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with their Applications 
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This special issue is the outcome of the selected papers presented in the twenty-seventh 

international conference of Forum for Interdisciplinary Mathematics (FIM) in conjunction 

with third convention of IARS on Interdisciplinary Mathematics, Statistics and 

Computational Techniques (IMSCT 2018–FIM XXVII) which is held in the Department of 

Statistics, University of Jammu, Jammu & Kashmir, India during November 02-04, 2018. 

In the paper, ‘A Discrete Parametric Markov-Chain Model of a Two Unit Cold 

Standby System with Appearance and Disappearance of Repairman’ by Rakesh Gupta and 

Parul Bhardwaj, they have performed the stochastic analysis of a two identical unit system 

model in which repairman does not always remain with the system and appears and 

disappears at random epochs. In this paper authors have taken discrete failure and repair 

time distribution, a rare consideration in reliability models. All the failure time 

distributions, repair time distributions and the appearance and disappearance time 

distributions of repairman have been considered geometric with different parameters. 

Graphs have been drawn for profit function and mean time to system failure to give more 

clarity about the behaviour of performance measures of the system model in respect to 

different parameters of various distributions considered in the study. 

The paper, ‘A Discrete Parametric Markov-Chain Model of a Two-Unit Cold 

Standby System with Repair Efficiency Depending on Environment’ by Rakesh Gupta and 

Arti Tyagi deals with a two-unit cold standby system with repair efficiency depending on 

environmental conditions. The repairman at the time of need may be in poor or good 

physical condition. All the failure, repair and change of environment conditions time 

distributions are taken to be geometric with different parameters. Various measures of 

system effectiveness are obtained and behaviour of some of them is explained through 

graphs. 

In the paper, ‘A Two Identical Unit Cold Standby System Subject to Two Types of 

Failures’ by Pradeep Chaudhary and Rashmi Tomar Authors have performed the 

stochastic analysis of a two identical unit system model with two types of failure viz. 

normal failure and failure due to chance causes which may occur randomly and are beyond 

human control. Several reliability measures of system performance have been obtained by 

mailto:pkk_skumar@yahoo.co.in
mailto:rakesh.kumar@smvdu.ac.in


 
Pawan Kumar, Rakesh Kumar 
EDITORIAL 

RT&A, No 1 (52) 
Volume 14, March 2019  

11 

taking failure time distribution as exponential and repair time distribution as general. 

Graphical study of some of the obtained reliability characteristics is also performed. 

In the paper, ‘Analysis of Reliability Measures of Two Identical Unit System with 

One Switching Device and Imperfect Coverage’ by Akshita Sharma and Pawan Kumar a 

two identical unit system model with safe and unsafe failures, switching device and 

rebooting is investigated and analysed. The purpose of rebooting is to convert the unsafe 

failures in to safe failures and make system ready for repair. A repaired and standby unit 

is put into operation through a switching device. All the failure time distributions are 

considered to be exponentially distributed and repair time distribution as arbitrary. 

Regenerative point technique is used to perform the reliability analysis, besides finding the 

expressions for important reliability characteristics their behaviour w.r.t. failure and repair 

parameters has also been studied. 

In the paper, ‘Performance Measures of a Two Non-Identical Unit System Model 

With Repair and Replacement Policies’ by Urvashi Gupta and Pawan Kumar, a two non- 

identical unit system model with repair and replacement policies has been developed for 

its stochastic analysis. Here authors have considered that a unit gives an indication of 

failure before it actually fails and the possible steps may be taken to prevent its failure. Also 

a failed unit needs some preparation time (which is a random variable) to start its repair. 

All the failure time distributions are taken as exponential and repair time distribution as 

general. Reliability characteristics useful to system manager have been found and their 

nature and pattern of variation for varying values of failure and repair parameters have 

been studied through graphs. 

The paper, ‘Assessment and Prediction of Reliability of an Automobile Component 

Using Warranty Claims Data’ by Tahsina Aziz and M. Rezaul Karim, an analysis of 

warranty claims data of a component of an automobile is performed. The objectives of the 

analysis are to assess and predict the reliability of the component. To do this they present 

non-parametric and parametric analyses for the lifetime variable, age in month, based on 

warranty claims data. It also investigates on the variation of reliability of the component 

with respect to month of production and dominant failure modes. The work could be useful 

to the manufacturers for assessing and predicting reliability and warranty costs and for 

assuring customer satisfaction and product reputation. 

The paper by Gulab Singh Bura and Shilpi Gupta entitled, ‘Time Dependent 

Analysis of an M/M/2/N Queue with Catastrophes’ considers a Markovian queueing 

system with two identical servers subjected to catastrophes. When the system is not empty, 

catastrophes may occur and destroy all present customers in the system. Simultaneously 

the system is ready for new arrivals. The time dependent and the steady-state solutions are 

obtained explicitly. Further, they have obtained some important performance measures of 

the queueing model.  

In the paper, ‘Cost-profit Analysis of Stochastic Heterogeneous Queue with Reverse 

Balking, Feedback and Retention of Impatient Customers’ by Bhupender Kumar Som, the 

author has developed feedback queuing system with heterogeneous service, reverse 

balking, reneging and retention.  The model is solved in steady-state recursively. Necessary 

measures of performance are drawn. Numerical interpretation of the model is presented. 

Cost-profit analysis of the system is performed by developing a cost model. Sensitivity 

analysis of the model is also presented arbitrarily. 

Finally, in the paper, ‘Transient Analysis of a Single-Server Queuing System with 

Correlated Inputs and Reneging’ by Rakesh Kumar and Bhavneet Singh Soodan, the 
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authors study a continuous-time single-server queuing system, wherein the arrivals at two 

consecutive transition marks are correlated. The service times and the reneging times are 

exponential distributed. The time-dependent behavior of the model is studied using 

Runge-Kutta method. 

At last, the guest editors would like to acknowledge the contributions of all those 

professors who helped them to bring this special issue in current form. The guest editors 

would also like to thank the Editor-in-Chief, and also the Managing Editor, Prof. Alexander 

Bochkov of the journal Reliability: Theory and Applications for providing a platform for 

publishing the research papers in special issue.  
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Abstract  
 

The paper deals with the stochastic analysis of a two-identical unit cold standby system 

model assuming two modes- normal and total failure. A single repair facility appears in 

and disappears from the system randomly. The random variables denoting the failure time, 

repair time, time to appearance and time to disappearance of repairman are independent 

of discrete nature having geometric distributions with different parameters. The various 

measures of system effectiveness are obtained by using regenerative point technique. 

 

Keywords: Transition probability, mean sojourn time, regenerative point, reliability, 

MTSF, availability of system, busy period of repairman. 

 

 

1. Introduction 
  

In reliability modeling repair maintenance is concerned with increasing system reliability, 

availability and net expected profit earned by the system with the implementation of major 

changes in the failed components of a unit. In order to achieve this goal, the failed 

components of a unit may be either repaired or replaced by new ones. 

Numerous authors [1, 5, 6, 7, 8] have analyzed various system models considering 

different repair policies. Goyal and Murari [1] analyzed a two-identical unit standby system 

model considering two types of repairmen- regular and expert. The regular repairman is 

always available with the system whereas expert repairman can be made available from 

the outside instantaneously. Mokaddis et. al. [6] obtained the busy period analysis of a 

man-machine system model assuming different physical conditions of repairman. Pandey 

and Gupta [7] analyzed a two-unit standby redundant system model assuming that a delay 

occurs due to some administrative action in locating and getting repairman available to the 

system. Sharma et. al. [8] considered a two-unit parallel system assuming dependent failure 

rates and correlated working and rest time of repairman. 

Gupta et. al. [5] investigated a two unit standby system with correlated failure and 

repair and random appearance and disappearance of repairman. They have also assumed 

that the failure time, repair time, time to appearance and time to disappearance of a 

mailto:smprgccsu@gmail.com
mailto:parul.bhardwaaj@gmail.com
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repairman are continuous random variables. Few works by the authors [3, 4, 5] is carried 

out in the literature of reliability analyzing the system models taking geometric failure and 

repair time distributions. 

The purpose of the present paper is to analyze a two-unit cold standby system 

model with appearance and disappearance of repairman under discrete parametric 

Markov-Chain i.e. failure and repair times and appearance and disappearance times of 

repairman follow geometric distributions with different parameters. The phenomena of 

discrete failure and repair time distributions may be observed in the following situation. 

Let the continuous time period ( )0,  is divided as 0, 1, 2,…, n,… of equal distance 

on real line and the probability of failure of a unit during time (i, i+1); i = 0, 1, 2,….. is p, 

then the probability that the unit will fail during (t, t+1) i.e. after passing successfully t 

intervals of time is given by ( )
t

p 1 p− ; t = 0, 1, 2,…. This is the p.m.f of geometric 

distribution. Similarly, if r denotes the probability that a failed unit is repaired during (i, 

i+1); i = 0, 1, 2,... then the probability that the unit will be repaired during (t, t+1) is given by 

( )
t

r 1 r− ; t = 0, 1, 2,…. On the same way, the random variables denoting appearance and 

disappearance of repairman may follow geometric distributions. 

The following economic related measures of system effectiveness are obtained by 

using regenerative point technique- 

i) Transition probabilities and mean sojourn times in various states. 

ii) Reliability and mean time to system failure. 

iii) Point-wise and steady-state availabilities of the system as well as expected up time of 

the system during interval (0, t). 

iv) Expected busy period of the repairman during time interval (0, t). 

v) Net expected profit earned by the system during a finite interval and in steady-state. 

 

1. Model Description and Assumptions 

 

i) The system comprises of two-identical units. Initially, one unit is operative and other is 

kept into cold standby. 

ii) Each unit of the system has two modes- Normal (N) and Total failure (F).  

iii) There is a single repair facility which appears in and disappears from the system 

randomly. Once the repairman starts the repair of a failed unit, he does not leave the 

system till all the units are repaired that failed during his stay in the system. 

iv) All random variables denoting failure time, repair time, time to appearance and 

disappearance of repairman are independent of discrete nature and follow geometric 

distributions with different parameters. 

v) The system failure occurs when both the units are in total failure mode. 

vi) The repaired unit works as good as new. 

 

2. Notations and States of the System 
 

a) Notations: 
tpq  : p.m.f. of failure time of an operating unit ( )p q 1+ = . 

trs  : p.m.f. of repair time of a failed unit ( )r s 1+ = . 
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tab  : p.m.f. of disappearance of repairman from the system ( )a b 1+ = . 

tcd  : p.m.f. of appearance of repairman in the system ( )c d 1+ = . 

( ) ( )ij ijq ,Q  : p.m.f. and c.d.f. of one step or direct transition time from state iS  to 

jS . 

ijp  : Steady state transition probability from state iS  to jS . 

( )ij ijp Q=   

( )iZ t  : Probability that the system sojourns in state iS  at epochs 0, 1, 

2,……,up to (t-1). 

i  : Mean sojourn time in state iS . 

, h  : Symbol and dummy variable used in geometric transform e. g. 

( ) ( ) ( )t
ij ij ij

t 0

GT q t q h h q t




=

  = =    

©  : Symbol for ordinary convolution i.e. ( ) ( ) ( ) ( )
t

u 0

A t t A u B t u
=

© = −  

b) Symbols for the states of the system: 

O SN / N  : Unit in normal (N) mode and operative/standby. 

r wF / F  : Unit in total failure (F) mode and under repair/waiting for repair 

A/ NA : Repairman is available/not available with the system. 

 
TRANSITION DIAGRAM 

                                                                                pr                                                                            

                                                                                                                                                                                    

             0S                                     p             1S                                      p          4S                                         

                                                                                                                                                                              

                                                      r                                                       r                                

                                                                                                                                                                   

                                           ap                                                                                                              

                    c           a                                             c                                cp                       c                      

                                                 cp                                                                                                            

                                                                                                                                                                     
                                                      p                                                       p                                                            

                                                                                                                                                        

              2S                                                    3S                                                 5S                                           

                                                                                                                                                                         

           : Up State                                                          : Failed State                                               : Regenerative Point 

          Fig.1 
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r wF ,F
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w wF ,F
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w oF ,N

  NA
 

o sN ,N

  NA
 

 
 

With the help of above symbols the possible states of the system along with failure and 

repair rates are shown in the transition diagram (Fig.1) 
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3. Transition Probabilities 
  

Let ( )ijQ t be the probability that the system transits from state iS  to jS  during time interval 

(0, t) i.e., if ijT  is the transition time from state iS  to jS  then ( )ij ijQ t P T t =   . In 

particular, ( )01Q t  is the probability that the operative unit fails at an epoch u between (0,t) 

and repairman does not disappear up to the epoch u.  

( )
t

01

u 0

Q t P
=

=  (Operative unit fails at epoch u) X P (Repairman does not disappear up to 

the epoch u) 
( )

( ) 
t

t 1u u 1

u 0

bp
pq b 1 bq

1 bq

++

=

= = −
−

  

Similarly, 

( )
( )

( ) t 1

02

aq
Q t 1 bq

1 bq

+
= −

−
, ( )

( )
( ) t 1

03

ap
Q t 1 bq

1 bq

+
= −

−
 

( )
( )

( ) t 1

10

qr
Q t 1 qs

1 qs

+
= −

−
, ( )

( )
( ) t 1

11

pr
Q t 1 qs

1 qs

+
= −

−
 

( )
( )

( ) t 1

14

ps
Q t 1 qs

1 qs

+
= −

−
, ( )

( )
( ) t 1

20

cq
Q t 1 dq

1 dq

+
= −

−
 

( )
( )

( ) t 1

21

cp
Q t 1 dq

1 dq

+
= −

−
, ( )

( )
( ) t 1

23

dp
Q t 1 dq

1 dq

+
= −

−
 

( )
( )

( ) t 1

31

cq
Q t 1 dq

1 dq

+
= −

−
, ( )

( )
( ) t 1

34

cp
Q t 1 dq

1 dq

+
= −

−
 

( )
( )

( ) t 1

35

dp
Q t 1 dq

1 dq

+
= −

−
, ( ) ( )t 1

41Q t 1 s += −  

( ) ( )t 1
54Q t 1 d += −    ( )1 14−  

The steady state transition probabilities from state iS  to jS  can be obtained from 

( )1 14−  by taking t →  , as follows: 

( )01

bp
p

1 bq
=

−
, 

( )02

aq
p

1 bq
=

−
, 

( )03

ap
p

1 bq
=

−
, 

( )10

qr
p

1 qs
=

−
 

( )11

pr
p

1 qs
=

−
, 

( )14

ps
p

1 qs
=

−
, 

( )20

cq
p

1 dq
=

−
, 

( )21

cp
p

1 dq
=

−
 

( )23

dp
p

1 dq
=

−
, 

( )31

cq
p

1 dq
=

−
,  

( )34

cp
p

1 dq
=

−
, 

( )35

dp
p

1 dq
=

−
 

41p 1= , 54p 1=  

We observe that the following relations hold- 

01 02 03p p p 1+ + = , 10 11 14p p p 1+ + = , 20 21 23p p p 1+ + =  

31 34 35p p p 1+ + = , 41 54p p 1= =
 

 ( )15 19−  
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4. Mean Sojourn Times 
  

Let i be the sojourn time in state iS  (i = 0, 1, 2, 3, 4, 5) then mean sojourn time in state  iS  

is given by 

 i

t 1

P T t


=

 =   

In particular, 

( )0

bq

1 bq
 =

−
, 

( )1

qs

1 qs
 =

−
, 

( )2 3

dq

1 dq
 =  = = 

−
, say 

4

s

r
 = , 5

d

c
 =     

 ( )20 24−
 

The evaluation of steady-state transition probabilities and mean sojourn time play the 

vital role as the various measures of system effectiveness are obtained in these terms.  

 

5. Methodology for Developing Equations 
 

In order to obtain various interesting measures of system effectiveness we develop the 

recurrence relations for reliability, availability and busy period of repairman as follows- 

 

a) Reliability of the system 

Here we define ( )iR t  as the probability that the system does not fail up to t epochs 

0, 1, 2,….,(t-1) when it is initially started from up state iS . To determine it, we regard the 

failed states 4S  and 5S  as absorbing states. Now, the expressions for ( )iR t ; i = 0, 1, 2, 3; 

we have the following set of convolution equations. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
t 1 t 1 t 1

t t
0 01 1 02 2 03 3

u 0 u 0 u 0

R t b q q u R t 1 u q u R t 1 u q u R t 1 u
− − −

= = =

= + − − + − − + − −    

( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1 02 2 03 3Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  

Similarly, 

( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1R t Z t q t 1 R t 1 q t 1 R t 1= + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 23 3R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( )3 3 31 1R t Z t q t 1 R t 1= + − © −

 ( )25 28−  

Where,  

( ) t t
1Z t b q= , ( ) ( ) ( )t t

2 3Z t Z t d q Z t= = = , say 

 

b) Availability of the system 

Let ( )iA t  be the probability that the system is up at epoch (t-1), when it initially 

starts from state iS . By using simple probabilistic arguments, as in case of reliability the 
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following recurrence relations can be easily developed for ( )iA t ; i = 0 to 5. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 01 1 02 2 03 3A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 14 4A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 0 21 1 23 3A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 31 1 34 4 35 5A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( )4 41 1A t q t 1 A t 1= − © −  

( ) ( ) ( )5 54 4A t q t 1 A t 1= − © −  

 

( )29 34−  

Where, 

The values of ( )iZ t ; i = 0, 1 and ( )Z t  are same as given in section 6(a). 

 

c) Busy period of repairman 

Let ( )iB t  be the respective probability that the repairman is busy at epoch (t-1) in 

the repair of each unit, when system initially starts from iS . Using simple probabilistic 

arguments as in case of reliability, the recurrence relations for ( )iB t ; i = 0 to 5 can be easily 

developed as below- 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1 02 2 03 3B t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 14 4B t Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 0 21 1 23 3B t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )3 31 1 34 4 35 5B t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( )4 4 41 1B t Z t q t 1 B t 1= + − © −  

( ) ( ) ( )5 54 4B t q t 1 B t 1= − © −  

( )35 40−  

Where,  

( )1Z t  has the same values as in section 6(a) and ( ) t
4Z t s= . 

 

6. Analysis of Characteristics 
 

a) Reliability and MTSF 

Taking geometric transforms of ( )6.1 6.4−  and simplifying the resulting set of 

algebraic equations for ( )0R h , we get  

( )
( )

( )
1

0

1

N h
R h

D h

 =  ( )41  

Where, 

( ) ( ) ( )* 2
1 11 0 02 03 02 23N h 1 hq Z hq Z hq h q q Z       = − + + +

 
 



 
R. Gupta, P. Bhardwaj 
A DISCRETE PARAMETRIC MARCOV-CHAIN MODEL OF A TWO 
UNIT COLD STANDBY SYSTEM WITH APPEARANCE AND 
DISSAPEARANCE OF REPAIRMAN 

RT&A, No 1 (52) 
Volume 14, March 2019 

 

19 

( )2 2
01 02 21 23 31 03 31 1hq hq hq h q q h q q Z        + + + +

 
 

( ) ( )( ) ( )2 2 2
1 11 02 20 10 01 02 21 23 31 03 31D h 1 hq 1 h q q hq hq hq hq h q q h q q           = − − − + + +

 
 

Collecting the coefficient of th  from expression ( )7.1 , we can get the reliability of 

the system ( )0R t . The MTSF is given by- 

( ) ( )
( )

( )
1t

h 1
t 1 1

N 1
E T lim h R t 1

D 1



→
=

= = −  ( )42  

Where, on noting that ( )ij ijq 1 p = , ( )i iZ 0 =  , we have 

( ) ( ) ( )  ( )1 11 0 03 02 23 01 02 21 23 31 03 31 1N 1 1 p p p 1 p p p p p p p p   = −  + + +  + + + +     

( ) ( )( ) ( )1 11 02 20 10 01 02 21 23 31 03 31D 1 1 p 1 p p p p p p p p p p = − − − + + +   

 

b) Availability Analysis. On taking geometric transform of ( )6.5 6.10−  and simplifying 

the resulting equations, we get 

( )
( )

( )
2*

0

2

N h
A h

D h
=    ( )43  

Where, 

( ) ( ) ( )2 2
2 11 14 41 0 12 03 02 23N h 1 hq h q q Z hq Z hq h q q Z          = − − + + +

 
 

( ) ( ) ( )2 2 2
01 02 21 31 41 03 02 23 03 02 23 1hq h q q hq hq hq h q q hq h q q Z            + + + + + +

 
 

( ) ( )( ) ( )2 2 2
2 11 14 41 02 20 10 01 02 21D h 1 hq h q q 1 h q q hq hq h q q        = − − − − +


 

( ) ( )2 2
31 41 34 35 54 03 02 23hq hq hq h q q hq h q q        + + + +


 

The steady state availability of the system is given by- 

( ) ( )
( )

( )
2

0 0
t h 1

2

N h
A lim A t lim 1 h

D h→ →
= = −  

As ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get 

( )

( )
2

0

2

N 1
A

D 1
= −


   ( )44  

Where, 

( ) ( ) ( )2 10 0 02 03 02 23 02 20 1N 1 p p p p p 1 p p =  +  + +  + −    

and 

( ) ( ) ( )2 10 0 02 03 02 23 35 5 31 4D 1 p p p p p p 1 p  =  +  + +  +  + −    

( )( )02 20 1 14 41 p p p+ −  +   

Now the expected up time of the system up to epoch (t-1) is given by 

( ) ( )
t 1

up 0

x 0

t A x
−

=

 =   

so that 
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( )
( )

( )
0

up

A h
h

1 h


 =

−
   ( )45  

c) Busy Period Analysis. On taking geometric transforms of ( )6.11 6.16−  and 

simplifying the resulting equations, we get 

( )
( )

( )
3

0

2

N h
B h

D h

 =    ( )46  

Where, 

( ) ( ) ( ) ( )2 2 2
3 01 02 21 31 41 03 02 23 03 02 23 1N h hq h q q hq hq hq h q q hq h q q Z            = + + + + +

 
 

( ) ( )( )( )2 2 2
14 01 03 31 11 34 35 54 03 02 23hq hq h q q 1 q hq h q q hq h q q          + + + − + +


 

( )2 2
02 14 21 23 31 4h q q hq h q q Z     + +


 

and ( )2D h  is same as in availability analysis. 

In the long run, the respective probability that the repairman is busy in the repair of 

each unit is given by- 

( ) ( )
( )

( )
3

0 0
t h 1

2

N h
B lim B t lim 1 h

D h→ →
= = −   

But ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get  

( )

( )
3

0

2

N 1
B

D 1
= −


   ( )47  

Where, 

( ) ( )( ) ( )( )3 02 20 1 14 4 10 31 03 02 23N 1 1 p p p p 1 p p p p= −  +  + − +  

and ( )2D 1  is same as in availability analysis. 

The expected busy periods of the repairman in the repair of both units up to epoch 

( )t 1−  is given by-  

( ) ( )
t 1

b 0

x 0

t B x
−

=

 =   

So that, 

( )
( )

( )
0

b

B h
h

1 h


 =

−
   ( )48  

 

7. Profit Function Analysis 
 

We are now in the position to obtain the net expected profit incurred up to epoch (t-1) by 

considering the characteristics obtained in earlier sections. 

Let us consider, 

0K = revenue per-unit time by the system when it is operative. 

1K = cost per-unit time when repairman is busy in the repair of the failed units. 

Then, the net expected profit incurred up to epoch (t-1) is given by 
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( ) ( ) ( )0 up 1 bP t K t K t=  −    ( )49  

The expected profit per unit time in steady state is as follows- 

( )
t

P t
P lim

t→
=  

( )
( )

( )
( )

( )

( )
2 20 0

0 1
h 1 h 1

A h B h
K lim 1 h K lim 1 h

1 h 1 h

 

→ →
= − − −

− −
 

0 0 1 0K A K B= −  ( )50  

 

8. Graphical Representation 
 

The curves for MTSF and profit function have been drawn for different values of 

parameters p, a, c Fig. 2 depicts the variations in MTSF with respect to the rate of 

appearance of repairman (c) in the system for three different values of failure rate (p = 0.08, 

0.10, 0.12) of an operative unit and two different values of rate of disappearance of 

repairman from the system (a = 0.5, 0.6). From these curves we observe that MTSF increases 

uniformly as the value of c increases. It also reveals that the MTSF decreases with the 

increase in p and decreases with the increase in a. 

Similarly, Fig. 3 reveals the variations in profit (P) with respect to c for varying 

values of p and a, when the values of other parameters are kept fixed as r = 0.5, K₀=15 and 

K₁=80. From the curves we observe that profit decreases uniformly as the value of c 

increases. It also reveals that the profit decreases with the increase in p and decreases with 

the increase in a. From this figure it is clear from the dotted curves that the system is 

profitable only if the rate of appearance of repairman (c) in the system is less than 0.21, 0.41 

and 0.70 respectively for p = 0.08, 0.10, and 0.12 for fixed value of a = 0.5. From smooth 

curves, we conclude that the system is profitable only if c is less than 0.19, 0.35 and 0.56 

respectively for p = 0.08, 0.10, and 0.12 for fixed value of a = 0. 

 

Behavior of MTSF with respect to p, a and c 

 
Fig. 2 
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Behavior of Profit (P) with respect to p, a and c 

 

 
Fig. 3 
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Abstract 
 

The paper deals with stochastic analysis of a two identical unit cold standby system model 

with two modes of the units-normal (N) and total failure (F). A single repairman is always 

available with the system to repair a failed unit.  Two physical conditions-good and poor 

of repairman depending upon the perfect and imperfect environment are considered. The 

system transits from perfect to imperfect environment and vice-versa after random periods 

of time. The failure and repair times of a unit are taken as independent random variables 

of discrete nature having geometric distributions with different parameters.  

 

Keywords: Transition probability, Regenerative point, reliability, MTSF, availability of 

system, busy period of repairman. 

