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Abstract 
 

In the present paper, several mathematical models of lifts’ systems with various control rules are 

constructed and simulated data are used for estimating the various parameters of the systems. For 

systems with a rare input flow of customers, the graphs, describing the positions of the lifts, at the 

preceding customer’s arrival instant, are given. These graphs help analytically find, the various 

characteristics of the lifts’ systems (a customer’s average waiting time, a customer’s total time, energy 

expenses and others). There are introduced the various control rules by the lift systems, which are 

investigated by simulation. Using Wolfram Mathematica, the authors have prepared several 

programs for simulating and estimating the various operational parameters of the lifts’ systems with 

different control rules. Using these programs, the numerical estimates of the various parameters the 

considered lifts’ systems, have been found. These data can be used for defining the dependence of 

optimal lift roominess on an intensity of input customers’ flow and finding the optimal number of the 

lifts, during planning and construction of the buildings and skyscrapers.  

 

Keywords: simulation, rare flow, lifts systems, customer waiting, service, total time, 

roominess. 

 

 

 

1. Introduction 
 

The development of the modern cities led to an appearance of the huge metropolises like New 

York, Moscow, Shanghai, Istanbul and others, with a lot of skyscrapers. It is difficult to imagine 

today the world metropolises and the modern cities without skyscrapers, where many lifts’ 

systems with various control rules, are used. In the process of designing a Skyscraper, one of the 

important problems is to find the optimal parameters of the lift systems, e.g. to find the optimal 

conditions (roominess, capacity, size) of a lift cabin and reduce the customer’s average waiting, the 

service time and to save energy expenses. The effective approach for such type of investigation is a 

construction of mathematical models, describing lift systems. Although there are a lot of 

similarities between the transportation and traffic problems with lift systems, nonetheless, it is 

necessary to construct new mathematical models and develop the effective approaches for 

investigation these systems, taking into consideration their specifics, because they have different 

and complicated structures. The new approaches and methods can allow estimate the main 

operation parameters (customers’ waiting and service time, energy expenses and others) and 

making necessary recommendations for constructors and engineers. There are a lot of publications 

in this field e.g. [1-5], but complicated lift systems with various control rules, are not yet 

investigated widely. The mathematical models, describing a behavior of lift systems, can be 

applied for other systems with moving servers, for instance, Shuttle and Communication Systems, 
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Traffic and others. In [6] the mathematical models of the systems with one lift, different control 

rules were introduced. One of the effective methods is a simulation by using programs, described 

in Wolfram Mathematica. Then, simulated statistical data can be used to find estimates of different 

parameters for such lift systems.  

Using the given statistical data, the estimates can demonstrate, for instance, the dependence of the 

lifts’ roominess on an intensity of the input flow. More complicated problems appear in the 

investigation of the systems with several lifts. The processes, describing the behavior of the lift 

systems have stochastic and complicated structures. It leads to constructing and investigating the 

new stochastic models, approaches and programs for their simulation. 

 

In this paper, the authors consider various lift systems with different parameters and different 

control rules. This paper can be regarded as a continuation of the investigations presented in [6] 

and hence, we will follow the notations introduced in that paper.  

 

In contrast to [6], in this paper there are considered various lift systems with several lifts, together 

with the average waiting and service time and other characteristics. An important parameter such 

as energy expenses can also be investigated. For such issues, the analytical approaches are faced 

with some problems. Hence, for complicated systems, the methods of collecting the simulation 

data can also be used. This gives the effective results and allows draw useful conclusions for 

practice. Some approaches are suggested in [7-9]. The behavior of lift systems can also be described 

by mathematical models of moving particles. Some models are suggested in [10-12] and these 

methods can be applied for the lift systems. 

 

 

2. Various control policies for the lift systems 
 

As it was mentioned above, the construction of skyscrapers in the modern cities requires the 

creation of different control rules in lifts’ systems, which reduce the customer’s waiting time and 

energy expenses. There already exist such control policies, called Odd-Even (some lifts serve 

customers at the odd floors and other lifts at the even floors), or some lifts serve customers, at the 

floors 1, 2, …, N others at 1, N+1, N+2, …, 2N. To save time, we need new more effective control 

policies for the lift systems, which can minimize the expenses for their construction and optimize 

some parameters (waiting and service time, minimization of energy resources, increase the life-

time of the lifts, working without repairs and others). There exist many control policies in the 

world, for instance, the FIFO service (first come, first outcome), LIFO (last come, first outcome) and 

others. If the lift comes to a customer at the first floor, who first called it, then this lift can serve this 

customer plus only other customers going to upper floors than this customer (e.g. so as in Hilton 

hotel in Baku). An interesting unofficial control policy was created in the seventy years of the XX-

th century, by the students in the dormitory of the Lomonosov Moscow State University. There are 

18 floors in the student dormitory and two lifts’ halls with four lifts in each.  

