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Abstract 
 

In this paper we consider a Markovian queuing system with heterogeneous servers, balking and 

catastrophes. The time-dependent behavior of the system is analyzed by using generating function 

technique. The  expressions for mean and variance of the system are obtained in transient state. At 

last, some special cases of the model are derived and discussed. 
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I. Introduction 
 

Queuing models are playing an important role in modeling the queuing situations in computer-

communication networks, hospitals, supply chain management, and in production processes. 

Customers’ impatience is one of the most important aspects in modeling of queuing systems. 

Queuing systems with customers’ impatience are comparatively less profitable than the ones 

without impatience. In real life many queuing situations arise in which there may be a tendency 

for customers to be discouraged by a long queue. As a result, the customers either decide not to 

join the queue (i.e. balk) or depart after joining the queue without getting service due to impatience 

(i.e. renege). The study of customers’ impatience in queuing theory is started in the early 1950’s. 

Haight (1957), Ancker and Gafarian ((1963a), (1963b)) are the pioneer researchers in the area of 

queueing with customers’ impatience. Barrer (1957) analyzes an M/M/c queue with customers’ 

impatience of constant duration. El-Paoumy and Nabwey (2011) study a Poisson queue with 

balking function, reneging and two heterogeneous servers. Kumar and Sharma (2012a) study a 

single server Markovian queuing system with balking and retention of reneging customers. They 

obtain the steady-state probabilities of the model. Kumar and Sharma (2012b) obtain the stationary 

system size probabilities of a finite capacity Markovian multi-server queuing system with balking 

and retention of reneging customers. Kumar and Sharma (2018) analyze the transient state 

probabilities of a multi-server queuing system with balking and retention of reneging customers. 
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The queuing systems with heterogeneous servers are more applicable as compare to their 

homogeneous counterparts, because in real-life situations the servers work at different rates. 

Morse (1958) introduces the concept of heterogeneous service. The heterogeneous service 

mechanisms are scheduling methods that allow customers to receive different quality of service. 

Most of the operations in manufacturing systems have heterogeneous service mechanism. That is 

why, the queuing systems with heterogeneous servers have gained significant attention in the 

literature. Saaty (1961) further discusses Morse’s problem and derives the steady-state probabilities 

and the mean number in the system. Sharma and Dass (1989) analyze the initial busy period of 

multichannel Markovian queueing system and obtain the expression of its density function in 

closed form. Dharmaraja (2000) obtains the transient solution of a two-processor heterogeneous 

system with Poisson arrival of jobs having exponentially distributed processing times. Kumar and 

Sharma (2019) obtain the transient solution of a two-heterogeneous servers Markovian queuing 

model with retention of reneging customers. 

 

Queuing models with catastrophes have been used in modeling a variety of real life systems, such 

as computer-communication networks under virus attack, manufacturing systems with sudden 

disasters, and call centers with sudden power breakdowns and corruption of hard disk of 

computer systems. Recently, due attention has been paid to the study of queuing systems with 

catastrophes. The occurrence of catastrophes leads to the annihilation of all the customers in the 

queuing system and momentarily inactivates the service facility until a new arrival occurs. In order 

to study the impact of noise bursts and virus on queues in computer networks Chao (1995) 

develops the queuing network model with catastrophes. He obtains the product-form solution of a 

queuing network model with catastrophes. Kumar and Arivudainambi (2000) incorporate the 

effect of catastrophes in a single server Markovian queuing system. They derive its transient 

solution using generating function technique explicitly. Di Crescenzo et al. (2003) discuss the 

application of M/M/1 queuing model with catastrophes in the phenomenon of muscle contraction. 

Jain and Kumar (2007) derive the transient solution of a queuing system with correlated arrivals, 

variable service capacity and catastrophes. Sudesh (2010) studies a single server queuing system 

with catastrophes and customers’ impatience. He derives the transient solution of the model 

explicitly using generating function technique. Sudesh et al. (2016) derive the transient solution of 

a two-heterogeneous servers queuing system with catastrophes, server repair and customers’ 

impatience. Jain and Kanethia (2006) study a single server queuing model with change in 

environment and catastrophes. They obtain both the transient and the steady-state solutions to the 

model. Tarabia (2011) performs the transient and steady-state analysis of a single server Markovian 

queuing system with balking, catastrophes, server failures and repairs. Yechiali (2007) studies 

single and multiple-server queuing models with catastrophes and impatient customers. Ammar 

(2014) derives the transient solution of a two-processor heterogeneous system with catastrophes, 

server failures and repairs. Dharmaraja and Kumar (2015) obtain the transient solution of a 

queuing model with multiple heterogeneous servers in presence of catastrophes. Kumar et al. 

(2001) obtain the transient solution of an M/M/2 heterogeneous servers queuing system in presence 

of catastrophes. 

