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Abstract 

 

Power generation and distribution systems are part of a nation’s critical infrastructure. 

Power losses or outages are random with a learning trend of declining size with 

increasing experience or risk exposure, with the largest outages being rare events of low 

probability. Data have been collected for power losses and outage duration affecting 

critical infrastructure for a wide range of events in Belgium, Canada, Eire, France, 

Sweden, New Zealand and USA.  A new correlation has been obtained for the probability 

of large regional power losses for outage scales up to nearly 50,000 MW(e) for events 

without additional infrastructure damage that have been generally fully restored in less 

than 24 hours. For more severe events, including damage due to natural hazards (floods, 

fire, ice storms, hurricanes etc.), the observed variation in the duration of the outage up to 

more than 500 hours depends on the degree of difficulty. The irreparable fraction data 

range (the “tail” of the distribution) indicates that the chance of remaining unrestored is 

small but finite, even after several hundred hours. Therefore, explicit expressions have 

been given and validated for both the probability and duration for the full range from 

“normal” large power loss out to extended outages for rare and more “severe” events with 

greater access and repair difficulty. 
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I. Introduction 
 

Power generation and distribution systems are part of a nation’s critical infrastructure. 

Everyone everywhere on losing their electricity supply want to now how long the power will be 

“out”.  The chance of a large blackout, power loss or supply interruption is key to planning 

adequate supply margins, undertaking emergency response and protecting other critical 

infrastructure [1]. We are interested in the prediction of the probability of a large rare outage or 

power loss event and its duration. There is a gap in the knowledge between overall reliability 

studies of electric grid reliability and concerns and the impact of rare and record events and 

natural disasters (e.g. recent Hurricanes Katrina, Sandy, Harvey and Florence in USA) whose 

extensive flooding and damage caused multiple power outages and delayed restoration.  It is such 

major disasters that are of concern for infrastructure fragility, and we need to estimate their 

probability or chance of occurrence and the timescales for restoration [2]. 
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II. Method 

 

I. Power loss and restoration data  
 

The national power loss data is derived from Kearsley [3] for large blackouts in France, Sweden 

and Belgium, being for a range of 28,000, 11,400 and 2,400 MW(e) initial losses, respectively. 

  

For the entire USA for the period 1984-2000, the IRGC report [4] gives a plot of the exceedence 

probability of an outage, P, versus the size, Q, in MW(e). Basically, a sample of power loss or 

outages were observed and counted; and similar plots by sub-region have also been presented and 

fitted using empirical binomial, Weibull and lognormal distributions [5]. These distributions are of 

course heavily weighted by the many “normal” or everyday outages, not rare catastrophic events. 

Since we wish to predict the low probability “tail” of the distribution such standard statistical 

methods are not applicable, as clearly evident in their Figure S-28.  In addition, Murphy et al [5] 

also looked to see if outages were linked, and concluded: “…that the largest correlated failure 

instances were caused by extreme weather”. This observation is precisely what we should expect 

given the large geographic scale and impact of natural hazards (storms, hurricanes, floods, ice 

storms and wildfires) and the consequent universal power restoration characteristics [2].  Large 

NH events do not respect or recognize human-drawn boundaries or arbitrary grid distribution 

regions, and cause event-related damage and destruction over wide swathes. 

 

The original IRGC data were from the NERC database, and were shown as a graph with dots and 

lines on a log-log plot; but because of the unavailability of the data1, we were forced to hand 

transcribe using enlarged images. The error so incurred is a maximum of about 5% in probability 

for exceeding a given power loss or outage, Pi, which is sufficient accuracy for the present 

purposes of rare event prediction (see below).  For the observed sample total outages each has a 

probability, Pi, we define the likely mean or probable average outage as, 

  

𝑄 ̅ =  ∑𝑃𝑖  𝑄𝑖

𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

The IRGC [4] data then have an average expected outage of �̅� = 95 𝑀𝑊(𝑒). 

 

Our earlier work examined the duration of very large outages or power losses at the national level 

[6]. The extensive power restoration data included many severe events e.g. storms, ice storms, 

fires, hurricanes, cyclones and floods, causing outages lasting from 24 to 800 hours over a wide 

range of urban, regional and international scales [2].  

