁(𝑡) + 𝜆 ∑𝑁

𝑛=1 𝑛𝑃𝑛−1(𝑡) 
 +2𝜇 ∑𝑁−1

𝑛=1 𝑛𝑃𝑛+1(𝑡) + 𝜇𝑃1(𝑡) 

 After some algebra, the above equation can be expressed as  

 𝑚′(𝑡) = −𝜉𝑚(𝑡) + (𝜆 − 2𝜇) + 2𝜇𝑃0(𝑡) − 𝜆𝑃𝑁(𝑡) + 𝜇𝑃1(𝑡) (3.1) 

 The above equation can be considered as a first order linear differential equation in 𝑚(𝑡). 

By finding the integrating factor and using the initial condition 𝑚(0) = 0, the solution of 

the above equation is obtained as follows:  

 𝑚(𝑡) =
(𝜆−2𝜇)

𝜉
(1 − 𝑒−𝜉𝑡) − 𝜆 ∫

𝑡

0
𝑃𝑁(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 +2𝜇 ∫
𝑡

0
𝑃0(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 𝜇 ∫

𝑡

0
𝑃1(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 (3.2) 



 
G. Singh Bura, S. Gupta 

TIME DEPENDENT ANALYSIS OF AN 𝑴/𝑴/𝟐/𝑵 QUEUE WITH 

CATASTROPHES 

RT&A, No 1 (52) 
Volume 14, March 2019 

 

84 

 Variance 

 

We know that  

 𝑉𝑎𝑟[𝑋(𝑡)] = 𝐸[𝑋2(𝑡)] − [𝐸{𝑋(𝑡)}]2 
 𝑉𝑎𝑟[𝑋(𝑡)] = 𝑘(𝑡) − [𝑚(𝑡)]2 (3.3) 

 where  

 𝑘(𝑡) = 𝐸[𝑋2(𝑡)] = ∑𝑁
𝑛=1 𝑛2𝑃𝑛(𝑡) 

 Also,  

 𝑘(0) = ∑𝑁
𝑛=1 𝑛2𝑃𝑛(0) = 0 

 and  

 𝑘′(𝑡) = ∑𝑁
𝑛=1 𝑛2𝑃𝑛

′(𝑡) 

 From equation (3.2), (3.3) and (3.4),  

 𝑘′(𝑡) = −(𝜆 + 2𝜇 + 𝜉) ∑𝑁
𝑛=1 𝑛2𝑃𝑛(𝑡) + 𝜆𝑁2𝑃𝑁(𝑡) + 𝜆 ∑𝑁

𝑛=1 𝑛2𝑃𝑛−1(𝑡) + 
 2𝜇 ∑𝑁−1

𝑛=1 𝑛2𝑃𝑛+1(𝑡) + 𝜇𝑃1(𝑡) 

 After some algebra, the above equation can be expressed as  
 𝑘′(𝑡) = −𝜉𝑘(𝑡) + (𝜆 + 2𝜇) − 2𝜇𝑃0(𝑡) − 𝜆(2𝑁 + 1)𝑃𝑁(𝑡) 

 +2(𝜆 − 2𝜇)𝑚(𝑡) + 𝜇𝑃1(𝑡) (3.4) 

 The above equation can be considered as a first order linear differential equation in 𝑘(𝑡). 

By finding the integrating factor and using the initial condition 𝑘(0) = 0, the solution of the 

above equation is obtained as follows:  

 𝑘(𝑡) =
(𝜆+2𝜇)

𝜉
(1 − 𝑒−𝜉𝑡) − 𝜆(2𝑁 + 1) ∫

𝑡

0
𝑃𝑁(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 −2𝜇 ∫
𝑡

0
𝑃0(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 2(𝜆 − 𝜇) ∫

𝑡

0
𝑚(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 +𝜇 ∫
𝑡

0
𝑃1(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 𝐶 (3.5) 

 Substituting the above equation in equation (3.3), we get  

 𝑉𝑎𝑟[𝑋(𝑡)] =
(𝜆+2𝜇)

𝜉
(1 − 𝑒−𝜉𝑡) − 𝜆(2𝑁 + 1) ∫

𝑡

0
𝑃𝑁(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 −2𝜇 ∫
𝑡

0
𝑃0(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 2(𝜆 − 𝜇) ∫

𝑡

0
𝑚(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 +𝜇 ∫
𝑡

0
𝑃1(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 − {𝑚(𝑡)}2 

  

 

4  Steady state probabilities 
 

In this section, we shall discuss the structure of the steady state probabilities.  