 

The first lift hall operates from the 1st to 12th, 14th, 16th and 18th floors. For the lifts work more 

rapidly, it was skipped the odd numbered floors, after 12th. There is also a second lift hall for 

serving the 1st-10th floors. If in the first hall, a lift came to the first floor and the first student yelled 

the word “HIGHER”, then, the lift would be filled by students who are going up only to the higher 

floors (16th and 18th) and the next lift will be filled by students who are going to the 12th, 14th, 16th 

and upper. If the first call had been “LOWER”, then the lift would have operated between the 

lower floors (12th, 14th and afterward, to the other upper floors). The students called it a Higher-

Lower system. In [8, 9], a comparative analysis of simple different control policies has been done.  
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The comparison of the control system “Higher-Lower” with “Even-Odd” showed an advantage of 

“Higher-Lower” control policy (the customer’s average waiting time before service is shorter). For 

each control policy, it is possible to construct mathematical model, which show a preference of 

these systems. 

 

3. The mathematical models of the lift systems 

 
Below, if unless otherwise agreed, it will be considered the stationary regimes for the lift systems 

operating. Following [6], we will construct the mathematical models of the lift systems and remind 

the following notations: 

 

LkFnCxx – is the systems with k lifts, n floors and control policy xx; 

i - is an ordered in time identifying number of a customer during one day simulation; 

fa (i) - is the floor of appearance of the i-th customer; 

fd (i) - is the floor of destination of the i-th customer.     

It is necessary to note that for different i the fa (i) and fd (i) can take the same value.  

ta (i) - is the instant of appearance of the i-th customer; 

tb (i) - is the instant of the beginning service of the i-th customer;  

te(i) - is the instant of end service of the i-th customer; 

tc(j) - is the instant when lift on j-th cycle is returning to the 1-st floor; 

r - roominess, restriction on maximum possible number of customers who can be in the lift cabin; 

hf - time necessary for lift to move up or down between two neighbor floors; 

hd – time spending for opening and closing the floor’s door; 

 

Usually, in practice, hd=2hf. If we consider stationary input flow, then, the following parameters 

are used: 

 

lf1f2 –intensity of customers’ flow, who appear at the f1-th floor and want to go to f2-th   

l1 = ∑  𝑛
𝑘=2 l1k - intensity of customers flow, who appeared at the first floor and are going to upper 

floors; 

l2= ∑  𝑛
𝑘=2 lk1 –intensity of customers’ flow, appeared at upper {2, 3, …, nf} floors, who want to go 

down to the first floor. 

 

We would like to remind that in [6], it was also introduced the following specific characteristics for 

the lift systems: 

CWT(fa, fd ) – Customer average Waiting Time (fa, fd) – is defined as mean waiting time for 

customers going from the fa floor to the fd floor. It is measured as the time interval {ta(i), tb(i)) from 

the instant of the customers’ appearance at the fa floor, until the instant when the customer comes 

into the lift cabin, going (in the direction of the fd floor) to the desired fd floor; 

CWT(fa) – Customer average Waiting Time (fa) is defined as the mean time for customers going 

from fa floor, to any other floor (upper or lower floors). It is measured from the instant of the 

customers’ appearance at the fa floor, until the instant when customer comes into the lift cabin, 

going to desired destination floor;   

CST(fa, fd) –  Customer average Service Time (fa, fd), is the mean time defined for the customers 

coming into the cabin on the fa floor and going to the fd floor. It is measured from the instant when 

a customer comes into the cabin of the ordered lift, moving from the fa floor (in the direction of the 

fd floor), until the moment when the customer leaves the lift at the fd floor. 

      

Generally, if any characteristic has index i, then, it is a random variable, for instance CST (fa(i), fd(i)) 

is a random variable. 
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CST (fa) – Customer average Service Time, which is going up or down, from fa floor to the desired 

floor;  

CST(S) – Customer average Service Time in the system S, i.e. mean time from the instant when a 

customer gets the lift, until the instant when the customer gets off the lift;  

CTT(S) – Customer average Total Time in the system S, which is measured as a mean time from the 

instant when a customer arrives into the system until the customer, gets off the lift (arrival to 

ordered floor). 