 

In all cases, the affected power companies, emergency management organizations and government 

agencies deployed vast numbers (sometimes many thousands) of staff, repair crews, equipment 

and procedures to address power recovery, evacuate people and repair damage. Essentially 

restoration only can and does proceed “as fast as humanly possible”, limited by damage, access 

and social disruption issues caused by flooding, storms, fires, wind, ice and snow, and as stated by 

DHS  [7] “the restoration of the grid is generally the same across all hazards”. 

 

 

 
1 We have asked a lead author for access to the original data files and numbers forming the basis 

for the plot. Surprisingly for such important records, the actual NERC data for the USA are 

proprietary (privately owned) so the line drawings are apparently all that are publically or openly 

accessible. 
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II Theory 
 

The first key assumption is that the power outages are indeed random, whatever the cause. 

Secondly, there should exist a learning trend declining with increasing experience or risk exposure. 

Thirdly, as shown by the data, we should also expect the largest outages to be rare events of lower 

probability. The learning hypothesis theory, where the rate of decrease of the failure rate, λ, at any 

risk exposure or experience, ε, is proportional to the rate, has a failure rate given by [8]: 

 

𝜆(휀) =  𝜆𝑚+ (𝜆0−𝜆𝑚)𝑒−𝑘𝜀                  (1) 

 

Here, λ0 and λm are the initial and smallest attainable rates, respectively, and k is the 

proportionality constant. Hence, as usual, the probability is  

 

 𝑃𝑖(𝑙𝑜𝑠𝑠) = 1 − 𝑒−∫𝜆(𝜀)𝑑𝜀 =  1 − 𝑒−(
(𝜆−𝜆𝑚)

𝑘
 )                                    (2) 

  

Therefore, we take the failure rate, λ, as equivalent to the power loss or outage rate. The measure 

of the relative risk exposure or experience measure is self-evidently actually directly proportional 

to the power outage magnitude, ε=f(Q), which we can scale relative to the average outage 

magnitude, �̅�. We may assume the outages are always essentially completely restored, so we may 

take, 𝜆𝑚 ≪ 𝜆 ≈  𝜆0  𝑒
−𝑘𝜀 . 

 

As a first approximation, we adopt the following simplest values consistent with the physical 

situation. The risk exposure depends on the relative outage magnitude, 휀 ≡ 𝑄
�̅�⁄ ,with 𝜆0 = 1 휀⁄  , 

implying all outage events are independent. Therefore, the probability of any power loss or outage, 

becomes simply the intriguing double exponential, 

𝑃𝑖(𝑙𝑜𝑠𝑠) = 1 − 𝑒
−

�̅�

𝑘𝑄
{1− 𝑒

−
𝑘𝑄

 �̿� }

                           (3) 

 

Obvious limits are:  

(a) small outage or loss 𝑘𝑄
�̅�

⁄ → 0, 𝑃𝑖(𝑙𝑜𝑠𝑠) = 1 ;  

(b) infinitely large loss 𝑘𝑄
�̅�

⁄ → ∞, 𝑃𝑖(𝑙𝑜𝑠𝑠) = 0 ; 

(c) average loss, assuming that k=1, 

 
𝑄

�̅�⁄ → 1, 𝑃𝑖(𝑙𝑜𝑠𝑠) = 1 − 𝑒−{1− 𝑒−1}= 0.74 

 

III. Outage duration 
 

The probability of any outage of any size lasting duration, D, is then simply given by multiplying 

the probability of loss by the probability of non-restoration, P(NR). 