 

Yaseen and Tarabia (2017) analyze the transient and steady-state behavior of Markovian queuing 

system with balking and reneging subject to catastrophes and server failures. Suranga Sampath 

and Liu (2018) study an M/M/1 queuing system with reneging, catastrophes, server failures and 

repairs. They obtained the transient as well as steady-state solution of the model. The applicability 

of our queuing model can be seen in hospital emergency departments and computer 

communication system.  

The remainder of the paper is structured as follows. In section 2, the queuing model is described. A 

mathematical model is formulated in section 3. In section 4 transient solution of the model is 
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studied. The time-dependent mean and variance of the model are obtained in section 5. Section 6 

deals with the special cases of the model. Finally, the paper is concluded in section 7. 

. 

II. Queuing Model Description 
 

 In this section, we describe the queueing model. The model is based on following assumptions: 

1. In accordance with a Poisson process, the arrivals occur one by one with intensity λ. 

2.  The system has multi-servers (say, c) having distinct service rates and the service times at each 

server are exponential distributed. This means that the customers are always served by the 

fastest servers. That is, when such a server becomes available, a customer may switch to a 

fastest server. 

3. On arrival customer either decides to enter the queue with probability 𝑝 or balk with 

probability 1 − 𝑝. 

4. Apart from this, the catastrophes may also occur at the service facility as a Poisson process 

with rate 𝜓, when the system is not empty. At the moment when catastrophe occurs at the 

system, all the customers are destroyed, all the servers get inactivated momentarily and after 

the catastrophe, the servers become ready for service immediately. 

5.  The queue discipline is FCFS and the capacity of the system is infinite. 

6. Initial condition: 𝑃0(0) = 1. 

 

III. Mathematical Formulation of the Model 
Define, Pn(t) =  P{X(t)  = n}, n =  0, 1, …. The queuing model under investigation is governed by 

the following differential-difference equations: 
 
𝑑𝑃0(𝑡)

𝑑𝑡
= −(𝜆 + 𝜓)𝑃0(𝑡) + 𝜇1𝑃1(𝑡) + 𝜓                                                                                         (1) 

𝑑𝑃𝑛(𝑡)

𝑑𝑡
= −(𝜆 + 𝜓 + ∑ 𝜇𝑖

𝑛
𝑖=1 )𝑃𝑛(𝑡) + ∑ 𝜇𝑖

𝑛+1
𝑖=1 𝑃𝑛+1(𝑡) + 𝜆𝑃𝑛−1(𝑡),    1 ≤ 𝑛 < 𝑐                          (2) 

𝑑𝑃𝑐(𝑡)

𝑑𝑡
= −(𝜆𝑝 + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 )𝑃𝑐(𝑡) + ∑ 𝜇𝑖

𝑐
𝑖=1 𝑃𝑐+1(𝑡) + 𝜆𝑃𝑐−1(𝑡), 𝑛 = 𝑐                                   (3) 

𝑑𝑃𝑛(𝑡)

𝑑𝑡
= −(𝜆𝑝 + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 )𝑃𝑛(𝑡) + ∑ 𝜇𝑖

𝑐
𝑖=1 𝑃𝑛+1(𝑡) + 𝜆𝑝𝑃𝑛−1(𝑡), 𝑛 > 𝑐                               (4) 

 

IV. Transient solution of the model 
Theorem 1. The transient state probabilities of a Markovian queuing system with multi 

heterogeneous servers, balking and catastrophes which is governed by the differential-difference 

equations (1) − (4) are given by: 

𝑃𝑘(𝑡) = 𝑏𝑘,0(𝑡) + 𝜓 ∫ 𝑏𝑘,0(𝑢)𝑑𝑢 + 𝛾 ∫ 𝑏𝑘,𝑐−1(𝑢)𝑃𝑐(𝑡 − 𝑢)𝑑𝑢
𝑡

0
,      𝑘 = 0 ,1 , … , 𝑐 − 1

𝑡

0
  

𝑃𝑐(𝑡) = ∑ ∑
(−1)𝑚

𝛾
(

𝛼

2𝜆𝑝
)

𝑛+1

(𝑛 + 1)𝑛
𝑚=0 (

𝑛
𝑚

) [∫ 𝐴(𝑡 − 𝑢) ∫ 𝐵𝐶(𝑚)(𝑢 − 𝑣)exp {−(𝜆𝑝 + 𝛾 +
𝑢

0

𝑡

0
∞
𝑛=0

𝜓)𝑣}
𝐼𝑛+1(𝛼𝑣))

𝑣
𝑑𝑢𝑑𝑣 + 𝜓 ∫ 𝐻(𝑡 − 𝑢)∫ 𝐵𝐶(𝑚)(𝑢 − 𝑣)exp {−(𝜆𝑝 + 𝛾 + 𝜓)𝑣}

𝐼𝑛+1(𝛼𝑣))

𝑣
𝑑𝑢𝑑𝑣

𝑢

0

𝑡

0
]  

and, for n = 1, 2, … 

𝑃𝑛+𝑐(𝑡) = 𝑛𝛽𝑛 ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
𝐼𝑛(𝛼(𝑡−𝑢))

(𝑡−𝑢)
𝑃𝑐(𝑢)𝑑𝑢

𝑡

0
  

where 𝐻(𝑡) = ∫ 𝐴(𝑢)𝑑𝑢
𝑡

0
  and 𝐵𝐶(𝑚)(𝑡) is m – fold convolution of B(t) with itself with 𝐵𝐶(0) = 𝛿(𝑡), 

the Dirac - delta function. 

