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Abstract 

 

In this article we show how some known to us measures of dependence between 

random events can be easily transferred into measures of local dependence between 

random variables. This enables everyone to see and visually evaluate the local 

dependence between uncertain units on every region of their particular values. We 

believe that the true value of the use of such dependences is in applications on non-

numeric variables, as well as in finances and risk studies. We also trust that our 

approach may give a serious push into the microscopic analysis of the pictures of 

dependences offered in big data. Numeric and graphical examples should confirm the 

beauty, simplicity and the utility of this approach, especially in reliability models. 
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1.   Introduction 
 

The big data files contain a number of simultaneous multi-dimensional observations. This 

fact offers plenty of opportunities for establishing possible dependences between observed 

variables. Most of these dependences will be of global nature. However, there exist (or can be 

created) techniques to take a microscopic look on more details into it. In this article we want to 

show the ideas of these microscopic looks.  

The concepts of measuring dependence should start from the very roots of Probability 

Theory. Independence for random events is introduced simultaneously with conditional 

probability. Where independence does not hold, events are dependent. Further, the focus in text-

books is on the independence. No text-books usually discus what to do if events are dependent. 

However, there are ways to go deeply in the analysis of dependence, to see some detailed pictures, 

and use it later in the studies of random variables. This question is discussed in our previous 

articles (Dimitrov 2010, 2015) and more (Esa-Dimitrov 2013, 2017). Some particular situations are 

analyzed in Dimitrov and  Esa 2014 and Esa, Dimitrov 2017. Applications in study  of  politics  are  

used  in Esa, Dimitrov 2013. We refer to these articles for making a quick passage to the essentials. 

First we notice here that the most informative measures of dependence between random 

events are the two regression coefficients. Their definition is given here: 

Definition1.  Regression coefficient RB(A) of the event А with respect to the event В is called 

the difference between the conditional probability for the event А given the event В, and the 

conditional probability for the event А given the complementary event B , namely 
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RB(A) = P(A|B) -  P(A| B ). 

 

This measure of the dependence of the event А on the event В, is directed dependence.  

 The regression coefficient RA(B) of the event В with respect to the event А is defined 

analogously. 

From the many interesting properties of the regression coefficients we would like to point out here 

just few: 

(R1)  The equality to zero RB(A) = RA(B) =0 takes place if and only if the two events are 

independent.  

(R2)  The regression coefficients RB(A)  and RA(B) are numbers with equal signs and this is the sign of their 

connection ),( BA =P(AᴖB)-P(A)P(B). The relationships  
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The numerical values of RB(A)  and RA(B)  may not always be equal. There exists an asymmetry in 

the dependence between random events, and this reflects the nature of real life.  

(R3)  The regression coefficients RB(A)  and RA(B) are numbers between –1 and 1, i.e. they satisfy 

the inequalities   

 

1)(1  ARB ;          1)(1  BRA . 

 

(R4.1)  The equality RB(A) =1 holds only when the random event А coincides with (or is equivalent 

to) the event В. Тhen it is also valid the equality RA(B) =1; 

(R4.2)  The equality 1)( ARB  holds only when the random event А coincides with (or is 

equivalent to) the event B  - the complement of the event В. Тhen it is also valid RA(B) = - 1, and 

respectively BA .  

We interpret the properties (r4) of the regression coefficients in the following way: As closer 

is the numerical value of RB(A)  to 1, “as denser inside within each other are the events A and B, 

considered as sets of outcomes of the experiment”. In a similar way we interpret also the negative 

values of the regression coefficient. 

There is a symmetric measure of dependence between random events, and this is their 

coefficient of correlation. 

Definition 2. Correlation coefficient between two events A and B we call the number   

 

ρA,B= )()( BRAR AB  , 

 

where the sign, plus or minus, is the sign of the either of the two regression coefficients.   

 

Remark.  The correlation coefficient BA,  between the events А and В equals to the formal 

correlation coefficient 
BA II ,  between the random variables AI  and BI , the indicators of the two 

random events A and B.  