 

For instance, CTT(LkFnCxx) is a customer average total time, for a system in a building with k lifts, n 

floors and control policy xx.  

 

Finally, in the loading regime, we will be interested in customers’ average total time, who are 

going from the first floor to the upper floors. In the unloading regime, it will be the customer’s 

average total time, who are coming from the upper floors to the first floor.  This time includes 

possible stops on intermediate preceded floors, ordered by other customers, being in the same 

cabin. 

LRC – Average Lift Return Cycle time, i.e. the mean time interval between two neighbor comings 

of the lift, to the first floor. 

In this paper, in distinction of [6] we also introduce the new parameters for the lifts systems, which 

describe the lift energy expenses and the single race time: 

LEEj (S) – Average value of the j-th Lift Energy Expenses in the system S, measured in Kw 

(kilowatt); 

 

Note that Energy Expenses in Kw depend not only on the volume cabin weight, but also on its 

speed, acceleration and deceleration. Empirically, electric Energy Expenses can be shown each day, 

on the electric counter of each lift. 

SRT(t) – Average Single Rate Time, i.e. mean time when the lift is moving without customers, 

during time t; 

SEE(S) – average value of System Energy Expenses, i.e. mean value of energy expenses of all the 

lifts in the system (S)  

SEE(S)=LEE1(S)+LEE2(S)+…+LEEn(S); 

kd – coefficient, defining the energy expenses of the lift, during a unit time for opening and closing 

the doors; 

kf – coefficient, defining the energy expenses of the lift during a unit time necessary for covering 

the distance between two neighbor floors.    

 

Remind the lift system giving service for 1, 2,…, nf   floors with k lifts and control policy xx, will be 

denoted as LkFnCxx.  

 

Control policy xx=IL means a system without control, i.e. all the lifts are operating independently 

to each other. Sometimes, such a system is denoted as LkFnCIL (Independent Lifts).   

For an IL control system, if at the preceding instant of a new customer’s arrival, several lifts are 

free (empty), then, all of them will go to this customer’s call. Such systems are often used in the 

buildings with two lifts.  

LkFnCDL is the system with k Dependent Lifts, n floors (for a customer’s call, the Draws the nearest 

Lift is going). 

L2FnCn1,n2 is the system with 2 lifts, n floors and after completing the customer’s service, one lift 

must go to the n1 floor if there is no lift, otherwise, it should go to the n2 floor.  

Below, we consider systems with a rare input flow. 
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 4. Unloading regime in the systems with rare flows of customers. Definition 
 

We will say that a flow of customers is rare, if at the instant of a customers’ arrival, all the lifts are 

available. Such situations are observing: 

a) in the office buildings, between 10.00-12.00 (when offices have very few visitors); 

b) in the buildings, between 10.00-12.00 and 15.00-17.00 (when old people with infant children can 

go for a walk); 

c) in the shopping malls, if, at the instant of customers’ arrival into the system, 

all lifts are occupied, then, the customers use escalators.  

 

Remark 4.1 According to the above-mentioned paragraph c), such flows or point processes can be 

called as the flows or point processes, transforming themselves into the point processes with rare 

intensity (transformed flows or point processes). 

 

We consider IL policy (L2FnCIL), which means that if both lifts are free (empty), then at the next 

customers’ call, both lifts (perhaps from different floors) are going simultaneously. Such situations 

can be observed in buildings where each lift has an individual call button and when those buttons 

are pushed simultaneously.  

 

Then, for that system, at the preceding of a customer’s instant arrival, one lift occupies the first 

floor, the other k-th(k=2,3,..,n) floor,(see, Fig.4.1).Below, in all Figures, the blue color means lift is 

free and the red color means that lift is occupied. 

 

 
 

Fig.4.1 

 

x1=ta(1), x2=x1+(f1-1)hf , x3=x2+hd=tb(1), x4=x3+(f1-1)hf, x5=x4+hd= te(1),  

x6=ta(2), x7= x6+(f2-f1)hf, x8=x7+hd=tb(2),x9=x7+(f2-1)hf, x10=x8+(f2-1)hf,  

x11=x10+hf =te(2), x12=x11+(f2-f1)hf, x13=x12+hd=tb(3); x14=x11+(f3-1)hd,  

x15=x13+(f3-1)hd. 
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Thus, we get: CWT(L2FnCIL)=hf (n-1)/2+hd , CST(L2FnCIL) = hf(n-1)/2+hd and 

CTT(L2FnCIL) = hf (n-1)+2hd;  LEE(L2FnCIL)=kf (n-1)hf+2kd hd.  

