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Abstract 

A retrial queueing model in which the inter arrival times follow Markovian Arrival 

Process(MAP) and the service times follow phase type distribution is studied. At the 

end of receiving the service, the customer has two options namely, either he may go to 

orbit with probability 𝑞1 to get the service again, if he is not satisfied or with probability 

𝑝1, he may depart the system. Similarly, at the end of providing service, the server can 

either opt to take vacation with probability 𝑝2 or be idle with probability 𝑞2. During the 

busy period, the server may experience breakdown. Both the breakdown times and 

repair times of the server follow exponential distribution with parameter 𝜎 and 𝛿 

respectively. The resulting QBD process is analysed in the steady state by employing 

matrix analytic method. The busy period analysis of our model has also been done. 

Finally, the numerical and graphical illustration of our model has been given.  

Keywords: Markovian arrival process, Phase type distribution, Retrial queues, 

Bernoulli vacation, Bernoulli feedback, Breakdown and Repair.  

I  Introduction 

 On contrary to the normal queueing model, customers arriving to the retrial queueing 

system join the orbit, if all the servers are busy. They stay in the orbit for some amount of time 

which is usually exponentially distributed and then they try to know whether there is a possibility 

to receive service. If the server is free at that moment, they start to receive the service; if not, they 

come back to the orbit and repeat the process again. In this situation, if the server is available, then 

there is also a possibility for the new arrival to receive service directly without joining the orbit. 

Due to this complexity, it is usually tedious to derive analytic results for the retrial models. 

However, a vast amount of numerical and approximation methods are available to study the 

retrial queueing systems.  

 One of the most versatile modelling tools in the theory of point processes is the 

Markovian Arrival Process(MAP). Neuts(1979) introduced a new concept namely Versatile 

Markovian PointProcesses(VMPP) to model the arrival processes which are not essentially renewal 

processes. In order to understand VMPP in a clear and simpler way, Lucantoni et al (1990) coined 

two new terms, namely MAP and Batch MAP. Chakravarthy (2010) have greatly discussed about 

MAP in the Encyclopaedia of Operations Research and Management Science. A MAP is usually 

characterized by the parameter matrices (𝐷0, 𝐷1), each of which of dimension n in which 𝐷0 

governs the change over related to no arrivals whereas 𝐷1 governs the change over related to 
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arrivals. The generator matrix of the resulting continuous time Markov chain is given by 𝑄 = 𝐷0 +

𝐷1. The point process characterized by the MAP is a peculiar class of semi-Markov process whose 

transition probability matrix is given by  

∫
𝑡

0
𝑒𝐷0𝑥𝐷1𝑑𝑥 = [𝐼 − 𝑒𝐷0𝑡](−𝐷0)

−1𝐷1.

 Let the transition probability vector of the generator matrix 𝐷 = 𝐷0 + 𝐷1 be denoted by 𝜋 such that 

𝜋𝑄 = 0 and 𝜋𝑒 = 1. Then, the average arrival count per unit time in the stable version of the MAP, 

also termed as the fundamental rate is defined as 𝜆 = 𝜋𝐷1𝑒𝑚. Latouche et al (1999) have deeply 

discussed about PH-distributions and QBD. 

 If the duration between consecutive retrials are exponentially distributed with rate n𝛼, 

where n is the size of the orbit, then such retrial queues are said to follow classical retrial policy 

and most of the retrial queues follow this policy. But, present situation in communication protocols 

and local area networks indicates that there are a vast number of queueing situations in which the 

retrial rate does not depend on the orbit size. This is known as constant retrial policy and it was 

first studied by Fayolle (1986) while examining the telephone exchange model as a classical single 

server Markovian retrial queue. He has modelled his system in such a way that the orbital 

customers make a queue and the request for service can be made by the foremost customer in the 

waiting line and the retrial times follow exponential distribution with rate 𝛼. Artalejo et al (2000) 

studied the Markovian retrial queueing system with multiserver and constant retrial rate.  

 If a server gets breakdown, then the customer who is currently receiving service has the 

choice of being in the system till the repair process gets over or permanently move out of the 

system or go back to the orbit to resume the service. Such situations are mostly seen in computer 

and communication networks, at airport with stacked aircraft and in retail shops. Aissani (1998), 

Kulkarni and Choi (1990) have studied about the effect of unreliable server and the repair process 

on retrial queues. Reliability of the non-Markovian queueing system when the server is prone to 

breakdown was analysed by Aissani and Artalejo (1998).  

 Wang et al (2009) have greatly analyzed the discrete time retrial queue in which server is 

subject to breakdown and repair and obtained generating function for both system size and orbit 

size. Retrial queues with batch Markovian Arrival Process, breakdown and repair has been 

investigated by Li et al (2006) They studied the system by combining matrix-analytic method and 

the censoring technique with the supplementary variable method. By using Generalized Stochastic 

Petri Nets(GSPN), Gharbi et al (2011) have proposed an approach for analyzing the finite source 

retrial systems in which server is prone to breakdown and repair. Efrosin et al (2011) have 

examined the Markovian retrial queueing model with constant retrial rate and an unreliable 

server. Dimitriou et al (2010) have investigated the repairable retrial model and derived the 

stability condition for it.  