The correlation coefficient BA,  between two random events is symmetric, is located 

between the numbers RB(A)  and RA(B).  

The following statements hold: 

ρ1.  
BA, = 0 holds if and only if the two events А and В are independent. The use of the 

numerical values of the correlation coefficient is similar to the use of the two regression 
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coefficients. As closer is 
BA,  located to the zero, as “closer” to the independence are the two 

events А and В.     

For random variables similar statement is not true. The equality to zero of their mutual 

correlation coefficient does not mean independence 

ρ2. The correlation coefficient BA,  always is a number between –1 and +1, i.e. 

 

-1 ≤ 
BA,  ≤ 1. 

ρ2.1. The equality BA,  = 1 holds if and only if the events А and В are equivalent, i.e. when А = В. 

ρ2.2. The equality BA,  = - 1 holds if and only if the events А and B  are equivalent, i.e. when А = 

B . 

 As closer is BA,  to the number 1, as “more dense one within the other” are the events А 

and В, and when BA,  = 1, the two events coincide (are equivalent). 

 As closer is BA,  to the number -1, as “denser one within the other” are the events А and

B , and when BA,  = - 1, the two events coincide (are equivalent). Denser one within the other are 

then the events A  and В.  

 

2.   The transfer rules 
 

The above measures allow studying the behavior of interaction between any pair of numeric r.v.’s 

(X,Y) throughout the sample space, and better understanding and use of dependence.  

Let the joint cumulative distribution function (c.d.f.) of the pair (X,Y) be F(x,y)=P(X≤x, Y≤y), 

and marginals F(x) =P (X ≤ x), G(y)=P(Y≤y). Let introduce the events  

 

Ax={x≤X≤x+∆1x};  By ={y≤Y≤y+∆2y}, for any x, y ϵ ( -∞, ∞). 

 

Then the measures of dependence between events Ax and By turn into a measure of local dependence 

between the pair of r.v.’s X and Y on the rectangle D=[x, x+∆1x]×[y, y+∆2y].  Naturally, they can be 

named and calculated as follows: 

Regression coefficient of X with respect to Y, and of Y with respect to X on the rectangle [x, 

x+∆1x]×[y, y+∆2y]. By the use of Definition 1 we get 
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Here ∆DF(x,y) denotes the two dimensional finite difference for the function F(x,y) on rectangle  

D=[x, x+∆1x]×[y, y+∆2y].  Namely 

 

∆DF(x,y)  =F (x+∆1x, y+∆2y)- F (x+∆1x, y)- F (x, y+∆2y)+ F (x, y). 

 

In an analogous way is defined ρX((X,Y)ɞD). Just denominator in the above expression is changed 

respectively.  

Correlation coefficient ρY((X,Y)ɞD) between the r.v.s  X and Y on rectangle  D=[x, x+∆1x]×[y, 

y+∆2y] can be presented in similar way by the use of Definition 2. We omit detailed expressions as 

something obvious.   

It seems easier to find out the local dependence at a value (X=i, Y=j) for a pair of discretely 

distributed r.v. (X,Y). Regression coefficient of X with respect to Y, and of Y with respect to X at a 
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value (X=i, Y=j)  is determined by the rule   

RY(X=i,Y=j)=
)1(
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Similarly, you can get that the local correlation coefficient between the values of the two r.v.’s (X,Y) 

is given by 

ρX,Y(X=i,Y=j)= )1()1(

),(
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Using these rules one can see and visualize the local dependence between every pair of two 

r.v.’s with given joint distribution.  

 This ends our theoretical background of the local dependence structural study. Next we 

illustrate its application on qualitative and quantitative probability models. 