 

For SRT (average energy spent for one call) during the one-unit time we have 

SRT=kf hf [(n-1)/2+(n-1)/4]+mkd hd = kf hf [3(n-1)/4]+m kd hd. For Poisson input flow during the time t, 

an average number of arrived customers into the system, equals t. Hence,  SRT(t)= (kf hf 3(n-

1)/4+mkd hd )t. As T is an average number of arrivals during the time T, then Tkf hf (n-1) is an 

average energy which lift spends for serving the customers (motion of lift), during time T. As at 

each arrival instant, an average number of customers equal m, then Tm is average number of 

customers arrived during the time T into the system. For each customer’s arrival, the lift spends 

the time hd for opening and closing the door. If we assume that each customer spends time hc 

coming in and getting off a lift, then, the mhc is the time, which was spent for the m customers 

(coming in and getting off). Hence, a customer average energy spent for opening and closing the 

door, for customers coming in the lift and getting off equal  T kd hd+ 2 Tm hc= T(kd hd+m hc). 

Thus, we have LEE(L1FnCIL)= Tkf hf (n-1)+2 T( kd hd+mhc). Below, for simplicity, we assume hc =0, 

which means that during the time hd all customers who want to come in and get off a lift, can do it. 

 

4.1. Unloading regime for system L2FnCDL 
 

We would like to remind that DL means that for a new customers’ arrival, only the draws nearest 

lift which will operate. Then, at the preceding of the moment of the customer ‘s arrival, both lifts 

occupy the first floor, which means that in fact, only one lift is operating (see, Fig.4.2). 

 

 
 

Fig.4.2 

 

x1=ta(1), x2=x1+(f1-1)hf, x3=x2+hd=tb(1), x4=x3+(f1-1)hf, x5=x4+hd= te(1),  

x6=ta(2), x7= x6+(f2-f1)hf, x8=x7+hd=tb(2), x9=x7+(f2-1)hf. 

In fact, in an unloading regime, the system L2FnCDL is operating like a system with one lift, i.e. 
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L1FnCIL.. In Fig.4.2, the lifts’ positions at different instants, for the system L2FnCDL, are shown.  

Hence, we can calculate 

CTT(L2FnCDL)=(n-1)h1/2+h2  and SRT(L2FnCDL)=(n-1)h1/2h1+h2 

 

It is easy to calculate all the characteristics and we leave it to the reader. Hence, for this case of a 

rare input flow (unloading regime), the system L2FnCIL is preferable to the system L2FnCIL (CTT is 

less). 

5. Loading regime for system L2FnCIL. 
 

We assume 12=13 == 1n and  1=k=2
n1 represent the intensity of the transformed flow of 

customers (transformed point processes) and 21 = 31 == n1=0. As it was mentioned above, 

such a situation can be observed in the residence building, between 10.00-12.00 hours. It is clear, at 

the preceding of a customer’s arrival instants, one lift occupies the first flow, another j-th (j=2, 3, 

…). 

 

 
 

Fig.5.1 

 

x1=ta(1)=tb(1), x2=x1+(f1-1)hf, x3=x2+hd=te(1), x4= ta(2)= tb(2), 

x5= x4+(f2-1)hf, x6=x5+hd= te(2), x7=ta(3)=tb(3), x8 = x7+(f3-1)hf,  

x9=x8+hd=te(3), x10=x7+(f2-1)hf. 

  

5.1 Loading regimes for system L2FnCDL 
 

At a customer’s call, only one lift goes, i.e. the nearest lift. Then, starting from the third customer, 

at the preceding of a customer’s  arrival instant, based on the same probability, one lift occupies f1-

th (f1 = 2,3,…n;) floor, another f2 -th (f2=2,3,..n;) floor (see Fig. 5.2). 
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Fig.5.2 

 

x1=ta(1)=tb(1),x2=x1+(f1-1)hf,x3=x2+hd=te(1),x4=ta(2)=tb(2),x5=x4+(f2-1)hf, x6=x5+hd=te(2), x7=ta(3), x8=x7+(f3-

1)hf, x9=x8+hd=tb(3), x10=x9+(f1-1)hf. 

 

Remark 5.1. In the loading regime the behavior of the system L2Fn CDL coincides with the behavior 

of the system L1FnCIL, because as soon as one lift reaches the last (n-th) floor, afterward in fact, only 

one lift (which occupies the first floor) is operating, because it will always be a nearest lift for the 

arrived customer. 