 

 

 

1.  Introdution 
 

In order to fight with the competitive situations in modern business and industrial 

systems, the redundancy plays a vital role in the improvement of the various measures of 

system effectiveness. Numerous authors including [4,5,6,7] have studied two unit 

redundant systems with different sets of assumptions such as slow and imperfect switches, 

two types of repairmen, special warranty schemes, preparation time for repair etc. Various 

authors including [1,2] have analyzed the reparable system models by assuming that the 

repair rate of a failed unit is affected by the physical conditions of repairman. Goel et al [3] 

analyzed a two identical unit cold standby system model assuming the physical conditions 

of repairman and the repair time distributions are affected by good and poor physical 

conditions of repairman. They have not mentioned the cause of the change of physical 

conditions of repairman. All the above authors have assumed continuous distributions of 

various random variables such as failure time, repair time etc. Sometimes we may come 

across the situations when the physical conditions of repairman depend upon the changing 

in environmental conditions. For example- The repair efficiency of repairman is good in 

air-condition atmosphere as compared to non-air-condition atmosphere. 

Keeping the above fact in view, the present paper deals with the analyses of a two 

identical unit standby system model assuming that the physical conditions of repairman 
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depends upon the environmental conditions i.e. the perfect and imperfect environment. 

Here the parametric space of Markov-chain involved is taken of discrete nature and the 

random variables denoting failure times, repair time and time to change environments are 

assumed to follow geometric distributions with different parameters. Initially the 

repairman starts the repair of a failed unit in good physical condition. The following 

economic related measures of system effectiveness are obtained by using regenerative point 

technique- 

vi) Transition probabilities and mean sojourn times in various states. 

vii) Reliability and mean time to system failure. 

viii) Point-wise and steady-state availabilities of the system as well as expected up time 

of the system during a finite interval of time. 

ix) Expected busy period of the repairman in the perfect and imperfect environments 

during a finite interval of time. 

x) Net expected profit incurred by the system during a finite interval of time and 

steady-state are obtained. 

    

2.   Model Description And Assumptions 

 

i) The system comprises of two identical units with two modes of a unit- normal (N) 

total failure (F). 

ii) Initially one unit is operative and other is kept into cold standby. 

iii) A single repairman is always available with the system to repair a failed unit. 

iv) Two physical conditions- good and poor of repairman depending upon the perfect 

and imperfect environments are considered. Initially the repairman starts the repair 

of a failed unit in good physical condition. 

v) The system transits from perfect to imperfect environment and vice-versa after a 

random period of time. 

vi) The repair rate of a failed unit in perfect environment is higher than the imperfect 

environment. 

vii) A repaired unit works as good as new. 

viii) Failure and repair times of the units follow independent geometric distributions 

with different parameters. 

 

3. Notations And States Of The System 

a) Notations :  
tpq  : p.m.f. of failure time of a unit ( )p q 1+ = . 

trs  : p.m.f. of repair time of a unit in perfect environment ( )r s 1+ = .   

tr s   : p.m.f. of repair time of a unit in imperfect environment ( )r s 1 + = . 

tab  : p.m.f. of time to change the environment from perfect to imperfect

( )a b 1+ = .  

tcd  : p.m.f. of time to change the environment from imperfect to perfect

( )c d 1+ =  

( ) ( )ij ijq ,Q  : p.m.f. and c.d.f. of one step or direct transition time from state iS to jS . 
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ijp  : Steady-state transition probability from state iS to jS . 

( )ij ijp Q=   

( )iZ t  : Probability that the system sojourn in state iS at epochs 0, 1, 2 … (t-1).  

i  : Mean sojourn time in state iS . 

, h  : Symbol and dummy variable used in geometric transform e. g. 

( ) ( ) ( )t

ij ij ij

t 0

GT q t q h h q t




=

  = =    

b) Symbols for the states of the systems:  

0 SN / N  : Unit in normal (N) mode and operative/standby. 

r wF / F  : Unit in total failure (F) mode in perfect environment and under 

repair/waiting for repair 

r wF / F   : Unit in total failure (F) mode in imperfect environment and under 

repair/ waiting for repair
  

G / P  :  System in perfect/ imperfect Environment. 

With the help of above symbols the possible states  0S  to 4S  of the system are shown in 

Fig.1, where, 0 1 2S ,S andS  are the up states whereas 3 4S andS  are the failed states 

          
TRANSITION DIAGRAM  
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4. Transition Probabilities 

 

Let  ( )ijQ t be the probability that the system transits from state iS to jS  during 

time interval (0, t) i.e., if ijT is the transition time from state iS to jS  then 

( )ij ijQ t P T t =    
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By using simple probabilistic arguments we have 

( ) t 1

01 1Q t 1 q += − , ( )10 1Q t rqA= , ( )11 1Q t rbpA= , 

 ( ) ( )12 1Q t a sq rp A= +  

( )13 1Q t bpsA= , ( )14 1Q t apsA= , ( )20 2Q t r qA= ,

 ( ) ( )21 2Q t c qs pr A = +  

( )22 2Q t r pdA= , ( )23 2Q t s cpA= , ( )24 2Q t s dpA= , ( )31 3Q t rbA=
 

( )32 3Q t raA= , ( )34 3Q t saA= , ( )41 4Q t r cA= , ( )42 4Q t r dA=  

( )43 4Q t s cA=  

 (1-17) 

Where, ( ) ( )
t 1

1A 1 sbq 1 sbq
+ = − −

 
,  ( ) ( )

t 1

2A 1 s qd 1 s qd
+  = − −

 
,  

  
( ) ( )

t 1

3A 1 sb 1 sb
+ = − −

 
 ,  ( ) ( )

t 1

4A 1 s d 1 s d
+  = − −

 
 

The steady state transition probabilities from state iS to jS  can be obtained from 

(1-17) by taking t →  , as follows: 

01p 1= ,  10p rqC= ,  11p rbpC= ,  ( )12p a rq sq C= +  

13p sbpC= ,  14p sapC=  

Where, 
1

C
1 sbq

=
−

 

Similarly, the values of other transition probabilities 20p , 21p , 22p , 23p , 24p , 31p , 

32p , 34p , 41p , 42p  and 43p  can be evaluated.  

We observe that the following relations hold- 

01p 1= , 10 11 12 13 14p p p p p 1+ + + + = ,

 20 21 22 23 24p p p p p 1+ + + + =   

31 32 34p p p 1+ + = , 41 42 43p p p 1+ + =    (18-22) 

 

5. Mean Sojourn Times 
 

Let iT be the sojourn time in state iS (i=0, 1, 2, 3, 4) then mean sojourn time in state  

iS  is given by 

 i

t 1

P T t


=

 =   

In particular, 

0

t 1

P[


=

 = The operating unit in state S0 doesn’t fail up to epoch t-1] 

t

t 1

q
q

p



=

= =  

Similarly, 

1 sbqC = , 2

s dq

1 s dq


 =

−
, 

3

sb
,

1 sb
 =

−
 

4

s d

1 s d


 =

−
 (23-27) 
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6. Methodology For Developing Equations 
 

In order to obtain various interesting measures of system effectiveness we 

developed the recurrence relations for reliability, availability and busy period of repairman 

as follows 

d) Reliability of the system- Here we define ( )iR t  as the probability that the system does 

not fail up to epochs 0, 1, 2,.., (t-1) when it is initially started from up state iS . To 

determine it, we regard the failed state 3S  and 4S as absorbing state. Now, the 

expression for ( )iR t ; i=0, 1, 2  we have the following set of convolution equations. 

( ) ( ) ( )
t 1

t

0 01 1

u 0

R t q q u R t 1 u
−

=

= + − −  

( ) ( ) ( )0 01 1Z t q t 1 R t 1= + − © −  

Similarly, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 22 2R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  

  

 (28-30) 

Where,  

( ) t
0Z t q= , ( ) t t t

1Z t b s q= , ( ) t t t
2Z t d s q=

 
e) Availability of the system-  Let ( )iA t  be the probability that the system is up at epoch 

(t-1), when it initially started from state iS . By using simple probabilistic arguments  as 

illustrated in case of reliability, the following recurrence relations can be easily 

developed for ( )iA t ; i=0 to 4. 

( ) ( ) ( ) ( )0 0 01 1A t Z t q t 1 A t 1= + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( )13 3 14 4q t 1 A t 1 q t 1 A t 1+ − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 22 2A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( )23 3 24 4q t 1 A t 1 q t 1 A t 1+ − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )3 31 1 32 2 34 4A t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )4 41 1 42 2 43 3A t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= − © − + − © − + − © −   

(31-35) 

Where, 

 The values of ( )iZ t ; i=0 to 2 are same as given in section 8(a). 

c) Busy period of repairman-  Let ( )G
iB t and ( )P

iB t  be the respective probabilities that 

the repairman is busy at epoch (t-1) in the repair of failed unit in good and poor 

conditions depending upon the perfect and imperfect environment are conditions when 

system initially starts from state iS . Using simple probabilistic arguments as illustrated 
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in case of availability analysis, the relations for ( )k

iB t ; i=0 to 4 and k=G, P can be easily 

developed on replacing the following in expressions (31-35)- 

i) iA by k
iB , 0Z (t) by 0, 1Z (t)  by ( ) 11 Z (t)−  , 2Z (t) by 2Z (t) and  

ii) Considering one more contingency respectively ( ) 31 Z (t)−  and 4Z (t) in expressions 

(34)  
and (35). The resulting expressions may be denoted by (36-40). 

Where, 0 = and 1 respectively for k = G and P. Also, 1Z (t)  and 2Z (t)  are same as given 

in section 7(a).  and Z3(t) , Z4(t) are as follows- 

        Z3(t) = st bt,   Z4 = st dt 

 

7. Analysis Of Reliability And Mtsf 
 

Taking geometric transforms of relations (28-30) and simplifying the resulting set 

of algebraic equations for ( )0R h  we get  

( )
( )

( )
1

0
1

N h
R h

D h

 =                                                   (41) 

Where,  

( ) ( )( ) ( )2 * * 2 *
1 11 22 12 21 0 01 22 1 01 12 2N h 1 hq 1 hq h q q Z hq 1 hq Z h q q Z          = − − − + − +

   

  

( ) ( )( ) ( )2 2 3
1 11 22 12 21 01 10 22 01 12 20D h 1 hq 1 hq h q q h q q 1 hq h q q q         = − − − − − −  

Collecting the coefficient of th  from expression (41), we can get the reliability of 

the system ( )0R t . The MTSF is given by- 

( ) ( )
( )

( )
1t

h 1 1t 1

N 1
E T lim h R t 1

D 1



→
=

= = −                                            (42) 

Where, 

( ) ( )( ) ( )1 0 11 22 12 21 1 01 22 01 12 2N 1 1 p 1 p p p p 1 p p p=  − − − +  − +         

( ) ( )( ) ( )1 11 22 12 21 01 22 01 12 20D 1 1 p 1 p p p p 1 p p p p= − − − − − −  

 

8. Availability Analysis 
 

On taking geometric transforms of relations (31-35) and simplifying the resulting 

equations we get- 

( )
( )

( )
20 0 1 1 2 2

0

0 10 1 20 2 2

N hU Z U Z U Z
A h

U hq U hq U D h

     


    

+ +
= =

− −
                                     (43) 

Where, 

( ) ( )( ) ( ) ( ) 2 2 2

0 11 22 34 43 23 32 34 42 24 42 43 32U 1 hq 1 hq 1 h q q hq hq h q q hq hq h q q            = − − − − + − +  

( ) ( ) ( ) 2 2 2

12 21 34 43 23 31 34 41 24 43 31 41hq hq 1 h q q hq hq h q q hq h q q hq           − − + + + +  

( ) ( )( ) (2 2 2

13 21 32 34 42 22 32 34 42 24 41 32hq hq hq h q q 1 hq hq h q q hq h q q           − + + − + +   
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) ( ) ( )( )2 2 2

31 42 14 21 43 32 42 22 41 43 31h q q hq hq h q q hq 1 hq hq h q q          − − + + − +  

( )2 2

22 31 42 32 41hq h q q h q q    + −
 

( )( ) ( ) ( )2 2 2

1 22 34 43 23 32 34 42 24 42 43 32 01U 1 hq 1 h q q hq hq h q q hq hq h q q hq             = − − − + − +
   

( ) ( ) ( )2 2 2

2 12 34 43 13 32 34 42 14 42 43 32 01U hq 1 h q q hq hq h q q hq hq h q q hq             = − + + + +
   

The steady state availability of the system is given by- 

( ) ( )
( )

( )
2

0 0
t h 1

2

N h
A limA t lim 1 h

D h→ →
= = −  

Now as ( )2D h at h=1 is zero, therefore by applying L. hospital rule we get- 

( )

( )
20 0 1 1 2 2

0

0 0 1 1 2 2 3 3 4 4 2

N 1U U U
A

U U U U U D' 1

 +  + 
= − = −

 +  +  +  + 
                      (44) 

Where, 

( ) ( ) ( )  ( )0 10 21 34 43 23 31 34 41 24 41 43 31 20 12 34 43U p p 1 p p p p p p p p p p p p 1 p p= − + + + + + −  

( ) ( )13 32 34 42 14 42 43 32p p p p p p p p+ + + +  

( )( ) ( ) ( )1 22 34 43 23 32 34 42 24 42 43 32U 1 p 1 p p p p p p p p p p= − − − + − +  

( ) ( ) ( )2 12 34 43 13 32 34 42 14 42 43 32U p 1 p p p p p p p p p p= − + + + +  

( ) ( ) ( )( )3 12 23 24 43 13 22 24 42 14 43 22 42 23U p p p p p 1 p p p p p 1 p p p= + + − + + − −  

( ) ( )( ) ( ) )(4 12 24 23 34 13 22 34 32 24 14 22 23 32U p p p p p 1 p p p p p 1 p p p= + + − + + − −  

Now, the expected up time of the system up to epoch t-1 (total t epochs) is given by- 

( ) ( )
t 1

up 0

x 0

t A x
−

=

 =   

So that, ( ) ( ) ( )up 0h A h 1 h  = −                                                                                                (45) 

 

9. Busy Period Analysis 
 

On taking geometric transform of (36-40) and simplifying the resulting equations 

for k=G and P we get 

( )
( )

G 1 1 3 3
0

2

U Z U Z
B h

D h

   
 +

=     and  ( )
( )

P 2 2 4 4
0

2

U Z U Z
B h

D h

   
 +

=   

(46-47) 

Where, 

( ) ( ) ( )( )2 2 2 *

3 12 23 24 43 13 22 24 42 14 43 22 42 23 01U hq hq h q q hq 1 hq h q q hq hq 1 hq h q q hq              = + + − + + − −


 

( ) ( )( ) ( )2 2 2 *

4 12 24 23 34 13 34 22 32 24 14 22 24 32 01U hq hq h q q hq hq 1 hq h q q hq 1 hq h q q hq              = + + − + + − +


 

and ( )2D h is same as given in section 10. 

In the long run the respective probabilities that the repairman is busy in the repair 

of failed unit in perfect and imperfect environment conditions are given by- 
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( ) ( )
( )

( )
3G G

0 o
t h 1

2

N h
B limB t lim 1 h

D h→ →
= = −   

( ) ( )
( )

( )
4P P

0 o
t h 1

2

N h
B limB t lim 1 h

D h→ →
= = −  

But ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get  

( )
G 1 1 3 3
0

2

U U
B

D 1

 + 
= −


  and  

( )
P 2 2 3 3
0

2

U U
B

D 1

 + 
= −



 (48-49) 

and ( )2D 1  is same as given in section 10. 

Now the expected busy period of the repairman is busy in the repair of failed unit 

in perfect and imperfect environment conditions up to epoch (t-1) are respectively given 

by-  

( ) ( )
t 1

G G

b 0

x 0

t B x
−

=

 =  , ( ) ( )
t 1

P P

b 0

x 0

t B x
−

=

 =   

So that, 

( )
( )

( )

G

0G

b

B h
h

1 h



 =
−

, ( )
( )

( )

P

0P

b

B h
h

1 h



 =
−

 

 (50-51) 

 

10.   Profit Function Analysis 

 

We are now in the position to obtain the net expected profit incurred up to epoch 

(t-1) by considering the characteristics obtained in earlier section.  

Let us consider, 

0K =revenue per-unit time by the system when it is operative. 

1K =cost per-unit time when repairman is busy in the repairing failed unit in perfect 

environment condition. 

2K =cost per-unit time when repairman is busy in the repairing failed unit in 

imperfect environment condition.  

Then, the net expected profit incurred up to epoch (t-1) given by 

( ) ( ) ( ) ( )G P

0 up 1 b 2 bP t K t K t K t=  −  −                            (52) 

The expected profit per unit time in steady state is given by- 

( )
( ) ( )

2

t h 1

P t
P lim lim 1 h P h

t



→ →
= = −  

( )
( )

( )
( )

( )

( )
( )

( )

( )

G P
2 2 20 0 0

0 1 2
h 1 h 1 h 1

A h B h B h
K lim 1 h K lim 1 h K lim 1 h

1 h 1 h 1 h

  

→ → →
= − − − − −

− − −
 

G P

0 0 1 0 2 0K A K B K B= − −   (53) 

 

 

11.  Graphical Representation 
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The curves for MTSF and profit function have been drawn for different values of 

parameters. Fig.2 depicts the variations in MTSF with respect to failure rate (p) of operative 

unit for different values of repair rate (r) of failed unit in perfect environmental condition 

and rate of the change of environment from perfect to imperfect (a) when repair rate of 

failed unit in imperfect environmental condition and rate of change of environment from 

imperfect to perfect are kept fixed as r 0.07 =  and c 0.1= .  

The smooth curves shows the trends for three different values 0.2, 0.3 and 0.4 of r 

when ‘a’ is taken as 0.01 whereas dotted curves shows the trends for same three values of 

‘r’ as above when ‘a’ is taken as 0.10. From these curves we observed that MTSF decreases 

uniformly as the values of ‘p’ and ‘a’ increase and increases with the increase in ‘r’. From 

the curve of MTSF we also conclude that to achieve at least a specified value of expected 

life of the system say 3000 units, the failure rate p of a unit should not exceed 0.0124 and 

0.0142 respectively for a = 0.10 and 0.01 when r is fixed as 0.4. Similarly when r = 0.3 and 0.2 

one can find the upper bonds for a = 0.10 and 0.01. 

 Similarly, Fig. 3 reveals the variations in profit (P) with respect to p for varying 

values of  r and a as in case of MTSF, when the values of other parameters are kept fixed as 

r 0.07 = , c 0.1=  0K 11= , 1K 280=  and 2K 400=  . From this figure same trends in 

respect of p, r, a have been observed as in MTSF. Further it is also revealed by smooth 

curves that system is profitable only if p is less than 0.0153, 0.026, 0.041 respectively for r = 

0.2, 0.3 and 0.4 for fixed a 0.01= . From dotted curves it is obvious that system is profitable 

only if p is less than 0.0105, 0.017 and 0.025 respectively for r = 0.2, 0.3 and 0.4 for fixed 

a 0.10= . 

  Thus the above graphical study reveals that the bonds of any parameter can be 

evaluated for fixed values of other parameters to get non-negative profit. Moreso, one can 

also obtain the upper bond of any parameter (in case the curve is of decreasing nature w.r.t. 

this paramter) to achieve at least any specific value of MTSF and the lower bond of any 

parameter ( in case the curve is of increasing nature w.r.t this parameter) to achieve at least 

any particular value of MTSF.  

This study will help the industrial manager to take decision to reduce the failure 

rate of a unit by incorporating its redundancy or to increase the repair rate of a failed unit 

by adopting various repair policies to get a specified value of expected life time and non-

negative expected profit by the system.               

 

 

 

 

 

 

 

 

 

 

 

Behavior of MTSF with respect to p, r and a 
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Fig. 2 

 

 

Behavior of Profit (P) with respect to p, r and a 
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Abstract 
 

 The paper deals with a system model composed of a two identical unit standby 

system in which initially one is operative and other is kept as cold standby. Each 

unit of the system has two possible modes – Normal (N) and Total Failure (F). An 

operating unit may fail either due to normal or due to chance causes. A single 

repairman is always available with the system to repair a unit failed due to any of 

the above causes. The system failure occurs when both the units are in total failure 

mode. The failure time distributions of a unit failed due to both the causes are taken 

as exponentials with different parameters whereas the repair time distributions of a 

failed unit in both types of failure are taken as general with different CDFs. Using 

regenerative point technique, the various important measures of system 

effectiveness have been obtained: 

 

Keywords: Reliability, Mean time to system failure, availability, expected busy 

period of repairman, net expected profit.  

 

 

1. Introduction 
 

The two unit cold standby systems have been widely studied in the literature of reliability 

as they are frequently used in modern business and industries. It is obvious that the standby 

unit is switched to operate when the operating unit fails and the switching device which is 

used to put the standby unit into operation may be perfect or imperfect at the time of need. 

In past years various authors including [1,2,4,5,6,9,10,11] analyzed the two identical and 

non-identical units standby redundant system models with different sets of assumptions 

such as imperfect switching device, slow switching device, waiting time distribution of 

repairman, repair machine failure etc. They have analyzed the two identical and non-

identical unit system models by taking the single failure mode of an operating unit i.e. due 

to normal (ageing effect). 

 In many realistic situations, the systems are subject to two types of failure .One 

occurs by a normal cause and the other due to chance cause such as (i) abnormal 

environmental condition i.e. temperature, pressure, vibration etc. (ii) defective design (iii) 

misunderstanding the process variables (iv) operator’s negligence and mishandling of the 

system etc. Keeping this fact in view few authors [3,7,8] analyzed the system models 

assuming two failure modes of each unit. 
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 The purpose of the present paper is to deal with a stochastic model of a two identical 

unit cold standby redundant system subject to two types of failure in each of the operating 

unit. By using regenerative point technique, the following important measures of system 

effectiveness are obtained. 

i. Transient-state and steady-state transition probabilities. 

ii. Mean sojourn time in various regenerative states. 

iii. Reliability and mean time to system failure (MTSF).  

iv. Point-wise and steady-state availabilities of the system as well as expected up time 

of the system during time interval (0, t). 

v. The expected busy period of repairman in time interval (0, t). 

vi. Net expected profit earned by the system in time interval (0, t) and in steady-state. 

 

2. System Description and Assumptions 
 

1. The system consists of two identical units. Initially, one unit is operative and other 

is kept as cold standby. 

2. Each unit of the system has two possible modes: Normal (N) and Total Failure (F). 

3. The switching device used to put the standby unit into operation is always perfect 

and instantaneous. 

4. An operative unit may fail either due to normal cause i.e. due to ageing effect or 

due to chance cause. 

5. The system failure occurs when both the units are in total failure mode. 

6. A single repairman is always available at the system to repair a unit failed due to 

normal cause or due to chance cause. 

7. The failure time distributions of the units to reach into the failure mode either due 

to normal or due to chance cause are taken as exponential whereas the repair time 

distributions of a unit failed due to both causes are taken as general with different 

CDF’s. 

8. A repaired unit always works as good as new. 

 

3. Notations and States of the System 

 

We define the following symbols for generating the various states of the system- 

 

o sN , N      :    Unit is in N-mode and operative/standby
 

1r 2rF ,F   :           Unit is in failure mode due to normal cause/due to     

              chance cause and under repair. 

1w 2wF ,F     :       Unit is in failure mode due to normal cause/due to     

               chance cause and waiting for repair. 

 

Considering the above symbols in view of assumptions stated in section-2, the 

possible states of the system are shown in the transition diagram represented by Fig. 1. It is 

to be noted that the epochs of transitions into the state 4S from 1S , 3S from 1S , 5S  from 2S ,

6S from 2S are non-regenerative, whereas all the other entrance epochs into the states of the 

system are regenerative. The states 0S , 1S  and 2S are the up-states of the system and the 
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states  3S , 4S , 5S
 
and 6S  are the failed states of the system. 

 
TRANSITION DIAGRAM 

5S
          

       4S  

 
 
 

 

( )1G   

2α   ( )2G              2α  

 

 

2S         2α   0S     1α         1S  

 
 

( )2G       ( )1G  

 

1α             
 1α   ( )1G  

 

( )2G  

 

 
 

  6S                       

 
                : Up State                      : Failed State                            : Regenerative Point                     : Non-Regenerative Point 

   Fig. 1 

3S

 

 
  

 

 

2r 2wF ,F  

 

 

1r 0F ,N  

 

2r 1wF ,F  

 

1r 2wF ,F  

 

 2r 0F ,N

1r 1wF ,F  

0 SN ,N  

 
 

The other notations used are defined as follows: 

 

E  : Set of regenerative states  0 1 2S ,S ,S  

E   : Set of non-regenerative states  3 4 5 6S ,S ,S ,S  

1 2,     : Constant failure rate of an operative unit due to normal cause/chance cause 

( ) ( )1 2G ,G          :   CDF of repair time of failed unit due to normal cause/chance cause. 

( )ijq   : p.d.f of transition time from regenerative state iS to jS . 

( ) ( )
k

ijq  : p.d.f of transition time from regenerative state iS to jS via non-regenerative state kS

. 

( )ijp   : One1 step steady-state transition probability from     regenerative state iS to jS =

ijq (u)du . 

( ) ( )
k

ijp   : Two step steady-state transition probability from regenerative state iS to jS via 

non-regenerative state kS =
( )k

ijq (u)du . 