 The concept of Bernoulli schedule vacation is that after providing service to the customer, 

the server may opt to take vacation with probability 𝑝 or starts the service to next customer with 

probability 1 − 𝑝. Keilson et al (1986) have analyzed the non-Markovian vacation queueing model 

with Bernoulli schedules. The average waiting time for the non-Markovian cyclic service queues 

with Bernoulli schedules has been derived by Servi (1986).  

 The concept of Bernoulli feedback is that after receiving the service, the customer can go 

to orbit with probability 𝑝 to get the service again or departs the system permanently with 

probability 𝑞(𝑝 + 𝑞 = 1). While investigating the single server non-Markovian model, Tak`𝑎cs 

(1963) has introduced the concept of feedback mechanism. Krishnakumar et al (2010) have studied 

the single server Markovian retrial queueing system with feedback and derived the joint 

distribution of the server state and the orbit size by using generating function technique. 

Choudhury et al (2005) have derived the distribution for queue size and busy period for the non-

Markovian queueing model with two stages of non-homogeneous services and Bernoulli feedback 

mechanism. Chen et al (2015) have greatly analysed the concept of Bernoulli vacation policy and 

Bernoulli feedback for the retrial model in discrete time. Badamchi Zadeh et al (2008) have 
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discussed about the non-Markovian queueing system with Bernoulli feedback and Bernoulli 

vacation. Retrial queues in which the server is prone to experience breakdown and repair have 

been studied by Kulkarni and Choi (1990). The steady state probability vectors of our model are 

computed by employing matrix geometric method which was introduced by M. F. Neuts (1981). 

The rate matrix is obtained by means of the logarithmic reduction algorithm specified by Latouche 

et al (1999).  

 Hunter (1983) has shown that the queue length process examined at every distinct 

embedding is a Markov renewal process. He has given more emphasis on finding discrete time 

outputs for the queue length processes. Finally, he has examined the Markovian models with 

finite/infinite waiting space and the instantaneous Bernoulli feedback. A non-Markovian queueing 

model with Bernoulli feedback mechanism has been studied by Disney et al. (1980). They have 

shown that the output of their model is also Markov-renewal. Foley et al. (1983) have studied the 

non-Markovian queueing system with two servers and delayed feedback mechanism. They have 

given a choice for the customers who have received service from the lower server, either to depart 

the system or to go to the upper server to get the re-service, They have shown that their system is 

uniquely weakly lumpable to a Poisson process.  

 A non-Markovian batch arrival queueing model with Bernoulli vacation under multiple 

vacation policy has been investigated by Choudhury et al. (2018). The busy period distribution and 

the waiting time distribution have been derived for their model under steady state. Chakravarthy 

(2008) has studied the multi server queueing model in which arrival follows MAP and the vacation 

times follow phase type distribution. He has obtained the waiting time distribution and has 

presented various numerical examples. Chang et al. (2018) have studied the multi server 

Markovian retrial queueing model with feedback customers and unreliable servers. They have 

calculated the stationary distribution by developing a new recursive algorithm and have derived 

the cost function. Finally, they have made a comparison to validate the exactness of the 

approximate optimal solution.  

 The main motivating factor for our model is from online shopping. Nowadays, most of 

the people give more preferences to online shopping. Every company is selling different varieties 

of goods like dresses, electronic gadgets, house hold articles, etc,. These items may be considered 

as different phases. A customer may get service(booking a product) from any of these phases. If a 

customer is arriving during the busy period, he/she has to wait for some time in the invisible 

queue(orbit). After providing service to the customer, the server may either go for other jobs like 

updating their websites, launching new products, etc., (which may be considered as vacation) or 

the server may remain idle. During busy period, the server may get breakdown(the server 

problem). The customer who is receiving service at that moment has to join with the orbital 

customers and retry to get the service again. Moreover, after booking a particular item, if the 

customer is not satisfied with it(that is in the sense of price or quality of the item), the customer 

may again join the orbit and retry to get the service. We have framed our model in such a way that 

it will match with this situation.  

 On analysing the literature of queueing theory, we could find many articles that have 

discussed about the Bernoulli schedule vacation, Bernoulli feedback, breakdown and repair 

individually and also in different combinations for various arrival and service patterns. In our 

work, we have modelled our system in such a way that with all these attributes, we have 

considered MAP for arrival and phase type distribution for service times.  

 The rest of our work is structured in this manner: Section 2 briefly discusses about the 

model under study. The infinitesimal generator matrix is obtained in the Section 3. The analysis of 

this paper has been done in the steady state in the Section 4. The busy period analysis of our model 

has been done in the Section 5. Some of the performance measures are evaluated in Section 6. 