 

6. Calculating various characteristics of the lifts’ system L2FnCIL (two lifts, n floors, 

independent lifts). Loading regime 
 

As we consider L2FnCİL system, then, at customers’ call, both lifts go independently from each 

other. Taking into consideration that in the loading regime, at the preceding customer’s arrival 

instant, one lift occupies the first floor, another one j-th (j=2, 3,..., n) floor (see Fig. 5.2). Then the 

calculations yield to: 

CTT(L2FnCIL)=(n(n-1)(2n-1)/8+(n-1)2(n-2)/2)hf /(n-1)2+hd=(3n/4-1/8-1/8(n-1))hf+hd; 

SRT(L2FnCIL)=(n(n-1)(2n-1)/24+(n-1)(n-2)(2n-3)/6)hf /(n-1)2+hd=  

= [5n/12-19/24+5/24(n-1)]hf+hd. 

 

Denote 

           a=1/8-1/8 (n-1) = (1/8) (1-1/(n-1))=(1/8)[(n-2)/(n-1)]<0.125;  

           b=-19/24+5/24(n-1) =(1/24)[5/(n-1)-19]/<0.8; 

 

As CTT and SRT are linear functions of n, with coefficients 3n/4 and 5n/12 and /a/<0.125 and 

/b/<0.8, then, for n>10  we can neglect a and b and hence, put: 

CTT(L2FnCIL)=(3n/4)hf+hd; SRT(L2FnCIL)=(5n/12)hf+hd. (6.1)                                

If we put hf =1, hd=0, then  CTT(L2FnCIL) = 3n/4, SRT(L2FnCIL) = 5n/12. 
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6.1 System L2FnCIL (two lifts, n floors, independent lifts). Mixed regime 
 

12 = 13 == 1n ,   1 =k=2
n1k  , 21 = 31 == n1, 2= k=2

nk1 are the intensity of the 

transformed flows of customers. In this case, at the preceding customer’s arrival instant, one lift 

occupies the first floor and another f-th floor (f=2, 3,…,n). The probability to have a customer at the 

first floor is 1/(1 + 2) and at the other (upper) floors, it equals 2/(1 + 2). Thus, for a 

Customer Total Time and Single Race Time after the routine calculations we have 

 

CTT(L2FnCIL)=(((+))((n−))+(+))((n−))((n(n−)(n−))+ 

+(n−)(n−))hf+hd 

SRT(L2FnCIL)=( (+ ))((n−))+  (+ )((n(n−)(n−))+ 

+(n-1)(n-2)(2n-3)/12)hf+hd. 
 

If n>10 then we have the following formulas 

 

CTT(L2FnCIL) = ((n/4)(2+ ) ( + )) hf+hd; 

SRT(L2FnCIL) = ((5n/24)   ( + )) hf+hd.                                  (6.2) 
 

Corollary 6.1. If  =  , then, it follows from formula (6.2): 
CTT(L2FnCIL)=(5n/8)nhf+hd; SRT(L2FnCIL)=(5n/48)hf+hd                         (6.3)    

 

Introduce the control policy, which means that at the end of a customer’s service instant, the lift 

should go to the f1-th floor (if there is no lift), otherwise, the lift must go to the f2-th floor. Our aim 

is to find f1 and f2, which minimizes the value of CTT(L2FnCxx). Then, at the preceding of a 

customer’s arrival instant, one lift occupies f1-th floor, another f2-th floor. Similarly, to (6.3), we 

have: 

 

CTT(L2FnCf1f2)=((+))(f1-1+(n-1)/2)+((+))((f1-1)2/(n-1))+f1+ 
+(f2-f1)/2(n-1)((f2-f1)/2+f1-1)+((f2-f1)(f2-1)/2(n-1)+(n-f2+f1-1))hf+hd; 

SRT(L2 Fn Cf1f2)=((+))(f−)h1+((+))(f1-1)2/2n+((f2-f1)24(n-1)+   

+(n – f2)/2(n-1))hf+hd.                                                                              (6.4) 
If hf=1 and hd=0, then for n>10 we have   

f1=max[1,(n/4)(1-3); f2= (f1+2n)/3                                   (6.5) 
 

Using (6.4) and (6.5) we have 

CTT(L2FnCf1f2)=(((+))(f1-1+(n-1)/2)+  +((+))((f−)+(n−f)(f+2n−))3(n-1) 

SRT((L2FnCf1f2)=((+))(f−)+((+))((f−)+(n-f1)2)/6(n-1)   (6.6)               

                                                    
Remark 6.1. For a rare flow, if  =, then, it follows from (6.6), that f1=1. In this case, in fact, 

only one lift operates, because in the end of the service, it comes to the first flow and there are no 

customers in another floor. Therefore, it does not matter the location of the second lift.  