Proof.  Define the pgf P(z, t) for the transient state probabilities 𝑃𝑛(𝑡) by 

𝑃(𝑧, 𝑡) = 𝑞𝑐(𝑡) + ∑ 𝑃𝑛+𝑐(𝑡)𝑧
𝑛+1∞

𝑛=1 ;         𝑃(𝑧, 0) = 1                                                                                  (5) 

with 

∑ 𝑃𝑛(𝑡) = 𝑞𝑐(𝑡)
𝑐
𝑛=0                                                                                                                                            (6)   

Adding the equations (1) - (3), we get 
𝑑

𝑑𝑡
(𝑞𝑐(𝑡)) = −𝜆𝑝𝑃𝑐(𝑡) + ∑ 𝜇𝑖

𝑐
𝑖=1 𝑃𝑐+1(𝑡) − 𝜓𝑞𝑐(𝑡) + 𝜓                                                                                (7) 

On multiplying equation (4) by 𝑧𝑛 and summing, we get 
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𝑑

𝑑𝑡
[∑ 𝑃𝑛+𝑐(𝑡)𝑧

𝑛+1∞
𝑛=1 ] = [(𝜆𝑝 + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 ) + (𝜆𝑝𝑧 +

∑ 𝜇𝑖
𝑐
𝑖=1

𝑧
)]∑ 𝑃𝑛+𝑐(𝑡)𝑧

𝑛∞
𝑛=1 + 𝜆𝑝𝑧𝑃𝑐(𝑡) −

∑ 𝜇𝑖𝑃𝑐+1(𝑡)
𝑐
𝑖=1                                                                                                                                                   (8) 

By adding (7) and (8) the following differential equation is obtained: 
𝜕𝑃(𝑧,𝑡)

𝜕𝑡
= [(λpz +

∑ 𝜇𝑖
𝑐
𝑖=1

𝑧
) − (λp + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 )] 𝑃(𝑧, 𝑡) − [(λpz +

∑ 𝜇𝑖
𝑐
𝑖=1

𝑧
) − (λp + ∑ 𝜇𝑖

𝑐
𝑖=1 )] qc(t) +

λp(z − 1)𝑃𝑐(𝑡) + 𝜓                                                                                                                                                            (9)                                  

On solving (9), we get                

𝑃(𝑧, 𝑡) = exp {[(λpz +
∑ 𝜇𝑖

𝑐
𝑖=1

𝑧
) − (λp + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 )] 𝑡} + ∫ [λp(z − 1)

𝑡

0
𝑃𝑐(𝑢) − ((λpz +

∑ 𝜇𝑖
𝑐
𝑖=1

𝑧
) −

(λp + ∑ 𝜇𝑖
𝑐
𝑖=1 )) qc(u)] × exp {[(λpz +

∑ 𝜇𝑖
𝑐
𝑖=1

𝑧
) − (λp + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 )] (𝑡 − 𝑢)} du + 𝜓 ∫ exp {[(λpz +

𝑡

0

∑ 𝜇𝑖
𝑐
𝑖=1

𝑧
) − (λp + 𝜓 + ∑ 𝜇𝑖

𝑐
𝑖=1 )] (𝑡 − 𝑢)} du                                                                                                                (10)   

If 𝛾 = ∑ 𝜇𝑖
𝑐
𝑖=1 , 𝛼 = 2√𝜆𝑝𝛾 and  𝛽 = √

𝜆𝑝

𝛾
 , then using the modified Bessel function of first kind 

𝐼𝑛(. ) and the Bessel function properties, we get 

exp {(𝜆𝑝𝑧 +
𝛾

𝑧
) t} = ∑ (𝛽z)nIn(αt)∞

n=−∞                                                                                                        (11) 

Using (11) in (10), we get 

𝑃(𝑧, 𝑡) = exp{−(𝜆𝑝 + 𝜓 +  𝛾)𝑡} ∑ (𝛽z)nIn(αt)∞
n=−∞ + λp ∫ Pc(u)exp{−(𝜆𝑝 + 𝜓 +  𝛾)(𝑡 −

t

0

𝑢)}∑ (𝛽z)n[𝛽−1In−1(α(t − u)) − In(α(t − u))]du + ∫ qc(u) exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 −
t

0
∞
n=−∞

𝑢)}∑ (𝛽z)n[−λp𝛽−1In−1(α(t − u)) + (λp + 𝛾)In(α(t − u)) − 𝛽γIn+1(α(t − u))]du +∞
n=−∞

