McCMOS Based Low Power and High Speed 32 x 32 Bit Nikhilum Multiplier

Sarita Chauhan

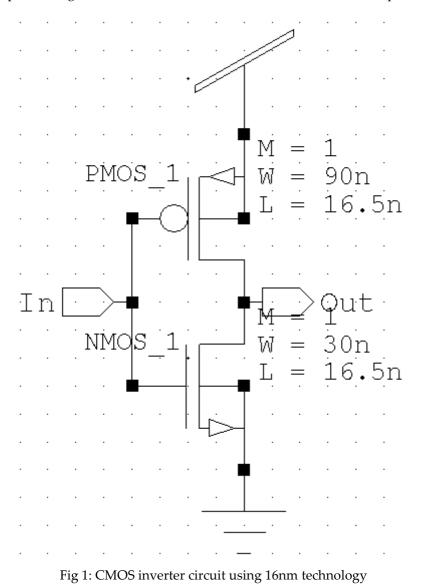
Assistant Professor, ECE, MLVTEC, Bhilwara, sarita.mlvtec@yahoo.co.in

Abstract

Leakage power is the significant component of total power dissipation in nano-scale devices. Leakage power is inversely proportional of channel length. So as the device dimensions are reduced, to incorporate more no of devices, for more function to be performed, subthreshold leakage current & hence leakage power will increases. To reduce the leakage power, channel length has to be increased. So we use non-minimum length transistors to reduce the leakage current thus power. This technique is called Multiple Channel CMOS (McCMOS). Vedic mathematics is the branch of mathematics which depends upon 16 sutra and 13 up-sutra, given between 1911 and 1918 by Sri Bharati Krisna Tirthaji (1884-1960). In this paper we had used McCMOS technique as well as ancient Vedic technique Nikhilum Sutra to reduce the power dissipation and increase the speed of the multiplier. The designed 32×32 bit multiplier dissipates a power of 0.556 mW and a propagation delay of 27.82 nsec. 60510 transistors were used in this design. These results are improvements over power dissipations and delays reported in literature for Vedic and Booth Multiplier.

Keywords: McCMOS, Vedic Mathematics, CMOS, Leakage current, Urdhva Tiryakbhyam, Nikhilum Sutra, Leakage Power consumption.

1. Introduction:


In order to increase the functionality of any IC, more no of devices are embedded on the same chip. For this individual transistor has to be occupied less area. Hence their dimension has to be decreased. But at same time, Leakage current and leakage power will increases, as these are inversely proportional to the channel length. So there is a compromise. If we want to increase the functionality of the chip we need to embed more no of devices. To embed more no of devices in the same area of chip, we need to scale down the dimension of individual devices. But for nano scale devices, second order effects like DIBL are more pronounced. Hence subthreshold current and power will be more in these devices. To reduce the power we have to increase the channel length. So we use NMOS as increased channel length to control the subthreshold current. Pmos are made with smaller channel length devices. In Vedic mathematics, Nikhilum Sutra, is the method to produce the calculation in less time. Let us discuss these two methods in details.

1.1 McCMOS Technique

We designed a McCMOS inverter and other basic building block. In this all NMOS are made with a channel length of 29 nm and all PMOS are made with 16.5 nm. These data are taken by repeatedly choosing different length and measuring power delay product. The channel length of the PMOSs are taken 0.5 nm higher than the 16nm technology to incorporate the lateral diffusion. The effect of channel length on threshold voltage (and leakage) is very well documented

demonstrating that VTH decreases rapidly as effective channel length (LEFF) is reduced [10].

First we optimize the basic gates using McCMOS technique. Fig 1 shows the design of inverter using CMOS, whereas fig 2 shows the inverter circuit using McCMOS technique. Table 1 shows power delay product difference in CMOS inverter and McCMOS inverter. Table 2 shows how we arrive to the specific length & width of the transistor used in McCMOS technique.

From table 1.1 & 1.2 it is clear that McCMOS inverter design with NMOS W=29n L=29n PMOS W=99n L=16.5n is best as far as PDP is concern.

Table 1.1: Comparison of power delay product of CMOS & McCMOS inverter

Technique	W & L	Power (nW)	Delay (nsec)	PDP (nW-nsec)
CMOS	NMOS W=30n L=16.5n PMOS W=90n L=16.5n	45.4	0.294	13.3
McCMOS	NMOS W=29n L=29n PMOS W=99n L=16.5n	42.4	0.286	12.1