 

3.   Illustrations  
 

3.1 Reliability systems       

 

In this case let us consider the two traditional systems of independent components, the system in 

series and the system in parallel. We want to study how the regression coefficients of a component 

with respect to the system, and vise verse, regression coefficient of the system with respect to a 

component change in time during the work of the system. For simplicity consider system of just 

two components, since considering one component, everything else can be considered as a second 

component. Results of the studies are shown next.  

 

3.1. A system in series. Assume both components have live times exponentially distributed with 

parameters λ1 and λ2 . Then the reliability function at any time instant t (this is the event B) equals 

r(t)=
te )( 21  

, and the probability that component 1 functions (this is the event A) is 
te 1 . The 

regression coefficient of the system with respect to component 1 is then 
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Analogously we evaluate the regression coefficient of the component 1 with respect to the system 

at time t. It is given by the relation  
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And the correlation coefficient between system reliability and the component reliability are 

changing during the time according to the relations 
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Notice that all dependences are positive. Graphs of these functions of local dependence in time for 

λ1=1 and λ2=2 are shown on next figures. 
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We observe that the system reliability local correlation measures of dependence is 

decreasing to 0 for both components, but is higher with the weakest component 2, when the time 

increases. In the same time the regression coefficients between the system and the strongest 

component behave different: Local dependence R1(S) approaches 0 with the time (like system 

becomes independent on component 1with the growth of the time) when the local dependence 

RS(1) of strongest component 1 on the system reliability approaches 1 with the growth of the time.   

 

3.2. System in parallel. Assume again both components have live times exponentially 

distributed with parameters λ1 and λ2. Then the reliability function at any time instant t (this is the 

event B) equals r(t)= )1)(1(1 21 tt ee    , and the probability that component 1 functions (this is 

the event A) is  
te 1 . Applying the rules we obtain: 

 The regression coefficient of the system with respect to component 1 is then 
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Analogously we evaluate the regression coefficient of the component 1 with respect to the 

system at time t. It is given by the relation  
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And the correlation coefficient between system reliability and the component reliability are 

changing during the time according to the relations 
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Notice that all dependences are positive. Graphs of these functions of local dependence in 

time for λ1=1 and λ2=2 are shown on next figures. First one represents the two regression 

coefficients superimposed on the same graph, and he second represents the two correlation 

coefficients.  

We see that the system reliability local correlation measure of dependence is approaching 1 

with the strongest component 1, and approaches 0 with the weakest component when the time 
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increases. In the same time the both regression coefficient between the system and the strongest 

component approach 1 with the growth of the time.    

 

             

                                                                                           
 

3.3. Categorical variables  

 

The most interesting and valuable applications in the Big Data analysis we see in the 

analysis of local dependences between non-numeric vs non numeric variables, as well as between 

non-numeric vs numeric variables. Since analysis in this kind of studies is (according to us 

obviously) too similar, we recommend here as an example of local dependence between categories 

of two non-numeric random variables. It is just an illustration of the proposed measures of 

dependence between random events. We analyze here an example from the book of Alan Agresti, 

(2006). You  can see  this  illustration  in  the  work of Dimitrov, 2010. 

 

3.4. A challenging idea in modeling dependent variables  

 

Modeling dependence in multivariate distributions always has been and still is a hot topic in 

applied probability, statistics and risk studies. One of the most popular approach in modeling 

dependence is known as Farlie–Gumbel–Morgenstern dependence model. It is using a 

construction of bivariate distributions as a mixture of two or more marginal distributions. The 

main disadvantage of this approach is that it produces multivariate distributions with limited 

magnitude of the correlation coefficient ρXY. Original construction gives ρXY within [-.32, .32]. Some 

generalizations lately (Bekrizadeh et al, 2012) expanded this range to [-.5, +.43]. Other approaches 

based on copula constructions (Joe, 1997, Nelsen 2006) offer constructions for dependent 

multivariate distributions with desired marginal. In most of these constructions is used mostly 

analytical instrumentation where one can get the goal, but loses the meaning. 