𝜓 ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
𝑡

0
∑ (𝛽z)nIn(α(t − u))du∞

n=−∞                         (12) 

                                                                                                                                                                                                                                     

Now, comparing the coefficients of 𝑧𝑛 on either side of (12), we obtain for 𝑛 = 1, 2, … 

𝑃𝑛+𝑐(𝑡) = exp{−(𝜆𝑝 + 𝜓 +  𝛾)𝑡} (𝛽)nIn(αt) + λp∫ exp{−(𝜆𝑝 + 𝜓 +  𝛾)(𝑡 − 𝑢)}[In−1(α(t − u))𝛽n−1 −
t

0

In(α(t − u))𝛽n] Pc(u)du − ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
t

0
qc(u)[λpIn−1(α(t − u)) 𝛽n−1 − (λp +

𝛾)In(α(t − u)) 𝛽n + γIn+1(α(t − u)) 𝛽n+1]du + 𝜓 ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)} 𝛽nIn(α(t − u))du
𝑡

0
  (13)                      

 Comparing the terms free of 𝑧 on either side of equation (12), that is, for n = 0, we get 

𝑞𝑐(𝑡) = exp{−(𝜆𝑝 + 𝜓 +  𝛾)𝑡I0(αt)} + λp ∫ exp{−(𝜆𝑝 + 𝜓 +  𝛾)(𝑡 − 𝑢)}[I1(α(t − u))𝛽−1 −
t

0

I0(α(t − u))]Pc(u)du − ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
t

0
qc(u)[αI1(α(t − u)) − (λp + 𝛾)I0(α(t − u))]du +

𝜓 ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
t

0
I0(α(t −

u))𝑑𝑢                                                                                                                                                                                  (14)                                                                                          

After simplifying (13), we obtain 

∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
t

0
qc(u)[λpIn+1(α(t − u)) 𝛽n−1 − (λp + 𝛾)In(α(t − u)) 𝛽n + γIn−1(α(t −

u)) 𝛽n+1]du  

= exp{−(𝜆𝑝 + 𝜓 +  𝛾)𝑡} (𝛽)nIn(αt) + λp ∫ exp{−(𝜆𝑝 + 𝜓 +  𝛾)(𝑡 − 𝑢)}[In+1(α(t − u))𝛽n−1 −
t

0

In(α(t − u))𝛽n] Pc(u)du + 𝜓 ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)} 𝛽nIn(α(t − u))du
𝑡

0
                                     (15) 

Substituting (15) in (13), we get  

𝑃𝑛+𝑐(𝑡) = 𝑛𝛽n ∫ exp{−(𝜆𝑝 + 𝜓 + 𝛾)(𝑡 − 𝑢)}
t

0

𝐼𝑛(𝛼(𝑡−𝑢))

(𝑡−𝑢)
𝑃𝑐(𝑢)𝑑𝑢,    n =  1, 2, . ..                                     (16) 

                                                                                                                                 

On solving (1) and (2), we obtain the remaining probabilities 𝑃𝑛(𝑡), 𝑛 = 0, 1, 2, … , 𝑐. Equations (1) 

and (2) can be written in matrix form as:  
𝑑𝑷(𝒕)

𝑑𝑡
= 𝐴𝑷(𝒕) + 𝛾𝑃𝑐(𝑡)𝒆𝟏 + 𝜓𝒆𝟐                                                                                                                  (17) 

where the matrix 𝐴 = (𝑎𝑖,𝑗)𝑐×𝑐 is given as: 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
−(𝜆 + 𝜓) 𝜇1 . . . 0

𝜆 −(𝜆 + 𝜓 + 𝜇1) . . . 0
. . . . . .
. . . . . .

. . . . . ∑ 𝜇𝑖

𝑐−1

𝑖=1

0 0 . . . −(𝜆 + 𝜓 + ∑𝜇𝑖

𝑐−1

𝑖=1

)
]
 
 
 
 
 
 
 
 
 

 

 

𝑷(𝒕) = (𝑃0(𝑡) 𝑃1(𝑡) … 𝑃𝑐−1(𝑡))
𝑇, 𝒆𝟏 = (0 0 … 1)𝑇 and 𝒆𝟐 = (1 0 … 0)𝑇 are vectors of order 𝑐. Let  the 

Laplace Transform (LT) of 𝐏(𝐭) is 𝑷∗(𝒔) = (𝑃0
∗(𝑠) 𝑃1

∗(𝑠) … 𝑃𝑐−1
∗(𝑠))𝑇 . Taking the Laplace 

Transform of equation (17) we get 

𝑷∗(𝒔) = (𝑠𝐼 − 𝐴)−1 {𝛾𝑃𝑐
∗(𝑠)𝒆𝟏 + 𝑷(𝟎) +

𝜓

𝒔
𝒆𝟐}                                                                                           (18)   

with 𝐏(𝟎) = (1 0 …0)T. If e = (1 1 …1)T
c×1

, then 

𝑒𝑇𝑷∗(𝒔) + 𝑃𝑐
∗(𝑠) = 𝑞𝑐

∗(𝑠)                                                                                                                              (19) 