Theorem- 

For 𝜉 > 0, the steady state distribution {𝑃𝑛: 𝑛 ≥ 0} of the 𝑀/𝑀/2/𝑁 queue with 

catastrophe corresponds to 

 

 𝑃0 = 𝜌𝜌1𝑃𝑁 + (1 − 𝜌) −
𝑃1

2
𝜌1 (4.1) 

 𝑃𝑛 = 2𝜎𝜇𝜌𝑛+1(1 − 𝜌)𝜌1
𝑁𝑃𝑁 + 𝜎𝜆𝜌1

𝑁−𝑛(1 − 𝜌1)𝑃𝑁 + (1 − 𝜌)𝜌𝑛 

 +𝜇𝜎(1 − 𝜌)𝜌𝑛 (
√𝜔2−𝛼2

𝜆
) 𝑃1 (4.2) 

 𝑃𝑁 =
[{𝜉+2𝜇(1−𝜌)2}+𝜇{(𝜌−1−1)−𝜌1(1−𝜌)}𝑃1]𝜌𝑁+1

𝜆[1−𝜌−𝜌1
𝑁+1𝜌𝑁+1(1−𝜌)]

 (4.3) 

 where  

 𝜌 =
(𝜆+2𝜇+𝜉)−√(𝜆+2𝜇+𝜉)2−8𝜆𝜇

4𝜇
 (4.4) 

 𝜌1 =
(𝜆+2𝜇+𝜉)−√(𝜆+2𝜇+𝜉)2−8𝜆𝜇

2𝜆
 (4.5) 
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 𝜎 =
1

√(𝜆+2𝜇+𝜉)2−8𝜆𝜇
 (4.6) 

 Proof- 

 

We have from equation (3.13),  

 𝑃0
∗(𝑠) =

𝜆

2𝜇
𝑃𝑁

∗ (𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

− (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑃1
∗(𝑠)

2
 

 + (
𝜉

𝑠
+ 1) (

1

2𝜇
) {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)} (4.7) 

 Multiplying equation (4.7) by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃0
∗(𝑠) =

𝜆

2𝜇
𝜌1

𝑁+1𝑃𝑁 − (
1

2
) lim

𝑠→0
𝑠𝑃1

∗(𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
) 

 + (
1

2𝜇
) lim

𝑠→0
𝑠 (

𝜉

𝑠
+ 1) {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)} 

 Using the property  
 lim

𝑠→0
𝑠𝑃0

∗(𝑠) = 𝑃0 

 After some algebra, the above expression becomes  

 𝑃0 = 𝜌𝜌1𝑃𝑁 + (1 − 𝜌) −
𝑃1

2
𝜌1 (4.8) 

 By taking Laplace transform of the equation (3.10), for 𝑛 = 1,2, . . . , 𝑁 − 1, we get,  

 𝑃𝑛
∗(𝑠) = 2𝜇𝑃0

∗(𝑠) (
1

√𝜔2−𝛼2
) (

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑛

[1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)] 

 +𝜆𝑃𝑁
∗ (𝑠) (

1

√𝜔2−𝛼2
) (

𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁−𝑛

[1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 

 +
𝜇

√𝜔2−𝛼2
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑛−1

[1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)] 𝑃1

∗(𝑠) 

 + (
𝜉

𝑠
+ 1) (

1

√𝜔2−𝛼2
) (

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑛

 (4.9) 

 Multiplying the above equation by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃𝑛
∗(𝑠) = 2𝜎𝜇𝜌𝑛(1 − 𝜌)𝑃0 + 𝜎𝜆𝜌1

