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Abstract  

 

In this paper, we discuss a network model to study the queueing characeristics of 

nodes in a multi-hop wireless network, under the standard binary exponential back-

off (BEB) contention resolution scheme. Based on the steady state distribution of the 

system size at a node, which was appeared in Sweta & Deepak [2], we compute the 

joint distribution of system size at all nodes in a multi-hop network, governed by 

some specific queue disciplines. Getting information on the joint queuing size 

distribution in the network will enable us to control the traffic (and hence 

congestion) in the whole network. In order to illustrate our theoretical results, a 

particular multi-hop network model is considered and analysed numerically.  

 

Keywords: queuing networking model , multi-hop wireless network, joint system 

size distribution 

  

I  Introduction 
 

Sharing data files among nodes in a network without a port, and hence by using less 

expensive infrastructure is one of the major attractions for switching over to wireless network from 

wired one. In ad hoc wireless networks, each node acts not only as a host but also as a relay of 

packets for forwarding packets to another nodes which are not in the direct transmission range of 

source nodes. 

In order to illustrate the dynamics and behaviour of nodes in a wireless network, we 

consider a simple network, having 4 nodes with gateway GW, as shown in figure 1. Among the 4 

nodes, assume that the nodes 1 and 3 are source nodes. That is, external arrivals can be generated 

only at these nodes. The entire route of the packets generated at each of the source nodes is also 

shown in figure 1. 

A circle centred at a node defines the transmission range of that node. All nodes that are 

lying inside the transmission range of a paricular node are called the one hop neighbours of that 

node. All other nodes that are lying inside the circles centred at all one-hop neighbours of a node 

are called its two-hop neighbours. In figure 1, node 1 has only one one-hop neighbour which is 

node 2 but it has two two-hop neighbours namely, node 3 and 4. Node 2 has 3 one-hop neighbors 

1,3 and 4, but it has no two-hop neighbour. Similarly for node 3, one-hop neighbour is node 2 and 
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two hop neighbours are 1 and 4. If a transmission is being taken place between two nodes, all one-

hop neighbours of those two nodes will sense the channel as busy, but all two-hop nodes, being 

not in the transmission range of source node, will not be able to sense the channel and hence there 

can be a chance of collision due to the possibile simultaneous transmission by these nodes.  

 

   
 

Figure  1: A general network 

   

  

Many protocols have been proposed to reduce the chances of collission resulted from 

simultaneous transmissions by several nodes in multi-hop routing networks. Among them IEEE 

802.11 [5] has been accepted as international standard, where the fundamental mechanism to 

access the medium is the distributed co-ordination function (DCF). According to the DCF basic 

access mechanism, a node with a packet for transmission monitors the channel activity and if the 

channel is found idle for a predetermined period called DIFS (distributed inter frame space), it 

transmits the packet. If the channel is found busy, the node undergoes a random back-off period- a 

random number of time slots- and initializes a back-off counter. At each instant at which the 

channel is monitored, the back-off counter is decremented if the channel is found idle for a period 

longer than DIFS, else it is frozen. The node, of which back-off counter expires first, begins 

transmission and all of its neighbouring nodes freeze their counters. Once the current transmission 

gets completed, back-off processes of all neighbours of transmitting node resume as explained 

above. 

In order to minimize the possibility of collisions due to multiple simultaneous 

transmissions, DCF employs several contention resolution schemes namely, binary exponential 

back-off (BEB) rule, LIMD (linear increase multiple decrease) rule and so on. In our work (here and 

in our earlier problem), BEB rule is used as it is the most standard one. The rule is explained briefly 

as given below: If a packet is ready for transmission from a node, contention window size is 

chosen as 𝑊 and a random value from 0, 1,2, 𝑊 − 1 is uniformly selected as its back-off counter. If 

the packet does not get transmittied successfully, that is, it meets with a collision in that attempt, 

the contention window size will be doubled so that it is set as 𝑊1 = 2𝑊. A value for back-off 

counter is selected uniformly from 0, 1,2, 𝑊1 − 1. If it further meets with a collision on its next 

attempt, the contention window size will be doubled again and this will continue up to a 

maximum of 𝑚 collisions. After 𝑚 unsuccessful attempts, if it again meets with a collision, the 

contention window size will be fixed as 𝑊𝑚 = 2𝑚𝑊. If an attempt results in successful 
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transmission, the contention window size for that node will be reset as 𝑊. Hence  

 

 
𝐶𝑊𝑚𝑖𝑛 = 𝑊,
𝐶𝑊𝑚𝑎𝑥 = 2𝑚𝑊.