 Define  

𝑓(𝑠) = [(𝑠 + 𝜆𝑝 + 𝛾 + 𝜓) − √(𝑠 + 𝜆𝑝 + 𝛾 + 𝜓)2 − 𝛼2]  

Taking LT of (14), we obtain  

𝑠(𝑠 + 𝜓)𝑞𝑐
∗(𝑠) = (𝑠 + 𝜓) + 𝑠𝑃𝑐

∗(𝑠)
1

2
[𝑓(𝑠) − 𝛼𝛽]                                                                                       (20) 

Using (20) in (19), we get 

𝑃𝑐
∗(𝑠) = (

𝑠+𝜓

𝑠
)

1−𝑠𝑒𝑇(𝑠𝐼−𝐴)−1(𝑷(𝟎)+
𝜓

𝒔
𝒆𝟐)

{(𝑠+𝜆𝑝+𝜓)− 
1

2
{𝑓(𝑠)}+(𝑠+𝜓)𝛾𝒆𝑇(𝑠𝐼−𝐴)−1𝒆𝟏}

                                    (21) 

Let us assume that  (𝑠𝐼 − 𝐴)−1 = (𝑏𝑖𝑗
∗ (𝑠))

𝑐×𝑐
  

We observe that (𝑠𝐼 − 𝐴)−1 is almost lower triangular. Following Raju and Bhat (1982), we obtain, 
𝑖 = 0, 1, … , 𝑐 − 1 

𝑏𝑖𝑗
∗ (𝑠) = {

1

∑ 𝜇𝑘
𝑗+1
𝑘=1

𝜇𝑐,𝑗+1(𝑠)𝜇𝑖,0(𝑠)−𝜇𝑖,𝑗+1(𝑠)𝜇𝑐,0(𝑠)

𝜇𝑐,0(𝑠)
,           𝑗 = 0, 1, … , 𝑐 − 2

𝜇𝑖,0(𝑠)

𝜇𝑐,0(𝑠)
,                                                               𝑗 = 𝑐 − 1

                                  (22) 

                             

where 𝜇𝑖,𝑗(𝑠) are recursively given as 

𝜇𝑖,𝑖(𝑠) = 1,                                                                                                𝑖 = 0, 1, … , 𝑐 − 1     

𝜇𝑖+1,𝑖(𝑠) =
𝑠+𝜆+𝜓+∑ 𝜇𝑘

𝑖
𝑘=1

∑ 𝜇𝑘
𝑖+1
𝑘=1

                                                                       𝑖 = 0, 1, … , 𝑐 − 2     

𝜇𝑖+1,𝑖−𝑗(𝑠) =
(𝑠+𝜆+𝜓+∑ 𝜇𝑘

𝑖
𝑘=1 )𝜇𝑖,𝑖−𝑗−𝜆𝜇𝑖−1,𝑖−𝑗

∑ 𝜇𝑘
𝑖+1
𝑘=1

,       𝑗 ≤ 𝑖,                       𝑖 = 1, 2, … , 𝑐 − 2               

𝜇𝑐,𝑗(𝑠) = {
[𝑠 + 𝜆 + 𝜓 + ∑ 𝜇𝑘

𝑐−1
𝑘=1 ]𝜇𝑐−1,𝑗 − 𝜆𝜇𝑐−2,𝑗 ,    𝑗 = 0, 1, … , 𝑐 − 2                                     

𝑠 + 𝜆 + 𝜓 + ∑ 𝜇𝑘
𝑐−1
𝑘=1 ,                     𝑗 = 𝑐 − 1                                                 

                  (23) 

and 𝜇𝑖,𝑗(𝑠) = 0, for other i and j. We have suppressed the argument s to facilitate computation. The 

advantage in using these relations is that we do not evaluate any determinant. Using these in 

equation (21), we get 

𝑃𝑐
∗(𝑠) = (

𝑠 + 𝜓

𝑠
)

1 − (𝑠 + 𝜓) ∑ 𝑏𝑖,𝑜
∗ (𝑠)𝑐−1

𝑖=0

{(𝑠 + 𝜆𝑝 + 𝜓) − 
1
2

{𝑓(𝑠)} + (𝑠 + 𝜓)𝛾 ∑ 𝑏𝑗,𝑐−1
∗ (𝑠)𝑐−1

𝑗=0 }
                                              (24) 

  and for 𝑘 = 0, 1, … , 𝑐 − 1 from equation (18), we get 

𝑃𝑘
∗(𝑠) = (1 +

𝜓

𝑠
) 𝑏𝑘,0

∗ (𝑠) + 𝛾𝑏𝑘,𝑐−1
∗ (𝑠)𝑃𝑐

∗(𝑠)                                                                                            (25) 