Finally, under the Section 7, the behavioural aspects of our queueing model has been analysed 

with the support of numerical values and graphical representations.  
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II  Model Description 

 We consider a retrial queueing model with single server in which the customers come to 

the system as indicated by the Markovian Arrival Process with 𝐷0 and 𝐷1 as its parameter matrices 

of dimension n. The service times are supposed to follow phase type distribution with 

representation (𝛼, 𝑇) of order m such that 𝑇0 + 𝑇𝑒 = 0. On an arrival of a customer, if the server is 

available, then he provides service instantly. If not, the customer has to join the orbit of infinite 

capacity. Irrespective of the orbit size, each unit makes retrial at a constant rate from the orbit. The 

inter retrial times follow exponential distribution with parameter 𝜇. At the end of providing 

service to the customer, the server may either go for vacation with probability 𝔭2 or remains idle 

with probability 𝔮2 where 𝔭2 + 𝔮2 = 1. Similarly, after receiving the service, if the customer is 

satisfied, then he leaves the system with probability 𝔭1. Otherwise, if the customer is not satisfied, 

then he joins the orbit with probability 𝔮1 to get the service, where 𝔭1 + 𝔮1 = 1. But, he has no 

priority over the orbital customers and he has to compete with them to get the service. During the 

busy period, the server may get breakdown. As a result, the customer who is receiving service at 

that time has to join the orbit of infinite capacity. After the completion of repair process, the server 

becomes idle. The breakdown times, the repair times and the vacation times are all supposed to 

follow exponential distribution with parameters 𝜎, 𝛿 and 𝜂 respectively.   

III  The generator matrix 

 The formulation of the generator matrix for our queueing model has been done in this 

section. We will begin our study by describing the following notations which are needed. 

 Notations:  

• N(t): Number of customers in the orbit

• 𝐼𝑛: An n-dimensional identity matrix

• e: A column vector (of needed dimension) with each of its entries as 1

• ⊗: Kronecker multiplication of two matrices

• ⊕: Kronecker addition of two matrices

• Y(t) - Nature of the server at time t,

where  

𝑌(𝑡) = {0, the server is in vacation. 

  1, the server is idle.  

  2, the server is offering service. 

  3, the server is in breakdown.  

• S(t): Phase of the service process at time t

• M(t): Phase of the Markovian Arrival Process at time t

• 𝜆: Rate of arrival and is defined as 𝜆 = 𝜋𝐷1𝑒 where 𝜋 is the invariant probability vector

of 

 the generator matrix 𝐷 = 𝐷0 + 𝐷1 

• 𝛾: Rate of service, where 𝛾 = [𝛼(−𝑇)−1𝑒]−1

 It is obvious and can proved that{(𝑁(𝑡), 𝑌(𝑡), 𝑆(𝑡),𝑀(𝑡)):t 0} is a continuous time Markov 

chain (CTMC) whose state space is given below: 

𝚼 = 𝑙∗ ∪ 𝑙(𝑖) 

 where 
𝑙(𝑖) = {(𝑖, 0, 𝑙): 𝑖 ≥ 1,1 ≤ 𝑙 ≤ 𝑛} ∪ {(𝑖, 1, 𝑙): 𝑖 ≥ 1,1 ≤ 𝑙 ≤ 𝑛} ∪ {(𝑖, 2, 𝑘, 𝑙): 𝑖 ≥ 1,1 ≤ 𝑘 ≤ 𝑚, 1 ≤

𝑙 ≤ 𝑛} 

 ∪ {(𝑖, 3, 𝑙): 𝑖 ≥ 1,1 ≤ 𝑙 ≤ 𝑛} 
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 The generator matrix of the Markov chain is as follows: 

𝑄 = [

B00 B01 0 0 0 0 0 B10 A1 A0

0 0 0 0 0 A2 A1 A0 0 0
0 0 0 A2 A1 A0 0 0 ⋯ ⋯

⋯ ⋱ ⋱ ⋱ ⋯

] 

where, 
B00 = [𝐷0 − 𝜂I𝑛 𝜂I𝑛 00 𝐷0 𝛼 ⊗ 𝐷1𝔭1𝔭2𝑇

0 ⊗ I𝑛 𝔭1𝔮2𝑇
0 ⊗ I𝑛 𝑇 ⊕ (𝐷0 − 𝜎I𝑛)]B01 =

[𝐷1 0 0 00 0 0 0𝔮1𝔭2𝑇
0 ⊗ I𝑛 𝔮1𝔮2𝑇

0 ⊗ I𝑛 I𝑚 ⊗ 𝐷1 𝑒𝑚 ⊗ 𝜎I𝑛]

B10 = [0 0 00 0 𝜇𝛼 ⊗ I𝑛0 0 00 0 0]A1 =

[
𝐷0 − 𝜂I𝑛  𝜂I𝑛 0 00 𝐷0 − 𝜇I𝑛 𝛼 ⊗ 𝐷1 0𝔭1𝔭2𝑇

0 ⊗ I𝑛 𝔭1𝔮2𝑇
0 ⊗ I𝑛 𝑇 ⊕ (𝐷0 − 𝜎I𝑛) 00

𝛿I𝑛 0 𝐷0 − 𝛿I𝑛
] 

A2 = [
0 0 0 00 0 𝜇𝛼 ⊗ I𝑛 00 0 0 00

0 0 0
] A0 =

[
𝐷1 0 0 00 0 0 0𝔮1𝔭2𝑇

0 ⊗ I𝑛 𝔮1𝔮2𝑇
0 ⊗ I𝑛 I𝑚 ⊗ 𝐷1 𝑒𝑚 ⊗ 𝜎I𝑛0

0 0 𝐷1

] 

IV  Analysis of the System 

The analysis of the our model has been discussed in this section under steady state. 

4.1  Stability Condition 

Let us define A = A0 + A1 + A2. Then, clearly A is an infinitesimal generator matrix and as 

a result, we can find an invariant probability vector Ψ of A which obeys  
ΨA = 0;Ψ𝑒 = 1 

 where the vector Ψ is given by Ψ = (𝜓0, 𝜓1, 𝜓2, 𝜓3). 