 

 

As an attempt to learn some major characteristics of waiting packets at an arbitrary node in a 

wireless network, Sweta & Deepak [2] proposed a model and analysed it by matrix theoretic 

approach to get some important statistical characteristics such as probability distributions of 

system size, waiting time of packets, number of collisions experienced by a packet at a single node, 

and their moments in a rigorous manner. However, Sweta & Deepak [2] couldn’t take up the 

problem of computing the joint distribution of system size at all nodes in the entire network due to 

a large dimensional state space. Here, we use the theoretical approach developed by Kelly [3] to 

address this for a network, governed by some specific queue disciplines. A summary of the 

assumptions and results that appeared in Sweta & Deepak [2], and relevant to the present problem 

too, is given in the next section. 

 

II  Some of our earlier results 
 

The major assumptions in Sweta & Deepak [2] were: 

 

(i) Packets are generated at a node according to a Poisson rule of rate 𝜆, and join a waiting 

line till they are being considered for transmission. 

(ii) At an epoch at which a packet is considered for transmission, the back-off period for 

the node commences if it senses the channel as idle, and if so the node selects a back-off counter 

uniformly from 0, 1, 2, 𝑊 − 1. If the packet has already experienced 𝑗 collisions, then the back off 

counter will be from 0, 1, 2, 𝑊𝑗 − 1. Also, time spent on counters are assumed to be independent 

and identically distributed exponential variates having mean 1/𝜇. 

(iii) If the channel is found busy after completion of a back off counter time, the back off 

timer will be frozen and will commence again only after the channel is sensed as idle. The channel 

idle periods and busy periods are taken as independent Phase type (PH) variates with 

representations (𝛼1, 𝑇1) and (𝛼2, 𝑇2) of order 𝑛1 and 𝑛2 respectively. For details on PH variates, see 

Neuts [4]. 

(iv) When the back-off counter at a particular back-off stage becomes zero, the node starts 

transmission. Packet transmission times are assumed to be independent and identical exponential 

variates having mean 1/𝛾. 

(v) A transmission results in collision with probability 𝑝 and is successful with probability 

1 − 𝑝. 

The underlying Markov process in connection with the dynamics of a specific node could 

be seen as a Quasi Birth-Death (QBD) process and hence its steady state analysis could be carried 

out by the matrix analytical approach ( See Neuts[4]). 

Among major results in Sweta & Deepak [2], the one which is relevant to the present 

model is given below:  

 

3.1  Distribution of the time between the instant at which a packet is considered 

for transmission and the instant at which it is successfully transmitted 
 

If U represents the duration of time from the epoch at which a packet is chosen for 

transmission till the epoch at which it is successfully transmitted, we proved that U is a continuous 

phase type variate having representation (𝛽, 𝑆). Here,  

 𝛽 = [
1

𝑊

𝛼1

𝑊
⋯

𝛼1

𝑊
0 0 ⋅ 0] 
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and 

 

 𝑆 =

[
 
 
 
 
 
 
 
 
 
 
𝐷0 𝐵1 0 ⋅ 0 0 0 ⋅ 0
0 𝐷1 𝐵2 ⋅ 0 0 0 ⋅ 0
0 0 𝐷2 ⋅ 0 0 0 ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ⋅ ⋅ ⋅ 𝐷𝑚 + 𝐵𝑚 0 0 ⋅ 0
𝐹0 0 0 ⋅ 0 𝐺0 0 ⋅ 0
0 𝐹1 0 ⋅ 0 0 𝐺1 ⋅ 0
⋅ ⋅ 𝐹2 ⋅ 0 0 0 ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 𝐹𝑚 0 0 ⋅ 𝐺𝑚

]
 
 
 
 
 
 
 
 
 
 

 

where  

 𝐵𝑖 =

[
 
 
 
 
 
𝑝𝛾/𝑊𝑖 𝑝𝛾𝛼1/𝑊𝑖 𝑝𝛾𝛼1/𝑊𝑖 ⋯ 𝑝𝛾𝛼1/𝑊𝑖

0 0 0 ⋯ 0
0 0 0 ⋯ 0
⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 ⋯ 0

]
 
 
 
 
 

 

 for 𝑖 = 1,2, …𝑚 and  

 𝐷𝑖 =

[
 
 
 
 
−𝛾 0 0 ⋯ 0
𝜇𝑒 𝑇1 − 𝜇𝐼 0 ⋯ 0
0 𝜇𝐼 𝑇1 − 𝜇𝐼 ⋯ 0
⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 ⋯ 𝑇1 − 𝜇𝐼]

 
 
 
 

 

 

for 𝑖 = 0,1,2, … 𝑚. 