In this subsection we offer a construction which is based on the dependence between the 

two components of the random vector due to the presence of a common random component in 

each. In our opinion, such models are of interest in reliability and risk modeling where competitive 

risks are presented and have realistic meaning. And each risk is presented by a r.v. kind of 

independent on the others. We illustrate this approach on a very particular bivariate dependence, 

where components are indicator variables.  

Let U, V and W be independent one dimensional r.v. Consider the following constructions: 

A) X = min(U, W); Y = min(V, W), and the pair (X, Y); 

B) X = max(U, W); Y = max(V, W), and the pair (X, Y); 

C) X = min(U, W); Y = max(V, W), and the pair (X, Y); 

D) X = U + W; Y = V + W, and the pair (X, Y). 

Other algebraic operations also may be used in similar constructions. Obviously, the 

components of each pair are dependent due to the presence of one and the same component W in 
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both. The good thing here is that we see the interaction between X, and Y. And also, here one may 

use any distributions or the original risks U, V and W. Our goals here are to find the correlation 

coefficients in each of the above 4 constructions, and also to investigate the local correlation 

structure between X, and Y in the light of the proposed measures for the strength of local 

dependence explored recently (Dimitrov 2010, 2015). Actually, we will use the measure BA,  

defined in Definition 2.We start on the grass roots, considering the examples when U, V and W 

have the simplest Bernoulli distribution i=1,2,3, or have the Uniform distributions on [0, 1].  

 

U, V, W 0 1 

fi(.) qi =1 - pi pi 

 

Everyone knows that the expected values and standard deviation of a Bernoulli distributed r.v. 

are E(U) = p, and σU = pq  . 

 

3.4.1 Minimum-Minimum competing risks 

 

Elementary combinatorial considerations will convince you, that the joint distribution of the 

random vector (X, Y) is presented by the table 

     

Table 1 

X         Y                 0 1 fX(.) 

0 1–p3(p1+p2-p1p2) q1p2p3 1 - p1p3 

1 p1q2p3 p1p2p3 p1p3 

fY(.) 1 – p2p3 p2p3 1 

 

On the margins are the marginal distributions of the components X, and Y, and each of it is 

also a Bernoulli distributed r.v. This fact will simplify your calculation of the correlation coefficient 

ρXY, using the short cut rule 

 

ρXY = [E(XY) – E(X)E(Y)]/ [σX σY], 

 

and the results above about Bernoulli distributed r.v. After several algebraic manipulations we 

arrive to the expression 

 

ρXY  =
)1)(1( 3231

21
3

pppp

pp
q


. 

 

A brief analysis of this expression shows, that this correlation coefficient can take any value 

between 0 (when q3 is close to 0, and p1, p2  are small), and 1 (when q3 is close to 1, and so are p1, p2). 

Hence, pending on probabilities p1, p2  and p3, any correlation between X and Y is feasible. 

In particular if U, V and W are equally distributed, then 

 

ρXY = p/(1+p). 

 

But this time the correlation coefficient may take values only between 0 and 0.5. Of course, 

you may get negative correlations of same size if change second component Y by its negative –Y. 

Local dependence magnitudes. 

Now let see the strength of dependence of the event {Y=0} with respect to the event {X=0}. It 

means that we may predict the event {Y=0} if we know that it occurred {X=0}, by making use of 
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relations above. First determine the local regression coefficient using Definition 1 and data in Table 

1. We get  

RX=0(Y=0) = 
31

32

1 pp

qp


. 

Further considerations show, that if we know individual parameters of variables U,V and W, 

and know that event (X=0) occurred, then our prediction of event (Y=0) will be given by the 

posterior probability  

 

P(Y=0|X=0) =1- q1p2p3/[1 – p1p3], 

 

Due to the positive dependence, the prediction probability increases with the information of 

the known value of component X. 

Not going into detailed explanations, we get 

 

RX=0(Y=1)=
31

32

1 pp

qp


 ;  P(Y=1 | X=0) = q1p2p3/(1-p1p3) 

 

 As we expect, we have  P(Y=0|X=0) + P(Y=1 | X=0) = 1. 