The vector Ψ, partitioned as Ψ = (𝜓0, 𝜓1, 𝜓2, 𝜓3) is computed by solving the following 

equations:  
𝜓0[𝐷 − 𝜂I𝑛] + 𝜓2[𝔭2𝑇

0 ⊗ I𝑛] = 0

𝜓1[𝜂I𝑛] + 𝜓1[𝐷0 − 𝜇I𝑛] + 𝜓2[𝔮2𝑇
0 ⊗ I𝑛] + 𝜓3[𝛿I𝑛] = 0

𝜓1[𝛼 ⊗ 𝐷1 + 𝜇𝛼 ⊗ I𝑛] + 𝜓2[𝑇 ⊕ (𝐷 − 𝜎I𝑛)] = 0 

𝜓2[𝑒𝑚 ⊗ 𝜎I𝑛] + 𝜓3[𝐷 − 𝛿I𝑛] 

 subject to 
𝜓0 + 𝜓1 + 𝜓2 + 𝜓3 = 1. 

 The necessary and sufficient condition required by the system to attain stability is Ψ𝐴0𝑒 < Ψ𝐴2𝑒 

i.e.,
𝜓0[𝐷1𝑒𝑛] + 𝜓2[𝔮1𝑇

0 ⊗ 𝑒𝑛 + 𝑒𝑚 ⊗ 𝐷1𝑒𝑛 + 𝑒𝑚 ⊗ 𝜎𝑒𝑛] + 𝜓3𝐷1𝑒𝑛 < 𝜓1𝜇𝑒𝑛.

4.2   The Transition Probability Vector 

Let the transition probability vector of the infinitesimal generator Q be indicated as x. 

This probability vector can be partitioned as: 𝑥 = (𝑥0, 𝑥1, 𝑥2, . . . ), where 𝑥0 is of dimension 

2𝑛 + 𝑚𝑛 and 𝑥𝑖 is of dimension 3𝑛 + 𝑚𝑛, for 𝑖 ≥ 1. 

Since x is a transition probability vector of Q, the following two conditions will be satisfied 

by it: 
𝑥𝑄 = 0𝑎𝑛𝑑𝑥𝑒 = 1 

 Once the condition for the system to be stable is achieved, the invariant probability vector x can be 

computed using  
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𝑥𝑖+1 = 𝑥1R
𝑖 , 𝑖 ≥ 0

and the remaining vectors namely, 𝑥0𝑎𝑛𝑑𝑥1 can be evaluated by solving the equations 

given below:  
𝑥0B00 + 𝑥1B10 = 0 

𝑥0B01 + 𝑥1[A1 + RA2] = 0 

 based on the normalizing condition 
𝑥0𝑒2𝑛+𝑚𝑛 + 𝑥1[I − R]−1𝑒3𝑛+𝑚𝑛 = 1

 The rate matrix R can be evaluated by making use of Logarithmic Reduction Algorithm proposed 

by Latouche et al.(1999). 

Logarithmic Reduction Algorithm: 
𝑆𝑡𝑒𝑝0: 𝐻 ← (−𝐴1)

−1𝐴0, 𝐿 ← (−𝐴1)
−1𝐴2, 𝐺 = 𝐿𝑎𝑛𝑑𝑇 = 𝐻.

𝑆𝑡𝑒𝑝1: 
𝑈 = 𝐻𝐿 + 𝐿𝐻 

𝑀 = 𝐻2 
𝐻 ← (𝐼 − 𝑈)−1𝑀 

𝑀 ← 𝐿2 
𝐿 ← (𝐼 − 𝑈)−1𝑀 

𝐺 ← 𝐺 + 𝑇𝐿 
𝑇 ← 𝑇𝐻 

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑆𝑡𝑒𝑝1𝑢𝑛𝑡𝑖𝑙 ∥ 𝑒 − 𝐺𝑒 ∥∞< 𝜀. 
𝑆𝑡𝑒𝑝2: 𝑅 = −𝐴0(𝐴1 + 𝐴0𝐺)−1

V  Analysis of the busy period 

 Under this section, we perform the analysis of busy period of our system. 

 The duration of time between the customer’s arrival to the void system and the instant at 

which the system size reaches zero for the first time is termed as the busy period. Hence, the first 

passage time from level 1 to level 0 is the analogue of the busy period.  

 The first return time to level zero with the condition that there should be atleast one visit 

to a state in any other levels is termed as the busy cycle. Let us first bring in the idea of 

fundamental period for the purpose of analysing the busy period. As far as the QBD process is 

concerned, it is nothing but the first passage time from the level 𝑖 to the level 𝑖 − 1, where 𝑖 ≥ 2. 

The discussion has to be done separately for the boundary states (i.e.) for the cases 𝑖 = 0,1. It can be 

easily seen that there are 3𝑛 + 𝑚𝑛 states for each level 𝑖 where 𝑖 ≥ 1. Therefore, while arranging the 

states in the lexicographic order, 𝑗𝑡ℎ state of level 𝑖 may be indicated as (𝑖, 𝑗). 