Also,  

 𝐹𝑖 =

[
 
 
 
 
0 𝑇2

0𝛼1 0 ⋯ 0

0 0 𝑇2
0𝛼1 ⋯ 0

⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 ⋯ 𝑇2

0𝛼1

]
 
 
 
 

 

 

and  

 𝐺𝑖 =

[
 
 
 
 
 
𝑇2 0 0 ⋯ 0

0 𝑇2 0 ⋯ 0

0 0 𝑇2 ⋯ 0

⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 ⋯ 𝑇2

]
 
 
 
 
 

 

 for 𝑖 = 0,1, … ,𝑚. 

 

Hence the density of 𝑈 is  

 

 𝑓(𝑢) = 𝛽𝑒𝑆𝑢(−𝑆)𝑒,            0 < 𝑢 < ∞ (1) 

 

 and  

 

 𝐸[𝑈] = 𝛽(−𝑆)−1𝑒. (2) 

 

 Note that in the above 𝑒 represents a column vector, having all entries 1, of appropriate 

dimension. 
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III  Joint system size distribution  
 

Network queues corrrespond to systems which consist of many queues with different 

types of customers moving from one queue to another in their routes. The route of a customer 

through the queues of the system may be fixed or random. Several researchers produced 

equalibrium system size distribution in product form for such networks based on the assumption 

that amounts of service required by a customer at successive queues along its route are 

independent and exponentially distributed. This assumption forced the said authors to demand 

that knowledge of the past route of a customer in a queue is of no use in predicting its future route. 

However, Kelly[3] conjectured that if the queues of the network were of a certain form, then even 

with the assumptions that the amount of service required by a customer at a queue in its route was 

almost arbitrarily distributed and depend on its route and the amount of service required by it at 

other queues along its route, the equalibrium system size distribution could be found in an 

analytical form. Later Barbour [1] proved this conjecture. 

Kelly [3] dealt with an open system and used a customer’s type to determine not only its 

route through the system but also the distribution of the amount of service it requires at each 

queue along that route. The following are the main assumptions made by Kelly [3] and Barbour 

[1].   

    • Queueing network consists of 𝐽 nodes.  

    • Customers of type 𝑖 (i=1, 2, .. , I) enter the system in a Poisson stream at rate 𝜈(𝑖) and 

pass through the sequence of queues 𝑟(𝑖, 1), 𝑟(𝑖, 2), −. , 𝑟(𝑖, 𝑆(𝑖)) before leaving the system ,where 

S(i) denotes the number of stages a customer of type i visits along its route. 

 

    • A type i customer at its stage s (when 𝑟(𝑖, 𝑠) = 𝑗) needs a random amount of service 𝑄𝑖𝑠.  

    • Total service effort offered by a single server when there are 𝑛𝑗 customers in queue j is 

𝜙𝑗(𝑛𝑗) .  

    • A customer in 𝑚th position of 𝑗th queue will be given a proportion 𝛾𝑗(𝑚, 𝑛𝑗) of this 

effort, where 1 ≤ 𝑚 ≤ 𝑛𝑗.  

    • When a customer arrives at queue j, it moves into position m (1 ≤ 𝑚 ≤ 𝑛𝑗 + 1) with 

probability 𝛾𝑗(𝑚, 𝑛𝑗 + 1) .  

 Then Kelly [3] conjuctured and Barbour [1] later proved that 𝑛(𝑡) ≡

{𝑛1(𝑡), 𝑛2(𝑡), . . . . , 𝑛𝐽(𝑡)} has a limitting distribution 𝑃(𝑛) such that 

 

 𝑃(𝑛) ∝ ∏𝐽
𝑗=1

𝑎
𝑗

𝑛𝑗

∏
𝑛𝑗
𝑚=1𝜙𝑗(𝑚)

, (3) 

 where  

 𝑎𝑗 = ∑𝐼
𝑛=1 𝜈(𝑖) ∑𝑆(𝑖)

𝑠=1 𝐼[𝑟(𝑖,𝑠)=𝑗]𝐸𝑄𝑖𝑠 , (4) 

 provided  
 𝑀 = ∑𝑛 𝑃(𝑛) < ∞. 