We observe that 𝑏𝑖,𝑗
∗ (𝑠) are all rational algebraic functions in 𝑠. So, by partial fraction 

decomposition  the inverse transform 𝑏𝑖,𝑗(𝑡) of 𝑏𝑖,𝑗
∗ (𝑠) can be obtained. Let 𝑠𝑖 , 𝑖 = 0, 1, … , 𝑐 − 1, be 

the characteristic roots of the matrix A. Then after simplification, 𝑃𝑐
∗(𝑠) equals to 



Rakesh Kumar, Sapana Sharma, Bhavneet Singh Soodan,  
P. Vijaya Laxmi, Bhupender Kumar Som 

TRANSIENT SOLUTION OF A HETEROGENEOUS QUEUING SYSTEM 

RT&A, No 1 (56) 
Volume 15, March 2020 

 

47 

(1 +
𝜓
𝑠
)𝐴∗(𝑠)

1
2

[(𝑠 + 𝜆𝑝 + 𝛾 + 𝜓) + √(𝑠 + 𝜆𝑝 + 𝛾 + 𝜓)2 − 𝛼2] [1 −
2𝛾(1 − 𝐵∗(𝑠))

[(𝑠 + 𝜆𝑝 + 𝛾 + 𝜓) + √(𝑠 + 𝜆𝑝 + 𝛾 + 𝜓)2 − 𝛼2]
]

   

                                                                                                                                                                  (26) 

where 

𝐴∗(𝑠) = ∑
𝐴𝑖

𝑠−𝑠𝑖

𝑐−1
𝑖=0                                                                                                                                      (27) 

𝐵∗(𝑠) = ∑
𝐵𝑖

𝑠−𝑠𝑖

𝑐−1
𝑖=0                                                                                                                                      (28) 

with constants 𝐴𝑖 and 𝐵𝑖  given by 

𝐴𝑖 = lim
𝑠→𝑠𝑖

(𝑠 − 𝑠𝑖)[1 − ∑ (𝑠 + 𝜓)𝑏𝑙,0
∗ (𝑠)𝑐−1

𝑖=0 ]                                                                                       (29)  

𝐵𝑖 = lim
𝑠→𝑠𝑖

(𝑠 − 𝑠𝑖)[∑ (𝑠 + 𝜓)𝑏𝑙,𝑐−1
∗ (𝑠)𝑐−1

𝑙=0 ]                                                                                           (30) 

                                                                          

   Hence, (26) simplifies into 

𝑃𝑐
∗(𝑠) = ∑ ∑

(−1)𝑚

𝛾
(

𝛼

2𝜆𝑝
)

𝑛+1

(𝑛 + 1)𝑛
𝑚=0 (

𝑛
𝑚

) (1 +∞
𝑛=0

𝜓

𝑠
)   𝐴∗(𝑠)(𝐵∗(𝑠))

𝑚
 
[(𝑠+𝜆𝑝+𝛾+𝜓)+√(𝑠+𝜆𝑝+𝛾+𝜓)2−𝛼2]𝑛+1

(𝑛+1)𝛼𝑛+1     (31)  

Taking Laplace inverse of (31), we obtain 

𝑃𝑐(𝑡) = ∑ ∑
(−1)𝑚

𝛾
(

𝛼

2𝜆𝑝
)

𝑛+1
𝑛
𝑚=0 (

𝑛
𝑚

) [∫ 𝐴(𝑡 − 𝑢) ∫ 𝐵𝐶(𝑚)(𝑢 − 𝑣) exp{−(𝜆𝑝 + 𝛾 +
𝑢

0

𝑡

0
∞
𝑛=0

𝜓)𝑣}
𝐼𝑛+1(𝛼𝑣))

𝑣
𝑑𝑢𝑑𝑣 + 𝜓 ∫ 𝐻(𝑡 − 𝑢)∫ 𝐵𝐶(𝑚)(𝑢 − 𝑣) exp{−(𝜆𝑝 + 𝛾 +

𝑢

0

𝑡

0

𝜓)𝑣}
𝐼𝑛+1(𝛼𝑣))

𝑣
𝑑𝑢𝑑𝑣]                                                     (32)                                                                                 

where 𝐻(𝑡) = ∫ 𝐴(𝑢)𝑑𝑢
𝑡

0
  and 𝐵𝐶(𝑚)(𝑡) is m – fold convolution of B(t) with itself with 𝐵𝐶(0) = 𝛿(𝑡), 

the Dirac - delta function. Now, the Laplace inverse of equation (25) yields, 

𝑃𝑘(𝑡) = 𝑏𝑘,0(𝑡) + 𝜓 ∫ 𝑏𝑘,0(𝑢)𝑑𝑢 + 𝛾
𝑡

0
∫ 𝑏𝑘,𝑐=1(𝑢)𝑃𝑐(𝑡 − 𝑢)𝑑𝑢,

𝑡

0
𝑘 = 0 ,1 , … , 𝑐 − 1                               (33)                       

where 𝑃𝑐(𝑢) is given in (32). Thus, the equations (16), (32) and (33) determine all the transient state 

probabilities. Hence, the time-dependent probabilities of the model are obtained explicitly. 