NOTATIONS:  

• 𝐺𝑗𝑗′(k, x) - The conditional probability that the QBD process enters the level 𝑖 − 1 by

making precisely 𝑘 transitions to the left and also by entering the state (𝑖, 𝑗′) given that it started in 

the state (𝑖, 𝑗) at time 𝑡 = 0.  

• 𝐺̅𝑗𝑗′(z, s) = ∑∞
𝑘=1 zk ∫

∞

0
𝑒−sx𝑑𝐺𝑗𝑗′(k, x): |z| ≤ 1, Re(s) ≥ 0

• 𝐺̅(z, s) − 𝑇ℎ𝑒𝑚𝑎𝑡𝑟𝑖𝑥(𝐺̅𝑗𝑗′(z, s))

• 𝐺 = (𝐺𝑗𝑗′) = 𝐺̅(1,0)- The matrix which concerns about the first passage times without

including the boundary states. 

• 𝐺𝑗𝑗′
(1,0)

(k, x) - The conditional probability that the QBD process enters the level 0 by

making precisely k transitions to the left given that it started in the level 1 at time 𝑡 = 0. 

• 𝐺𝑗𝑗′
(0,0)

(k, x) - The first return time to the level 0.

• 𝔼1𝑗 - The expected first passage time from the level 𝑖 to the level 𝑖 − 1, given that at

time 𝑡 = 0, the process is in the state (𝑖, 𝑗). 

• 𝔼⃗⃗ 1 - The column vector with 𝔼1𝑗 as its entries.

• 𝔼2𝑗 - The expected number of customers who received service during the first passage
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time from the level 𝑖 to the level 𝑖 − 1, given that the first passage time begins in the state (𝑖, 𝑗). 

• 𝔼⃗⃗ 2 - The column vector with 𝔼2𝑗 as its entries.

• 𝔼⃗⃗ 1
(1,0)

 - The vector which gives the expected first passage times from the level 1 to the 

level 0. 

• 𝔼⃗⃗ 2
(1,0)

 - The vector which gives the expected number of service completions in the first 

passage time from the level 1 to the level 0. 

• 𝔼⃗⃗ 1
(0,0)

 - The expected first return time to the level 0. 

• 𝔼⃗⃗ 2
(0,0)

 - The expected number of service completions in the course of first return time to 

the level 0. 

 It can be easily seen that the matrix 𝐺̅(z, s) satisfies the following equation: 
𝐺̅(z, s) = z[sI − A1]

−1A2 + [sI − A1]
−1A0𝐺̅

2(z, s)

Once the rate matrix 𝑅 is evaluated, we can easily find the matrix 𝐺 by making use of the result 
𝐺 = −[A1 + RA2]

−1A2

The matrix 𝐺 may also be evaluated by employing logarithmic reduction algorithm. 

As far as the boundary states are concerned, namely 0 and 1, we have the following 

equations which are satisfied by 𝐺̅(1,0)(z, s) and 𝐺̅(0,0)(z, s) respectively.  

𝐺̅(1,0)(z, s) = z[sI − A1]
−1B10 + [sI − A1]

−1A0𝐺̅(z, s)𝐺̅(1,0)(z, s)

𝐺̅(0,0)(z, s) = [sI − B00]
−1B01𝐺̅

(1,0)(z, s)

. Since, the three matrices namely, 𝐺, 𝐺̅(1,0)(1,0) and 𝐺̅(0,0)(1,0) are stochastic, we may easily 

evaluate the following moments:  

𝔼⃗⃗ 1 = −
∂

∂s
𝐺̅(z, s)|s=0;z=1 = −[A1 + A0(𝐺 + I)]−1𝑒

𝔼⃗⃗ 2 =
∂

∂z
𝐺̅(z, s)|s=0;z=1, = −[A1 + A0(𝐺 + I)]−1A2𝑒

𝔼⃗⃗ 1
(1,0)

= −
∂

∂s
𝐺̅(1,0)(z, s)|s=0;z=1 = −[A1 + A0𝐺]−1[A0𝔼⃗⃗ 1 + 𝑒]

𝔼⃗⃗ 2
(1,0)

=
∂

∂z
𝐺̅(1,0)(z, s)|s=0;z=1 = −[A1 + A0𝐺]−1[B10𝑒 + A0𝔼⃗⃗ 2]

𝔼⃗⃗ 1
(0,0)

= −
∂

∂s
𝐺̅(0,0)(z, s)|s=0;z=1 = −B00

−1[𝑒 + B01𝔼⃗⃗ 1
(1,0)

] 

𝔼⃗⃗ 2
(0,0)

=
∂

∂z
𝐺̅(0,0)(z, s)|s=0;z=1 = −B00

−1B01𝔼⃗⃗ 2
(1,0)

VI  Performance Measures 

 In order to examine the behaviour of our model in the steady state, a few performance 

measures for our model are enumerated in this section.   