 

Such systems can be used in the residence buildings, where there are two lifts with different 

capacities. The lift with a larger capacity is used for the delivery of the furniture and other big 

goods. For n>10, it follows from (6.6)  

 

CTT(L2FnC1,1) = (n-1)/2, SRT(L2FnC1,1) = 0. 
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Remark 6.2. For a rare flow, if = 0, > 0, then, for n>10, it follows from (6.5) and (6.6)  

f1=n/4, f2=3n/4,  

CTT(L2FnCf1,f2)=5n/8, SRT(L2FnCf1,f2) = n/8                   (6.7) 

i.e. at the preceding customer’s arrival moment, one lift should occupy (n/4) –th floor, another 

(3n/4)–th floor. 

 

The comparison (6.5) and (6.6) shows that introduced control leads to an advantage in a customer’s 

average service time 16% and regarding the single race time 10%. 

 

Remark 6.3. If  then for n>10 it follows from (6.6) and (6.7) 

 

f1=1,f2=2n/3,CTT(L2FnCf1,f2)=7n/12,SRT(L2FnCf1,f2)=(n/12),                                                                    (6.8) 

 

i.e. at the preceding customer’s arrival moment, one lift must occupy the first floor and another, 

2n/3 floor (see, Fig.6.2). We assume that 2n/3 is an integer number 

 

x1=ta(1)=tb(1),x2=x1+(f1-1)hf,x3=x2+hd=te(1),x4=ta(2)=tb(2),x5=x4+(f2-1)hf, x6=x5+ +hd=te(2),x7=ta(3),x8=x7+(f3-

1)hf,x9=x8+hd=tb(3),x10=x9+(f1-1)hf,x11=x10+hd= te(3). 

 

 
 

Fig.6.2  

 

x1=ta(1)=tb(1), x2=x1+(f1-1)hf, x3=x2+hd=te(1), x4=x3+(2n/3-f1)hd,  

x5 =ta(2), x6= x5+hd, x7=x6+(f2 -1)hf , x8=x7+hd, x9= x8+(f2-1)hf,   

x10= x9+(2n/3-f3)hf, x11= x10+hd, x12= x11+(f3-1)hf, x13= x12+hd, x14= x13+(2n/3-1)hf. 

 

In Fig.6.2, there are shown the lifts’ positions at different instants, for the system L2FnC1,2n/3. At the 

preceding of a customer’s arrival instant, one lift occupies the first floor, another floor 2n/3 (see, 

Fig.6.2; (x5, x9, x14)). The comparison (6.8) with (6.9) shows that the control gives an advantage of 

the customer’s average service time of 4% and regarding the single race time, of  2%. 
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Consider the system LlFnCf1,f2,..,fl, where l – is a number of lifts in the system. Denote fj (j=1,2,..,l) the 

floor, which must be occupied by j-th lift in an optimal regime.  

 

We will show that for the system LlFnCf1,f2,..,fl in the mixed regime f1,f2,…,fl , the following recurrent 

formulas are applied: 

2(n-1)+ (3f1-f2-2) = 0 
fi-1 -2fj+fj+1=0, j=2,3,…,l-1                                                                                                              (6.9) 

2n -3fl+fl-1=0 

Below, in Fig.6.3, there are shown the lifts’ positions at the different instants, for the system Lk 

FnCf1,f2,…,fl. We remind that ti   is a customer’s arrival instant into the system. If we put l=3 then f1, f2, 

f3 satisfies the equation (6.9). According to an optimal control at each preceding customer’s arrival 

instant, one lift must occupy f1-th floor, another f2-th floor and the third lift - f3-th floor. Suppose 

that n>10. Then,  

 

f1=max[1, n+( − (−)(−)l =max{1, n/2l(1-(2l-1) ) 

fj=f1+2(j-1)(n-f1)/(2l-1)= f1[1+2(j-1)/(2l-1)]+[2(j-1)n/(2l-1)]= 

= f1[2(l-j)+1]/(2l-1)+2n(j-1)/(2l-1),                                                                                                             (6.10) 

 

where (6.10) is the unique solution of (6.9). 