 

V. Mean and Variance 
 

In this section we derive the expressions for time-dependent mean and variance of the queuing 

system.  

Mean, M(t): The mean number of customers in the system at time 𝑡 is given by: 

𝐸[𝑋(𝑡)} = 𝑀(𝑡) = 𝑚(𝑡) + 𝑟(𝑡) = ∑ 𝑛𝑃𝑛(𝑡) + ∑ 𝑛𝑃𝑛(𝑡)                                                                    (34)∞
𝑛=𝑐

𝑐−1
𝑛=1   

𝑀(0) = 𝑚(0) + 𝑟(0) = ∑ 𝑛𝑃𝑛(0) + ∑ 𝑛𝑃𝑛(0)                                   ∞
𝑛=𝑐

𝑐−1
𝑛=1   

𝑀′(𝑡) = 𝑚′(𝑡) + 𝑟′(𝑡) = ∑ 𝑛𝑃𝑛
′𝑐−1

𝑛=1 (𝑡) + ∑ 𝑛𝑃𝑛
′∞

𝑛=𝑐 (𝑡)  

Multiplying (1)-(3) by 𝑛 and summing over the range of 𝑛, we get 

𝑀′(𝑡) = 𝜆 ∑ 𝑃𝑛(𝑡) − 𝜓[𝑚(𝑡) + 𝑟(𝑡)] −𝑐−1
𝑛=0 𝜆𝑝 ∑ 𝑛𝑃𝑛(𝑡) +∞

𝑛=𝑐

𝜆𝑝 ∑ 𝑛𝑃𝑛−1(𝑡) +∞
𝑛=𝑐+1 ∑ 𝜇𝑖

𝑛+1
𝑖=1 ∑ 𝑛𝑃𝑛+1(𝑡) −𝑐−1

𝑛=1 ∑ 𝜇𝑖
𝑛
𝑖=1 ∑ 𝑛𝑃𝑛(𝑡) −𝑐−1

𝑛=1 ∑ 𝜇𝑖
𝑐
𝑖=1 ∑ 𝑛𝑃𝑛(𝑡) +∞

𝑛=𝑐

∑ 𝜇𝑖
𝑐
𝑖=1 ∑ 𝑛𝑃𝑛+1(𝑡)

∞
𝑛=𝑐   

On solving above equation we get 

𝑀′(𝑡) = −𝜓𝑀(𝑡) + ∑ 𝑃𝑛(𝑡)(𝜆 − ∑ 𝜇𝑖
𝑛
𝑖=1 )𝑐−1

𝑛=1 + 𝜆𝑃0(𝑡) + ∑ 𝑃𝑛(𝑡)∞
𝑛=𝑐 (𝜆𝑝 − ∑ 𝜇𝑖

𝑐
𝑖=1 )  

The above equation is of the form 𝑦′ + 𝑃𝑦 = 𝑄  whose solution is  

𝐸[𝑋(𝑡)} = 𝑀(𝑡) = (𝜆 − ∑ 𝜇𝑖
𝑛
𝑖=1 ) ∑ ∫ 𝑃𝑛(𝑢)

𝑡

0
𝑐−1
𝑛=1 exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 + 𝜆 ∫ 𝑃0(𝑢) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 +

𝑡

0
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(𝜆𝑝 − ∑ 𝜇𝑖
𝑐
𝑖=1 )∑ ∫ 𝑃𝑛(𝑢)

𝑡

0
exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢∞

𝑛=𝑐                                                                                     (35) 

Variance, V(t): The variance of number of customers in the system at time 𝑡 is given by: 

𝑉(𝑡) = 𝐾(𝑡) − [𝑀(𝑡)]2                                                                                                                               (36) 

𝐾(𝑡) = 𝐸[𝑋2(𝑡)] = 𝑘(𝑡) + 𝑙(𝑡) = ∑ 𝑛2𝑃𝑛(𝑡) + ∑ 𝑛2𝑃𝑛(𝑡)∞
𝑛=𝑐

𝑐−1
𝑛=1   

𝐾′(𝑡) = 𝑘′(𝑡) + 𝑙′(𝑡) = ∑ 𝑛2𝑃′
𝑛(𝑡) + ∑ 𝑛2𝑃′

𝑛(𝑡)∞
𝑛=𝑐

𝑐−1
𝑛=1   

Multiplying (1)-(3) by 𝑛2 and summing over the range of 𝑛, we get 

𝐾′(𝑡) = 𝜆 ∑ (2𝑛 + 1)𝑃𝑛(𝑡) − 𝜓𝐾(𝑡) + 𝜆𝑝[∑ 𝑃𝑛(𝑡)∞
𝑛=𝑐 ] + 2∑ 𝑛𝑃𝑛(𝑡)∞

𝑛=𝑐 + ∑ 𝜇𝑖(𝑐 −  1)2𝑃𝑐(𝑡)
𝑐
𝑖=1

𝑐−1
𝑛=0 +

2∑ 𝜇𝑖𝑃𝑐−1(𝑡)
𝑐
𝑖=1 − ∑ ∑ 𝜇𝑖(2𝑛 + 1)𝑃𝑛(𝑡)  + ∑ 𝜇𝑖[∑ 𝑃𝑛(𝑡)−𝑐2𝑃𝑐(𝑡) + 2𝑐𝑃𝑐(𝑡) −∞

𝑛=𝑐+1
𝑐
𝑖=1

𝑛
𝑖=1

𝑐−1
𝑛=1

 2 ∑ 𝑛𝑃𝑛(𝑡)∞
𝑛=𝑐 ]  