• Probability of orbit being empty:
 𝑃𝑒𝑚𝑝𝑡𝑦 = ∑1

𝑗=0 ∑𝑛
𝑙=1 𝑥0𝑗𝑙 + ∑𝑚

𝑘=1 ∑𝑛
𝑙=1 𝑥02𝑘𝑙 

• Probability of server to be idle:
 𝑃𝑖𝑑𝑙𝑒 = ∑∞

𝑖=0 ∑𝑛
𝑙=1 𝑥𝑖1𝑙  

• Probability of server to be in vacation:
 𝑃𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 = ∑∞

𝑖=0 ∑𝑛
𝑙=1 𝑥𝑖0𝑙  

• Probability of server to be busy:
 𝑃𝑏𝑢𝑠𝑦 = ∑∞

𝑖=0 ∑𝑚
𝑘=1 ∑𝑛

𝑙=1 𝑥𝑖2𝑘𝑙  
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• Probability of server to be in breakdown:
 𝑃𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 = ∑∞

𝑖=1 ∑𝑛
𝑙=1 𝑥𝑖3𝑙 

• Probability of a new arrival getting into service directly:

𝑃𝑠 =
1

𝜆
{∑∞

𝑖=0 𝑥𝑖1𝐷1𝑒} 

• Probability of a new arrival getting to receive service directly with a minimum of one

customer waiting in the orbit: 

𝑃𝑠𝑤 =
1

𝜆
{∑∞

𝑖=1 𝑥𝑖1𝐷1𝑒} 

• The total retrial rate at which the orbital customers appeal for service:
𝜇∗ = 𝜇{∑∞

𝑖=1 ∑𝑛
𝑙=1 𝑥𝑖0𝑙 + ∑∞

𝑖=1 ∑𝑛
𝑙=1 𝑥𝑖1𝑙 + ∑∞

𝑖=1 ∑𝑚
𝑘=1 ∑𝑛

𝑙=1 𝑥𝑖2𝑘𝑙 + ∑∞
𝑖=1 ∑𝑛

𝑙=1 𝑥𝑖3𝑙}

• The effective retrial rate :
 𝜇𝑠 = 𝜇{∑∞

𝑖=1 ∑𝑛
𝑙=1 𝑥𝑖1𝑙} 

• Expected orbit size
 𝐸𝑜𝑟𝑏𝑖𝑡 = ∑∞

𝑖=1 𝑖𝑥𝑖𝑒3𝑛+𝑚𝑛 

• Average system size:
 𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑜𝑟𝑏𝑖𝑡 + 𝑃𝑏𝑢𝑠𝑦  

• Probability of a successful retrial:

 𝑃𝑠𝑟 =
𝜇

𝜇+𝜆
{∑∞

𝑖=1 ∑𝑛
𝑙=1 𝑥𝑖1𝑙} 

• Mean number of successful retrial:

 𝐸𝑠𝑟𝑡 =
𝜇

𝜇+𝜆
{∑∞

𝑖=1 ∑𝑛
𝑙=1 𝑖𝑥𝑖1𝑙} 

VII  Numerical Results 

 In this section, we will analyse the behaviour of our model numerically as well as 

graphically. The following five different MAP representations, all of which have the same mean, 

say 1, are taken into consideration for the arrival process.  

Erlang of order 2: 
𝐷0 = [−2 20 −2]; 𝐷1 = [0 02 0] 

Exponential: 
𝐷0 = [−1]; 𝐷1 = [1] 

Hyperexponential: 
𝐷0 = [−1.90 00 −0.19]; 𝐷1 = [1.710 0.1900.171 0.019] 

Since, all these three arrival process are renewal, their correlation is zero.  

Consider the following three phase type distribution for the service times. 

Erlang of order 2:  
𝛼 = (1,0); 𝑇 = [−12 120 −12] 

Exponential: 
𝛼 = (1); 𝑇 = [−6] 

Hyperexponential: 
𝛼 = (0.8,0.2); 𝑇 = [−16.8 00 −1.68] 
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Illustrative Example 1:  

In the following tables, we examine the impact of the retrial rate 𝜇 against the expected 

orbit size. Fix 𝜆 = 1; 𝛾 = 6; 𝔭1 = 0.6; 𝜂 = 2; 𝔭2 = 0.4; 𝜎 = 1; 𝔮1 = 0.4; 𝛿 = 2; 𝔮2 = 0.6.  

Table  1: Expected orbit size - Exponential Service 

  𝝁 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

11  10.0011675  7.48381067  28.7824173 

13  7.70793519  5.79663583  21.8380220 

15  6.53032933  4.92315841  18.2956968 

17  5.81352572  4.38926486  16.1464306 

19  5.33131245  4.02923081  14.7031629 

21  4.98472155  3.77006250  13.6669608 

Table  2: Expected orbit size - Erlang Service 

    𝝁 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

11  12.7430548  9.45396003  37.5253785 

13  9.29498782  6.94117250  26.9239288 

15  7.66359572  5.73985615  21.9503036 

17  6.71251431  5.03600320  19.0617824 

19  6.08961722  4.57372333  17.1738503 

21  5.65003242  4.24691754  15.8431278 

Table  3: Expected orbit size - Hyperexponential Service  

𝝁 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

11  4.86515668  3.72736456  12.8474069 

13  4.18208704  3.21276505  10.8735917 

15  3.76653401  2.89837776  9.67760920 

17  3.48707744  2.68644585  8.87528324 

19  3.18123908  2.53393179  8.29971350 

21  3.13499689  2.41893523  7.86667776 

From the Table 1-3, we have the following observations. 

• While maximizing the retrial rate, the expected orbit size minimizes for different

arrangements of service and arrival times. 