1 2n ,n  :  Mean repair times of operative unit and standby unit 

                                                           
1 The limits of integration are taken to be 0 to  whenever they are not mentioned 
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   1G (t)dt=   and 2G (t)dt  

 : Symbol for Laplace Stieltjes Transform. i.e. ( ) ( )st
ij ijQ s e dQ t−=   

©  : Symbol for ordinary convolution i.e. ( ) ( ) ( ) ( )
t

0

A t ©B t A u ©B t-u du=   

  : Symbol for Laplace Transform. i.e. ( ) ( )st
ij ijq s e q u du −=   

 

4. Transition Probabilities and Sojourn Times 
 

(a) The direct or one step steady-state transition probabilities are as follows  

 2 1t t 1
01 1

1 2

p e e dt
  

=  =
 + 

 

 

1 2t t 2
02 2

1 2

p e e dt
− − 

=  =
 +    

   
( ) ( ) ( )1 2 t

10 1 1 1 2p e dG t G
−  +

= =  +   

 
( ) ( ) ( )1 2 t

20 2 2 1 2p e dG t G
−  +

= =  + 
 

(b) The two step steady-state transition probabilities are given by  

 

( ) ( )
( )

( )

( ) ( )

( ) ( )

1 2

1 2

1 2

3 u u 1
1 111

1u

t
u

1 1

0

t1
1

1 2

dG t
p e du e G u

G u

dG t e du

1 e dG t


− 

−  +

−  +

= 

= 

  = −
  + 

 

 



 

 ( )1
1 1 2

1 2

1 G


 = −  +   + 
 

Similarly, 

( ) ( )
4 2

1 1 212
1 2

p 1 G


 = −  +   + 
 

 
( ) ( )
5 2

2 1 222
1 2

p 1 G


 = −  +   +   

 
( ) ( )
6 1

2 1 221
1 2

p 1 G


 = −  +   + 
 

We observe the following relationship 

 01 02p p 1+ = ,  
( ) ( )3 4

10 11 12p p p 1+ + = ,  
( ) ( )5 6

20 22 21p p p 1+ + =  

 (1-3) 

(a) The mean sojourn times in various states are as follows: 
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( )1 2 t
0

1 2

1
e dt

−  +
 = =

 +   

Similarly, 

   

( ) ( )1 2 t
1 1e G t dt

−  +
 =    

( ) ( )1 2 t
2 2e G t dt

−  +
 =   

 

5. Analysis of Characteristics 
 

(a) RELIABILITY AND MTSF         

 

Let ( )iR t  be the probability that the system is operative during ( )0, t  given that at t=0 it 

starts from state iS E . By simple probabilistic arguments, we have the following 

recurrence relations in ( )iR t ; i = 0, 1, 2 

( ) ( ) ( ) ( ) ( ) ( )0 0 01 1 02 2 R t Z t q t R t q t R t= + © + ©  

Similarly, 

( ) ( ) ( ) ( )1 1 10 0R t Z t q t   R t= + ©
 

( ) ( ) ( ) ( )2 2 20 0R t Z t q t R t= + ©                 (4-6) 

Where, 

( ) ( )1 2 t
0Z t e

−  +
= , ( ) ( ) ( )1 2 t

1 1Z t e G t
−  +

= , ( ) ( ) ( )1 2 t
2 2Z t e G t

−  +
=  

Taking Laplace Transforms of the relation (4-6) and solving the resulting set of algebraic 

equations for ( )*
0R s , we get 

( ) 0 01 1 02 2

01 10 02 2

0

0

* Z q Z q Z
s

1 q q q
R

q

    

   

+ +

−
=

−
      (7) 

We have omitted the argument‘s’ from ( )*

ijq s and ( )*

iZ s . 

The expression of mean time to system failure is given by 

( ) ( )0 0
s 0

E T limR s

→
=         

  

Observing that ( )*
ij ijq 0 = p  and ( )*

i iZ 0 =  ,  we get 

( ) 0 01 1 02 2
0

01 10 02 20

p p
E T

1 p p p p

 +  + 
=

− −
      (8) 

 

 

b)  AVAILABILITY ANALYSIS 

 

Let ( )iA t  be the probability that the system is up at epoch t, when initially it starts 

operation from state iS E . Using the regenerative point technique and the tools of Laplace 

transform, one can obtain the value of ( )0 A t  in terms of its Laplace transforms i.e. ( )*
0A s

given as follows- 
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( )
( )

( )
1

0
1

N s
A s

D s

 =            (9) 

Where, 

( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

3 5 4 6 5
1 0 1 02 21 0111 22 12 21 22

4 3
2 01 0212 11

N s Z 1 q 1 q q q Z q q q 1 q

Z q q 1 q q

        

   

   = − − − + + −
      

 + + −
  

 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

3 5 4 6 4 5
1 01 20 1011 22 12 21 12 22

6 3
02 10 2021 11

D s 1 q 1 q q q q q q q 1 q

q q q 1 q q

       

   

   = − − − − + −
      

 − + −
  

 

The steady-state availability of the system is given by 

( )
( )

( )
1

0 0
s 0 s 0

1

N s
A limsA s lims

D s



→ →
= =        (10) 

We observe that 

( )1D 0 0=          

  

Therefore, by using L.Hospital’s rule the steady state availability is given by 

( )

( )
1

0
1

N 0
A

D 0
=


          (11) 

Where,  

( ) ( )( ) ( ) ( )( )
( ) ( )( )

5 4 5
1 0 10 20 1 01 02 2022 12 22

4 3
2 01 0212 11

N 0 p 1 p p p p 1 p p p

p p p 1 p

   =  − − +  − +
      

 +  + −
  

  

  

 
( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( )( )

5 4 5 6
1 10 20 0 01 02 122 12 22 21

4 3
01 02 212 11

D 0 p 1 p p p p 1 p p p n

p p p 1 p n

  = − +  + − +
  

+ + −

 

(12) 

The expected up time of the system in interval (0, t) is given by 

  ( ) ( )
t

up 0

0

t A u du =   

so that, 

( )
( )0

up

A s
s

s


 =        (13) 

 

(c) BUSY PERIOD ANALYSIS 

 

Let ( )1
iB t  and ( )2

iB t be the probability that the repairman is busy in the repair of a failed 

unit due to normal cause and due to chance shock at time t when system initially starts from 

state iS E . Using the simple probabilistic arguments in regenerative point technique and 

the tools of Laplace transforms, one can obtain the value of ( )1
iB t and ( )2

iB t  in terms of 
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their Laplace transforms as follows- 

( )
( )

( )
21

0
1

N s
B s

D s

 =  and ( )
( )

( )
32

0
1

N s
B s

D s

 =

 

  (14-15)  

where, 

( ) ( )( ) ( )5 6
2 01 02 122 21N s q 1 q q q G

    = − +
    

( )3N s =
( )( ) ( )3 4

02 01 211 12q 1 q q q G
    − +

  
 

and ( )1D s  is already defined in section 5(b). 1G 
 and 2G  are the L.T. of ( )1G t

 
and ( )2G t

. 

 In the long run, the probabilities that the repairman will be busy in repair of normal 

cause and chance causes are as follows- 

( )

( )
21

0
1

N 0
B

D 0
=


  and 

( )

( )
32

0
2

N 0
B

D 0
=


    (16-17) 

where, 

( ) ( )( ) ( )5 6
2 01 02 122 21N 0 p 1 p p p n = − +

  
 

( )3N 0 =
( )( ) ( )3 4

02 01 211 12p 1 p p p n − +
  

 

The value of ( )1D 0  is same as given in expression (12). 

The expected busy period of the repairman in repair in repairing during (0, t) are 

given by 

 ( ) ( )
t

1 1
b 0

0

t B u du =      and    ( ) ( )
t

2 2
b 0

0

t B u du =   

so that,   

( )
( )1

01
b

B s
s

s


 =   and ( )

( )2
02

b

B s
s

s


 =    (18-19) 

 

(d)  PROFIT FUNCTION ANALYSIS 

 

The net expected total profit incurred by the system in time interval (0, t) is given by 

( )P t = Expected total revenue in (0, t) - Expected cost of repair in (0, t) 

( ) ( ) ( )1 2
0 up 1 b 2 bK t K t K t=  −  −       (20) 

Where, 0K  is the revenue per- unit up time by the system during its operation. 1K and 2K

are the amounts paid to the repairman per-unit of time when he is busy in repair of a unit 

failed due to normal cause and due to chance cause respectively. 

The expected total profit incurred per unit time in steady-state is given by 
1 2

0 0 1 0 2 0P K A K B K B= − −       (21) 
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6. Particular Cases 

 

Case 1: When the repair time of both the units also follow exponential distribution with 

p.d.fs as follows- 

( ) 1- t
1 1g t = e


 , ( ) 2- t

2 2g t = e


   

The Laplace Transform of above density functions are as given below. 

( ) ( ) 1
1 1

1

g s = G s
s +

 
=


, ( ) ( ) 2

2 2
2

g s = G s
s +

 
=


  

Here ( )iG s  are the Laplace-Stieltjes Transforms of the c.d.fs ( )iG t corresponding to the 

p.d.fs ( )ig t . 

In view of above, the changed values of transition probabilities and mean sojourn times are 

given below- 

1
01

1 2

p


=
 + 

,  2
02

1 2

p


=
 + 

 ,  1
10

1 2 1

p


=
 +  + 

  

( )3 1
11

1 2 1

p


=
 +  + 

,  ( )4 2
12

1 2 1

p


=
 +  + 

,  2
20

1 2 2

p


=
 +  + 

  

( )5 2
22

1 2 2

p


=
 +  + 

,  ( )6 1
21

1 2 2

p


=
 +  + 

 

0
1 2

1
 =

 + 
,   1

1 2 1

1
 =

 +  + 
,  1

1 2 2

1
 =

 +  + 
  

 

 

7. Graphical Study Of Behaviour 

 

The curves for MTSF and profit function are drawn for the two particular cases: case 

1 and case 2 in respect of different parameters. In Case 1, when the repair time of unit-1 

also follow exponential distribution. We plot curves for MTSF and profit function in Fig. 

2 and Fig. 3 w.r.t. 1α  for three different values of 1
η  and two different values of 2

η while 

the other parameters are kept fixed as 2α = 0.029 . From the curves of Fig. 2 we observe that 

MTSF increases uniformly as the value of 
1  and 

2  increase and it decreases with the 

increase in 1
α . Further, we also observed from Fig. 2 that the value of 1

α  must be less than 

0.012, 0.114 and 0.017 corresponding to 1η = 0.1 , 0.2 and 0.3 to achieve at least 300 units of 

MTSF when 2η = 0.9
 

is fixed as. Similarly, we can find the upper bounds of 1α  

corresponding to the values of 1
η  to achieve 300 units of MTSF when 2η  is kept fixed as

0.4 . 

  Similarly, Fig. 3 reveals the variations in profit w.r.t. 1
α for varying values of 1

η  and

2
η , when the values of other parameters are kept fixed as 2α = 0.00009 , 0K = 70 , 1K = 40  

and 2K = 500 . Here also the same trend in respect of 1α , 1η and 2η  are observed as in case 

of MTSF. From the figure it is clearly observed from the smooth curves, that the system is 

profitable if the value of parameter 1α  is less than 0.41, 0.56 and 0.86 respectively for

1η = 0.2 , 0.3 and0.5  for fixed value of 2
η = 0.9 . From dotted curves, we conclude that 
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system is profitable if the value of parameter 1
α  is less than 0.44, 0.60 and 0.90 respectively 

for 1η = 0.2 , 0.3  and 0.5  for fixed value of 2η = 0.05 . 

 

Behaviour of MTSF w.r.t. 1
α  for different values of 1

λ and 2λ  

 
 

Behaviour of PROFIT (P) w.r.t. 1
α  for different values of 1

λ and 2λ  
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Abstract 
 

The present paper deals with the reliability analysis of a two identical unit system 

model with safe and unsafe failures, switching device and rebooting. Initially one 

of the units is in operative state and other is kept in standby mode. A single 

repairman is always available with the system for repairing and rebooting the 

failed units. In case of unsafe failure, repair cannot be started immediately but 

first rebooting is done which transforms the unsafe failure to safe failure and 

thereafter repair is carried out as usual. Switching device is used to put the 

repaired and standby units to operation. The failure time distributions of both 

the units and switch are also assumed to be exponential while the repair time 

distributions are taken general in nature. Reboot delay time is assumed to be 

exponentially distributed. Using regenerative point techniques, various 

measures of system effectiveness such as transition probabilities, availability, 

busy period, expected numbers of repairs etc. have been obtained, to make the 

study more informative some of them have been studied graphically.                                                                                                          

 

Key Words: reliability, availability, regenerative point technique, rebooting, 

coverage probability 

 

 

1. Introduction 
 

In the context of global competition and paced development, it has become the foremost 

concern to make the apt decisions in order to increase the reliability and profit margin of 

every institution. With the advent of complexity of machines and more advancements in 

industrial sectors, the focus on increasing reliability and profit margins of any firm is 

increasing day by day as it is the sole aim on which most of the firms/industries are 

flourishing. It has become an important point which has to be kept in mind that the designs 

and layout of complex equipments should be in such a way that it enhances the reliability 

of the system and try to minimize the loopholes which are responsible for its degradation. 

Hence, designing the reliable systems and determining their availability have become the 

relevant steps in almost every sector. 

 

In many situations from daily life, we find that the breakdown of the units’ results into 
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machine failure which results into huge losses and one of the ways to increase reliability is 

to introduce standby units which increase its reliability. There also arises certain situations 

when reason for the failure of unit is not detected immediately which leads to the situation 

of imperfect coverage, which is further tackled by reboot. Depending upon the complexity 

the timings of reboot delay vary from system to system..  In the last few decades, elaborated 

and comprehensive research work regarding the reliability, availability, standby systems, 

imperfect coverage, reboot etc has been carried out. The concept of reboot is discussed by 

Trivedi [8] in his book ‘Probability and Statistics with Reliability, Queueing and Computer 

Science Applications’. Several empirical studies are proposed by P.A. Keiller and D.R. 

Miller [3] to increase the reliability of system. The imperfect coverage models with various 

status and trends were given by Amari, et al. [1]. Hsu, et al. [4] have studied the machine 

repair problem with standby system, repair and reboot delay. The reliability measure of 

repairable system with standby switching failures and reboot delay is studied by Jyh-Bin, 

et al. [5]. The other important contributions are made by Amari, et al. [2], Wang and Chen 

[9], Ke and Liu [7]. Ke, et al. [6] has also done the analysis by considering detection, 

imperfect coverage and reboot as major factor. 

 

The present paper here deals with the reliability analysis of a system model with two 

identical units and one switching device. The switching device is used to turn the unit from 

standby or repaired state to operative state and is assumed to be in good condition when 

the system initially starts. The failure in any of the identical unit or switch may result into 

safe/ unsafe failures. Unsafe failure is the situation when reason for any of the breakdown 

is not known which is cleared by reboot first. Reboot delay time, failure time of both the 

units and switch are assumed to be exponentially distributed while the repair time 

distributions are general in nature. Other measures of system effectiveness such as mean 

time to system failure, reliability, availability, expected number of repair have been 

evaluated using regenerative point techniques. 

 

2. System Description and Assumptions 

 
1. The system comprises of two identical units 𝑁0 and 𝑁𝑠, one switch S is attached to it. 

2.  Initially one of the units is in operative state and other is kept in standby mode. 

Switching device is used to put the repaired and standby units to operation. In the 

initial phase, switching device is assumed to be  in good condition. 

3. The failures of units and switch in system might be safe and unsafe. Whenever any of 

the unit or switch of system results in safe failure, it may be immediately detected and 

located with coverage probability 𝑐 and it will be repaired immediately if the 

repairman is available. 

4. In case of unsafe failure, repair cannot be started immediately but first rebooting is 

done which transforms the unsafe failure to safe failure and thereafter repair is carried 

out as usual. Reboot delay times for units and switch are considered to be 

exponentially distributed random variables with  different parameters.  

5. A single repairman is always available with the system for repair and rebooting the 

failed units. Switch is always given preference over the failed units in the system for 

its repair. 
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6. The failure time distributions of both the units and switch are assumed to be 

exponential while the repair time distributions are taken  general in nature.  

7. Once a component is repaired it is as good as new. 

 

3. Notations And Symbols 
 

α            :  Failure rate of identical units 

β            :  Failure rate of switching device 

𝐻1(. )     : Repair rate of failed unit 

𝐻2(. )     : Repair rate of switching device 

c            : Coverage probability 

γ            :  Rebooting delay  rate  for unsafe failure for units 

𝛿            :  Rebooting delay rate for unsafe failure for switching device 

 

SYMBOLS FOR THE STATES OF THE SYSTEM  

 

𝑁0/𝑁𝑠/𝑁𝑔          :  Unit is in operative / standby / good condition. 

𝑁𝑢𝑠𝑓/𝑆𝑢𝑠𝑓          :  Unit/ switching device has undergone unsafe failure 

𝑁𝑟/𝑁𝑤𝑟              : Unit is under repair / waiting for repair 

𝑆𝑟                       : Switch is under repair 

    With the help of the symbols defined above, the possible states of the system are: 
    𝑆0 = [𝑁0, 𝑁𝑠, 𝑆𝑔]          𝑆1 = [𝑁𝑟 , 𝑁0, 𝑆𝑔]          𝑆2 = [𝑁𝑢𝑠𝑓 , 𝑁𝑔, 𝑆𝑔]          𝑆3 = [𝑁0, 𝑁𝑠, 𝑆𝑟]  

    𝑆4 = [𝑁𝑔 , 𝑁𝑠, 𝑆𝑢𝑠𝑓]       𝑆5 = [𝑁𝑔 , 𝑁𝑔, 𝑆𝑟]          𝑆6 = [𝑁𝑢𝑠𝑓 , 𝑁𝑔, 𝑆𝑟]          𝑆7 = [𝑁𝑤𝑟, 𝑁𝑔 , 𝑆𝑟]  

    𝑆8 = [𝑁𝑟 , 𝑁𝑢𝑠𝑓 , 𝑆𝑔]       𝑆9 = [𝑁𝑟 , 𝑁𝑤𝑟, 𝑆𝑔]       𝑆10 = [𝑁𝑟 , 𝑁𝑔 , 𝑆𝑢𝑠𝑓]  

   The transition diagram along with all transitions is shown in fig.1 

 

TRANSITION DIAGRAM 

  
Fig.1 
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4. Transition Probabilities And Sojourn Times 
 

Let 𝑋𝑛 denotes the state visited at epoch 𝑇𝑛+  just after the transition at 𝑇𝑛, where 𝑇1, 𝑇2 …. 

represents the regenerative epochs. Then, Markov-Renewal process is constituted by  

{𝑋𝑛, 𝑇𝑛}  with state space E representing set of regenerative states and  
𝑄𝑖𝑗(𝑡) = 𝑃[𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖]  

is the semi Markov kernel over E. 

Then the transition probability matrix of the embedded Markov chain is 
𝑃 = 𝑝𝑖𝑗 = 𝑄𝑖𝑗(∞) = 𝑄(∞)                                                                                           

 First we obtain the following direct steady-state transition probabilities: 

𝑝01 = 𝛼𝑐 ∫ 𝑒−(𝛼+𝛽)𝑢 𝑑𝑢 =
𝛼𝑐

(𝛼+𝛽)
  

Similarly, 

𝑝02 =
𝛼(1−𝑐)

(𝛼+𝛽)
                                                                  𝑝03 =

𝛽𝑐

(𝛼+𝛽)
  

𝑝04 =
𝛽(1−𝑐)

(𝛼+𝛽)
                                                                  𝑝10 = 𝐻̃1(𝛼 + 𝛽)  

𝑝17 =
𝛽𝑐

(𝛼+𝛽)
[1 − 𝐻̃1(𝛼 + 𝛽)]                                       𝑝18 =

𝛼(1−𝑐)

(𝛼+𝛽)
[1 − 𝐻̃1(𝛼 + 𝛽)] 

𝑝1,10 =
𝛽(1−𝑐)

(𝛼+𝛽)
[1 − 𝐻̃1(𝛼 + 𝛽)]                                   𝑝30 = 𝐻̃2(𝛼)  

𝑝36 = (1 − 𝑐)[1 − 𝐻̃2(𝛼)]  
𝑝21 = 𝑝45 = 𝑝50 = 𝑝67 = 𝑝71 = 𝑝89 = 𝑝91 = 𝑝10,7 = 1  

The indirect transition probability may be obtained as follows: 

𝑄11
(9)

(𝑡) = 𝛼𝑐 ∫ 𝑒−(𝛼+𝛽)𝑢𝑡

0
𝐻̅1( 𝑢)𝑑𝑢 ∫

𝑑𝐻1(𝑣)

𝐻̅1( 𝑢)

𝑣

𝑡
  

        = 𝛼𝑐 ∫ 𝑑𝐻1(𝑣) ∫ 𝑒−(𝛼+𝛽)𝑢𝑣

0

𝑡

0
𝑑𝑢  

       =
𝛼𝑐

𝛼+𝛽
∫ (1 − 𝑒−(𝛼+𝛽)𝑣)

𝑡

0
𝑑𝐻1(𝑣) 

By taking  𝑡 → ∞ , we obtain the following indirect steady-state transition probability:                                                                     

𝑝11
(9)

=
𝛼𝑐

𝛼+𝛽
∫(1 − 𝑒−(𝛼+𝛽)𝑣)𝑑𝐻1(𝑣) =

𝛼𝑐

𝛼+𝛽
[1 − 𝐻̃1(𝛼 + 𝛽)]  

Similarly, 

𝑝31
(7)

= 𝑐[1 − 𝐻̃2(𝛼)]                                                                                                             (1)                                                                                               

From these steady state probabilities obtained above, it can be easily verified that the 

following results holds good: 

𝑝01 + 𝑝02 + 𝑝03 + 𝑝04 = 1 ,        𝑝10 + 𝑝11
(9)

+ 𝑝17 + 𝑝18 + 𝑝1,10 = 1  

𝑝30 + 𝑝36 + 𝑝31
(7)

= 1 ,        𝑝21 = 𝑝45 = 𝑝50 = 𝑝67 = 𝑝71 = 𝑝89 = 𝑝91 = 𝑝10,7 = 1        (2)                                                                                                                                      

Mean sojourn times 

Mean sojourn time is defined as the expected time taken by the system in a state before 

making transition to any other state. Let 𝛹𝑖 be the mean sojourn time for state 𝑆𝑖 , then to 

obtain mean sojourn time 𝛹𝑖 in state 𝑆𝑖 ,we observe that there is no transition from 𝑆𝑖 to any 

other state as long as the system is in state 𝑆𝑖.If 𝑇𝑖 denotes the sojourn time in state 𝑆𝑖 then 

mean sojourn time 𝛹𝑖 in state  𝑆𝑖 is: 
Ψi = E[Ti] = ∫ P(Ti > 𝑡)dt                                                                                             

Hence, using it following expressions for mean sojourn time is obtained: 

𝛹0 =
1

(𝛼+𝛽)
                               𝛹1 =

1

(𝛼+𝛽)
(1 − 𝐻̃1)                     𝛹2 = 𝛹6 = 𝛹8 =

1

𝛾
 

 𝛹3 =
1

𝛼
(1 − 𝐻̃2)                     𝛹4 = 𝛹10 =

1

𝛿
                               𝛹5 = 𝛹7 = ∫ 𝐻̃2(𝑡)𝑑𝑡   

𝛹9 = ∫ 𝐻̃1(𝑡) 𝑑𝑡                                                                                                                   (3) 
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5. Analysis Of Reliability And MTSF 
 

Let 𝑇𝑖 be the random variable denoting time to system failure when system starts up from 

state 𝑆𝑖Є 𝐸𝑖 , then the reliability of the system is given by  
 𝑅𝑖(𝑡) = 𝑃[𝑇𝑖 > 𝑡]  

 To obtain 𝑅𝑖(𝑡), we consider failed states as absorbing states. 

By referring to the state transition diagram, the recursive relations among 𝑅𝑖(𝑡) can be 

formulated on the basis of probabilistic arguments.  Taking their Laplace Transform and 

solving the resultant set of equations for 𝑅0
∗(𝑠), we get 

𝑅0
∗(𝑠) = 𝑁1(𝑠)/𝐷1(𝑠)                                                                          (4) 

where, 
𝑁1(𝑠) = 𝑍0

∗ + 𝑞01
∗ 𝑍1

∗ + 𝑞03
∗ 𝑍3

∗  

and 
𝐷1(𝑠) = 1 − 𝑞01

∗ 𝑞10
∗ − 𝑞03

∗ 𝑞30
∗     

Taking inverse Laplace Transform of (4), we get reliability of the system.  