 

Let’s put l=3,  =, then, for n>10, we have f1=1, f2=2n/5, f3=4n/5, (see Fig. 6.3) 
 

 
 

Fig. 6.3 

 

In the Fig. 6.3, there are shown the lifts’ positions at the preceding customer’s arrival instant, for 

the system L3FnCf1,f2,f3. 
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Remark 6.4. For the system L3FnCf1,f2,f3 starting from some moment at the preceding of a customer 

arrival instant lifts have the position shown in the Fig.6.3.  Customers arriving to the floors 

1,2,…f1/2 will be served by the first lift, customers at the f1/2, f1/2+1,… f1, f1+1,…,f2-f1 by second lift 

and so on. After finishing service i-th lift must come to the fi floor.  

 

7. Simulation of the systems with several lifts in loading and unloading regimes 
 

In [6], based on Wolfram Mathematica, several programs had been developed for the simulation of 

the input data and imitation systems with one lift. Here we consider two lifts systems, using 

related developed programs. The numerical comparison between such parameters as the waiting 

lift times CWT and the total time CTT show the advantage of the two lifts systems. The programs 

for the simulation systems with two lifts had been developed and they will be applied below. 

Systems with more than two lifts have more complicated structures and a special approach will be 

realized later. 

 

Let us consider an office building where offices are placed on floors from 2 up to n, e.g. n=10. On 

each of the even floor 2, 4, 6, 8, 10 there are 20 working places for customers. On each odd floor 3, 

5, 7, 9, there are 30 working places for customers. Altogether there are nc=220 working places for 

customers in the building. Every morning, during a time interval, e.g. half hour (tm=1800 Sec), all 

the customers should be on the floors which have their offices and should start to work. In large 

towns, it is difficult to reach a certain building at scheduled time. Therefore, we use approximate 

the time when the customers reach their offices at independent times, uniformly distributed over 

the time interval tm=1800 Sec.  

 

We also suppose that for any customer who had come at the 1st floor lift hall, at uniformly 

distributed time ta, in the time interval tm, and his destination floor fd was randomly selected, 

without the repetition of the list of all the working places in this building, We created the program 

simulated for each i-th customer at his initial four-plot history {i, 1, fd, ta}. The i-th customer waits 

for the lift, during a time tb, when the customer can come into the lift cabin. The lift is going up and 

reaches the destination floor fd , at time te. Then, the customer goes out from the cabin. His initial 

history extended to {i, 1, fd, ta, tb, te}. We have also created a program which produces these 

extensions of histories for all the customers. The efficiency of a lift’s system can be evaluated by 

estimating CWT and CTT, by using the obtained extended histories. In the following table, these 

parameters were estimated using the data of the loading work by 1- lift system with roominess 

r=10. 

 

Floor 2 3 4 5 6 7 8 9 10 

 

CWT 54.458 63.217 40.180 56.152 56.936 65.222 66.083 47.991 55.474 

 

CTT 64.458 79.217 62.680 82.819 90.436 102.389 108.334 95.325 109.974 

 

 

Table 7.1. Estimates of mean values CWT-waiting cabin time and CTT total time destination all 

floors by 1-lift system with r=10 in loading process are given below. 

 

Тhis table shows the weak dependency parameters CWT and CTT from roominess. Therefore, we 

can accept r=10 as an appropriate value of the cabin’s roominess. But in the case of unloading the 

parameters CWT and CTT, it will be too large, if r=10. This problem with 1-Lift system can be lost 

by increasing the cabin roominess, say to take r=16. But the most natural way to solve this problem 
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will be the use of a 2-Lift system with r=10, for both lifts, in loading and unloading cases. Consider 

the system with one lift in an unloading regime with a line decreasing probability density in a time 

interval with a length tm=1800 Sec. The line probability density is a hypotenuse in triangle with two 

orthogonal sides with lengths tm and 1/ (2 tm).  Then, S[x] =1-2 x/tm + (x /tmT)2 is a probability in the 

randomly taking initial history ta >x. The graphic of S[x] is shown below: 

 

 
 

Fig.7.1. Probability function S[x] 

 

Let the lift goes from f1 floor down and there are some customers at the lower floors f2 (f2 < f1), who 

will go down to the 1-st floor. Then the lift must stop at the f2- floor, only if, due to the lift’s 

roominess, there is a free space in the cabin. Otherwise, the lift passes f2 without stopping and the 

customers at the f2-floor must wait for another appearance of the lift. We are interested in the 

problem of finding the dependence of CWT and CTT on lift’s roominess. Our programs regarding 

the simulation of such systems are based on a conception of the lift’s cycles.  The lift’s cycle is 

defined as the time interval between two sequential instants when the lift arrives to the first floor 

and all the customers (if there are) leave the lift cabin. At the end of the lift’s cycle, all 

characteristics of the system can be calculated by using of the extended six-plot histories {i, fa, fd, ta, 

ts, te}. Note that in this paper only one-day data are used, but our programs can work with many 

independent days’ data. Then, the accuracy of the table’s numbers will be exact. Below, Table 7.2, 

demonstrates the dependency of CWT and CTT on the value of the lift’s roominess. 