• While comparing to Erlang and Exponential arrival times, the expected orbit size

decreases more rapidly in the case of hyperexponential arrival time. Similarly, the expected orbit 

size decreases slowly in the case of Erlang arrival time.  
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Illustrative Example 2:  

 In the following tables, we examine the impact of the service rate 𝛾 on the expected orbit 

size. Fix 𝜆 = 1; 𝜇 = 8; 𝔭1 = 0.60; 𝜂 = 2; 𝔭2 = 0.40; 𝜎 = 1; 𝔮1 = 0.40; 𝛿 = 2; 𝔮2 = 0.60.  

Table  4: Expected orbit size - Exponential Service  

𝜸 

ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

7  8.62406523  6.38645821  24.9106128 

8  5.34880881  3.98252157  14.9745343 

9  3.99796043  2.98468674  10.9073389 

10  3.26376783  2.44125073  8.70686572 

11  2.80380376  2.10058231  7.33376198 

12  2.48925463  1.86760598  6.39840730 

13  2.26091389  1.69851986  5.72205463 

Table  5: Expected orbit size - Erlang Service 

𝜸 

ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

7  10.0886405  7.41091127  29.7073972 

8  5.78766750  4.28690000  16.4457714 

9  4.20009203  3.12293216  11.6004235 

10  3.37742675  2.51789282  9.10389213 

11  2.87562366  2.14837061  7.58839020 

12  2.53827076  1.89982294  6.57424954 

13  2.29625267  1.72148762  5.85002618 

Table  6: Expected orbit size - Hyperexponential Service  

𝜸 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

7  4.97313477  3.77351943  13.3210642 

8  3.82708589  2.90365725  10.0520703 

9  3.17297465  2.40685867  8.19104494 

10  2.75103836  2.08653058  6.99299693 

11  2.45682845  1.86336640  6.15918869 

12  2.24027528  1.69928391  5.54661758 

13  2.07439882  1.57374500  5.07829007 

From the Table 4-6, we have the following observations. 

• While maximizing the service rate, the expected orbit size minimizes for various possible

arrangements of arrival and service times. 

• While comparing to Erlang and Exponential arrival times, expected orbit size decreases

more rapidly forhyperexponential arrival time. Similarly, the expected orbit size reduces gradually 

for Erlang arrival time.  
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Illustrative Example 3: 

In the following tables, we examine the impact of the vacation rate 𝜂 on expected orbit 

size. Fix 𝜆 = 1; 𝛾 = 6; 𝔭1 = 0.60; 𝜇 = 8; 𝔭2 = 0.40; 𝜎 = 1; 𝔮1 = 0.40; 𝛿 = 2; 𝔮2 = 0.60. 

Table  7: Expected orbit size - Exponential Service 

𝜼 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

 4  3.37760655  2.48794146  9.31560352 

6  2.38366783  1.76179679  6.27202950 

8  2.04477644  1.51618610  5.22962692 

10  1.87519953  1.39392122  4.70752570 

12  1.77370727  1.32100067  4.39510928 

14  1.70624181  1.27264837  4.18755323 

16  1.65818186  1.23826766  4.03979561 

Table  8: Expected orbit size - Erlang Service 

𝜼 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

 4  3.76004704  2.74496640  10.6614094 

6  2.59592138  1.90098311  7.03743508 

8  2.20977550  1.62305018  5.82862515 

10  2.01854731  1.48608798  5.22879429 

12  1.90472438  1.40484025  4.87154080 

14  1.82932015  1.35114669  4.63485557 

16  1.77572971  1.31305560  4.46666909 

Table  9: Expected orbit size - Hyperexponential Service 

𝜼 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

 4  2.20929153  1.67412072  5.46231400 

6  1.65814092  1.26336768  3.87581037 

8  1.45463836  1.11330793  3.29231358 

10  1.34958578  1.03632469  2.99270300 

12  1.28565431  0.989662976  2.81122828 

14  1.24271322  0.958408469  2.68981153 

16  1.21190604  0.936030889  2.60298246 

From the Table 7-9, we have the following observations. 

• While maximizing the vacation rate, the expected orbit size minimizes for various

possible arrangements of arrival and service times. 

• While comparing to Erlang and Exponential arrival times, the expected orbit size

decreases more rapidly for hyperexponential arrival time. Similarly, the expected orbit size 

reduces gradually for Erlang arrival time.  
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Illustrative Example 4: 

In the following tables, we examine the impact of the repair rate 𝛿 against the expected 

orbit size. Fix 𝜆 = 1; 𝛾 = 6; 𝔭1 = 0.60; 𝜂 = 2; 𝔭2 = 0.40; 𝜎 = 1; 𝔮1 = 0.40; 𝜇 = 8; 𝔮2 = 0.60.  