𝑁−𝑛(1 − 𝜌1)𝑃𝑁 

 +𝜇𝜎𝜌𝑛−1(1 − 𝜌)𝑃1 + 𝜎𝜉𝜌𝑛 (4.10) 

 Substituting equation (4.8) in the above equation, and solving, we get  

 𝑃𝑛 = 2𝜎𝜇𝜌𝑛+1𝜌1
𝑁(1 − 𝜌)𝑃𝑁 + 𝜎𝜆𝜌1

𝑁−𝑛(1 − 𝜌1)𝑃𝑁 

 +𝜇𝜎(1 − 𝜌)𝜌𝑛 (
√𝜔2−𝛼2

𝜆
) 𝑃1 + (1 − 𝜌)𝜌𝑛                     𝑛 = 1,2, . . . , 𝑁 − 1 (4.11) 

 Multiplying the equation (3.21) by 𝑠 on both sides and taking limit as 𝑠 → 0, after some 

algebra, we get  

 lim
𝑠→0

𝑠𝑔∗(𝑠) =
1

𝜆
[𝜉 + 2𝜇(1 − 𝜌)2]𝜌𝑁+1 +

𝜇

𝜆
𝜌𝑁+1[(𝜌−1 − 1) − 𝜌1(1 − 𝜌)]𝑃1 (4.12) 

 Now taking limit as 𝑠 → 0 in the equation (3.20), we get  

 lim
𝑠→0

𝑓∗(𝑠) = 𝜌[1 + 𝜌1
𝑁+1𝜌𝑁(1 − 𝜌)] (4.13) 

 Multiplying the equation (3.19) by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃𝑁
∗ (𝑠) = lim

𝑠→0

𝑠𝑔∗(𝑠)

1−𝑓∗(𝑠)
 (4.14) 

 Substituting equation (4.12) and (4.13) in the above equation  

 𝑃𝑁 =
[{𝜉+2𝜇(1−𝜌)2}+𝜇{(𝜌−1−1)−𝜌1(1−𝜌)}𝑃1]𝜌𝑁+1

𝜆[1−𝜌−𝜌1
𝑁+1𝜌𝑁+1(1−𝜌)]

 (4.15) 

 Multiplying the equation (3.16) by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃1
∗(𝑠) [√𝜔2 − 𝛼2 − 𝜇 {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)}] = 

 2𝜇lim
𝑠→0

𝑠 {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} 
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 (
𝜔−√𝜔2−𝛼2

4𝜇
) 𝑃0

∗(𝑠) 

 +𝜆lim
𝑠→0

𝑠 (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁−1

{1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)} 𝑃𝑁

∗ (𝑠) 

 +lim
𝑠→0

𝑠 (
𝜉

𝑠
+ 1) (

𝜔−√𝜔2−𝛼2

4𝜇
) (4.16) 

 After some algebra, the above expression becomes  

 𝑃1 {
1

𝜎
− 𝜇(1 − 𝜌)} = 2𝜇(1 − 𝜌)𝜌𝑃0 + 𝜆(𝜌1

𝑁−1 − 𝜌1
𝑁)𝑃𝑁 + 𝜉𝜌 

  

5  Steady state mean and variance 
 

The corresponding values of the steady state mean and variance of the system length are 

obtained by taking limit as 𝑡 → ∞ in equation (4.2) and (4.3). These values are given by  

 𝑚 = 𝐸(𝑋) =
1

𝜉
[(𝜆 − 2𝜇) + 2𝜇𝑃0 − 𝜆𝑃𝑁 + 𝜇𝑃1] 

 𝑉𝑎𝑟(𝑋) =
1

𝜉
[(𝜆 + 2𝜇) + 2(𝜆 − 𝜇)𝑚 − 2𝜇𝑃0 − 𝜆(2𝑁 + 1)𝑃𝑁 + 𝜇𝑃1] − 𝑚2 

  

6  Conclusion 
 

In the present paper, we have discussed the 𝑀/𝑀/2/𝑁 queueing system subject to 

catastrophes. The transient as well as the steady state probabilities of the models have been 

determined analytically. Further, we have also obtained the performance measures of the 

system.  
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