Let see the local strength of dependence of the event {Y=0} with respect to the event {X=1}. It 

means that we may predict the event {Y=0} if we know that it occurred {X=1}, by making use of 

Definition 2. First determine the local regression coefficient using Definition 1 and data in Table 1. 

We get  

RrX=1(Y=0) = 
31

32

1 pp

qp




. 

This negative regression coefficient indicates that chances of the event {Y=0} to happen 

decrease if it is known that event {X=1} occurred. And the equivalent to the Bayes posterior 

probability rule now is valid 

 

P(Y=0|X=1) = 1- p2p3 -p2q3 = 1-p2. 

 

Similarly, we determine RX=1(Y=1), and respective posterior probabilities:  

    

RrX=1(Y=1)= 
31

32

1 pp

qp


;   P(Y=1|X=1) = p2p3 +p2q3= p2. 

 

Compare all four results, we observe complete symmetry in regards of the local dependence 

strengths: Positive regression coefficients for same results in Y as in X, and negative (same 

magnitudes) for opposite result. So to say, the two risks support each other in the sense that they act in 

same direction.   

Since symmetric constructions, the regression coefficients RY=j(X=i), for i , j = 0, 1 in 

relationships above can be found by same expressions, when keeping p3 and q3  as is, and changing 

indices p1 and q1  to p2 and q2, and vice versa. We skip details, but give a numeric example for (A): 

p1=.3, p2=.6 and p3=.9 with calculated correlation coefficient (as measures of global dependence), the 

regression coefficients (as measures of local dependence) and the posterior probabilities for each 

variable. For comparison, we also give the same characteristics calculated for the combination of 

numeric parameters (B): p1=.3, p2=.6 and p3=.1. We have  

 

ρXY(p1=.3, p2=.6, p3=.9) = 0.0732143; 
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Table 2. Joint distribution (X,Y) 

X         Y                 0 1 fX(.) 

0 .352  .378 .73 

1 .108 .162 .27 

fY(.) .46 .54 1 

The next graphs  show  surfaces within  the  cube {0,1]x[0,1]x[0,1], where  combination of  values 

p1, p2, and p3 produce correlation  coefficient  of  equal  values. 

 

 
 

In  the  next  illustrations we  will  not  give  detailed numerical  analysis,  and  will show  jist  the  

summary  graphs  similar  to this  one.  

 

3.4.2 Maximin-Maximum competing risks 
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3.4.3 Minimum-Maximum competing risks 

 

 

 
 

 

3.4.4 Sums of competing risks 
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Conclusions 

 
We extend our previous study of local dependence between random events to measures of 

local dependences between random variables. This turns into a study of the local dependence at a 

rectangle where interval values of the random variables meet. These local dependences are 

universally valid and can be continued for higher dimensions. As illustrations, we consider local 

dependences in reliability systems. The numerical illustrations can be graphically visualized, and 

show that local dependence is essentially different on different areas in the field. Graphics offer 

much more comments and further thoughts. Our expectations are that the analysis of Big Data sets 

will be enriched with the inclusion of our approach into its system tools. An excellent example of 

this approach can be seen in Dimitrov and Esa (2018). 

We also discussed four models for constructing of dependence between two random 

variables (X,Y) build on 3 independent Bernoulli distributed r.v.’s Um V and W with different 

parameters. 

These models are producing Correlation coefficients in different ranges. These ranges are 

shown on Correlation Level surfaces in the space of probabilities for success in the used Bernoulli 

variables in the models. Local dependences between values of X and Y are studied via the 

correlation coefficient’ magnitudes. 

Their numerical values serve are presented for particular combinations of parameters, and 

graphs of some level surfaces are shown. 

We  are  sure  that  using  other  particular distributions  of  the  components, different  from  

the  Bernoulli ones,  may  lead  to more inetersting  and  useful results. 
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