Table  10: Expected orbit size - Exponential Service 

𝜹 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

4  7.59759409  5.51219114  22.7455157 

6  5.87750594  4.25241592  17.5011470 

8  5.24414894  3.78930406  15.5590737 

10  4.91583865  3.54965983  14.5484770 

12  4.71517696  3.40339073  13.9291648 

14  4.57989976  3.30488730  13.5108519 

16  4.48255049  3.23406112  13.2093878 

Table  11: Expected orbit size - Erlang Service 

𝜹 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

4  9.01354432  6.47340005  27.6296447 

6  6.68529225  4.79331402  20.3620356 

8  5.87341675  4.20725586  17.8186074 

10  5.46167788  3.91034115  16.5247530 

12  5.21302166  3.73120654  15.7416246 

14  5.04665662  3.61145470  15.2167986 

16  4.92756297  3.52578803  14.8406217 

Table  12: Expected orbit size - Hyperexponential Service 

𝜹 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

4  4.31052599  3.21966516  11.8178685 

6  3.70054138  2.75276167  10.1062609 

8  3.44417977  2.55760891  9.37940438 

10  3.30337635  2.45078331  8.97785988 

12  3.21444535  2.38346547  8.72330076 

14  3.15320451  2.33718412  8.54755003 

16  3.10847255  2.30342084  8.41893285 

From the Table 10-12, we have the following observations. 

• While maximizing the repair rate, the expected orbit size minimizes for various possible

arrangements of arrival and service times. 

• While comparing to Erlang and Exponential arrival times, the expected orbit size

decreases more rapidly in the case hyperexponential arrival time. Similarly, the expected orbit size 

decreases gradually for Erlang arrival time.  
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Illustrative Example 5: 

In the following tables, we examine the impact of the breakdown rate 𝜎 against expected 

orbit size. Fix 𝜆 = 1; 𝛾 = 6; 𝔭1 = 0.60; 𝜂 = 2; 𝔭2 = 0.40; 𝛿 = 2; 𝔮1 = 0.40; 𝜇 = 8; 𝔮2 = 0.60.  

Table  13: Expected orbit size - Exponential Service 

𝝈 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

0.2  4.08040357  2.96155493  11.8191902 

0.3  4.73131254  3.44689911  13.7479083 

0.4  5.54494873  4.05191775  16.1683587 

0.5  6.59105242  4.82715640  19.2937651 

0.6  7.98585710  5.85628764  23.4817132 

0.7  9.93858363  7.28856770  29.3811856 

0.8  12.8676733  9.41875439  38.3052798 

Table  14: Expected orbit size - Erlang Service 

𝝈 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

0.2  4.08450150  2.94457362  11.9867048 

0.3  4.80393168  3.47566946  14.1600116 

0.4  5.73618355  4.16175105  16.9879714 

0.5  6.99170138  5.08201017  20.8145996 

0.6  8.77333791  6.38066758  26.2765620 

0.7  11.4985662  8.35096411  34.6983724 

0.8  16.1853911  11.6946701  49.3649830 

Table  15: Expected orbit size - Hyperexponential Service 

𝝈 
ARRIVAL 

EXPONENTIAL ERLANG HYPEREXPONENTIAL 

0.2  4.02198460  3.02084111  10.8591758 

0.3  4.32444739  3.25474173  11.6877493 

0.4  4.65258139  3.50785258  12.5914617 

0.5  5.01076886  3.78348382  13.5827069 

0.6  5.40425830  4.08558108  14.6764439 

0.7  5.83942470  4.41891647  15.8909556 

0.8  6.32412046  4.78934454  17.2488808 

From the Table 13-15, we have the following observations. 

• While maximizing the breakdown rate, the mean orbit size also maximizes for all

possible arrangements of arrival and service times. 

• While comparing to exponential and hyperexponential service times, the mean orbit size

increases more rapidly for Erlang service time. Similarly, the mean orbit size increases slowly for 

hyperexponential service time.  
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Illustrative Example 6: 

In the following figures, we observe the impact of both the retrial rate 𝜇 and vacation rate 

𝜂 against expected system size. Fix 𝜆 = 1; 𝔭1 = 0.60; 𝛾 = 6; 𝔭2 = 0.40; 𝜎 = 1; 𝔮1 = 0.40; 𝛿 = 2; 𝔮2 =

0.60. 

Figure 1: Exponential arrival 

 Figure 2: Erlang arrival 
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Figure 3: Hyperexponential arrival 

A quick observation of Figure 1-3 discloses the fact that expected system size decreases 

while maximizing both the retrial rate and vacation rate for all possible arrangements of arrival 

and service times.  

Illustrative Example 7: 

In the following figures, we analyse the influence of both the repair rate 𝛿 and the service 

rate 𝛾 against the probability of server being idle.  

We fix 𝜆 = 1; 𝔭1 = 0.60; 𝜂 = 2; 𝔭2 = 0.40; 𝜇 = 8; 𝔮1 = 0.40; 𝜎 = 1𝔮2 = 0.60. 

Figure 4: Exponential arrival 
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 Figure 5: Erlang arrival 

 Figure 6: Hyperexponential arrival 
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A quick view of Figure 4-6 reveals the fact that the probability of server being idle 

increases while increasing both the repair rate and the service rate for all possible arrangements of 

arrival and service times.  

VIII  Conclusion 

In our work, we have discussed about the retrial queuing system in which arrival follows 

MAP and service time follows PH-distribution together with Bernoulli schedule vacation, 

Bernoulli feedback, breakdown and repair. The effect of retrial rate, repair rate, vacation rate, 

breakdown rate and service rate on the average orbit size has been analysed through numerical 

values. Also, the influence of both the repair rate and the service rate against the probability of 

server being idle and the effect of retrial rate and the vacation rate on the average system size have 

been clearly visualized with the support of graphical representations. We have also analysed the 

busy period for our model. Our work can be extended to queueing models in which arrival follows 

BMAP.  
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