On solving above equation we get 

𝐾′(𝑡) = −𝜓𝐾(𝑡) + [𝜆𝑝 + ∑ 𝜇𝑖
𝑐
𝑖=1 ] ∑ 𝑃𝑛(𝑡)∞

𝑛=𝑐 + 2∑ 𝜇𝑖𝑃𝑐−1(𝑡)
𝑐
𝑖=1 + 2[𝜆𝑝 − ∑ 𝜇𝑖

𝑐
𝑖=1 ]𝑟(𝑡) +   [𝜆 +

∑ 𝜇𝑖
𝑛
𝑖=1 ] ∑ 𝑃𝑛(𝑡) + 3𝜆𝑐−1

𝑛=1 𝑃0(𝑡) + 2[𝜆 − ∑ 𝜇𝑖
𝑛
𝑖=1 ]𝑚(𝑡)  

 

The above equation is of the form 𝑦′ + Py = Q whose solution is  

𝐾(𝑡) = [𝜆𝑝 + ∑ 𝜇𝑖
𝑐
𝑖=1 ] ∑ ∫ 𝑃𝑛(𝑢) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 +

𝑡

0
∞
𝑛=𝑐 2∑ 𝜇𝑖 ∫ 𝑃𝑐−1(𝑢) exp(−𝜓(𝑡 −  𝑢)) 𝑑𝑢 +

𝑡

0
𝑐
𝑖=1

2[𝜆𝑝 − ∑ 𝜇𝑖
𝑐
𝑖=1 ] ∫ (𝑀(𝑢) − 𝑚(𝑢)) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 + 2[𝜆 − ∑ 𝜇𝑖

𝑛
𝑖=1 ] ∫ 𝑚(𝑢) exp(−𝜓(𝑡 −

𝑡

0

𝑡

0

𝑢)) 𝑑𝑢 + [𝜆 + ∑ 𝜇𝑖
𝑛
𝑖=1 ] ∑ ∫ 𝑃𝑛(𝑢) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 +

𝑡

0
3𝜆𝑐−1

𝑛=1 ∫ 𝑃0(𝑢) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢
𝑡

0
  

Therefore, 

𝑉(𝑡) = [𝜆𝑝 + ∑ 𝜇𝑖
𝑐
𝑖=1 ] ∑ ∫ 𝑃𝑛(𝑢) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 +

𝑡

0
∞
𝑛=𝑐 2∑ 𝜇𝑖 ∫ 𝑃𝑐−1(𝑢) exp(−𝜓(𝑡 −  𝑢)) 𝑑𝑢 +

𝑡

0
𝑐
𝑖=1

2[𝜆𝑝 − ∑ 𝜇𝑖
𝑐
𝑖=1 ] ∫ (𝑀(𝑢) − 𝑚(𝑢)) exp(−𝜓(𝑡 − 𝑢)) 𝑑𝑢 + 2[𝜆 − ∑ 𝜇𝑖

𝑛
𝑖=1 ] ∫ 𝑚(𝑢) exp(−𝜓(𝑡 −

𝑡

0

𝑡

0

𝑢)) 𝑑𝑢 + [𝜆 + ∑ 𝜇𝑖
𝑛
𝑖=1 ] ∑ ∫ 𝑃𝑛(𝑢) exp(−𝜓(𝑡 −   𝑢)) 𝑑𝑢 +

𝑡

0
3𝜆𝑐−1

𝑛=1 ∫ 𝑃0(𝑢) exp(−𝜓(𝑡 −
𝑡

0

𝑢)) 𝑑𝑢 – [𝑀(𝑡)]2                                                                                                                                                   (37) 

where 𝑀(𝑡) is given in equation (35). 

VI. Special Cases 

 
Case 1 When there is no balking (i.e. 𝑝 = 0), then the transient state probabilities are same as that 

of the model studied by Dharmaraja and Kumar (2015). 

Case 2 If we remove the catastrophe from the model (i.e. 𝜓 = 0), then the results of our model 

resemble with the model studied by Kumar and Arivudainambi (2001). 

 

V. Conclusions 

 
In this paper the transient analysis of a Markovian queuing system with heterogeneous servers, 

balking and catastrophes is performed. The time-dependent mean and variance of the number of 

customers in the system are also obtained. Some important queuing models are derived as the 

special cases. 
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