To get MTSF, we use the well known formula 
𝐸(𝑇0) = ∫ 𝑅0(𝑡)𝑑𝑡 = 𝑙𝑖𝑚

𝑠→0
𝑅0

∗(𝑠) = 𝑁1(0)/𝐷1(0)  

where, 
𝑁1(0) = 𝛹0 + 𝑝01𝛹1 + 𝑝03𝛹3  

and 
𝐷1(0) = 1 − 𝑝01𝑝10 − 𝑝03𝑝30  
Since, we have 𝑞𝑖𝑗

∗ (0) = 𝑝𝑖𝑗  𝑎𝑛𝑑  𝑙𝑖𝑚
𝑠→0

𝑍𝑖
∗(𝑠) = ∫ 𝑍𝑖(𝑡)𝑑𝑡 = 𝛹𝑖 

 

6. Availability Analysis 

 

Define  𝐴𝑖 (𝑡) as the probability that the system is available at time ‘t’ given that initially 

started from state 𝑆𝑖  ∈  𝐸𝑖 . Point wise availability is another measure of system 

effectiveness and is defined as the probability that the system will be able to work 

satisfactorily within tolerances at any instant of time. By using simple stochastic arguments, 

the recurrence relations among different point wise availabilities are obtained and taking 

the Laplace transforms and solving the resultant set of equations for 𝐴0
∗ (𝑠), we have 

 𝐴0
∗ (𝑠) = 𝑁2(𝑠)/𝐷2(𝑠)                                                                                                            (5) 

where, 

𝑁2(𝑠) = (1 − 𝑞11
(9)∗ − 𝑞18

∗ 𝑞89
∗ 𝑞91

∗ − 𝑞1,10
∗ 𝑞10,7

∗ 𝑞71
∗ − 𝑞17

∗ 𝑞71
∗ )(𝑍0

∗ + 𝑞03
∗ 𝑍3

∗)  + 𝑍1
∗(𝑞01

∗ + 𝑞03
∗ 𝑞31

(7)∗ +

𝑞03
∗ 𝑞36

∗ 𝑞67
∗ 𝑞71

∗ + 𝑞02
∗ 𝑞21

∗ )                                                                                      (6) 

and,                                                                                                                 

𝐷2(𝑠) = (1 − 𝑞11
(9)∗ − 𝑞18

∗ 𝑞89
∗ 𝑞91

∗ − 𝑞1,10
∗ 𝑞10,7

∗ 𝑞71
∗ − 𝑞17

∗ 𝑞71
∗ )(1 − 𝑞03

∗ 𝑞30
∗ − 𝑞04

∗ 𝑞45
∗ 𝑞50

∗ ) − 𝑞01
∗ 𝑞10

∗ −

𝑞10
∗ 𝑞03

∗ 𝑞31
(7)∗ − 𝑞10

∗ 𝑞03
∗ 𝑞36

∗ 𝑞67
∗ 𝑞71 

∗ −𝑞10
∗ 𝑞02

∗ 𝑞21
∗                                                         (7)    

The steady state availability is given by  
𝐴0 = 𝑙𝑖𝑚

𝑡→∞
𝐴0(𝑡) = 𝑙𝑖𝑚

𝑠→0
𝑠 𝐴0

∗ (𝑠) = 𝑁2(0)/𝐷2(0)  

as we know that, 𝑞𝑖𝑗(𝑡) is the pdf of the time of transition from state 𝑆𝑖 to 𝑆𝑗 and 𝑞𝑖𝑗(𝑡)𝑑𝑡 is 

the probability of transition from state 𝑆𝑖  to 𝑆𝑗  during the interval (𝑡, 𝑡 + 𝑑𝑡), thus 

𝑞𝑖𝑗
∗ (𝑠)/𝑠=0= 𝑞𝑖𝑗

∗ (0) = 𝑝𝑖𝑗  

Also we know that 
𝑙𝑖𝑚
𝑠→0

𝑍𝑖
∗(𝑠) = ∫ 𝑍𝑖(𝑡)𝑑𝑡 = 𝛹𝑖   
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Therefore, 

𝑁2(0) = (1 − 𝑝11
9 − 𝑝18𝑝89𝑝91 − 𝑝17𝑝71 − 𝑝1,10𝑝10,7𝑝71)(𝛹0 + 𝑝03𝛹3) + 𝛹1(𝑝01 + 𝑝03𝑝31

7 +

𝑝02𝑝21 + 𝑝03𝑝36𝑝67𝑝71)                                               (8)    

𝐷2(0) = (1 − 𝑝11
9 − 𝑝18𝑝89𝑝91 − 𝑝17𝑝71 − 𝑝1,10𝑝10,7𝑝71)(1 − 𝑝03𝑝30 − 𝑝04𝑝45𝑝50) − 𝑝10𝑝01 −

𝑝10𝑝03𝑝31
7 − 𝑝10𝑝03𝑝36𝑝67𝑝71 − 𝑝10𝑝02𝑝21                                                         (9)                      

The steady state probability that the system will be up in the long run is given by 
𝐴0 = 𝑙𝑖𝑚

𝑡→∞
𝐴0(𝑡) = 𝑙𝑖𝑚

𝑠→0
𝑠 𝐴0

∗ (𝑠)  

𝑙𝑖𝑚
𝑠→0

𝑠𝑁2(𝑠)

𝐷2(𝑠)
= 𝑙𝑖𝑚

𝑠→0
𝑁2(𝑠)𝑙𝑖𝑚

𝑠→0

𝑠

𝐷2(𝑠)
                                                          

Since as  𝑠 → 0, 𝐷2(𝑠)  becomes zero.  

Hence, on using L’Hospital’s rule, 𝐴0 becomes 

𝐴0 =  𝑁2(0)/𝐷2
′ (0)                                                                                    (10) 

where, 
 𝐷2

′ (0) = 𝑝10(𝛹0 + 𝛹2𝑝02 + 𝛹3𝑝03) + 𝑝10𝑝04(𝛹4 + 𝛹5) + 𝑝10𝑝03𝑝36(𝛹6 + 𝛹7) +   (1 −
𝑝03𝑝30 − 𝑝04)[𝛹1 + 𝑝110(𝛹7 + 𝛹10) + 𝛹7𝑝17] + (1 − 𝑝03𝑝30 − 𝑝04)𝑝18(𝛹8 + 𝛹9)   

                                                                                                                                               (11)     

Using (8) and (11) in (10), we get the expression for  𝐴0. 

The expected up time of the system during (0, t] is given by 

µ𝑢𝑝(𝑡) = ∫ 𝐴0(𝑢)
𝑡

0
𝑑𝑢  

So that, 

µ𝑢𝑝
∗ (𝑠) = 𝐴0

∗ (𝑠)/𝑠.             

 

7. Busy Period Analysis 
 

𝐵𝑖 (𝑡) is defined as the probability that the system  having started from regenerative state 

𝑆𝑖 ∈  𝐸 at that t=0, is under repair at time t due to failure of the unit. Now to determine these 

probabilities, we use simple probabilistic arguments and further taking the Laplace 

transform and solving the resultant set of equations for 𝐵0
∗(𝑠), we have 

 𝐵0
∗(𝑠) = 𝑁3(𝑠)/𝐷2(𝑠)                                                                                                          (12) 

where, 

𝑁3(𝑠) = (1 − 𝑞11
(9)∗ − 𝑞18

∗ 𝑞89
∗ 𝑞91

∗ − 𝑞1,10
∗ 𝑞10,7

∗ 𝑞71
∗ − 𝑞17

∗ 𝑞71
∗ )[𝑞02

∗ 𝑍2
∗ + 𝑞03

∗ 𝑍3
∗ + 𝑞04

∗ (𝑍4
∗ + 𝑞45

∗ 𝑍5
∗) +

𝑞03
∗ 𝑞36

∗ 𝑍6
∗] + [𝑞01

∗ + 𝑞02
∗ 𝑞21

∗ + 𝑞03
∗ (𝑞31

(7)∗ + 𝑞36
∗ 𝑞67

∗ 𝑞71
∗ )] [𝑍1

∗ + 𝑞18
∗ (𝑍8

∗ + 𝑞89
∗ 𝑍9

∗) + 𝑞1,10
∗ 𝑍10

∗ ] +

𝑍7
∗ {𝑞03

∗ 𝑞36
∗ 𝑞67

∗ (1 − 𝑞11
(9)∗ − 𝑞17

∗ 𝑞71
∗ − 𝑞18

∗ 𝑞89
∗ 𝑞91

∗ − 𝑞1,10
∗ 𝑞10,7

∗ 𝑞71
∗ ) + (𝑞1,10

∗ 𝑞10,7
∗ +

𝑞17
∗ ) [𝑞01

∗ + 𝑞02
∗ 𝑞21

∗ + 𝑞03
∗ (𝑞31

(7)∗ + 𝑞36
∗ 𝑞67

∗ 𝑞71
∗ )]}                                                                   (13)                                                                                                                                                                                                                                                                           

and, 𝐷2(𝑠)  is same as given by (7). 

In the steady state, the probability that the repairman will be busy is given by 

𝐵0 = 𝑙𝑖𝑚
𝑡→∞

𝐵0(𝑡) = 𝑙𝑖𝑚
𝑠→0

𝑠 𝐵0
∗(𝑠) =  𝑁3(0)/𝐷2

′ (0)                                                       (14) 

where, 

𝑁3(0) = (1 − 𝑝11
(9)

− 𝑝17𝑝71 − 𝑝18𝑝89𝑝91 − 𝑝1,10𝑝10,7𝑝71)[ 𝑝02𝑝04 + 𝑝03𝛹3 + 𝑝04(𝑝04 +

𝑝45𝛹5) + 𝑝03𝑝36𝛹6] + [𝑝01 + 𝑝02𝑝21 + 𝑝03(𝑝31
(7)

+ 𝑝36𝑝67𝑝71)] [𝛹1 + 𝑝18(𝛹8 + 𝑝89𝛹9) +

𝑝1,10𝛹10] + 𝛹7 {𝑝03𝑝36𝑝67(1 − 𝑝11
(9)

− 𝑝17𝑝71 − 𝑝18𝑝89𝑝91 − 𝑝1,10𝑝10,7𝑝71) + (𝑝1,10𝑝10,7 +

𝑝17) [𝑝01 + 𝑝02𝑝21 + 𝑝03(𝑝31
(7)

+ 𝑝36𝑝67𝑝71)]}                                                                    (15) 

and 𝐷2
′ (0) is same as obtained in (11). 

The expected busy period of the repairman during (0, t] is given by 
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µ𝑏(𝑡) = ∫ 𝐵0(𝑢)
𝑡

0
𝑑𝑢   

So that,  µ𝑏
∗ (𝑠) = 𝐵0

∗(𝑠)/𝑠                                                                                                

 

8. Expected number of Repairs 
 

𝑉𝑖(𝑡) is defined as the expected number of repairs of the failed units during the time interval 

(0, 𝑡] when the system initially starts from regenerative state 𝑆𝑖. Further, using the 

definition of 𝑉𝑖(𝑡) and by probabilistic reasoning the recurrence relations are easily 

obtained and taking their Laplace- Stieltjes transforms and solving the resultant set of 

equations for 𝑉̃0(𝑠), we get  

𝑉̃0(𝑠) = 𝑁4(𝑠)/𝐷3(𝑠)                                                                                                 (16) 

where, 

𝑁4(𝑠) = (1 − 𝑄̃11
9 − 𝑄̃17𝑄̃71 − 𝑄̃18𝑄̃89𝑄̃91 − 𝑄̃1,10𝑄̃10,7𝑄̃71)(𝑄̃03𝑄̃30 + 𝑄̃04𝑄̃45𝑄̃50) +

𝑄̃10(𝑄̃01 + 𝑄̃02𝑄̃21 + 𝑄̃03𝑄̃31
(7)

+ 𝑄̃03𝑄̃36𝑄̃67𝑄̃71)                                                                 (17) 

and 𝐷3(𝑠) can be written on replacing 𝑞𝑖𝑗
∗  and 𝑞𝑖𝑗

(𝑘)∗
 by 𝑄̃𝑖𝑗 and 𝑄̃𝑖𝑗

(𝑘)
 respectively in the 

equation (7) . 

In the steady state, the expected number of repairs per unit time is given by 

𝑉0 = 𝑙𝑖𝑚
𝑡→∞

[𝑉0(𝑡) 𝑡⁄ ] = 𝑙𝑖𝑚
𝑠→0

𝑠 𝑉̃0(𝑠) =  𝑁4(0)/𝐷2
′ (0)                                       (18) 

where, 

𝑁4(0) = (1 − 𝑝11
9 − 𝑝17𝑝71 − 𝑝18𝑝89𝑝91 − 𝑝1,10𝑝10,7𝑝71)(𝑝03𝑝30 + 𝑝04𝑝45𝑝50)+𝑝10(𝑝01 +

𝑝02𝑝21 + 𝑝03𝑝31
(7)

+ 𝑝03𝑝36𝑝67𝑝71)                             

(19)     

 

9. Profit Function Analysis 
 

With the help of reliability characteristics obtained, the profit function 𝑃(𝑡) for the system 

can be obtained easily. Profit is excess of revenue over the cost, therefore, the expected total 

profits generated during (0, t] is:  

𝑃(𝑡) =   Expected total revenue in (0,t]− Expected total expenditure in (0,t] 

 = 𝐾0µ𝑢𝑝(𝑡) − 𝐾1µ𝑏(𝑡) − 𝐾2𝑉0                                                                        (20) 

where, 

𝐾0  : Revenue per unit up time of the system. 

𝐾1 : Cost per unit time for which repair man is busy in repairing the failed unit. 

𝐾2 : Cost of repair per unit. 

In steady state, the expected total profits per unit time, is 
𝑃 =  𝑙𝑖𝑚

𝑡→∞
[𝑃(𝑡)/𝑡]  =   𝑙𝑖𝑚

𝑠→0
𝑠2𝑃∗(𝑠)  

Therefore, we have 

𝑃 = 𝐾0𝐴0 − 𝐾1𝐵0 − 𝐾2𝑉0                                                                                                     (21) 

 

10. Graphical Study Of The System Model 
 

Graphical study of the system model gives a more perceived picture of system behaviour. 

So, for more concrete study, we plot MTSF and Profit function with respect to α, failure rate 

of identical unit for different values of  ℎ1, repair rate of  identical unit. 

Fig. 2 represents the variations in MTSF with respect to α for different values of ℎ1as 0.05, 
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0.40, 0.80 by keeping all the other parameters fixed at 𝛽 = 0.03,  ℎ = 0.20,   𝛾 = 0.35,   𝛿 =

0.45 . The coverage probability 𝑐 for the system is set at 0.70. It can be clearly seen from the 

graph of MTSF that it decreases continuously with increase in failure rate α and by 

increasing repair rate ℎ1, the value for MTSF also increases, thereby concluding that repair 

facility increases the lifetime of the system. 

 

 
Fig. 2 

Fig. 3 represents the change in Profit function 𝑃 with respect to α for different values of ℎ1  

as 0.05, 0.40, 0.80  by keeping all the other parameters fixed at 𝛽 = 0.03, ℎ = 0.20,          𝛾 =

0.35,  𝛿 = 0.45 . The coverage probability 𝑐 for the system is set at 0.70. Clearly, it is 

observed that profit function decreases with increase in failure rate α but increases with 

increase in repair rate  ℎ1. Hence, repairing the system from time to time will result in better 

performance of the system. 

 

 
Fig. 3 
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Abstract 
 

The present paper deals with two non-identical units A and B, both are in 

operative mode. If the unit A fails then it is taken up for preparation of repair 

before entering into repair mode and the unit-B gives  a signal for repair 

before going into failure mode. If the unit gets repaired then it becomes 

operative otherwise it is replaced by the new one. A single repairman is 

always available with the system to repair the failed units and the priority in 

repair is always given to the unit-A. The failure time distributions of both 

the units are taken as exponential and the repair time distributions are taken 

as general. Using regenerative point technique  the  various characteristics 

of the system effectiveness have been obtained such as Transition 

Probabilities and Mean Sojourn times, Mean time to system failure (MTSF), 

Availability of the system, Busy Period of repairman, Expected number of 

Replacement, Expected profit incurred.  

 

Keyword: Preparation, Signal, Repair and Replacement. 

 

 

1.1    INTRODUCTION 
 

Several researchers have considered and studied numerous reliability system models 

having identical units. In view of their growing use in modern technology the study of 

reliability characteristics  of different  stochastic models have  attracted the attention of the 

researchers in the field of reliability theory and system engineering. To help system 

designers and operational managers, various researchers including [1,2,3] in the field of 

reliability theory have analysed two unit system models with two types of repairs, 

replacement policy, signal concept etc. They obtained various economic measures of 

system effectiveness by using regenerative point technique. The common assumption 

which is taken in most of these models is that a single repairman is always available with 

the system to repair the failed unit and after the repair the unit becomes as good as new. 

But in many practical situations, it is not possible that a single repairman perform the whole 

process of repair particularly in case of complicated unit/machine. Goel [1] analyzed that 

the multi standby, multi failure mode system model with repair and replacement policy 

mailto:urvigupta2791@gmail.con
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and there are various authors who have carried out study on repair and replacement 

policies. 

In the present paper, we study a  two non-identical units system model. The units are 

named as  A and B and are taken to be  in operative mode. If the unit A fails then goes for 

preparation for repair before entering into repair. Unit-B while in operation gives a  signal 

for its repair before going in to failure mode and if it gets repaired it starts its functioning 

in usual manner otherwise it is replaced by the new one. A single repairman  is always 

available with the system to repair the failed units and the priority in repair  is always given 

to the unit-A The failure time distributions of both the units are taken as exponential and 

the repair time distribution is taken as general. All random variable are statistically 

independent.  

Using semi- Markov process and regenerative point technique the expressions for the 

following  important performance measures of the system have been derived in steady state 

- 

1. Transition Probabilities and mean Sojourn times. 

2. Mean time to system failure (MTSF). 

3. Availability of the system. 

4. Busy period of repairman. 

5. Expected number of replacement of the unit. 

6. Net expected profit earned by the system during the interval (0,t) and in steady 

state. 

 

1.2    MODEL DESCRIPTION AND ASSUMPTIONS 

 

1.   The system comprises of two non-identical units A and B initially both are in operative 

mode. 

2.   Upon the failure of unit A, it will go for preparation for repair  before taken up for  

repair. 

3.   Unit-B while in operation gives a  signal for its repair before going in to failure mode 

and if it is not  repaired in a stipulated time it is replaced by the new one. 

4.   A single repairman is always available with the system to repair and replace the failed 

units  and the priority in repair is always given to the unit  A over unit B 

5.  The failures of the units are independent and the failure time distributions of the units 

are taken as Exponential. 

6.   The repair time distributions  of the units are taken as general. 

 

1.3  NOTATIONS AND STATES OF THE SYSTEM 
 

We define the following symbols for generating the various states of the system. 
A10, B20         ∶  Unit A and unit B are in operative mode. 
A1r/ A1P        ∶  Unit A  under repair/ preparation for repair. 
B2sr/ B2srw  ∶  Unit B in operative mode and gives signal for repair waiting ⁄  
                           of signal for repair. 

B2r/ B2rw     ∶  Unit B  under repair waiting ⁄ for repair. 
B2R/B2Rw    ∶  Unit B under replacement waiting ⁄ for replacement  
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b)  NOTATIONS: 

 

E               ∶   Set of regenerative states  = {S0, S1, S2, S3, S4, S5, S6, S8} 

E̅                ∶   Set of non − regenerative states    = {S7, S9, S10, S11} 
α1              ∶ Failure rate of unit − A 
α2              ∶ Repair rate of unit − B 
β1              ∶ Parameter for signal 
β2              ∶ Repair rate of unit − A 
β3              ∶ Repalcement rate of unit − B 
H1              ∶ cdf of repair time of unit − B 
H2              ∶ cdf of repair time of unit − A 
G1              ∶ cdf of replacement time of unit − B  

 

 

                                          TRANSITION DIAGRAM 

 
Fig.1.1 

 

 

1.4   TRANSITION PROBABLITIES 
 

Let 𝑋𝑛 denotes the state visited at epoch 𝑇𝑛+  just after the transition at 𝑇𝑛, where 𝑇1, 𝑇2 …. 

represents the regenerative epochs, then{𝑋𝑛, 𝑇𝑛} constitute a Markov-Renewal process with 

state space E and 
𝑄𝑖𝑗(𝑡) = 𝑃[𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖]  

is the semi Markov kernel over E. 

Then the transition probability matrix of the embedded Markov chain is 
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P = pij = Qij(∞) = Q(∞)                                                                                           

 We obtain the following direct steady-state transition probabilities: 

p01 = α1 ∫ e−(α1+β1)udu =
α1

(α1 + β1)
 

Similarly, 

p02 =
β1

(α1+β1)
 ,                p13 =

β2

(β2+β1)
,                   p20 =  H1

∗(α2 + α1)  

p24 =  
α1

(α2+α1)
[1 − H1

∗(α2 + α1)],                          p25 =  
α2

(α2+α1)
[1 − H1

∗(α2 + α1)]  

            p30 = H2
∗(β1),                      p46 =

β2

α2+β2
,                 p50 = H1

∗(α1 + β3) 

             p57 =
α1

α1+β3
[1 − H1

∗(α1 + β3)],                           p58 =
β3

β3+α1
[1 − H1

∗(α1 + β3)] 

             p62 = H2
∗(α2),                       p80 = G1

∗(α1),            p8,10 = 1 − G1
∗(α1) 

             p79 = p95 = p10,11 = p11,8 = 1 

            The indirect transition probability may be obtained as follows: 

p16
(4)

=  
β1β2

(β1 − α2)
∫ e−(β2+α2)v − e−(β2+β1)vdu 

       =
β1β2

(β2 + α2)(β2 + β1)
 

Similarly, 

p19
(4,7)

= 1 +
β2α2

(β1 − α2)(β2 + β1)
−

β1β2

(β2 − α2)(β2 + α2)
 

             p35
(6,9)

= 1 −
β1H2

∗ (α2)

(β1−α2)
+

α2H2
∗ (β1)

(β1−α2)
,                   p32

(6)
=

β1

(β1−α2)
[H2

∗(α2) − H2
∗(β1)] 

           p49
(7)

=  
α2

α2+β2
                                                  p65

(9)
 = 1 − H2

∗(α2) 

It can be easily verified that 

p01 + p02 = 1,                         p13 + p19
(4,7)

+ p16
(4)

= 1, p20 + p24 + p25 = 1 

p30 + p35
(6,9)

+ p32
(6)

= 1, p46 + p49
(7)

= 1,                        p50 + p57 + p58 = 1 

p62 + p65
(9)

= 1,                       p80 + p8,10 = 1,                    p79 = p95 = p10,11 = p11,8 = 1 

 

A) MEAN SOJOURN TIMES 

 The mean sojourn time in state Si denoted by µi is defined as the expected time taken 

by the system in state Si before transiting to any other state. To obtain mean sojourn time µi, 

in state Si, we observe that as long as the system is in state Si, there is no transition from Si 

to any other state. If Ti denotes the sojourn time in state Si then mean sojourn time µi in state  

Si is: 

µi = E[Ti] = ∫ P(Ti > 𝑡)dt 

Therefore, 

µ0 =
1

α1+β1
 ,                         µ1 =

1

β1+β2
,                            µ2 =

1

α1
− H1

∗(α1)                                                    

µ3 =
1

β1
− H2

∗(β1),                µ4 =
1

α2+β2
 ,                      µ5 =

1

β3+α1
− H1

∗(β3 + α1)                                                                

µ6 =
1

α2
− H2

∗(α2),                 µ8 =
1

α1
− G1

∗(α1)              µ7 = µ10 =
1

β2
 

  µ9 = µ11 = ∫ H̅2 (t)dt 

 

1.5  ANALYSIS OF RELIABILITY 
  

Let 𝑇𝑖 be the random variable denoting time to system failure when system starts up from 

state 𝑆𝑖Є 𝐸𝑖 , then the reliability of the system is given by 
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 Ri(t) = P[Ti > 𝑡] 

To obtain 𝑅𝑖(𝑡), we consider failed states as absorbing states. 

 The recursive relations among 𝑅𝑖(𝑡) can be developed on the basis of probabilistic 

arguments.  Taking their Laplace Transform and solving the resultant set of equations 

for 𝑅0
∗(𝑠), we get 

 R0
∗ (s) =

N1(s)

D1(s)
                    

(1.5.1) 

Where 
𝑁1(𝑠) =  [(1 − q24

∗ q46
∗ q62

∗ )(Z0
∗ + q01

∗ Z1
∗ + q01

∗ q13
∗ Z3

∗)]

+ [q01
∗ (q13

∗ q32
(6)∗

+ q16
(4)∗

q62
∗ ) + q02

∗ ] (Z2
∗ + q24

∗ Z4
∗ + q25

∗ Z5
∗ + q25

∗ q58
∗ Z8

∗)

+ [q01
∗ q16

(4)∗
+ q24

∗ q46
∗ (q01

∗ q13
∗ q32

(6)∗
+ q02

∗ )] Z6
∗  

𝐷1(𝑠) = [(1 − q24
∗ q46

∗ q62
∗ )(1 − q01

∗ q13
∗ q30

∗ )]

− [(q13
∗ q32

(6)∗
+ q16

(4)∗
q62

∗ ) q01
∗ − q02

∗ ] (q20
∗ + q50

∗ + q25
∗ q58

∗ q80
∗ ) 

 Taking the Inverse Laplace Transform of (1.5.1), one gets the reliability of the system. 