 

The probability of any individual outage being restored is actually random, and being observed as 

outcomes follows the well-known and established laws of statistical physics as described in [8] and 

[9]. Therefore, the data for electric power non-restoration probability, P(NR), for all outage events 

are all well correlated by simple exponential functions, dependent on and grouped by the degree 

of difficulty as characterized by the extent of infrastructure damage, social disruption and 

concomitant access issues [2].  A typical generalized best fit was derived from  a wide range of 

severe events , including  hurricanes, ice storms, floods, and wildfires [2] , with h measured in 
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hours after the peak outage, 

 

𝑃(𝑁𝑅) =  𝑃𝑚 + 𝑃0
∗𝑒−𝛽ℎ  ≈ 0.007 +  𝑒−0.014ℎ                 (4)   

 

Therefore, in general ,  

 

P(D>h) = Pi(loss) x P(NR)        (5) 

 

Substituting  Equations 3) and (4) into (5), 

 

𝑃(𝐷 > ℎ)) = (1 − 𝑒
−

�̅�

𝑘𝑄
{1− 𝑒

−
𝑘𝑄

 �̿� }

) (𝑃𝑚 + 𝑃0
∗𝑒−𝛽ℎ)                      (6) 

 

To a good approximation,  since   𝑃0
∗  ≈ 1 ≫ 𝑃𝑚  , 

 

𝑃(𝐷 > ℎ)) ≈ (1 − 𝑒
−

�̅�

𝑘𝑄
{1− 𝑒

−
𝑘𝑄

 �̿� }

) 𝑒−𝛽ℎ               (7) 

 

The limits are:  

(a) small outage or loss ; 𝑃(𝐷 > ℎ)) ≈  𝑒−𝛽ℎ 

(b) infinitely large loss  ; 𝑃(𝐷 > ℎ)) ≈ 0 

(c) average loss with k=1 ;  𝑃(𝐷 > ℎ)) ≈ 0.74 𝑒−𝛽ℎ 

 

IV General equation for rare events  

 

The more general form of this new EVD Equation (3) is, for any variable, x, where the over bar is 

the relevant or selected average value:  

 

𝑃𝑖(𝑥) = 1 − 𝑒
−

�̅�

𝑘𝑥
{1− 𝑒

−
𝑥

𝑘 �̅�}
    (8) 

 

There are just two “adjustable”  parameters, the average ,�̅� , and the learning constant, k, where 

both have physical significance.  This equation can be compared to typical arbitrary three-

parameter Generalized Extreme Value Distributions (GEVD) quoted elsewhere [10] of the general 

form: 

 

𝑃𝑖(𝑥) = 1 − 𝑒
−1+𝜉(𝑥−

𝜓

𝛽
)
−1

𝜉⁄

    (9) 

  

For the conventionally-named distributions: 

 

• Gumbell Type 1 ξ=0 

• Frechet Type 2 ξ>0  

• Weibull Type 3 ξ<0 

 

Ockham’s Razor suggests using the simplest. The reader is of course free to adopt whatever best 

suits the purpose and represents appropriately the physics and logic of the situation. 
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IV Results 
 

I. National outage data 1984-2000 compared to theory 

 

The demonstration of using this simple theory, Equation (3), as a basis for correlation and 

comparison to data is shown in Figure 1, obtained by simply adjusting the single parameter, k=2. 

The theoretically-based probability then has an uncertainty of order ±20% compared to the 

transcribed data, sufficient for present estimating purposes where the predictive larger losses of 

QM > 40,000 MW(e) have a probability of approximately 0.003 or less. The probability, of having an 

average system outage, Pi(loss) = 0.74 in this case is ~97MW(e), compared to the Pi (loss) =0.86 

observed. This result is sufficiently encouraging to examine comparisons with other loss data as 

follows. 

 

 

Figure 1 Initial test o USA power loss probabaility and theory 

 

II. Regional  power loss data compared to theory 

 

A recent paper has data plots in 2016 for all eight NERC regions [5]. The individual probabilities 

are naturally one order lower for the largest recorded regional power losses, suggesting that the 

average outage, �̅� and the best-fit k-value change significantly.  