 

Note that the usage of the same fuction 𝛾 in the last two assumptions listed above is very 

essential, without which the existence of the equalibrium distribution of the joint system size given 

by eqns (3) and (4) will not be valid for network models bearing non-exponential service time 

distributional assumptions. For a detailed discussion on this, refer Kelly [3] and Barbour [1]. 

Now we use eqns (3) and (4) to determine the joint distribution of the number of packets 

waiting at nodes in some special type of wireless networks. Let us consider a network with nodes 

having identical features like the same number of one-hop and two-hop neighbours. Because of 

this, we can assume that the distribution of the amount of time the channel is sensed as busy by 

each of the nodes are identically distributed. In a similar manner, channel idle times sensed by all 
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nodes can also be assumed to be disributed identically. Hence, the distribution of the time from the 

instant at which a packet is ready to the instant at which it is successfully transmitted from each 

node are also identically distributed. Its density and mean are defined by eqns (1) and (2) 

respectively. Hence 𝐸𝑄𝑖𝑠 corresponding to our model can assumed to be the same for all 𝑖 and 𝑠, 

and is given by  

 

 𝐸[𝑄𝑖𝑠] = 𝛽(−𝑆)−1𝑒. (5) 

 

 Now consider the routing probability matrix as  

 

 𝑅 =

[
 
 
 
 
𝑝11 𝑝12 ⋯ 𝑝1𝑛

𝑝21 𝑝22 ⋯ 𝑝2𝑛

⋯ ⋯ ⋯ ⋯
𝑝𝑛1 𝑝𝑛2 ⋯ 𝑝𝑛𝑛

]
 
 
 
 

. 

 

As we assumed earlier, type of a customer will be decided by the route along which it may 

traverse. Hence, we can have a maximum of 𝐼 = 𝑛! types of customers. Suppose that the total 

external packet generation to the system obey a Poisson rule of parameter 𝜆 and a 𝑞𝑖 proportion of 

these is of type 𝑖 for 𝑖 = 1,2, … , 𝐼 so that ∑𝐼
𝑖=1 𝑞𝑖 = 1. As we assumed, average time that any type of 

customer takes at any node in its route is 𝐸[𝑄𝑖𝑠], and is given by eqn (5).  

As per the the two important assumptions made by Kelly [3] and Barbour [1], which are 

listed as the last two assumptions, given above in this section, we should also use the same fuction 

𝛾 in our model due to the non-exponential variate 𝑄𝑖𝑠. Hence, we assume two cases here namely, 

 

case 1 

Selection of packets for transmission at nodes is done by LCFS and the new packet always 

joins at the end of the queue. 

Then we have  

 
𝛾𝑗(𝑚, 𝑛𝑗) = 1 𝑖𝑓𝑚 = 𝑛𝑗

= 0 𝑖𝑓𝑚 ≠ 𝑛𝑗.
 

 

case 2 

Selection of packets for transmission is done uniformly from the waiting line and also the 

customer joins a position randomly (as per uniform law) upon its arrival at a node along its route. 

In this case, we have  

 
𝛾𝑗(𝑚, 𝑛𝑗) =

1

𝑛𝑗
for𝑚 = 1,2,3, . . . 𝑛𝑗.

 

In both cases, we have  

 𝑎𝑗 = ∑𝐼
𝑖=1 𝑞𝑖𝜆 ∑𝑆(𝑖)−1

𝑠=1 𝑝𝑟(𝑖,𝑠),𝑟(𝑖,𝑠+1)=𝑗𝛽(−𝑆)−1𝑒. (6) 

 

 Hypothetically, since we have only one server at each node, 𝜙𝑗(𝑚) = 1 for 𝑚 = 1,⋯ , 𝑛𝑗 and 𝑗 =

1,⋯ , 𝐽. 

Therefore, 

 

 𝑃(𝑛) ≡ ∏𝑛
𝑗=1

𝑎
𝑗

𝑛𝑗

∏
𝑛𝑗
𝑚=1𝜙𝑗(𝑚)

 

 

 

 ≡ ∏𝑛
𝑗=1 (𝜆𝛽(−𝑆)−1𝑒 ∑𝐼

𝑖=1 𝑞𝑖 ∑
𝑆(𝑖)−1
𝑠=1 𝑝𝑟(𝑖,𝑠),𝑟(𝑖,𝑠+1)=𝑗)

𝑛𝑗 . (7) 
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 In the above, 𝑝𝑟(𝑖,𝑠),𝑟(𝑖,𝑠+1)=𝑗 represents the routing probability of a packet of type i, which is 

currently at the s th stage of its route, moving to node j at the next stage. 