To get MTSF, we use the well known formula 
E(T0) = ∫ R0(t)dt = lim

s→0
R0

∗ (s) = N1(0)/D1(0)  

where,      
N1(0) =  [(1 − p24p46p62)(µ0 + µ1p01 + µ3p01p13)]

+ [p01 (p13p32
(6)

+ p16
(4)

p62) + p02] (µ2 + p24µ4 + p25µ5 + p25p58µ8)

+ [p01p16
(4)

+ p24p46 (p01p13p32
(6)

+ p02)] µ6 

D1(0) = [(1 − p24p46p62)(1 − p01p13p30)]

− [(p13p32
(6)

+ p16
(4)

p62) p01 − p02] (p20 + p50 + p25p58p80) 

Since, we have qij
∗ (0) = pij and  lim

s→0
Zi

∗(s) = ∫ Zi(t)dt = µi 

 

1.6     AVAILABILITY ANALYSIS 
    

Let Ai(t) be the probability that the system is available at epoch t, when it initially starts 

from Si ∈ E. Using the regenerative point technique and the tools of L.T., one can obtain the 

value of  above probabilities in terms of their L.T. i.eAi
n∗(s).Solving the resultant set of 

equations and simplifying for A0
∗ (s), we have 

A0
n∗(s) = N2(s)/D2(s)                                                  (1.6.1) 

N2(s) = q80(1 − q57)(1 − q24q46q62)[Z0 + q01Z1] + q01[q13q80(1 − q57)(1 − q24q46q62)Z3]

+ q80(1 − q57)(Z2 + q24(Z4 + q46Z6)) [q01q13q32
(6)

+ q02]

+ {(q80Z5 + q58Z8) [(q65
(9)

q46 + q4,9
(7)

) q24 + q25]} (q01q32
(6)

+ q02)

+ q01(q80Z5 + q58Z8)(1 − q24q46q62) [q35
(6,9)

+ q19
(4,7)

]

+ q01q16
(4)

[q80(1 − q57) [(Z6 + q62Z2 + q24q62Z4)

+ (q80Z5 + q58Z8) {q6,5
(9)

+ q62q25 + q25q4,9
(7)

}]] 

                                                                                                                    (1.6.2) 

and 
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D2(s) = q80(1 − q57)(1 − q24q46q62) − {q01 [q13q80(1 − q57)(1 − q24q46q62) (1 − q32
(6)

)]}

− q01q13q80q32
(6)

q80(1 − q57)(1 − q24q46q62)

− q01q80q19
(4,7)

(1 − q57)(1 − q24q46q62)

− q01q80q16
(4)

(1 − q57)(1 − q24q46q62) − q02q80(1 − q57)(1 − q24q46q62) 

(1.6.3) 

The steady state availability is given by 

A0 = lim
t→∞

A0(t) = lim
s→0

 sA0
∗ (s) =

N2(0)

D2(0)
   

As we know that, qij(t) is the pdf of the time of transition from state Si to Sj and qij(t)dt is 

the probability of transition from state Si to Sj during the interval (t, t + dt), thus 

lim
s→0

𝑍i
∗(s) = ∫ 𝑍i(t)dt =  µi  and  qij

∗ (s) = qij
∗ (0) =  pij , we get 

Therefore, 
N2(0) = p80(1 − p57)(1 − p24p46p62)[µ0 + p01µ1] + p01[p13p80(1 − p57)(1 −

p24p46p62)µ3] + p80(1 − p57)(µ2 + p24(µ4 + p46µ6)) [p01p13p32
(6)

+ p02] + {(p80µ5 +

p58µ8) [(p65
(9)

p46 + p4,9
(7)

) p24 + p25]} (p01p32
(6)

+ p02) + p01(p80µ5 + p58µ8)(1 −

p24p46p62) [p35
(6,9)

+ p19
(4,7)

] + p01p16
(4)

[p80(1 − p57) [(µ6 + p62µ2 + p24p62µ4) +

(p80µ5 + p58µ8) {p6,5
(9)

+ p62p25 + p25p4,9
(7)

}]]     

                                                                                                                        (1.6.4) 

D2(0) = p80(1 − p57)(1 − p24p46p62) − {p01 [p13p80(1 − p57)(1 − p24p46p62) (1 − p32
(6)

)]}

− p01p13p80p32
(6)

p80(1 − p57) − p01p80p19
(4,7)

(1 − p57)(1 − p24p46p62)

− p01p80p16
(4)(1 − p57)(1 − p24p46p62) − p02p80(1 − p57)(1 − p24p46p62) 

The steady state probability that the system will be up in the long run is given by 

𝐴0 = lim
t→∞

𝐴0(t) = lim
s→0

 sA0
∗ (s) lim

s→0

 sN2(s)

D2(s)
  =   lim

s→0
N2(s) lim

s→0

 s

D2(s)
                   

as s→ 0, D2(s) becomes zero.                                                                                                                                        

Therefore, by L’ Hospital’s rule,A0 becomes 

A0 =  N2(0)/D2
′ (0)                                                                                           (1.6.5)                                                                               

where,  
D2

′ (0) = µ0{p80(1 − p57)(1 − p24p46p62)} + µ1{p01p80(1 − p57)(1 − p24p46p62)} +

µ2 {p80(1 − p57)p01 [p13p32
(6)

+ p16
(4)

p62] + p80(1 − p57)p02} + µ3{p01p80p13(1 − p57)(1 −

p24p46p62)} + µ4 {p80(1 − p57)p24 [p01p16
(4)

p62 + p01p13p32
(6)

+ p02]} + (µ5 + µ7 + µ8 + µ9 +

µ10 + µ11)(1) + µ6 {p02p80(1 − p57)p24p46 + p01p80(1 − p57)p24p46p32
(6)

}               (1.6.6) 

Using the results (1.6.4) and (1.6.6) in (1.6.5), we get the expressions for A0. 

The expected up (operative) time of the system during (0, t] is given by 

µ𝑢𝑝(t) = ∫ A0

t

0

(u)du 

So that, 

µup
∗ (s) =

A0
∗ (s)

s
 

 

1.7  BUSY PERIOD OF REPAIRMAN 
 

Let Bi(t) be the probability that the repairman is busy in the repair of failed unit at epoch t, 

when the system initially starts operation from state Si ∈ E. Developing the recursive 
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relations amongBi(t)′s and solving the resultant set of equations and simplifying forB0
∗(s), 

we have 

B0
∗(s) = N3(s)/D2(s)                                                                                           (1.7.1) 

 where 

N3(s) = [q01
∗ (1 − q24

∗ q46
∗ q62

∗ ) [q13
∗ q35

(6,9)∗
+ q65

(9)∗
+ q19

(4,7)∗
]

+ q01
∗ (1 − q20

∗ − q24
∗ q46

∗ q62
∗ ) (q32

(6)∗
+ q16

(4)∗
q62

∗ )

+ q02
∗ (1 − q20

∗ − q24
∗ q46

∗ q62
∗ )] {q80

∗ M5
∗ + q8,10

∗ q58
∗ M11

∗ + q80
∗ q57

∗ q79
∗ M9

∗}

+ {q01
∗ q80

∗ (1 − q57
∗ )(1 − q24

∗ q46
∗ q62

∗ ) [q13
∗ M3

∗ + q16
(4)∗

M6
∗] + q01

∗ q16
(4)∗

M9
∗}

+ q80
∗ (1 − q57

∗ ) [M2
∗ + q24

∗ (q46
∗ M6

∗ + q49
(7)∗

M9
∗)] {q01

∗ (q13
∗ q32

(6)∗
+ q16

(4)∗
q62

∗ )

+ q02
∗ } 

In the long run, the expected fraction of time for which the expert server is busy in the 

repair of failed unit is given by       

B0 = lim
t→∞

B0 (t) = lim
s→0

B0
∗ (s) =

N3(0)

D2
′ (0)

=
N3

D2
                                                        (1.7.2) 

N3(0) = [p01(1 − p24p46p62) [p13p35
(6,9)

+ p65
(9)

+ p19
(4,7)

] + p01(1 − p20 − p24p46p62) (p32
(6)

+

p16
(4)

p62) + p02(1 − p20 − p24p46p62)] {p80µ5 + p8,10p58µ11 + p80p57p79µ9} +

{p01p80(1 − p57)(1 − p24p46p62) [p13µ3 + p16
(4)

µ6] + p01p19
(4,7)

µ9} + p80(1 − p57) [µ2 +

p24 (p46µ6 + p49
(7)

µ9)] {p01 (p13p32
(6)

+ p16
(4)

p62) + p02}                                                                        

(1.7.3) 

and D2(s) is same as given by (1.6.6). 

Thus using (1.7.3) and (1.6.6) in (1.7.2), we get the expression for B0. 

The expected busy period of repairman during the time interval (0,t] is given by 

µb(t) = ∫ B0

t

0

(u)du 

So that 

µb
∗ (s) =

B0
∗ (s)

s
  

 

1.8      EXPECTED NUMBER OF REPLACEMENTS 

 

Let  Vi
rp(t) be the expected number of replacements by the server in (0,t] given that the 

system entered the regenerative state Si at t=0. Framing the relations among Vi
rp(t),taking 

L.S.T and  solving for  Ṽ0
r(s), we get 

Ṽ0
rp(s) =

N4
rp

(s)

D2(s)
                                                                                                                   (1.8.1)   

where,  

N4
rp(s) = Q̃01 [Q̃12Q̃21 + Q̃25Q̃21(Q̃78Q̃89 + Q̃79)Q̃57Q̃90 + Q̃13Q̃34 (Q̃46Q̃69

(8)
+ Q̃48

(7)
Q̃89 + Q̃49

(7)
)

+ Q̃13Q̃37
(5)

(Q̃78Q̃89 + Q̃79)Q̃90] 

and D2(s)  can be obtained on replacing 𝑞𝑖𝑗 ,𝑠   by 𝑄𝑖𝑗 ,𝑠  in 1.6.6 

In steady-state per-unit of time expected number of replacement by server is given 

V0
rp

= lim
𝑡→∞

V0
rp

(t)

t
= lim

s→0
Ṽ0

rp (s) =
N4

rp
(0)

D2
′ (0)

=
N4

rp

D2
                                                  (1.8.2) 

Where                                              

N4
rp

= p01 [p12p21 + p12p25(p78p89 + p79)p57p90 + p13p34 (p46p69
(8)

+ p89p48
(7)

+  p49
(7)

) +
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p13p37
(5)

(p78p89 + p79)p90]                                                                                            (1.8.3)  

Thus using (1.8.3) and (1.6.6) in (1.8.2), we get the expression for V0
rp

. 

 

1.9   PROFIT FUNCTION ANALYSIS 

 

The net profit incurred during (0,t) is given by 

P(t) =   Expected total revenue in (0,t]− Expected total expenditure in (0,t] 

          = K0µup(t) − K1µb
r (t) − K2µn

rp(t) 

Where K0 is the revenue per unit up time by the system, and K1 repair cost per unit of time 

in repairing the failed unit by repairman and K2  is per unit replacement cost of the failed 

unit. 

Also, 

µup(t) = ∫ A0(u)
t

0

du 

So that, µup
∗ (t) =

A0
∗ (s)

s
 

In the similar way µb
r (t), µn

rp(t)can be defined. 

Now the expected profit per unit of time in steady state is given by 

P = lim
t→∞

P(t)

t
= lim

s→0
s2P∗(s) 

= K0A0 − K1B0 − K2V1 

 

1.10   CONCLUSION 
 

To study the behavior of MTSF and profit function through graphs w.r.t various 

parameters,  curves  are plotted for these characteristics w.r.t failure parameter α1 in Fig.2.1 

and Fig.2.2 respectively for three different values of repair rate β2 = (0.20, 0.50, 0.60) 

whereas other parameters are kept fixed as  α2 = 0.03, β1 = 0.25, β3 = 0.20, h1 = 0.30, h2 =
0.02, g1 = 0.03. 

 

Fig.2.1 represents variation in MTSF for varying values of failure parameter α1   for three 

different values of repair rate β2 .  The graph shows decrease in MTSF with the increase in 

failure rate and  an increase with the increase in repair rate. The curves also indicates that 

for the same value of failure rate, MTSF is higher for higher values of repair rate .So we 

conclude that the repair facility has a better understanding of failure phenomenon resulting 

in longer lifetime of the system. 

 

Fig.2.2 represents the variation pattern in profit function w.r.t. varying values of failure 

parameter α1    for three different values of repair rate β2, it is observed from graph that 

profit decreases with the increase in failure rate α1  and increases with increase in repair 

rate β2 irrespective of other parameters. The curve also indicates that for the same value of 

repair rate, profit is lower for higher values of failure rate and  decrease in  both MTSF and 

profit function is almost exponential. 

 

Hence, it can be concluded that the expected life of the system can be increased by 

decreasing failure rate and increasing repair rate of the unit which in turn will improve the 

reliability and hence the effectiveness of the system. 
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Abstract 
 

This paper presents an analysis of warranty claims data of a component of an 

automobile. The objectives of the analysis are to assess and predict the reliability of 

the component. To do these the paper present nonparametric and parametric 

analyses for the lifetime variable, age in month, based on warranty claims data. It 

also investigates on the variation of reliability of the component with respect to 

month of production and dominant failure modes. The paper will be useful to the 

manufacturer for assessing and predicting reliability and warranty costs and for 

assuring customer satisfaction and product reputation.  

 

Keywords. Automobile component; Failure mode; Maximum likelihood estimate; 

Reliability; Warranty claims data; Warranty claim rate.  

 

1. Introduction 

 
The complexity of products has been increasing with technological advances. Over the last 

few decades there has been a heightened interest in improving quality, productivity and 

reliability of manufactured products. Rapid advances in technology and constantly 

increasing demands of customers for sophisticated products have put new pressure on 

manufacturers to produce highly reliable products. As a result, a product must be viewed 

as a system consisting of many elements and capable of decomposition into a hierarchy of 

levels, with the system at the top level and parts at the lowest level. Blischke, Karim and 

Murthy (2011) mentioned that there are many ways of describing this hierarchy. The 

modern automobile is a complex system consisting of over 15,000 components (Blischke et 

al., 2011). In this paper the warranty claims data of a component of automobile which 

belongs to the electrical sub-system, manufactured and sold in Asia, is considered. We 

analyze the warranty claims data of the component to investigate questions of interest to 

the manufacturers regarding reliability assessment and prediction.  

As there are many aspects to warranty, a number of procedures have been developed 

for analyzing product warranty data, and the literature on this topic is very large. Detailed 

discussion on various aspects of warranty and reviews of subsequent recent literature on 

warranty analysis can be found in Thomas and Rao (1999), Murthy and Djamaludin (2002), 

Karim and Suzuki (2005), Blischke et al. (2011), Wu (2012) and Wang and Xie (2017). Many 

mailto:mrezakarim@yahoo.com
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factors contribute to product failures that result in warranty claims. One of the most 

important factors is the age of the product. Age is calculated by the service time measured 

in terms of calendar time since the product was sold or entered service. The age-based (or 

age-specific) analysis of product failure data has engendered considerable interest in the 

literature (Kalbfleisch et al., 1991; Kalbfleisch and Lawless, 1996; Lawless, 1998; Karim et 

al., 2001; Suzuki et al., 2001) and a number of approaches have been developed with regard 

to addressing age-based analysis of warranty claims data. 

Recently, Blischke et al. (2011) discussed the age-based analysis of an automobile 

component failure data in a case study. Here first we find the non-parametric estimates of 

cumulative density function F(t) and reliability function R(t) of lifetime random variable T 

measured by age in month. Next we apply the parametric approach to select the suitable 

lifetime models for the component and of different failure modes assuming that the number 

of failures at age t depends on the age of the product and is independent on other factors. 

The age-based warranty claim rates for different month of production are estimated for 

checking the quality variation problems with respect to production period. We also 

determine the dominant failure modes for the component and investigate how the 

reliability improves by successively removing the dominant failure modes. We consider a 

month as the unit for age without loss of generality. If necessary, the unit ‘month’ can be 

easily substituted with ‘week’, ‘day’ and so on. 

The outline of the paper is as follows. Section 2 describes the warranty claims data set. 

Section 3 discusses the nonparametric approach of data analysis. Section 4 presents the 

parametric approach to analysis the warranty claims data. Finally, Section 5 concludes the 

paper.  

2. Description of Data 

 

This paper analyses a set of failure data of an automobile component manufactured and 

sold in Asia. The failure data are the warranty claims data of the component produced over 

12 month period of a year and sold over a 26 month period. For reasons of commercial 

sensitivity we cannot disclose the names of the component and manufacturing company 

and call simply the “component”. The component is non-repairable and the automobiles 

on which it is used are sold with a non-renewing free-replacement warranty (FRW) with 

18 months (age limit) warranty period.2  The data are collected during 26 months 

observation period. There are total 4746 failed observations and 64567 censored 

observations. For each claim, the available data relating to component consisted of the 

following: 

• Serial number of claim 

• Month of production 

• Date of sale 

• Date of failure 

• Age of the component 

                                                           
2 Generally in case of automobile components, the offered warranty is two-dimensional, where the 

warranty is characterized by a region in a two-dimensional plane, usually with one axis representing 

age and the other representing usage, whichever occurs first. However, the warranty of this 

component is one-dimensional, which is characterized by a single variable, age.   
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• Odometer readings (mileage in kilometers) 

• Failure modes 

• Used region 

The manufacturer has identified 8 different failure modes for the component denoted by 

FM01, FM02, FM03, FM04, FM05, FM06, FM07 and FM08. Additional these, the database 

consists of the supplementary data: Production amount (monthly, for 12 months) and Sales 

amount (monthly, for 26 months). 

 

3. Nonparametric Analysis 

The nonparametric approach allows the user to analyze data without assuming an 

underlying distribution, that is, it does not require that the form of the sampled population 

be known. Blischke et al. (2011) recommended that any set of warranty data first be 

subjected to a nonparametric analysis before moving on to parametric analyses assuming 

a specific underlying probability distribution. Here we look at the nonparametric approach 

to inferences regarding quantities such as the cumulative density function (cdf) F(t), 

reliability function R(t), as well as warranty claim rates (WCR) of the component.  

     Kaplan and Meier (1958) derived the nonparametric estimator of the survival function 

for censored data which is known as the product-limit (PL) estimator. This estimator is also 

widely known as the Kaplan-Meier (KM) estimator of the survival function. We find the age-

based Kaplan-Meier estimator of the survival function S(t) or reliability function R(t). 

Suppose that there are observation on n individuals and that there are k (k≤n) distinct times 

(say, age in month) t1< t2< … <tk at which failures occur. Let di denote the number of units 

that failed at ti and ri represent the number of units that are right-censored at ti, i = 1, 2, …, 

k. Then the size of the risk set (number of units that are alive) at the beginning of time ti is 

 
1 1

0 0

, 1,2,...,
i i

i j j

j j

n n d r i k
− −

= =

= − − =       (1) 

where d0=0 and r0=0. Then, the estimator of the conditional probability that a unit fails in 

the time interval from ti - δt to t for small δt, given that the unit enters this interval, is the 

sampling proportion failing ˆ / , 1,2,...,i i ip d n i k= =  and the estimator of the corresponding 

survival probability is ˆ1 ( ) / , 1,2,...,i i i ip n d n i k− = − = . Under this condition, the Kaplan-

Meier estimator of the survival function S(t) is given by 

: :

ˆ( ) ( ) (1 ) , 0.
j j

j j

j

j t t j t t j

n d
S t P T t p t

n 

−
=  = − =       (2) 

The nonparametric estimator of F(t) is obtained using the Kaplan-Meier estimator as  

ˆˆ ( ) 1 ( ), 0F t S t t= −        (3) 

Meeker and Escobar (1998) discussed estimation methods for the variance and point-wise 

normal-approximation confidence intervals for F(t). By using the logit transformation, they 

showed that two-sided approximate 100(1-α)% confidence intervals for F(t) can be 

calculated as 
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ˆ ˆ( ) ( )

,
ˆ ˆ ˆ ˆ( ) (1 ( )) ( ) (1 ( )) /

F t F t

F t F t w F t F t w

 
 

+ −  + − 
     (4) 

where  ˆ(1 / 2) ( )
ˆ ˆˆexp /[ ( )(1 ( ))]

F t
w z se F t F t−= −  and ˆ ( )

1

ˆ
ˆˆˆ ( ( )) ( )

ˆ(1 )

t
j

F t
j j j

p
se V F t S t

n p=

= =
−

 . 

The nonparametric estimates of reliability function R(t) and cumulative density 

function F(t) with their 95% confidence intervals are plotted in Figure 1. Minitab software 

and the R-function survfit(Surv()) under the library survival can be applied to estimate 

these functions. Figure 1 indicates that about 96% of the component is estimated to survive 

until 12 months. The value of the cdf at age 18 months is F(t=18)=0.068, indicating a claims 

rate of 6.8% within the warranty period. We are 95% confident that the probability of failing 

of the component within the warranty period of 18 months is between 6.6% and 7.0%. 

   

  

 

Figure 1: Nonparametric estimates of R(t) (left side) and F(t) (right side) with 95% 

confidence intervals 

The Pareto chart of different failure modes, given in Figure 2, indicates that the three 

failure modes FM02, FM01, and FM03 account for 83.5% of the total claims. Failure modes 

from FM04 to FM08 have considerably lower frequencies. Based on Figure 2, we may 

conclude that efforts should be concentrated to eliminate or reduce the risks associated with 

the failure modes FM02, FM01 and FM03 in order to improve the reliability of the product 

and thereby decrease warranty claims and costs.  

The summary statistics for the variables Age and Usage for important failure modes 

are given in Table 1. These summary statistics are the conditional estimates in the sense that 

they are estimated based on the items that failed during the warranty period and led to 

claims. This means the summary statistics for the variables Age and Usage given that the 

Age is less than or equal to 18 months.  

 

Table 1 indicates that the conditional average and median lifetimes with respect to Age 

and Usage are smaller for failure mode FM02 among the three failure modes. In case of 
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Usage variable for three failure modes, the mean exceeds the median, indicating skewness 

to the right. On the other hand, Age variable shows negative skewness. 

 

 
 

Figure 2: Pareto chart of failure modes 

 

    

Table 1: Summary statistics for the variables Age and Usage for important failure modes 

  

Failure 

Mode 

Age (in month) 

Count Mean StDev Q1 Median Q3 Skewness Kurtosis 

FM01 1609 11.6650 4.4155 9 12 15 -0.5080 -0.5107 

FM02 1926 10.1277 4.7288 7 10 14 -0.1509 -0.9037 

FM03 426 13.0493 4.4547 11 14 17 -0.9541 0.1410 

  

Failure 

Mode 

Usage (in km) 

Count Mean StDev Q1 Median Q3 Skewness Kurtosis 

FM01 1609 27221.76 15053.99 16067.50 25819.00 36479.00 0.6809 0.7755 

FM02 1926 24785.99 15905.73 12735.25 22593.50 34533.50 0.7978 0.6639 

FM03 426 30018.70 16246.41 18825.25 26984.00 40408.50 0.8214 0.7578 

 

Figure 3 shows the interval plots of Usage (km) for eight failure modes (FM01, FM02, 

…, FM08) under four used regions (geographic areas of a country with different 

environments, denoted by R1, R2, R3 & R4). Interval plot can be used to assess and compare 

both a measure of central tendency and variability of the data. The confidence intervals 

allow to assess the differences between group means in relation to within-group variance.  
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Figure 3: Interval plot of Usage (km) for various failure modes under four used regions 

The interval plots show the means of usage for failure mode FM07 are shorter in all 

used regions. The means of usage for almost all failure modes are longer for used region 

R1 than other regions. The intervals of means for various failure modes are not all overlap, 

this indicates that some of the means are different. This indicates the variation of average 

lifetimes for different failure modes with respect to used regions.   

The component considered here was produced during one year from month January 

to month December. The information on the month of production for the failed items are 

given in the database. The following Figures 4 and 5 can be used to investigate whether 

there is any variation in quality with respect to the month of production. Figures 4 and 5 

indicate that the items produced in month September have smallest mean lifetimes for both 

Age and Usage. The intervals (except the production month September) all overlap, so we 

cannot conclude that any of the means (except September) are different. This preliminary 

graphical investigation indicates that there might be some quality related problems for the 

items produced in month September.  

  

 
 

Figure 4: Interval plot of Age (in days) based on month of production 
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Figure 5: Interval plot of Usage (km) based on month of production 

Figure 6 makes a comparison of nonparametric estimates of reliability functions for the 

main three failure modes FM01, FM02 and FM03. The figure indicates that R(t) for FM02 

less than the R(t) for FM01 less than the R(t) for FM03, for all t = 1,2,…, 18. For example, 

RFM02(t=12)=0.9814 < RFM01(t=12)=0.9875 < RFM03(t=12)=0.9976. Therefore, to improve the 

overall reliability of the component, efforts should be concentrated to eliminate or reduce 

the failure modes FM02 first, then FM01 and then FM03.  

 

 

Figure 6: Comparison of nonparametric estimates of R(t)  

for main three failure modes 
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The warranty claims data of the component considered here were manufactured over a 12 

month period (Jan., Feb., .., Dec.) of a particular year. Monthly production amounts are 

given as supplementary data. The production month-wise monthly failure counts can be 

estimated from the warranty database. Due to variations in materials and/or production, 

the quality of components can vary from batch to batch or month of production (MOP) to 

MOP. We estimate the age-based warranty claim rates (WCR) for various MOP to provide 

a basis for checking quality variation problems with respect to production period.  We 

define the WCR for MOP=i and Age=t as follows 

( , ) , 1,2,...,12; 1,2,...,18it

i

r
WCR i t i t

M
= = =     (5) 

where rit represents the count of claims at age t occurred from month of production i and 

Mi is the total number of items produced in month i, i=1, 2, …, 12; t=1,2,…, 18. More detail 

on the estimation of WCR can be found in Blischke et al. (2011). The estimates of WCR (i, t) 

are shown in Figure 7.  

 

Figure 7: Age-based warranty claim rates for different months of production (Jan. to Dec.) 

Figure 7 indicates that the warranty claim rates are very high for the three months of 

production September, July and June compared with other months of production. For the 

MOP September, the WCRs are approximately constant with respect to age. The WCRs for 

the MOP July and June are seems to be increasing with age. The quality of the items 

produced in the remaining MOP (January to May, August and October to December) is the 

best in the sense that the claim rates are low and age-wise approximately similar. This 
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suggests that there were some problems in materials and/or production process in the MOP 

September, July and June.  

To make the differences among WCRs clear in Figure 7, we separate the MOP in two 

groups: Group 1 contains three MOP September, July and June and Group 2 contains the 

remaining nine MOP (January to May, August and October to December). Then we 

estimate the age-based average WCRs for Group 1 and Group 2. For example, for Group 1,  

the average WCR at age t equals to {WCR(9,t)+WCR(7,t)+WCR(6,t)}/3, t=1,2,…, 18. Similarly, 

it can be estimated for Group 2 by averaging on nine MOP. The age-based average warranty 

claim rates for two groups are shown in Figure 8 which clearly indicates that the average 

warranty claim rates for Group 1 are higher than that of Group 2.   

 

Figure 8: Age-based average warranty claim rates for two groups 

 

4. Parametric Analysis 

This section presents the parametric approach to analysis the warranty claims data set 

discussed in Section 2. The parametric approach to data analysis is concerned with the 

construction, estimation, and interpretation of mathematical models as applied to empirical 

data. This involves the tasks model selection, estimation of model parameters and 

validation of the model. Once these tasks are completed, the model may be used for 

prediction and other inferences. 