Table 1 Regional largest power losses (data from EIA and Murphy et al [5]) 

Region Capacity, MW(e) 

(EIA)  

Largest loss, MW(e) 

(NERC)  

Fractional 

loss 

FRCC 47700 5000 0.1 

MRO 33000 7000 0.21 

NPCC 57700 15000 0.26 

RFC NA 49000  

SERC 129000 40000 0.31 

SPP 51800 9000 0.17 

TRE 71100 11000 0.15 

WECC 139400 14000 0.1 
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These large region–to-region variations in losses are evident in the Table 1, where the maximum 

outages that have been experienced in 2016 are compared to the corresponding regional capacities 

reported by the EIA for 2016 [5; and www.eia.gov/electricity/data/eia411/]. It can be seen that the 

fraction of power lost in a region can range from 10% up to 30% of the total capacity, with the 

magnitudes differ by nearly a factor of ten (an order of magnitude). 

 

Previous experience with learning theory suggests that it should be possible to compare the 

regional data in a non-dimensional manner, normalizing to the maximum outage sizes, Q/Qm. 

Once again hand transcribing from the plots in [5], a comparison calculation is shown in Figure 2 

for just two randomly chosen NERC regions, using average losses, �̅�, of 5500 MW(e)  and 1900 

MW(e) for RFC and NPCC, respectively. In both cases, k=0.001, this low value implying no 

discernable learning from prior outages, or in this case no evidence of fundamental differences 

between the two distribution systems. 

 

 
 

Figure 2 Regional power loss data compared to theory 

 

Furthermore, given this new theory, we can now predict the probability of a total (100%) regional 

blackout, being  “a catastrophic power outage of a magnitude beyond modern experience” [1]. As 

an example, for the NPPC case, this probability is P (total loss 57700 MW (e)) = 0.00015, and 

represent a pure quantitative prediction of an unimaginable and not previously experienced outage. 

 

V Predicting the duration of the outage 
 

I National Data 

 

We can define the probability of non-restoration, P(NR), at any time  as the ratio of the  power loss 

remaining, Q(h), to the initial power loss,Q0 . When there is no additional disruption, access 

difficulty, or grid damage the restoration is rapid.. 

Every national restoration data in [3] follows an exponential learning curve, with its own e-folding 

rate of between 0.3-0.8 per hour, and coefficients of determination all of, R2 =0.9. As an average 

estimate, in Figure 3 the best fit to the overall pooled data for four events in three countries , with a 

coefficient of determination, R2 = 0.69, is 
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𝑃(𝑁𝑅) =  𝑒−0.43ℎ                                          (10) 

 

 
 

Figure 3 National duration data compared to present theory 

 

It can be seen that even for these massive blackouts restoration was accomplished in less than 10 

hours, despite the factor of ten differences in MW(e) size or scale of the initial outage. The causes 

were generally overall transmission and distribution failures or overloads, cascading through the 

system but with no additional physical damage due flooding, fires or hurricanes etc. 

 

To compare the different power loss and outage number data sets, clearly, on average the number 

of outages at any time, n(h), is proportional to the size or scale of the overall power loss at that 

time, so 𝑛(ℎ)  ∝ 𝑄. The probability of power system non-recovery is, P(NR) = n(h)/N0, the ratio of 

the outages remaining, n(h), to the total (initial or maximum) number,N0, being the complement of 

the usual reliability, R(t) = 1-P(NR).  

 

II Regional data and severe events  

 

As opposed to traditional plots of the numbers of outages versus time for different events (see e.g. 

[11]), the present formulation normalizes all the events, and demonstrates it is not the number of 

outages that affects characteristic recovery timescales. The data clearly show groupings between  

“normal” and “extreme” events restoration, with the  “normal” group being faster; and events 

with more extreme damage and/or access difficulty clearly have much slower restoration and 

longer durations, by at least a factor of ten to twenty.  

 

This key issue of the extent of damage is reflected in and by the characteristic or e-folding  “degree 

of difficulty” parameter, β per hour; and the minimum achievable or even not restorable by, Pm. 

For system design and recovery planning purposes from the actual data we define the loss event 

categories as (see Figures 3 and 4): 

 

• Type 0: Ordinary, 0.8>β>0.3, due to an effectively instantaneous outage with essentially no 

additional damage, which we classify as outage restorations that are relatively rapid, 

taking less than a day with simple equipment replacement, breaker resetting, line/grid 
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repairs, and/or reconnection. 