 

IV  Numerical illustration 
 

In order to illustrate the theoretical results established in the previous section numerically, 

we consider a network model with nodes having equal number of one-hop and two-hop 

neighbours, as shown in figure 2.  

  

 
 

Figure  2: A particular network 

 

Here node 1 and 2 are assumed as source nodes and GW is the gateway. The matrices R, F 

and N exhibit the details of routing of packets, one-hop, and two-hop neighbours of each node 

respectively.  

 𝑅 =

1 2 3 4 5
1 0 0 1 0 0
2 0 0 0 1 0
3 0 0 0 0 1
4 0 0 0 0 1
5 0 0 0 0 0

 

 

 𝐹 =

1 2 3 4 5
1 0 1 1 0 0
2 1 0 0 1 0
3 1 0 0 0 1
4 0 1 0 0 1
5 0 0 1 1 0

 

 

 𝑁 =

1 2 3 4 5
1 0 0 0 1 1
2 0 0 1 0 1
3 0 1 0 1 0
4 1 0 1 0 0
5 1 1 0 0 0
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As approximate Phase-type representations of the distribitions for channel busy time and idle time 

sensed by each node, we use the same representations that used in Sweta & Deepak [2]. These had 

been obtained by collecting around 300000 observations from a network which is being governed 

by BEB scheme under 802.11 MAC [5] specification. Activities at one of the nodes were monitored 

and the observations corresponding to the events like arrivals of data packets at the node and 

amount of time the channel was idle/busy sensed by that node were used to get an approximate 

phase type fit for the said variates. Also, the same observations were used for estimating the packet 

arrival rate. The representation thus obtained for channel busy time was  

 

 𝛼1 = [
0.7530 0.0766 0.1704

] ; 

 

 𝑇1 = [

−1.8097 0.2397 0.6790
0.1939 −1.3306 0.5483
0.1847 0.5014 −1.1274

], 

and that for channel idle time was  

 𝛼2 = [
0.8823 0.0307 0.0870

] ; 

 

 𝑇2 = [

−7.2175 0.1960 0.5386
0.2835 −1.5407 0.5142
0.2729 0.5297 −1.3043

]. 

Packet arrival rate is estimated as 𝜆 = 1.0629. Also, we have 𝐸[𝑄𝑖𝑠]=0.6034. 

 

In the present example, there are two types of packets namely, the one that traverses the 

route 1 → 3 → 5 → GW and the other having the route 2 → 4 → 5 → GW. Suppose that the inflow 

of packets to the system obey Poisson rule of rate 𝜆 = 1.0629, of which both types claim the same 

proportion. That is, 𝑞𝑖 =
1

2
 for 𝑖 = 1,2. Table 1 presents a few values for the joint system size 

probabilities of packets at nodes in our model, under both case 1 and case 2 discussed in the 

previous section. 

 

Table  1: Joint System Size Probabilities 

  

 n   P(n)   n   P(n)  

(1,2,1,1,2) 0.000106 (1,1,1,3,2) 0.000034 

(1,1,2,2,1) 0.000053 (3,1,1,2,1) 0.000017 

(2,2,1,1,2) 0.000034 (1,1,2,2,3) 0.000022 

(1,1,1,3,3) 0.000022 (3,1,1,1,2) 0.000034 

(1,1,3,2,1) 0.000017 (1,1,1,1,2) 0.000332 

(1,4,1,1,3) 0.000007 (2,1,1,2,2) 0.000034 

(1,1,2,2,2) 0.000034 (3,1,1,1,3) 0.000022 

(2,1,1,2,3) 0.000022 (1,2,2,1,2) 0.000034 

(1,1,2,2,1) 0.000053 (1,1,1,3,3) 0.000022 

(2,1,1,2,3) 0.000022 (1,1,1,3,1) 0.000053 

 

For computing the joint system size probabilities, as displayed in table 1, the normalization 

constant is taken as the sum of the probabilities corresponding to state vectors 𝑛 =

(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) for each 𝑛𝑖 varies over 0 to 50. 
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