To apply the parametric approach, we arrange the data in a concentrated form. Let ti 

be the observed failure/censored lifetimes for the random variable T measured in month, 

mi denote the number of units (frequency) that failed/censored at ti and δi represent the 

failure-censoring indicator for ti (taking on value 1 for failed items and 0 for censored), i = 

1, 2, …, k (for the data set k=18). We assume a parametric model ( ; )f t  , with corresponding 

survival or reliability function ( ; )R t  , for the failure time variable T, where θ is a vector of 

model parameters. Under this scenario of data, the likelihood function can be written as  
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 (1 )

1

( ) ( ; ) ( ; )i i i i

k
m m

i i

i

L f t R t
    −

=

=    (6) 

The log likelihood becomes  

 
1

log ( ) log{ ( ; )} (1 ) log{ ( ; )}
k

i i i i i i

i

L m f t m R t    
=

= + −  (7) 

We assume the eleven popular distributions, given in Appendix A (Table A.1), in the 

likelihood function (6) or log-likelihood function (7) and obtain the maximum likelihood 

estimator of θ by maximizing any of these likelihood functions. The log-likelihood function 

(7) is evaluated for the variable Age in month, T, and maximize to obtain the MLEs of the 

parameters assuming eleven distributions: (i) Smallest extreme value, (ii) Two-parameter 

Weibull, (iii) One-parameter exponential, (iv) Two-parameter exponential, (v) Normal, (vi) 

Two-parameter lognormal, (vii) Logistic, (viii) Loglogistic, (ix) Three-parameter Weibull, 

(x) Three-parameter lognormal and (xi) Three-parameter Loglogistic. We use the Minitab 

software to do this task.3 The adjusted Anderson-Darling (AD) test statistic is used to select 

the best fitted distribution among the eleven distributions.4 Figure 9 shows the Minitab 

output of distribution ID plots for the four distributions (Weibull, lognormal, loglogistic 

and 3-parameters lognormal) which give the smaller AD values among eleven 

distributions.  

 

 
 

Figure 9: Four distributions probability plots of Age in month  

In Figure 9, the overall appearance of the plots are not much changed, and the values of the 

AD statistic are approximately equal. However, the Weibull distribution shows the smallest 

AD statistic and so this distribution can be considered as the best distribution for the data 

among eleven distributions. 

                                                           
3 The R functions mle(), optimize(), optim() or nlm() can also be used to do this task.  
4 Minitab (version 17) software creates probability plots and estimates adjusted Anderson-Darling 

(AD) test statistic for these eleven distributions.  
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The Weibull distribution overview plot shown in Figure 10, where the maximum 

likelihood estimates of the parameters are scale parameter ˆ 99.0176 =  and shape 

parameter ˆ 1.5553 = . The maximum likelihood estimates of mean age and median age are 

respectively 89.0239 months and 78.2292 months. As the estimate of the shape parameter 

of Weibull distribution is greater than one, the hazard function in Figure 10 indicates an 

increasing failure rate (IFR) with respect to age.   

 

 
 

Figure 10: Weibull distribution overview plot for Age in month  

The fitted Weibull cumulative density function, ˆ ( ; , )F t   , can be utilized to predict 

warranty cost of the component for a given warranty period. Let cs denotes the average 

warranty cost (the cost incurred by the seller for servicing a claim which can be estimated 

from the warranty-service database) under a one-dimensional warranty with only first 

failure coverage. Then an estimate of the expected average cost per unit to the manufacturer 

for servicing a warranty up to tw, denoted by ˆ ( )wC t , is cs times the proportion of units 

expected to fail within tw (Karim and Suzuki, 2008), that is, ˆ ˆ( ) ( ; , ), 0w s w wC t c F t t =  .  

 

4.1. Analysis by Individual Failure Mode 

If the manufacturer wants to improve the overall reliability of the component, it is 

important to find the suitable parametric distributions for each failure modes separately. 

Comparing the reliability functions of each failure modes, the manufacturer can redesign 

the component, if necessary, to optimize the overall reliability. This can be done by 

analyzing the competing risk models. In the competing risk setup, when we look at a single 

failure mode, all of the remaining items, including those that failed by another mode and 

common censored items, are right-censored. The distributions for individual failure modes 

are selected based on the minimum adjusted AD values and probability plots from a set of 

11 distributions. It is found that the 3-parameter lognormal distribution can be selected as 

the best distribution for each failure modes. The maximum likelihood estimates of 
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parameters of 3-parameter lognormal distribution for different failure modes are 

summarized in Table 2. 

Figure 11 plots the individual reliability functions for eight different failure modes. It 

indicates that the reliability of failure modes FM02 and FM01 are very low compared with 

other failure modes. 

 

Table 2: MLEs of the parameters of 3-parameter lognormal distribution 

 

 Failure 

Modes 

Maximum likelihood estimates (MLEs) 

Location ( ̂ ) Scale ( ̂ ) Threshold ( ̂ ) 

FM01 5.3630 1.1930 -2.0349 

FM02 6.7479 2.0279 0.2808 

FM03 4.7649 0.2886 -39.1793 

FM04 6.6998 1.2714 -4.1681 

FM05 7.9435 1.5531 -2.1135 

FM06 7.8058 1.6704 -1.6149 

FM07 22.1312 7.0101 0.9993 

FM08 9.2202 2.3635 0.1461 

 

 

Figure 11: Reliability functions for different failure modes  

Therefore, to increase the overall reliability of the component, effort should be concentrated 

on failure modes FM02 and FM01. Elimination of these or reducing the risks associated 

with them would significantly increase reliability and decrease warranty claims and costs. 

This investigation is important not only for assessing reliability and warranty costs, but 

also for assuring customer satisfaction and product reputation. 
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4.2. Elimination of Dominant Failure Mode 

In this section, we look at modeling through elimination of the main failure modes one at 

a time. This enables us to investigate how the reliability of the component improves by 

successively removing failure modes. If 
FM
ˆ ( )kR t be the estimated reliability function 

associated with the kth failure mode, under competing risk setup, the estimate of overall 

reliability of the component at age t, ˆ( )R t , can be expressed as 

 FM

01

ˆ ˆ( ) ( ), 1,2,...,18
K

k

k

R t R t t
=

= =   (8) 

where K is the number of failure modes and here K=08. FM01 eliminated means the first 

term of the right side of (8) equals 1, and so on for other failure modes. For example, the 

reliability of the component after eliminating failure mode FMz, let us denote by 
[-FMz]
ˆ ( )R t , 

z=01, 02, …, 08, can be estimated as  

 [ FM ] FM FM

01

ˆ ˆ ˆ( ) ( ) / ( ), 1,2,...,18
K

z k z

k

R t R t R t t−

=

= =   (9) 

Figure 12 shows a comparison of reliability functions after eliminating failure modes FM01 

or FM02. In this figure, "2-parameter-Weibull" means the estimated reliability function 

based on 2-parameter Weibull distribution fitted in Section 5, "Comp-risk All FM included" 

means the estimated reliability function based on competing risk model (8), "FM01 

Eliminated" and "FM02 Eliminated" mean the estimated reliability functions by eliminating 

failure modes respectively FM01 and FM02 by (9).  

 
Figure 12: Comparison of reliability functions after eliminating  

failure modes FM01 or FM02  

 

The overall reliability of the component estimated by 2-parameter Weibull distribution and 

by competing risk model are almost equal. The reliability of the component improves vastly 

after eliminating failure modes FM02 or FM01. For example, at age 18 months, the 

component reliability is 0.9319. This reliability improves to 0.9546 if failure mode FM01 

eliminated and to 0.9589 if failure mode FM02 eliminated. The analysis suggests that if we 

design out failure mode FM02 and/or FM01, the reliability of the component improves 

vastly. This investigation is important in effective maintenance management (Murthy, et 
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al., 2015) and managerial implications for cost-benefit analysis, including improvement in 

reliability, reduction in warranty cost, and forecasting claims rates and costs. 

 

5. Conclusions 

In this paper, we have attempted to analyze warranty claims data on a component of an 

automobile. Nonparametric and parametric analyses were employed for analyzing the 

warranty claims data. Some findings and recommendations are as follows: 

• For this component, the warranty claim rates are significantly very high for the three 

months of production June, July and September (called Group1) compared with other 

months of production (called Group2). The claim rates for Group1 is approximately 2.5 

times higher than that of Group2.  

• The component has two dominating failure modes (denoted by FM02 and FM01) which 

vastly contribute in decreasing the reliability of the component. The overall 18-month 

component reliability is 0.9319. That is, 93.19% of the components survive past 18 

months. If the failure modes FM01 or FM02 can be eliminated, 95.46% or 95.89% of the 

component will survive at the age of 18 months. To improve the overall reliability, we 

may need to improve both the failure modes FM01 and FM02. This analysis would be 

useful to the manufacturer if they decide to eliminate the dominant failure modes and to 

address the problem whether it is due to manufacturing or design.  

• The paper presents age-based analysis of warranty claims data. The limitation of the 

paper is that it does not considered usage-based analysis. Future research on applications 

of usage-based modeling (e.g., Rai and Singh, 2005; Jiang and Jardine, 2006; Manna et al., 

2007; Dai et al., 2017; He et al., 2018) and bivariate modeling (e.g., Moskowitz and Chun, 

1994; Murthy et al., 1995; Blischke and Murthy, 1996; Kim and Rao, 2000; Pal and Murthy, 

2003; Baik et al., 2004; Manna et al., 2008; Gupta et al., 2017) would enrich the analysis of 

the data. 
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Abstract 

  
We consider a Markovian queueing system with two identical servers subjected to 

catastrophes. When the system is not empty, catastrophes may occur and destroy all 

present customers in the system. Simultaneously the system is ready for new 

arrivals. The time dependent and the steady state solution are obtained explicitly. 

Further we have obtained some important performance measures of the studied 

queueing model. 

 

Keywords: Markovian queueing system, catastrophes, limited capacity, Time 

Dependent Solution.  

 

1  Introduction 

 

During the last 40 years the attention of the queueing models has been focused on the effect 

of catastrophes, in particulars, birth and death models. The catastrophes arrive as negative 

customers to the system and their characteristic is to remove some or all of the regular 

customers in the system. The catastrophes may come either from outside the system or from 

another service station. For example, in computer networks, if a job infected with a virus, 

it transmits the virus to other processors and inactivities them [8]. Other interesting articles 

in this area include ([2],[6],[7]). In real life it is not necessary that a queueing system should 

have only one server. Practically they may have more than one server identical or non 

identical in their functioning .Krishna kumar et. al.[7] obtained the time dependent solution 

of two identical servers Markovian queueing system with catastrophes.Dharmaraja and 

kumar[3] consider a multi-server Markovian queueing system with heterogeneous servers 

and catastrophes.Jain and Bura [5]obtained the transient solution of an M/M/2/N queuing 

system with varying catastrophic intensity and restoration. We in this paper confine 

ourselves to a Markovian queueing system with two identical servers subjected to 

catastrophes. 

Rest of the paper is organized as follows:In section 3, we describe the mathematical 

form of the model and obtained the time dependent solution of the model. In section 4, we 

obtain the time dependent performance measures of the system. Section 5 provides the 

steady state probabilities. In section 6, we obtain the expression for steady state mean and 

variance. Finally, the conclusion have been given in section 6. 

 



 
G. Singh Bura, S. Gupta 

TIME DEPENDENT ANALYSIS OF AN 𝑴/𝑴/𝟐/𝑵 QUEUE WITH 

CATASTROPHES 

RT&A, No 1 (52) 
Volume 14, March 2019 

 

80 

2  Model description and analysis 
 

We consider an 𝑀/𝑀/2/𝑁 queueing system with first come first out discipline that is 

subjected to catastrophes at the service station. Customers arrive in the system according 

to a Poisson stream with parameter 𝜆.The service time distribution is independently 

identically exponential with parameter 𝜇. When the system is not empty, catstrophes occur 

according to a Poisson process of rate 𝜉. Let 𝑋(𝑡) denote the number of customers in the 

system at time 𝑡. 

Define 𝑃𝑛(𝑡) = 𝑃(𝑋(𝑡) = 𝑛); 𝑛 = 0,1,2, . . . , 𝑁 be the transient state probability that 

there are 𝑛 customers in the system at time t, and 𝑃(𝑧, 𝑡) = ∑𝑁
𝑛=0 𝑃𝑛(𝑡)𝑧𝑛 be the probability 

generating function. 

From the above assumption, the probability satisfies the following system of the 

differential- difference equations:  

 𝑝0
′ (𝑡) = −𝜆𝑝0(𝑡) + 𝜇𝑝1(𝑡) + 𝜉[∑𝑁

𝑛=1 𝑝𝑛(𝑡)]           ; 𝑛 = 0 (2.1) 

 𝑝1
′ (𝑡) = −(𝜆 + 𝜇 + 𝜉)𝑝1(𝑡) + 𝜆𝑝0(𝑡) + 2𝜇𝑝2(𝑡)           ; 𝑛 = 1 (2.2) 

 𝑝𝑛
′ (𝑡) = −(𝜆 + 2𝜇 + 𝜉)𝑝𝑛(𝑡) + 𝜆𝑝𝑛−1(𝑡) + 2𝜇𝑝𝑛+1(𝑡)      ; 𝑛 = 2,3, . . . , (𝑁 − 1)

 (2.3) 

 𝑝𝑁
′ (𝑡) = −(2𝜇 + 𝜉)𝑝𝑁(𝑡) + 𝜆𝑝𝑁−1(𝑡) (2.4) 

 It is assumed that initially the system is empty i.e.  

 𝑃0(0) = 1                  𝑃𝑛(0) = 0  , 𝑛 = 1,2, . . . , 𝑁 (2.5) 

 After Multiplying equations (2.1) to (2.4) by 𝑧𝑛 for all 𝑛 ≥ 0, then summed on 𝑛 from 𝑛 = 0 

to 𝑁 and adding, we have  

 ∑𝑁
𝑛=0 𝑝𝑛

′ (𝑡)𝑧𝑛 = [𝜆𝑧 +
2𝜇

𝑧
− (𝜆 + 2𝜇 + 𝜉)]𝑃(𝑧, 𝑡) 

         +2𝜇(1 −
1

𝑧
)𝑝0(𝑡) + 𝜆𝑧𝑁(1 − 𝑧)𝑝𝑁(𝑡) + 𝜇𝑝1(𝑡)(𝑧 − 1) + 𝜉 (2.6) 

 It is easily seen that the probability generating function 𝑃(𝑧, 𝑡) satisfies the following 

differential equation:  

 
∂

∂𝑡
[𝑃(𝑧, 𝑡)] = [𝜆𝑧 +

2𝜇

𝑧
− (𝜆 + 2𝜇 + 𝜉)]𝑃(𝑧, 𝑡) 

         +2𝜇(1 −
1

𝑧
)𝑝0(𝑡) + 𝜆𝑧𝑁(1 − 𝑧)𝑝𝑁(𝑡) + 𝜇𝑝1(𝑡)(𝑧 − 1) + 𝜉 (2.7) 

 with the initial condition  

 𝑃(𝑍, 0) = 1 (2.8) 

 The equation (2.7) can be considered as a first order differential equation in 𝑃(𝑧, 𝑡) and by 

finding the integrating factor and using the initial condition (2.8),the solution of the 

equation (2.7) is obtained as  

 𝑃(𝑧, 𝑡) = 2𝜇(1 −
1

𝑧
) ∫

𝑡

0
𝑃0(𝑡 − 𝑢)𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 

         +𝜆𝑧𝑁(1 − 𝑍) ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 

         +𝜇(𝑍 − 1) ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 

         +𝜉 ∫
𝑡

0
𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑢𝑒−(𝜆+2𝜇+𝜉)𝑢𝑑𝑢 + 𝑒(𝜆𝑧+

2𝜇

𝑧
)𝑡𝑒−(𝜆+2𝜇+𝜉)𝑡 (2.9) 

 Using the Bessel function identity, if 𝛼 = 2√𝜆2𝜇 and 𝛽 = √
𝜆

2𝜇
 then,  

 

 𝑒𝑥𝑝(𝜆𝑧 +
2𝜇

𝑧
)𝑡 = ∑∞

𝑛=−∞ 𝐼𝑛(𝛼𝑡)(𝛽𝑧)𝑛 

 where 𝐼𝑛(. ) is the moddified Bessel function of order 𝑛. Substituting this equation in (2.9) 

and compairing the coefficient of 𝑧𝑛 on either side, we have, for 𝑛 = 0,1, . . . , 𝑁  

 𝑃𝑛(𝑡) = 2𝜇𝛽𝑛 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼𝑛(𝛼𝑢) − 𝛽𝐼𝑛+1(𝛼𝑢)]𝑑𝑢 
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         +𝜆𝛽𝑛 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−𝑁𝐼𝑁−𝑛(𝛼𝑢) − 𝛽−(𝑁+1)𝐼(𝑁+1)−𝑛(𝛼𝑢)]𝑑𝑢 

         +𝜇𝛽𝑛 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼𝑛−1(𝛼𝑢) − 𝐼𝑛(𝛼𝑢)]𝑑𝑢 

         +𝜉𝛽𝑛 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼𝑛(𝛼𝑢)𝑑𝑢 + 𝛽𝑛𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼𝑛(𝛼𝑡) (2.10) 

 where we have used 𝐼−𝑛(. ) = 𝐼𝑛(. ) 

Here, we have obtained 𝑃𝑛(𝑡) for 𝑛 = 1, . . . , 𝑁 − 1. However, this expression 

depends upon 𝑃0(𝑡) and 𝑃𝑁(𝑡). In order to determine, 𝑃0(𝑡) and 𝑃𝑁(𝑡) we introduce the 

Laplace transform. In the sequel, for any function 𝑓(. ), let 𝑓∗(𝑠) denote its Laplace 

transform i.e. , 𝑓∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 

Substitute 𝑛 = 0, in equation (2.10) we get  

 𝑃0(𝑡) = 2𝜇 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼0(𝛼𝑢) − 𝛽𝐼1(𝛼𝑢)]𝑑𝑢 

         +𝜆 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−𝑁𝐼𝑁(𝛼𝑢) − 𝛽−(𝑁+1)𝐼(𝑁+1)(𝛼𝑢)]𝑑𝑢 

         +𝜇 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼1(𝛼𝑢) − 𝐼0(𝛼𝑢)]𝑑𝑢 

         +𝜉 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼0(𝛼𝑢)𝑑𝑢 + 𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼0(𝛼𝑡) (2.11) 

 Taking Laplace transform on both sides of equation (2.11) and solving for, 𝑃0
∗(𝑠) we obtain,  

 

 [
𝜔+√𝜔2−𝛼2

2
− 2𝜇] 𝑃0

∗(𝑠) = 𝜆𝑃𝑁
∗ (𝑠) (

𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁

 

         [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 

         +𝜇𝑃1
∗(𝑠) [(

𝜔−√𝜔2−𝛼2

2𝜆
) − 1] +

𝜉

𝑠
+ 1 

 where 𝜔 = 𝑠 + 𝜆 + 2𝜇 + 𝜉. After some algebra, the above equation can be expressed as  

 [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 𝑃0

∗(𝑠) =
𝜆

2𝜇
𝑃𝑁

∗ (𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

 

         [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 

         −𝜇𝑃1
∗(𝑠) (

𝜔−√𝜔2−𝛼2

2𝜆
) 

         [1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] (

1

2𝜇
) 

         + (
𝜉

𝑠
+ 1) (

𝜔−√𝜔2−𝛼2

2𝜆
) (

1

2𝜇
) (2.12) 

 By solving equation (2.12), we get,  

 𝑃0
∗(𝑠) =

𝜆

2𝜇
𝑃𝑁

∗ (𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

−
𝑃1

∗(𝑠)

2
(

𝜔−√𝜔2−𝛼2

2𝜆
) 

         + (
𝜉

𝑠
+ 1) (

1

2𝜇
) [

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)] (2.13) 

 On inversion, this equation yields an expression for 𝑃0(𝑡) which depends upon 𝑃𝑁(𝑡).  

 𝑃0(𝑡) = 𝑒−𝜉𝑡 + (
2𝜇

𝜆
)

𝑁−1

2
∫

𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢 (

𝑁+1

𝑢
) 𝐼𝑁+1(𝛼𝑢)𝑑𝑢 

         (
2𝜇

𝜆
)

1

2
∫

𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢 (

1

2𝑢
) 𝐼1(𝛼𝑢)𝑑𝑢 

         +𝜉 [𝑒−𝜉𝑡 − √
𝜆

2𝜇
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢) 𝐼1(𝛼𝑢)

𝑢
𝑑𝑢] 

         −√
𝜆

2𝜇
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢) 𝐼1(𝛼𝑢)

𝑢
𝑑𝑢 (2.14) 

 Substituting n=1 in equation (2.10), we get  

 𝑃1(𝑡) = 2𝜇𝛽 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼1(𝛼𝑢) − 𝛽𝐼2(𝛼𝑢)]𝑑𝑢 

         +𝜆𝛽 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−𝑁𝐼𝑁−1(𝛼𝑢) − 𝛽−(𝑁+1)𝐼𝑁(𝛼𝑢)]𝑑𝑢 
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         +𝜇𝛽 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼0(𝛼𝑢) − 𝐼1(𝛼𝑢)]𝑑𝑢 

         +𝜉𝛽 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼1(𝛼𝑢)𝑑𝑢 + 𝛽𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼1(𝛼𝑡) (2.15) 

 Taking Laplace transform on both sides of equation (2.15) and solving for, 𝑃1
∗(𝑠) we obtain,  

 

 𝑃1
∗(𝑠) [√𝜔2 − 𝛼2 − 𝜇 {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)}] = 2𝜇 {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)} 

         (
𝜔−√𝜔2−𝛼2

4𝜇
) 𝑃0

∗(𝑠) 

 +𝜆 (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁−1

{1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)} 𝑃𝑁

∗ (𝑠) + (
𝜉

𝑠
+ 1) 

 (
𝜔−√𝜔2−𝛼2

4𝜇
) (2.16) 

 Substituting n=N in equation (2.10), we get  

 𝑃𝑁(𝑡) = 2𝜇𝛽𝑁 ∫
𝑡

0
𝑃0(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼𝑁(𝛼𝑢) − 𝛽𝐼𝑁+1(𝛼𝑢)]𝑑𝑢 

         +𝜆 ∫
𝑡

0
𝑃𝑁(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝐼0(𝛼𝑢) − 𝛽−1𝐼1(𝛼𝑢)]𝑑𝑢 

         +𝜇𝛽𝑁 ∫
𝑡

0
𝑃1(𝑡 − 𝑢)𝑒−(𝜆+2𝜇+𝜉)𝑢[𝛽−1𝐼𝑁−1(𝛼𝑢) − 𝐼𝑁(𝛼𝑢)]𝑑𝑢 

         +𝜉𝛽𝑁 ∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝐼𝑁(𝛼𝑢)𝑑𝑢 + 𝛽𝑁𝑒−(𝜆+2𝜇+𝜉)𝑡𝐼𝑁(𝛼𝑡) (2.17) 

 By taking Laplace transform and solving for 𝑃𝑁
∗ (𝑠), we obtain from equation (2.17),  

 (
𝜔+√𝜔2−𝛼2

2
− 𝜆) 𝑃𝑁

∗ (𝑠) = 2𝜇 {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} (

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁

 

 [
𝜆

2𝜇
(

𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

𝑃𝑁
∗ (𝑠) (2.18) 

 − (
𝜔−√𝜔2−𝛼2

2𝜆
) +

1

2𝜇
(

𝜉

𝑠
+ 1)] 

 After some algebra, equation (2.18) can be expressed as  

 [1 − 𝑓∗(𝑠)]𝑃𝑁
∗ (𝑠) = 𝑔∗(𝑠) (2.19) 

 where  

 𝑓∗(𝑠) = (
𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

(
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

 

         {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} + (

𝜔−√𝜔2−𝛼2

2𝜇
) (2.20) 

  

 𝑔∗(𝑠) =
1

𝜆
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

(
𝜉

𝑠
+ 1) 

         [1 + {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)}] 

         +
𝜇

𝜆
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

[(
𝜔−√𝜔2−𝛼2

4𝜇
)

−1

− 1] 𝑃1
∗(𝑠) 

         −
𝜇

𝜆
(

𝜔−√𝜔2−𝛼2

2𝜆
) [1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)] 

         (
𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

𝑃1
∗(𝑠) (2.21) 

 equation (2.21) can be written as  

 𝑔∗(𝑠) =
1

𝜆
(

𝜉

𝑠
+ 1) ℎ∗(𝑠) (2.22) 

 where  

 ℎ∗(𝑠) = (
𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

 

         [1 + {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

2𝜇

𝜔+√𝜔2−𝛼2
)}] 
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         +
𝜇

𝜆
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑁+1

𝑃1
∗(𝑠) 

         [{(
𝜔−√𝜔2−𝛼2

4𝜇
)

−1

− 1} − (
𝜔−√𝜔2−𝛼2

2𝜆
) {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)}] (2.23) 

 On inversion, the equation (2.20), (2.23) and (2.22) yield an expression for 𝑓(𝑡),ℎ(𝑡) and 

𝑔(𝑡) given by  

 𝑓(𝑡) = √
𝜆

2𝜇
𝑒−(𝜆+2𝜇+𝜉)𝑡 𝐼1(𝛼𝑡)

𝑡
+ 𝑒−(𝜆+2𝜇+𝜉)𝑡(2𝑁 + 2)

𝐼2𝑁+2(𝛼𝑡)

𝑡
 

         −√
𝜆

2𝜇
𝑒−(𝜆+2𝜇+𝜉)𝑡(2𝑁 + 3)

𝐼2𝑁+3(𝛼𝑡)

𝑡
 (2.24) 

 ℎ(𝑡) = (
𝜆

2𝜇
)

(𝑁+1)

2
𝑒−(𝜆+2𝜇+𝜉)𝑡(𝑁 + 1)

𝐼𝑁+1(𝛼𝑡)

𝑡
+ (

𝜆

2𝜇
)

(𝑁+1)

2
 

         [∫
𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢) {2𝜇(𝑁 + 1)

𝐼𝑁+1(𝛼𝑢)

𝑢
− 𝛼(𝑁 + 2)

𝐼𝑁+2(𝛼𝑢)

𝑢
} 𝑑𝑢] 

         + (
𝜆

2𝜇
)

(𝑁+1)

2
𝜆 ∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑒−𝜉(𝑡−𝑢)(𝑁 + 3)

𝐼𝑁+3(𝛼𝑢)

𝑢
𝑑𝑢 

         +
𝜇

𝜆
(

𝜆

2𝜇
)

𝑁

2
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢𝑁

𝐼𝑁(𝛼𝑢)

𝑢
𝑃1(𝑡 − 𝑢)𝑑𝑢 

         −
𝜇

𝜆
(

𝜆

2𝜇
)

𝑁+1

2
∫

𝑡

0
𝑒−(𝜆+2𝜇+𝜉)𝑢(𝑁 + 1)

𝐼𝑁+1(𝛼𝑢)

𝑢
𝑃1(𝑡 − 𝑢)𝑑𝑢 

         +2𝑒−(𝜆+2𝜇+𝜉)𝑡 𝐼2(𝛼𝑡)

𝑡
 (2.25) 

  

 𝑔(𝑡) =
1

𝜆
(𝜉 + 1)ℎ(𝑡) (2.26) 

 Since 0 ≤ 𝑓∗(𝑠) < 1 so equation (2.19) can be written as  

 𝑃𝑁
∗ (𝑠) = 𝑔∗(𝑠) ∑∞

𝑟=0 [𝑓∗(𝑠)]𝑟 (2.27) 

 On inversion, this equation yields an expression for 𝑃𝑁(𝑡) given by  

 𝑃𝑁(𝑡) = 𝑔(𝑡) ∗ ∑∞
𝑟=0 [𝑓(𝑡)]∗𝑟 (2.28) 

 where [𝑓(𝑡)]∗𝑟 is the r-fold convolution of 𝑓(𝑡) with itself. We note that 
[𝑓(𝑡)]∗0 = 1  

 

 

3  Performance measures 
 Mean  

 

we know that  

 𝑚(𝑡) = 𝐸[𝑋(𝑡)] = ∑𝑁
𝑛=1 𝑛𝑃𝑛(𝑡) 

 𝑚(0) = ∑𝑁
𝑛=1 𝑛𝑃𝑛(0) = 0 

 𝑚′(𝑡) = ∑𝑁
𝑛=1 𝑛𝑃𝑛

′(𝑡) 

 From equation (3.2), (3.3) and (3.4),  

 𝑚′(𝑡) = (𝜆 + 2𝜇 + 𝜉) ∑𝑁
𝑛=1 𝑛𝑃𝑛(𝑡) + 𝜆𝑁𝑃𝑁(𝑡) + 𝜆 ∑𝑁

𝑛=1 𝑛𝑃𝑛−1(𝑡) 
 +2𝜇 ∑𝑁−1

𝑛=1 𝑛𝑃𝑛+1(𝑡) + 𝜇𝑃1(𝑡) 

 After some algebra, the above equation can be expressed as  

 𝑚′(𝑡) = −𝜉𝑚(𝑡) + (𝜆 − 2𝜇) + 2𝜇𝑃0(𝑡) − 𝜆𝑃𝑁(𝑡) + 𝜇𝑃1(𝑡) (3.1) 

 The above equation can be considered as a first order linear differential equation in 𝑚(𝑡). 