• Type 1: Normal baseline, β ~ 0.2, when outage numbers quickly peak due to finite but 

relatively limited additional infrastructure damage. Repairs are still fairly straightforward 

and all outages are restored over timescales of 20 to about 200 hours. 

•  Type 2: Delayed, β ~ 0.1–0.02, progressively reaching peak outages in 20 plus hours, as 

extensive but repairable damage causes lingering repair timescales of 200–300 hours before 

almost all outages are restored.  

• Type 3: Extended, β ~ 0.01, with perhaps 50 or more hours before outage numbers peak 

due to continued damage and significant loss of critical infrastructure. Restoration repair 

timescales last for 300–500 hours or more with residual outages lasting even longer. 

• Type 4: Extraordinary, β ~ 0.001 or less, for a cataclysmic event with the electric 

distribution system being essentially completely destroyed and not immediately repairable 

(e.g. Haiti, Costa Rica, and NAIC “catastrophic outages”). 

 

The data for Superstorm Sandy are shown (open circles) purely as an example, because it 

represents a “long term outage” as specifically defined by FEMA [1, p32].  The exponential form 

and trends do not change with overall duration. 

 
 

Figure 4 Simplified categories of outage restoration difficulty and timescales. 

 

These categories allow for more refined emergency response and communication, and more 

realistic restoration planning.  This observed variation in the degree of difficulty (0.01 <β <0.2) 

implies an average repair rate spread of 20 simply due to the damage extent.  The irreparable 

fraction data range (the “tail” of the distribution) indicates that the chance of remaining unrestored 

is small but finite, say 0.003<Pm<0.01,even after several hundred hours. As an example, for every 

million outages at first, despite achieving over 99% restoration after 600 hours several thousand 

could still be left without power.  

 

III Cyber attacks 

 

The US DHS [11,12] makes the not unreasonable assumption that the restoration curve for power 

outages or “virtual” damage due to cyber attacks is similar to that for known severe events, like 



Romney B Duffey 

NATIONAL AND REGIONAL POWER OUTAGES 
RT&A, No 2 (57) 

Volume 15, June 2020  

70 

hurricanes and ice storms. By this analogy, cyber attacks causing power outages are postulated to 

simply increase the restoration timescales and numbers, which we would interpret as reflecting an 

increased “degree of difficulty” with β reducing further.  The publically available data [13] shows a 

cyber attack caused power outages by disconnecting networks and operator control before being 

restored after “several hours” .We would now classify this event as a Type 1 “normal” outage, 

with a P(NR) range of  “cyber degree of difficulty” 0.1<β<0.22, because there was no concomitant 

or additional access, physical damage, or societal disruption affecting recovery of the power 

system infrastructure and associated computing/communication networks.  

 

Ockham’s Razor suggests using the simplest. The reader is of course free to adopt whatever best 

suits the purpose and represents appropriately the physics and logic of the situation. 

 

VI  Conclusions 
 

Power generation and distribution systems are part of a nation’s critical infrastructure. Power 

losses or outages are random with a learning trend of declining size with increasing experience or 

risk exposure, with the largest outages being rare events of low probability. Data have been 

collected for power losses and outage duration affecting critical infrastructure for a wide range of 

events in Belgium, Canada, Eire, France, Sweden, New Zealand and USA.  

 

Using simple theory, a  new correlation has been obtained for the probability of  large regional 

power losses for outage scales up to nearly 50,000 MW(e) for events without additional 

infrastructure damage that have been generally fully restored in less than 24 hours.  

 

For more severe events , including damage due to  natural hazards ( floods, fire, ice storms, 

hurricanes etc.), the observed variation in the duration of the outage  up to more than 500 hours 

depends on the degree of difficulty. The irreparable fraction data range (the “tail” of the 

distribution) indicates that the chance of remaining unrestored is small but finite, even after 

several hundred hours.  

 

Therefore, explicit expressions have been given and validated for both the probability and 

duration for the full range from “normal” large power loss and to extended outages  in rare and 

more “severe” events with greater access and repair difficulty. These expressions enable prediction 

and  planning for large-scale unprecedented outages of interest for emergency planning and 

national response actions. 
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