 

R 8 10 12 14 16 18 20 22 

CWT 382.3 236.0 146.0 90.1 64.0 51.4 43.8 43.0 

CTT 400.7 255.7 167.6 112.7 88.6 77.9 70.5 69.8 

  

Table 7.2. The estimated mean values of CWT and CTT, over all floors in an unloading process, are 

given using the customers’ one-day data, for one lift with different values of roominess. 

 

From Table 7.2 we can see that by increasing the lift’s roominess we obtain a reduction of CWT 

and CTT. Here we do not consider the problem of the accuracy s numbers in the Tables.  However, 

note that the large values of roominess imply undesirable big sizes of the lift’s cabin. Here we face 

the necessity to find a solution to the problem. We consider that instead of one lift with a large 

roominess it is worth trying to use two lifts with a smaller roominess. We suppose that these two 

lifts are independent. We consider systems with 2 lifts which are serving different floors. Let the 1st 

lift stop at odd floors 3, 5, 7, 9 and the 2nd lift stop on even floors 2, 4, 6, 8, 10. Suppose that both 

lifts have the same roominess r=10.  For each lift, we can use our programs with initial simulation 

and extended histories in loading and unloading processes. Using these two lifts’ similar 

parameters, e.g. hf=2.5; hd = 5; nc = 220; tm=1800 Sec. 

 

 



Belyaev Y., Hajiyev A. 

MATHEMATICAL MODELS OF SYSTEMS WITH SEVERAL LIFTS AND 

VARIOUS CONTROL RULES 

RT&A, No 2 (57) 
Volume 15, June 2020 

 

34 

 

Floor 3 5 7 9 

CWT 38.339 33.811 33.986 37.515 

CTT 43.339 47.478 56.486 68.349 

 

Table 7.3. Customers’ estimates of mean values CWT - waiting times and CTT - total serves 

customers’ times during unloading for Lift-1 used on odd floors 3, 5, 7, 9. 

 

Floor 2 4 6 8 10 

CWT 44.425 28.631 41.062 31.321 29.299 

CTT 46.925 39.381 59.812 56.821 63.049 

 

Table 7.4. Customers’ estimates of mean values CWT - waiting times and CTT - total serves 

customers’ times during unloading for Lift-2 used on even floors 2, 4, 6, 8, 10. 

 

In both Table 7.3 and Table 7.4, CWT and CTT take fewer values than in the system with one lift 

and r=10.Thus, we have found the solution to the problem. We use only one lift with a large 

roominess or instead of one lift with a large roominess, we use two or more lifts with less 

roominess. The simulation of the systems with 2 lifts shows that the cycle time is less and 

moreover, both CWT and CTT take smaller values than in the systems with one lift with the same 

roominess. 

 

8. Conclusions 
 

In the paper, for various lifts’ systems, the universal mathematical models have been constructed 

and the main characteristics (CWT – a customer’s waiting time before service, CTT – a customer’s 

total time, roominess of the lift’s cabin and others), are introduced. It is also introduced the new 

type of customer flows, called transforming flows (transforming point processes). Such processes 

can be transformed from any point process into processes with a rare event. For such flows of 

customers, by analytical approaches, the formulas for calculating the main characteristics of 

efficiency lift systems (CWT, CTT and others) are suggested. The various control rules, reducing 

the different characteristics of the lifts’ systems are introduced. The several graphs, reflecting the 

behaviour of the different lift systems, are shown. The introduced characteristics allow find the 

optimal number of lifts in buildings and skyscrapers. The paper offers an important solution for 

investigating the lifts’ systems, which are natural in modern metropolises. Simulations works of 

lifts’ models is the base for such investigations which adequately describe the lifts’ systems 

behaviour.  

 

Collecting and analysing the data of the simulations allow obtain the suitable recommendations 

for planning the future lifts’ systems. The programs for the simulation of the lifts’ systems have 

been prepared. Numerical examples show how the optimal roominess of a lift’s cabin can be 

ensured.  

 

The authors express their gratitude to Mrs. Valentina Belyaeva for her support in preparing the 

programs for the simulation and calculation characteristics of the lifts’ systems. 
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