By finding the integrating factor and using the initial condition 𝑚(0) = 0, the solution of 

the above equation is obtained as follows:  

 𝑚(𝑡) =
(𝜆−2𝜇)

𝜉
(1 − 𝑒−𝜉𝑡) − 𝜆 ∫

𝑡

0
𝑃𝑁(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 +2𝜇 ∫
𝑡

0
𝑃0(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 𝜇 ∫

𝑡

0
𝑃1(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 (3.2) 
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 Variance 

 

We know that  

 𝑉𝑎𝑟[𝑋(𝑡)] = 𝐸[𝑋2(𝑡)] − [𝐸{𝑋(𝑡)}]2 
 𝑉𝑎𝑟[𝑋(𝑡)] = 𝑘(𝑡) − [𝑚(𝑡)]2 (3.3) 

 where  

 𝑘(𝑡) = 𝐸[𝑋2(𝑡)] = ∑𝑁
𝑛=1 𝑛2𝑃𝑛(𝑡) 

 Also,  

 𝑘(0) = ∑𝑁
𝑛=1 𝑛2𝑃𝑛(0) = 0 

 and  

 𝑘′(𝑡) = ∑𝑁
𝑛=1 𝑛2𝑃𝑛

′(𝑡) 

 From equation (3.2), (3.3) and (3.4),  

 𝑘′(𝑡) = −(𝜆 + 2𝜇 + 𝜉) ∑𝑁
𝑛=1 𝑛2𝑃𝑛(𝑡) + 𝜆𝑁2𝑃𝑁(𝑡) + 𝜆 ∑𝑁

𝑛=1 𝑛2𝑃𝑛−1(𝑡) + 
 2𝜇 ∑𝑁−1

𝑛=1 𝑛2𝑃𝑛+1(𝑡) + 𝜇𝑃1(𝑡) 

 After some algebra, the above equation can be expressed as  
 𝑘′(𝑡) = −𝜉𝑘(𝑡) + (𝜆 + 2𝜇) − 2𝜇𝑃0(𝑡) − 𝜆(2𝑁 + 1)𝑃𝑁(𝑡) 

 +2(𝜆 − 2𝜇)𝑚(𝑡) + 𝜇𝑃1(𝑡) (3.4) 

 The above equation can be considered as a first order linear differential equation in 𝑘(𝑡). 

By finding the integrating factor and using the initial condition 𝑘(0) = 0, the solution of the 

above equation is obtained as follows:  

 𝑘(𝑡) =
(𝜆+2𝜇)

𝜉
(1 − 𝑒−𝜉𝑡) − 𝜆(2𝑁 + 1) ∫

𝑡

0
𝑃𝑁(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 −2𝜇 ∫
𝑡

0
𝑃0(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 2(𝜆 − 𝜇) ∫

𝑡

0
𝑚(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 +𝜇 ∫
𝑡

0
𝑃1(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 𝐶 (3.5) 

 Substituting the above equation in equation (3.3), we get  

 𝑉𝑎𝑟[𝑋(𝑡)] =
(𝜆+2𝜇)

𝜉
(1 − 𝑒−𝜉𝑡) − 𝜆(2𝑁 + 1) ∫

𝑡

0
𝑃𝑁(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 −2𝜇 ∫
𝑡

0
𝑃0(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 + 2(𝜆 − 𝜇) ∫

𝑡

0
𝑚(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 

 +𝜇 ∫
𝑡

0
𝑃1(𝑢)𝑒−𝜉(𝑡−𝑢)𝑑𝑢 − {𝑚(𝑡)}2 

  

 

4  Steady state probabilities 
 

In this section, we shall discuss the structure of the steady state probabilities.  

Theorem- 

For 𝜉 > 0, the steady state distribution {𝑃𝑛: 𝑛 ≥ 0} of the 𝑀/𝑀/2/𝑁 queue with 

catastrophe corresponds to 

 

 𝑃0 = 𝜌𝜌1𝑃𝑁 + (1 − 𝜌) −
𝑃1

2
𝜌1 (4.1) 

 𝑃𝑛 = 2𝜎𝜇𝜌𝑛+1(1 − 𝜌)𝜌1
𝑁𝑃𝑁 + 𝜎𝜆𝜌1

𝑁−𝑛(1 − 𝜌1)𝑃𝑁 + (1 − 𝜌)𝜌𝑛 

 +𝜇𝜎(1 − 𝜌)𝜌𝑛 (
√𝜔2−𝛼2

𝜆
) 𝑃1 (4.2) 

 𝑃𝑁 =
[{𝜉+2𝜇(1−𝜌)2}+𝜇{(𝜌−1−1)−𝜌1(1−𝜌)}𝑃1]𝜌𝑁+1

𝜆[1−𝜌−𝜌1
𝑁+1𝜌𝑁+1(1−𝜌)]

 (4.3) 

 where  

 𝜌 =
(𝜆+2𝜇+𝜉)−√(𝜆+2𝜇+𝜉)2−8𝜆𝜇

4𝜇
 (4.4) 

 𝜌1 =
(𝜆+2𝜇+𝜉)−√(𝜆+2𝜇+𝜉)2−8𝜆𝜇

2𝜆
 (4.5) 
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 𝜎 =
1

√(𝜆+2𝜇+𝜉)2−8𝜆𝜇
 (4.6) 

 Proof- 

 

We have from equation (3.13),  

 𝑃0
∗(𝑠) =

𝜆

2𝜇
𝑃𝑁

∗ (𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁+1

− (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑃1
∗(𝑠)

2
 

 + (
𝜉

𝑠
+ 1) (

1

2𝜇
) {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)} (4.7) 

 Multiplying equation (4.7) by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃0
∗(𝑠) =

𝜆

2𝜇
𝜌1

𝑁+1𝑃𝑁 − (
1

2
) lim

𝑠→0
𝑠𝑃1

∗(𝑠) (
𝜔−√𝜔2−𝛼2

2𝜆
) 

 + (
1

2𝜇
) lim

𝑠→0
𝑠 (

𝜉

𝑠
+ 1) {

2𝜇

𝑠+𝜉
−

𝜆

𝑠+𝜉
(

𝜔−√𝜔2−𝛼2

2𝜆
)} 

 Using the property  
 lim

𝑠→0
𝑠𝑃0

∗(𝑠) = 𝑃0 

 After some algebra, the above expression becomes  

 𝑃0 = 𝜌𝜌1𝑃𝑁 + (1 − 𝜌) −
𝑃1

2
𝜌1 (4.8) 

 By taking Laplace transform of the equation (3.10), for 𝑛 = 1,2, . . . , 𝑁 − 1, we get,  

 𝑃𝑛
∗(𝑠) = 2𝜇𝑃0

∗(𝑠) (
1

√𝜔2−𝛼2
) (

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑛

[1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)] 

 +𝜆𝑃𝑁
∗ (𝑠) (

1

√𝜔2−𝛼2
) (

𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁−𝑛

[1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)] 

 +
𝜇

√𝜔2−𝛼2
(

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑛−1

[1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)] 𝑃1

∗(𝑠) 

 + (
𝜉

𝑠
+ 1) (

1

√𝜔2−𝛼2
) (

𝜔−√𝜔2−𝛼2

4𝜇
)

𝑛

 (4.9) 

 Multiplying the above equation by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃𝑛
∗(𝑠) = 2𝜎𝜇𝜌𝑛(1 − 𝜌)𝑃0 + 𝜎𝜆𝜌1

𝑁−𝑛(1 − 𝜌1)𝑃𝑁 

 +𝜇𝜎𝜌𝑛−1(1 − 𝜌)𝑃1 + 𝜎𝜉𝜌𝑛 (4.10) 

 Substituting equation (4.8) in the above equation, and solving, we get  

 𝑃𝑛 = 2𝜎𝜇𝜌𝑛+1𝜌1
𝑁(1 − 𝜌)𝑃𝑁 + 𝜎𝜆𝜌1

𝑁−𝑛(1 − 𝜌1)𝑃𝑁 

 +𝜇𝜎(1 − 𝜌)𝜌𝑛 (
√𝜔2−𝛼2

𝜆
) 𝑃1 + (1 − 𝜌)𝜌𝑛                     𝑛 = 1,2, . . . , 𝑁 − 1 (4.11) 

 Multiplying the equation (3.21) by 𝑠 on both sides and taking limit as 𝑠 → 0, after some 

algebra, we get  

 lim
𝑠→0

𝑠𝑔∗(𝑠) =
1

𝜆
[𝜉 + 2𝜇(1 − 𝜌)2]𝜌𝑁+1 +

𝜇

𝜆
𝜌𝑁+1[(𝜌−1 − 1) − 𝜌1(1 − 𝜌)]𝑃1 (4.12) 

 Now taking limit as 𝑠 → 0 in the equation (3.20), we get  

 lim
𝑠→0

𝑓∗(𝑠) = 𝜌[1 + 𝜌1
𝑁+1𝜌𝑁(1 − 𝜌)] (4.13) 

 Multiplying the equation (3.19) by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃𝑁
∗ (𝑠) = lim

𝑠→0

𝑠𝑔∗(𝑠)

1−𝑓∗(𝑠)
 (4.14) 

 Substituting equation (4.12) and (4.13) in the above equation  

 𝑃𝑁 =
[{𝜉+2𝜇(1−𝜌)2}+𝜇{(𝜌−1−1)−𝜌1(1−𝜌)}𝑃1]𝜌𝑁+1

𝜆[1−𝜌−𝜌1
𝑁+1𝜌𝑁+1(1−𝜌)]

 (4.15) 

 Multiplying the equation (3.16) by 𝑠 on both sides and taking limit as 𝑠 → 0, we get  

 lim
𝑠→0

𝑠𝑃1
∗(𝑠) [√𝜔2 − 𝛼2 − 𝜇 {1 − (

𝜔−√𝜔2−𝛼2

4𝜇
)}] = 

 2𝜇lim
𝑠→0

𝑠 {1 − (
𝜔−√𝜔2−𝛼2

4𝜇
)} 
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 (
𝜔−√𝜔2−𝛼2

4𝜇
) 𝑃0

∗(𝑠) 

 +𝜆lim
𝑠→0

𝑠 (
𝜔−√𝜔2−𝛼2

2𝜆
)

𝑁−1

{1 − (
𝜔−√𝜔2−𝛼2

2𝜆
)} 𝑃𝑁

∗ (𝑠) 

 +lim
𝑠→0

𝑠 (
𝜉

𝑠
+ 1) (

𝜔−√𝜔2−𝛼2

4𝜇
) (4.16) 

 After some algebra, the above expression becomes  

 𝑃1 {
1

𝜎
− 𝜇(1 − 𝜌)} = 2𝜇(1 − 𝜌)𝜌𝑃0 + 𝜆(𝜌1

𝑁−1 − 𝜌1
𝑁)𝑃𝑁 + 𝜉𝜌 

  

5  Steady state mean and variance 
 

The corresponding values of the steady state mean and variance of the system length are 

obtained by taking limit as 𝑡 → ∞ in equation (4.2) and (4.3). These values are given by  

 𝑚 = 𝐸(𝑋) =
1

𝜉
[(𝜆 − 2𝜇) + 2𝜇𝑃0 − 𝜆𝑃𝑁 + 𝜇𝑃1] 

 𝑉𝑎𝑟(𝑋) =
1

𝜉
[(𝜆 + 2𝜇) + 2(𝜆 − 𝜇)𝑚 − 2𝜇𝑃0 − 𝜆(2𝑁 + 1)𝑃𝑁 + 𝜇𝑃1] − 𝑚2 

  

6  Conclusion 
 

In the present paper, we have discussed the 𝑀/𝑀/2/𝑁 queueing system subject to 

catastrophes. The transient as well as the steady state probabilities of the models have been 

determined analytically. Further, we have also obtained the performance measures of the 

system.  
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Abstract 

 
Consider a system operating as an M/M/2/N queue. Increasing system size 

influences newly arriving customers to join the system (reverse balking). As the 

system size increases, the customers’ waiting in the queue become impatient. After 

a threshold value of time, the waiting customer abandons the queue (reneging). 

These reneging customers can be retained with some probability (retention). Few 

customers depart dissatisfied with the service and rejoin the system as feedback 

customers. In this paper a feedback queuing system with heterogeneous service, 

reverse balking, reneging and retention is developed. The model is solved in 

steady-state recursively. Necessary measures of performance are drawn. 

Numerical interpretation of the model is presented. Cost-profit analysis of the 

system is performed by developing a cost model. Sensitivity analysis of the model 

is also presented arbitrarily.  

 

Keyword – reverse balking, heterogeneous service, queuing theory, customer 

impatience 

 
1. INTRODUCTION 

 

Balking and reneging (impatience) are fundamental concepts in queuing literature 

introduced by Anker & Gafarian (1963a, 1963b). Further Haight (1957, 1959) and Bareer 

(1957) studied notion of customer reneging and balking in various ways. They state that an 

arriving customer shows least interest in joining a system which is already crowded. This 

behavior is termed as Balking. Since then researchers applied balking at various places and 

a number of research papers appeared on balking. Singh (1970) studied a two-server 

Markovian queues with Balking. He compared two heterogeneous servers with 

homogeneous servers. He also obtained the efficiency of heterogeneous system functioning 

under balking, Hassin, (1986) applied balking in customer information in markets with 

random product quality; they consider a revenue server suppressing the information using 

balking function. Falin (1995) approximated multi-server queues with balking/retrial 

discipline. They studied congestion in communication with balking discipline. Kumar 

(2006) further studied multi-server feedback retrial queues with balking and control retrial 

rate. They analyzed system as quasi-birth-and-death process and discuss stability 
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conditions. They also obtained optimization of retrial rate. Wang (2011) studied balking 

with delayed repairs. They investigated equilibrium threshold balking strategies for fully 

and partially observable single-server queues with server breakdowns and delayed repairs. 

Kumar (2018) studied transient and steady-state behavior of two-heterogeneous servers’ 

queuing systems with balking retention of reneging customers. They obtained time-

dependent and steady state solution of the model.   

On contrary to balking Jain et. al., (2014) stated that when it comes to businesses like 

healthcare, restaurant, investment, service station etc a large customer base becomes an 

attracting factor for newly arriving customer i.e. a customer is more willing to join a firm 

that already has a large customer base. This behavior of customers is termed as Reverse 

Balking. Kumar (2015a, 2015b) studied queuing systems with reverse balking, reverse 

reneging and feedback. Further Som et. al. (2016) studied a heterogeneous queuing system 

with reverse balking reverse reneging. The notion of reverse balking is studied further by 

Kumar (2017) and Som (2018a, 2018b). A limited number of publications appeared on 

reverse balking as it is an evolving concept.  

Reverse balking results in increasing queue length and longer waiting times. A 

customer waiting in queue to get served may get impatience after certain period of time 

and decides to abandon the queue without completion of service. This behavior of 

customers is termed as reneging Anker & Gafarian (1963a, 1963b). Reneging has gained 

popularity due to its practical viability. Researchers studied applications of reneging in 

detail. Rao (1971) studies reneging and balking in M/G/1 system. He investigated the busy 

period using supplementary variable technique and transforms. Abou-El-Ata et. al. (1992) 

studied a truncated general queue with reneging and general balk function. They derived 

steady-state solution of the model. Wang et. al. (2002) performed cost analysis of finite 

M/M/R queuing system with balking reneging and server breakdowns. They developed a 

cost-model of the system under study as well. Singh et. al. (2016) studied single-server finite 

queuing system with varying speed of server in random environment. Bakuli et. al., (2017) 

investigated M/M(a,b)/1 queuing model with impatient customers. They derived solution of 

the model and found measures of performance. Further Kumar et. al. (2017) studied 

transient analysis of a multi-server queuing model with discouraged arrivals and impatient 

customers. Reneging has gained wide popularity due to its practically viable implication.  

As reneging causes loss of customers hence it leaves a negative impact on goodwill 

and revenue of the firm. Kumar et. al. (2012) introduced the idea of retention of impatient 

customers in queuing literature. They mentioned that if a retention strategy is employed in 

form of offers and discount; a reneging customer may be retained with some probability. 

Kumar et. al. (2013, 2014) further performed economic analysis of M/M/c/N queue with 

retention of impatient customers. They obtained steady-state solution of the model and 

obtained various measures of effectiveness. They also optimize a queuing system with 

reneging and retention of impatient customers. Since then a lot of paper appeared on 

retention of reneged customers such as Som et. al. (2017, 2018c) discussed a various queuing 

system with encouraged arrivals and retention of impatient customers.  

Further a serviced customer may depart from the system dissatisfied. These 

customers may rejoin the system for completion of incomplete or dissatisfied service. These 

customers are termed as feedback customers in queuing literature. Takas (1963) introduced 

the feedback mechanism in queues. He used instant Bernoulli’s feedback in a M/G/1 queue. 

Nakamura (1971) studied a delayed feedback system using Bernoulli’s decision process. 
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Further DAvignon et. al. (1976) studied state dependent M/G/1 feedback under the 

assumption of general state. The obtained the stationary queue length along with busy 

period and queue length. They applied single-server feedback queue with respect to 

computer time sharing system. Santhakumaran et. al. (2000) studied a single-server queue 

with impatient and feedback customers. They studied stationary process of the arrival 

distribution. Choudhary et. al. (2005) have discusses an M/G/1 queue with two phases of 

heterogeneous service.  Further Som (2018a, 2018b) has studied a feedback queue with 

various queuing systems. This is also evident that servers vary in their capacity of service 

and provide service at heterogeneous rate. 

Though the queuing models with reverse balking, reneging, retention and feedback 

are developed and studied but none of these models studies a facility undergoing reverse 

balking, feedback, and retention of impatient customers with heterogeneous service all 

together. Practically, all of these contemporary phenomenons occur simultaneously. 

Therefore it is worthy to study and measure such a system. Hence in this paper we study a 

feedback queuing system with reverse balking, reneging, retention and heterogeneous 

service. The necessary measures of performance are obtained in steady-state. The model is 

tested with arbitrary values. Later the cost model is developed and economic analysis of 

the model is performed.  

 

2. THE MODEL 
 

The model proposed in the paper can be presented through following state diagram; 

 

 
Figure -1 

 

Consider the arrivals occur one by one in accordance with Poisson process. Inter-

arrival times are exponentially distributed with parameter 1/λ. Customers are serviced 

through two servers with heterogeneous service times distributed exponentially with 
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parameters 𝜇1 and 𝜇2. An arriving customer joins the system in front of an empty server i.e. 

with probability 𝜋1 in front of server 1 and with 𝜋2(=1- 𝜋1) in front of server two. Capacity 

of system is finite say, N. When system is empty, an arriving customers reverse balks with 

probability q' and joins the system with probability 𝑞′ = (1 − 𝑝′). When number of 

customers in the system are ≥0, an arriving customer reverse balks with probability 

(1 −
𝑛

𝑁−1
)and does not reverse balk with probability (

𝑛

𝑁−1
). A customer waiting for service 

in queue may get impatient after time T and decides to abandon the queue with an 

exponentially distributed parameter ξ. Arrivals are served in order of their arrival i.e. the 

queue discipline is first come first serve.  A reneging customer may be retained with 

probability 𝑞 = (1 − 𝑝).  A serviced customer may not get satisfied with the service of first 

server 𝜇1 and rejoin the system as a feedback customer with probability 𝑞1 = (1 − 𝑝1). 

While a serviced customer may not be satisfied with the service of second server 𝜇2and 

rejoin to the system as a feedback customer with probability 𝑞2 = (1 − 𝑝2).     

                                                                                                                 

2.1 BALANCE EQUATIONS AND STEADY STATE SOLUTION 

 

Let 𝑃𝑛(𝑡) = probability of n customers in the system at time t. 𝑃𝑖𝑗(𝑡)= probability that there 

are i customers in front of first server one and j customers in front of second server at time 

t. In steady-state as 𝑡 → ∞, 𝑃𝑛(𝑡) = 𝑃𝑛, 𝑃𝑖𝑗(𝑡) = 𝑃𝑖𝑗  and 𝑃𝑛
′(𝑡) = 𝑃𝑖𝑗

′ (𝑡) = 0. The system of 

steady-state equations governing the model is given by; 

 
𝜆𝑝′𝑃00 =   𝜇1𝑝1𝑃10 + 𝜇2𝑝2𝑃01; 𝑛 = 0 (1) 

𝜇2𝑝2𝑃11 = (
𝜆

𝑁 − 1
+ 𝜇1𝑝1) 𝑃10 − 𝜆𝜋1𝑝′𝑃00; 𝑛 = 1(2) 

𝜇1𝑝1𝑃11 = (
𝜆

𝑁 − 1
+ 𝜇2𝑝2) 𝑃01 − 𝜆𝜋2𝑝′𝑃00; 𝑛 = 1(3) 

(𝜇1𝑝1 + 𝜇2𝑝2 + 𝜉𝑝)𝑃3 = (
2𝜆

𝑁 − 1 
+ 𝜇1𝑝1 + 𝜇2𝑝2) 𝑃2 −

𝜆

𝑁 − 1
𝑃1; 𝑛 = 2 (4) 

{𝜇1𝑝1 + 𝜇2𝑝2 + 𝑛 𝜉𝑝}𝑃𝑛+1 = {
𝑛𝜆

𝑁 − 1
+ 𝜇1𝑝1 + 𝜇2𝑝2 + (𝑛 − 2)𝜉𝑝} 𝑃𝑛 −

𝜆(𝑛 − 1)

𝑁 − 1
𝑃𝑛−1; 𝑛

≤ 𝑁 − 1 (5) 
{𝜇1𝑝1 + 𝜇2𝑝2 + (𝑁 − 2)𝜉𝑝}𝑃𝑁 = 𝜆𝑃𝑁−1; 𝑛 = 𝑁 (6) 

 

Steady-state solution 

On solving (1) – (6), we get 

𝑃10 = {
𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)𝜋1(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
} (

𝜆

𝜇1𝑝1
) 𝑝′𝑃00 (7) 

𝑃01 = {
𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)𝜋2(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
} (

𝜆

𝜇2𝑝2
) 𝑝′𝑃00 (8) 

Adding (7) and (8) 

𝑃1 = {
𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆(𝜇1𝑝1 + 𝜇2𝑝2)

𝜇1𝑝1𝑢2𝑝2
𝑝′𝑃00 (9) 

Adding equation (2) and (3) and using (4) 

𝑃2 =
1

𝑁 − 1
{

𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆

𝜇1𝑝1

𝜆

𝜇2𝑝2
𝑝′𝑃00 (10) 

 

Using equation (5) 
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𝑃𝑛

=
(𝑛 − 1)!

(𝑁 − 1)𝑛−1 {
𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆

𝜇1𝑝1

𝜆

𝜇2𝑝2
∏

𝜆

𝜇1𝑝1 + 𝜇2𝑝2 + (𝑘 − 2)𝜉𝑝

𝑛

𝑘=3

𝑝′𝑃00 (11) 

 

Using (6) and (11)  
𝑃𝑁

=
(𝑁 − 2)!

(𝑁 − 1)𝑁−2 {
𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆

𝜇1𝑝1

𝜆

𝜇2𝑝2
∏

𝜆

𝜇1𝑝1 + 𝜇2𝑝2 + (𝑘 − 2)𝜉𝑝

𝑁

𝑘=3

𝑝′𝑃00 (12) 

  

Using condition of normality ∑ 𝑃𝑛 = 1𝑁
𝑛=0  we get, 

 

 
 

3 MEASURES OF PERFORMANCE 
 

In this section necessary measures of performance are derived. Apart from these other 

measures of performance such as average waiting time in queue, average queue length, 

and average waiting time in the system can be drawn by using classical queuing theory 

relations.   

 

3.1 EXPECTED SYSTEM SIZE 

 

𝐿𝑠 = ∑ 𝑛𝑃𝑛

𝑁

𝑛=1

  

𝐿𝑠 = ∑ 𝑛𝑃𝑛

𝑁

𝑛=1

= 𝑃1 + 2𝑃2 + ∑ 𝑛𝑃𝑛

𝑁−1

𝑛=3

+ 𝑁𝑃𝑁 

𝐿𝑠

= {
𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆(𝜇1𝑝1 + 𝜇2𝑝2)

𝜇1𝑝1𝑢2𝑝2
𝑝′𝑃00

+ 2
1

𝑁 − 1
{

𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆

𝜇1𝑝1

𝜆

𝜇2𝑝2
𝑝′𝑃00

+ ∑ 𝑛 
(𝑛 − 1)!

(𝑁 − 1)𝑛−1 {
𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆

𝜇1𝑝1

𝜆

𝜇2𝑝2
∏

𝜆

𝜇1𝑝1 + 𝜇2𝑝2 + (𝑘 − 2)𝜉𝑝

𝑛

𝑘=3

𝑝′𝑃00

𝑁−1

𝑛=3

+ 𝑁
(𝑁 − 2)!

(𝑁 − 1)𝑁−2 {
𝜆 + (𝜋1𝜇2𝑝2 + 𝜋2𝜇1𝑝1)(𝑁 − 1)

2𝜆 + (𝜇1𝑝1 + 𝜇2𝑝2)(𝑁 − 1)
}

𝜆

𝜇1𝑝1

𝜆

𝜇2𝑝2
∏

𝜆

𝜇1𝑝1 + 𝜇2𝑝2 + (𝑘 − 2)𝜉𝑝

𝑁

𝑘=3

𝑝′𝑃00 
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3.2 AVERAGE RATE OF REVERSE BALKING 

𝑅𝑏
′ = 𝑞′𝜆𝑃0 + ∑ (1 −

𝑛

𝑁 − 1
) 𝜆𝑃𝑛

𝑁−1

𝑛=1

 

𝑅𝑏
′ = 𝑞′𝜆𝑃0 +

𝑁 − 2

𝑁 − 1
𝜆𝑃1 +

𝑁 − 3

𝑁 − 1
𝜆𝑃2 + ∑ (1 −

𝑛

𝑁 − 1
) 𝜆𝑃𝑛

𝑁−1

𝑛=3

 

 
3.3 AVERAGE RAE OF RENEGING 

𝑅𝑟 = ∑(𝑛 − 2)𝜉𝑝𝑃𝑛

𝑁

𝑛=1

 

 

𝑅𝑟 = ∑(𝑛 − 2)𝜉𝑝𝑃𝑛

𝑁−1

𝑛=3

+ (𝑁 − 2)𝜉𝑝𝑃𝑁 

 

3.4 AVERAGE RATE OF RETENTION 

 

𝑅𝑟 = ∑(𝑛 − 2)𝜉𝑞𝑃𝑛

𝑁

𝑛=1

 

𝑅𝑟 = ∑(𝑛 − 2)𝜉𝑝𝑃𝑛

𝑁−1

𝑛=3

+ (𝑁 − 2)𝜉𝑝𝑃𝑁 

 

 
 

4 IMPACT ANALYSIS AND NUMERICAL ILLUSTRATION 
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In this section we, measure the impact of feedback, impatience and retention on various 

measures of performance by varying one parameter at a time. Figure -1 and 2 studies the 

impact of reneging on the system. Figure -3 studies the impact of retention, while figure -4 

studies the impact of feedback on relevant measures of performance.  

 

 
Figure -1 (𝜆 = 4, 𝜇1 = 2, 𝜇2 = 3, 𝑞′ = 0.6, 𝑞1 = 0.2, 𝑞2 = 0.2, 𝑞 = 0.8, 𝑁 = 15) 

 

It can be observed from figure-1 that increasing rate of reneging leaves a negative impact 

on expected system size. The expected system size gradually reduces as, increasing rate of 

reneging leads to more and more customers leaving the system without completion of 

service. Reducing system size is not good for any system.  

 
 

Figure -2 (𝜆 = 4, 𝜇1 = 2, 𝜇2 = 3, 𝑞′ = 0.6, 𝑞1 = 0.2, 𝑞2 = 0.2, 𝑞 = 0.8, 𝑁 = 15) 

 

From figure-2 it is clear that with increase in rate of reneging average rate of reneging (Rr) 
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increases.  

 
Figure -3 (𝜆 = 4, 𝜇1 = 2, 𝜇2 = 3, 𝑞′ = 0.6, 𝑞1 = 0.2, 𝑞2 = 0.2, 𝜉 = 0.1, 𝑁 = 15) 

 

From figure -3, it is clear that with increasing rate of retention more and more customers 

get retained and system size increases gradually. Increasing system size is good for health 

of any organization as they can earn larger revenue. 

  

 
 

Figure -4 (𝜆 = 4, 𝜇1 = 2, 𝜇2 = 3, 𝑞′ = 0.6, 𝜉 = 0.1, 𝑞1 = 0.2 (𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑞2), 𝑞2 =
0.2 (𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑞1), 𝑞 = 0.8, 𝑁 = 15) 

 

From figure -4 it can be observed that more and more customers retiring in to the system. 

This results in increasing system size.  

 

It can be observed here that both retention of reneging customers and feedback of 

customers result in increasing system size. Increasing in system size due to retention is 

good because a customer is retained which otherwise was lost, on other hand increasing 
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system size due to feedback indicates dissatisfaction in service.  

Now we will present numerical illustration of the model. Let us consider facility in 

which arrivals occur in accordance to Poisson process with an average rate of arrival 5 

customers per unit time, there are two servers providing service in accordance to 

exponential distribution with average service rate of 2 and 3 units per unit time. Reneging 

times are exponentially distributed with a rate of 0.1 per unit time. Firms employ different 

strategies to retain reneging customers and a reneging customer may be retained with a 

60% chance. While due to unsatisfactory service 20% customers rejoin the system from each 

servers per unit time. Initially, an arriving customer shows least interest in the facility due 

to n =0 and it may not join (reverse balk) the system with a probability of 0.8. An arriving 

customer may join on server one with probability 0.4 and server two with a probability 0.6.  

The cost of service is Rs 4 per server per customer, holding cost id Rs 2, reverse balking 

cost is Rs 7, cost of retaining a reneging customer is Rs 2, and cost of a reneging customer 

is Rs 3 while feedback cost of a customer is Rs 2.  The facility earns a revenue of Rs 50 on 

each customer on an average.  

 

Calculate; 

(i) Probability of zero customers in the system  

(ii) Expected System Size  

(iii) Expected waiting time in the system  

(iv) Average rate of reverse balking  

(v) Average rate of reneging  

(vi) Average rate of retention  

(vii) Total Expected Cost  

(viii) Total Expected Revenue  

(ix) Total Expected Profit  

 

Solution 

Measure of Performance  Numerical Output  

Probability of zero customers in the system (P0) 0.65885 

Expected System Size (Ls) 0.533313 

Expected waiting time in the system (Ws) 0.0067 

Average rate of reverse balking (Rb) 1.140397 

Average rate of reneging (Rr) 0.0002 

Average rate of retention (RR) 0.00013 

Total Expected Cost (TEC)                        Rs 71.93 

Total Expected Revenue (TER) Rs 128.59 

Total Expected Profit (TEP) Rs 56.67 

 

In next session we develop cost model for the system discusses above and perform cost-

profit analysis.  

 

 

 

5 COST-PROFIT ANALYSIS  
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In this section economic analysis of the model is presented. The cost-model is developed 

with the functions of total expected cost, total expected revenue and total expected profit. 

The hypothetical values are taken to test the model. Here, TEC = Total Expected Cost, TER 

= Total Expected Revenue , TEP = Total Expected Profit Cs = Cost of service per unit, Ch = 

Holding cost per unit , Cf = Feedback cost per unit , Cr = Reneging cost per unit, CR = 

Retention cost per unit 

 

The functions of total expected cost, revenue and profit are described as under; 

 

Total expected cost of the model is given by;  

 
𝑇𝐸𝐶 = 𝐶𝑠(𝜇1 + 𝜇2) + 𝐶ℎ𝐿𝑠 + 𝐶𝑏𝑅𝑏

′ + 𝐶𝑟𝑅𝑟 + 𝐶𝑅𝑅𝑅 + 𝐶𝑓(𝜇1𝑝1 + 𝜇2𝑝2) 

 

Total expected revenue if given by; 

 
𝑇𝐸𝑅 = 𝑅 × 𝜇 × (1 − 𝑃0) 

 

Total expected profit is given by; 

 
𝑇𝐸𝑃 = 𝑇𝐸𝑅 − 𝑇𝐸𝐶 

Following tables present sensitivity analysis of the model with respect to arbitrary inputs 

of variables.  

Table -1 

(System performance with change in rate of reneging 𝜉) 
𝜆 = 5, 𝜇1 = 2, 𝜇2 = 3, 𝑞′ = 0.6, 𝑞1 = 0.2, 𝑞2 = 0.2, 𝑞 = 0.8, 𝑁 = 15 

𝐶𝑠 = 4, 𝐶ℎ = 2, 𝐶𝑅 = 2, 𝐶𝑟 = 3, 𝐶𝑏 = 7, 𝐶𝑓 = 4, 𝑅 = 50 

  

Rate of 

Reneging 

() 

Expected 

System Size 

(Ls) 

Average Rate 

of Reneging 

(Rr) 

Total Expected 

Cost 

(TEC) 

Total Expected 

Revenue 

(TER) 

Total Expected 

Profit 

(TEP) 

0.1 0.548 0.0003 71.928 128.564 56.637 

0.2 0.547 0.0006 71.927 128.512 56.585 

0.3 0.545 0.0008 71.926 128.465 56.538 

0.4 0.544 0.0010 71.926 128.421 56.496 

0.5 0.544 0.0012 71.925 128.380 56.456 

0.6 0.543 0.0014 71.924 128.342 56.418 

0.7 0.542 0.0015 71.923 128.305 56.382 

0.8 0.541 0.0017 71.922 128.270 56.348 

0.9 0.541 0.0018 71.922 128.237 56.315 

1.0 0.540 0.0019 71.921 128.205 56.284 

 

Table -1, shows that reneging leaves a negative impact on the system, as more and more 

customers leave the system without completion of service. Expected system size with TER, 

TEC and TEP reduces. And average rate of reneging increases gradually.  

Table -2 
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(System performance with change in probability of reverse balking when n=0) 
𝜆 = 5, 𝜇1 = 2, 𝜇2 = 3, 𝜉 = 0.2, 𝑞1 = 0.2, 𝑞2 = 0.2, 𝑞 = 0.8, 𝑁 = 15 

𝐶𝑠 = 4, 𝐶ℎ = 2, 𝐶𝑅 = 2, 𝐶𝑟 = 3, 𝐶𝑏 = 7, 𝐶𝑓 = 4, 𝑅 = 50 

  

Probability 

of Reverse 

Balking at 

n=0 

(q) 

Expected 

System 

Size (Ls) 

Average 

Rate of 

Reneging 

(Rb
) 

Total 

Expected 

Cost 

(TEC) 

Total 

Expected 

Revenue 

(TER) 

Total 

Expected 

Profit 

(TEP) 

0.1 0.7489 3.401 69.31 176.04 106.73 

0.2 0.7222 3.458 69.66 169.76 100.10 

0.3 0.6905 3.526 70.07 162.32 92.25 

0.4 0.6524 3.607 70.56 153.35 82.79 

0.5 0.6056 3.707 71.17 142.35 71.18 

0.6 0.5467 3.833 71.93 128.51 56.58 

0.7 0.4705 3.996 72.91 110.60 37.68 

0.8 0.3679 4.215 74.24 86.48 12.24 

0.9 0.2224 4.525 76.12 52.29 -23.84 

1.0 0.0000 5.000 79.00 0.00 -79.00 

 

Table -2 shows that, increasing probability of reverse balking when system is empty leaves 

a bad effect on revenue. We can see that system goes under loss when probability of reverse 

balking raises a certain limit. The system size obviously reduces to zero as no customer 

joins the system.  

Table -3 

(System performance with change in probability of reverse balking when n=0) 
𝜆 = 5, 𝜇1 = 2, 𝜇2 = 3, 𝜉 = 0.2, 𝑞′ = 0.6, 𝑞1 = 0.2, 𝑞2 = 0.2, 𝑁 = 15, 

𝐶𝑠 = 4, 𝐶ℎ = 2, 𝐶𝑅 = 2, 𝐶𝑟 = 3, 𝐶𝑏 = 7, 𝐶𝑓 = 4, 𝑅 = 50 

  

Probability 

of Retention 

(q) 

Expected 

System Size 

(Ls) 

Average Rate of 

Retention (RR) 

Total 

Expected 

Cost 

(TEC) 

Total 

Expected 

Revenue 

(TER) 

Total 

Expected 

Profit 

(TEP) 

0.1 0.5440 0.0001 71.92 128.40 56.48 

0.2 0.5445 0.0003 71.92 128.42 56.50 

0.3 0.5449 0.0004 71.92 128.44 56.52 

0.4 0.5455 0.0006 71.92 128.46 56.54 

0.5 0.5461 0.0007 71.93 128.49 56.56 

0.6 0.5467 0.0009 71.93 128.51 56.58 

0.7 0.5474 0.0011 71.93 128.54 56.61 

0.8 0.5483 0.0014 71.93 128.56 56.64 

0.9 0.5494 0.0017 71.93 128.59 56.66 

1.0 0.5507 0.0021 71.93 128.63 56.69 

 

 

Table -3, discusses the effect of retention on system. As retention pulls the customers back 
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to system the system size gets higher and higher and firms make more profit and revenue. 

 

Table -4 

(System performance with change in probability of feedback from first server) 
𝜆 = 5, 𝜇1 = 2, 𝜇2 = 3, 𝜉 = 0.2, 𝑞1 = 0.2, 𝑞 = 0.8, 𝑞′ = 0.6, 𝑁 = 15 

𝐶𝑠 = 4, 𝐶ℎ = 2, 𝐶𝑅 = 2, 𝐶𝑟 = 3, 𝐶𝑏 = 7, 𝐶𝑓 = 4, 𝑅 = 50 

Probability of feedback on server one 

(𝑞1) 

Expected System Size 

(Ls) 

Total Expected Cost 

(TEC) 

0.1 0.5310 70.93 

0.2 0.5483 71.92 

0.3 0.5691 72.96 

0.4 0.5948 74.06 

0.5 0.6274 75.23 

0.6 0.6704 76.50 

0.7 0.7299 77.94 

0.8 0.8167 79.64 

0.9 0.9487 70.93 

 

Feedback is a negative process. Increasing feedback depicts poor quality of service table-4 

shows increasing probability of feedback from server 1 and hence the system size increases. 

The facility is crowded with people on which either no or very less revenue is earned. We 

can observe the rising cost with increase in probability of feedback.  Figure-1, shows change 

in total expected cost with respect to increasing probability of feedback at second server.  

 

 
 

Figure -1 

Total Expected Cost w.r.t probability of feedback on server 2 (q2) 
𝜆 = 5, 𝜇1 = 2, 𝜇2 = 3, 𝜉 = 0.2, 𝑞2 = 0.2, 𝑞 = 0.8, 𝑞′ = 0.6, 𝑁 = 15 

𝐶𝑠 = 4, 𝐶ℎ = 2, 𝐶𝑅 = 2, 𝐶𝑟 = 3, 𝐶𝑏 = 7, 𝐶𝑓 = 4, 𝑅 = 50 
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In this paper a feedback queuing model with heterogeneous service, reverse balking, and 

retention of impatient customers is formulated.  The model is solved in steady-state. 

Necessary measures of performance, numerical illustration and cost-profit analysis of the 

model is performed. The model is useful for firms that are going through mentioned 

contemporary challenges. The model can be used for designing effective administrative 

strategies. The future scope of the work is to test the model in real time environment. The 

optimization of the model with respect to various parameters can also be obtained 

thereafter.  
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Abstact 
 

In this paper, we study a continuous time single-server queuing system, wherein 

the arrivals at two consecutive transition marks are correlated. The service times 

and the reneging times are exponential distributed. The time-dependent behavior 

of the model is studied using Runge-Kutta method.  

 

Keywords: Correlated input, Exponential, Queuing model, Reneging, Transient 

analysis  

  
 

1  Introduction 
 

Queuing modelling has been playing a very vital role since its inception. It has a 

great role in modelling and designing communication systems. A lot of work has been done 

in queuing theory with reference to its applications in inventory management, 

manufacturing, supply chain management, population studies, genetic studies and in 

transportation management. Mohan and Murari [9] obtained the transient solution for a 

correlated queuing system with variable capacity. Murari [10] studied the steady-state 

behavior of single server queuing system in which both the arrivals and phase-type service 

were correlated. Andrade Parra [2] studied the correlated nature of cell traffic in broadband 

communications. Kamoun and Ali [7] considered a two-node tandem network with 

correlated arrivals and discussed its application in ATM networks. Takine, Suda and 

Hasegawa [11]studied the ATM switching nodes with the correlated cell arrivals. They also 

proved that the cell loss and output process characteristics are affected by correlation and 

variation of cell arrivals. Drezner [4] obatined the performance measures of for 𝑀𝑐/𝐺/1 

queuing system with dependent arrivals. Jain and Kumar [5] considered the correlated 

queuing problem with variable capacity and catastrophes and obtained the transient 

solution by probability generating technique. Jain and Kumar [6] incorporated the concept 

of restoration in a queuing system with correlated arrivals, variable capacity and 

catastrophes. Kumar [8] studied the correlated queuing system with catastrophe, 

restoration and customer impatience. Banerjee [3] studied a workload dependent service 

queuing system with Markovian Arrival Process. Vishnevskii and Dudin [12] did the 

review of the queuing systems with correlated inputs with their applications to modeling 
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telecommunication networks. 

In this paper, we obtain transient solution of a single-server queuing system with 

correlated inputs and reneging where the service times are exponentially distributed. Rest 

of the paper is as follows: In section 2, we described the queuing model. In section 3, the 

differential-difference equation of the model is presented. Section 4 deals with transient 

analysis of the model. In section 5 we concluded our paper. 

2  Queuing Model Description 
 

The queuing model considered is based on the following assumptions:   The 

customers arrive at a service facility and form a queue. The arrivals can occur only at the 

transition marks 𝑡0, 𝑡1, 𝑡2, . .. where 𝜃𝑟 = 𝑡𝑟 − 𝑡𝑟−1, 𝑟 = 1,2,3. . ., are negative exponentially 

distributed random variables with parameter 𝜆.  The arrivals of customers at the two 

consecutive transition marks 𝑡𝑟−1 and 𝑡𝑟, 𝑟 = 1,2,3. . ., are governed by the following 

transition probability matrix:  

   
 where 𝑝00 + 𝑝01 = 1 and 𝑝10 + 𝑝11 = 1, where 0 refers to no arrival and 1 refers to 

the occurrence of arrival. Hence, the arrivals are correlated  The system has finite capacity, 

say N.  There is a single server and the customers are served one by one on FCFS basis. The 

service time distribution is negative exponential with parameter 𝜇.  Every customer that 

enters the system will wait for a certain period of time after which he becomes impatient 

and leaves the queue. This behaviour of a customer is known as reneging.  The reneging 

times of the customers are assumed to be distributed according to negative exponential 

distribution with parameter 𝜉.    

3  Mathematical Model 
 

Defining the following probabilities 

𝑄0,0(𝑡) = Probability that at time 𝑡 the queue length is empty, the server is idle and 

no arrival has occurred at the previous transition mark. 

𝑄0,1(𝑡) = Probability that at time 𝑡 the queue length is empty, the server is idle and 

an arrival has occurred at the previous transition mark. 

𝑃0,0(𝑡) = Probability that at time 𝑡 the queue length is empty, the server is not idle 

and no arrival has occurred at the previous transition mark. 

𝑃0,1(𝑡) = Probability that at time 𝑡 the queue length is empty, the server is not idle 

and an arrival has occurred at the previous transition mark. 

𝑃𝑛,0(𝑡) = Probability that at time 𝑡 the queue length is equal to n (1 ≤ 𝑛 < 𝑁), the 

server is not idle and no arrival has occurred at the previous transition mark. 

𝑃𝑛,1(𝑡) = Probability that at time 𝑡 the queue length is equal to n (1 ≤ 𝑛 < 𝑁), the 

server is not idle and an arrival has occurred at the previous transition mark. 

𝑃𝑁,0(𝑡) = Probability that at time 𝑡 the queue length is equal to 𝑁, the server is not 

idle and no arrival has occurred at the previous transition mark. 

𝑃𝑁,1(𝑡) = Probability that at time 𝑡 the queue length is equal to 𝑁, the server is not 
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idle and an arrival has occurred at the previous transition mark. 

The differential-difference equations of the model are:  

 
𝑑

𝑑𝑡
𝑄0,0(𝑡) = −𝜆𝑄0,0(𝑡) + 𝜇𝑃0,0(𝑡) + 𝜆[𝑝00𝑄0,0 + 𝑝10𝑄0,1] 

 
𝑑

𝑑𝑡
𝑄0,1(𝑡) = −𝜆𝑄0,1(𝑡) + 𝜇𝑃0,1(𝑡) 

 
𝑑

𝑑𝑡
𝑃0,0(𝑡) = −(𝜆 + 𝜇)𝑃0,0(𝑡) + (𝜇 + 𝜉)𝑃1,0(𝑡) + 𝜆[𝑝00𝑃0,0 + 𝑝10𝑃0,1] 

 
𝑑

𝑑𝑡
𝑃0,1(𝑡) = −(𝜆 + 𝜇)𝑃0,1(𝑡) + (𝜇 + 𝜉)𝑃1,1(𝑡) + 𝜆[𝑝01𝑄0,0 + 𝑝11𝑄0,1] 

 
𝑑

𝑑𝑡
𝑃𝑛,0(𝑡) = −(𝜆 + 𝜇 + 𝑛𝜉)𝑃𝑛,0(𝑡) + [𝜇 + (𝑛 + 1)𝜉]𝑃𝑛+1,0(𝑡) + 𝜆[𝑝00𝑃𝑛,0(𝑡) +

𝑝10𝑃𝑛,1(𝑡)] 

 
𝑑

𝑑𝑡
𝑃𝑛,1(𝑡) = −(𝜆 + 𝜇 + 𝑛𝜉)𝑃𝑛,1(𝑡) + [𝜇 + (𝑛 + 1)𝜉]𝑃𝑛+1,1(𝑡) +

𝜆[𝑝01𝑃𝑛−1,0(𝑡) + 𝑝11𝑃𝑛−1,1(𝑡)] 

 
𝑑

𝑑𝑡
𝑃𝑁,0(𝑡) = −(𝜇 + 𝑁𝜉)𝑃𝑁,0(𝑡) + 𝜆[𝑝00𝑃𝑁,0(𝑡) + 𝑝10𝑃𝑁,1(𝑡)] 

 
𝑑

𝑑𝑡
𝑃𝑁,1(𝑡) = −(𝜇 + 𝑁𝜉)𝑃𝑁,1(𝑡) + 𝜆[𝑝01𝑃𝑁−1,0(𝑡) + 𝑝11𝑃𝑁−1,1(𝑡)] 

  

4  Transient Analysis of the Model 
 

In this section, the transient analysis of the model is carried out. Runge -Kutta 

method of fourth order is used o obtain the solution. The ′′𝑜𝑑𝑒45′′ function of MATLAB 

software is used to find the transient numerical results corresponding to the differential-

difference equation of the model. 

Here we take 𝑁 = 6, 𝜆 = 1.8, 𝜇 = 2.5, 𝜉 = 0.15, 𝑝00 = 0.2, 𝑝01 = 0.8, 𝑝10 = 0.3 and 

𝑝11 = 0.7.   In Fig. 1, we plot the system size probabilities with time. We observed that 

initially 𝑃0,0 is higher and with the passage of time it decreases becomes steady. The 

probabilities of the system have lower values initially but they increase gradually and after 

sometime these become steady.   

 

 
 

Figure  1: Time dependent behavior of probabilities. 

 

In Fig. 2, we show a graph between expected system size and time. Further we 

consider two queuing models: one with correlated arrivals and reneging and the other with 
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Poisson arrivals and reneging. It can be seen from the graph that the expected system size 

is relatively lower in case of correlated queuing model than the simple model.   

 

 
 

Figure  2: Expected system size vs time 

 

In Fig. 3, the variation in expected waiting time with time is shown. We can see that 

the expected waiting time of customers is lower in case of correlated queuing system then 

the system with simple poisson arrivals. This sort of comparison indicates that the 

correlated input queuing system performs better than the one without correlated arrivals. 

 

 

 
 

Figure  3: Expected waiting time vs time 
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5 Conclusion 
 

In this paper we have performed the transient numerical analysis of a single server queuing 

model with correlated inputs and reneging. We have compared our model with a single 

server queuing model with reneging and have observed that our model performs better 

than the other. 
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