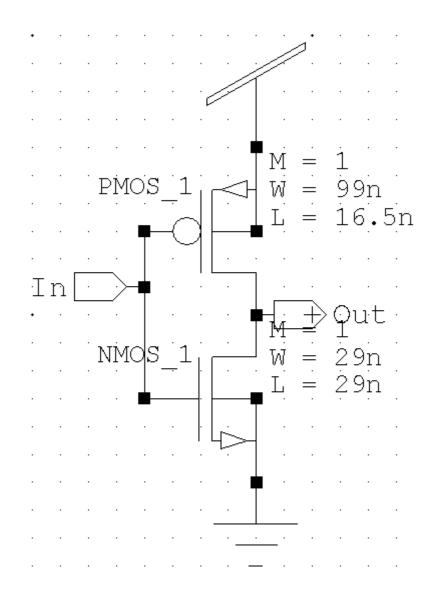


Fig 2: McCMOS inverter circuit using 16nm technology

		Power	Delay (n	PDP (nW-
W & L		(nWatt)	sec)	nsec)
NMOS W=25n L=25n	PMOS W=25n	20.05	0.47(0	10 5070
L=16.5n		39.05	0.4760	18.5878
NMOS W=25n L=25n	PMOS W=35n	40.26	0.4060	16 2456
L=16.5n		40.26	0.4060	16.3456
NMOS W=25n L=25n	PMOS W=50n	41.10	0.3510	14.4261
L=16.5n		41.10	0.5510	14.4201
NMOS W=25n L=25n	PMOS W=80n	42.23	0.3040	12.8379
L=16.5n		42.23	0.3040	12.0379
NMOS W=33n L=33n	PMOS W=80n	42.27	0.3040	12.8501
L=16.5n		42.27	0.3040	12.0301
NMOS W=20n L=20n	PMOS W=80n	43.23	0.3030	13.0987
L=16.5n		40.20	0.5050	15.0707
NMOS W=40n L=40n	PMOS W=80n	42.74	0.3050	13.0357
L=16.5n		12.71	0.5050	15.0557
NMOS W=22n L=22n	PMOS W=80n	42.91	0.3030	13.0017
L=16.5n		42.91	0.0000	10.0017
NMOS W=28n L=28n	PMOS W=80n	41.92	0.3040	12.7437
L=16.5n		11.72	0.0040	12.7 107
NMOS W=30n L=30n	PMOS W=80n	41.94	0.3040	12.7498
L=16.5n		11.71	0.0040	12.7 490
NMOS W=29n L=29n	PMOS W=80n	41.90	0.3040	12.7376
L=16.5n		11.90	0.0010	12.7070
NMOS W=27n L=27n	PMOS W=80n	41.98	0.3040	12.7619
L=16.5n		11.90	0.0010	12.7 017
NMOS W=28n L=28n	PMOS W=99n	42.38	0.2860	12.1207
L=16.5n		12.00	0.2000	12.1207
NMOS W=29n L=29n	PMOS W=99n	42.36	0.2860	12.1150
L=16.5n		12.00	0.2000	12.1100

Table 1.2: Comparison of PDP in McCMOS inverter using different lengths & Widths

Fig 3 & 4 shows the circuit of CMOS and McCMOS based nand circuit.

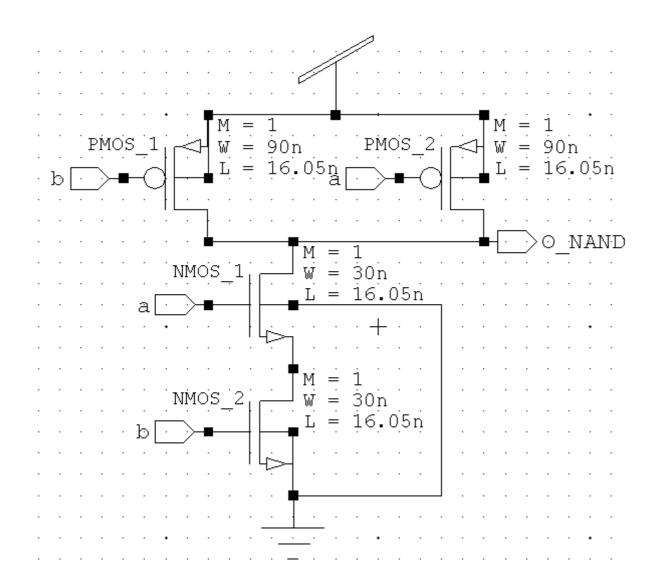


Fig 3: CMOS 2 input NAND circuit using 16nm technology

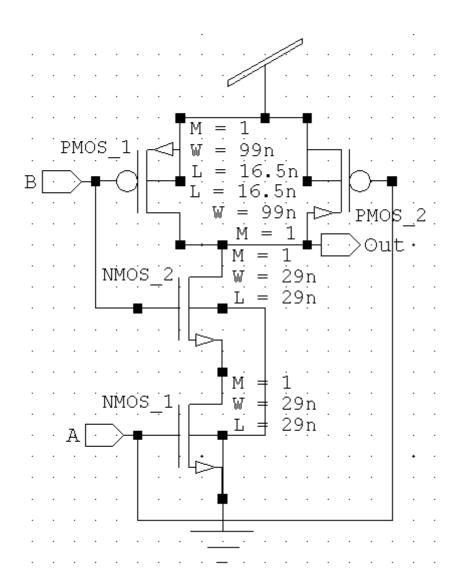


Fig 4: McCMOS 2 input NAND circuit using 16nm technology

From the table 1.3 it is clear that in McCMOS based nand circuit power & delay are much improved in comparison to its counterpart of CMOS nand circuit.

Similarly other basic component are simulated using McCMOS and CMOS and it has been verified that McCMOS based circuit has less power as well as less delay.

Table 1.3: Comparison of power & delay in CMOS & McCMOS based nand circuit.

Technique		Power	Delay	PDP
	Length & Width	(nWatt)	(n Sec)	(atta Ws)
CMOS	NMOS W=30n L=16.05n PMOS W=90n L=16.05n	92.30	0.40	37.20
McCMOS	NMOS W=29n L=29n PMOS W=99n L=16.5n	64.08	0.34	21.53

2. Vedic Mathematics

The ancient system of Vedic Mathematics was rediscovered from the Indian Sanskrit texts known as the Vedas, between 1911 and 1918 by Sri Bharati Krisna Tirthaji (1884-1960) from the Atharva Vedas. According to his research all of mathematics is based on sixteen Sutras, or word-formulas [11]. The description of urthatryakbhyam sutra and nighilum suta is given in [

DESIGN OF THE 32x32 BIT UT MULTIPLIER

In the design for 32x32 bit UT multiplier using McCMOS technique, we designed fundamental blocks like

- 2x2 bit UT multiplier using McCMOS technique (fig. 5 shows schematic design & fig. 6 shows waveform)
- 4x4 bit UT multiplier using McCMOS technique (fig. 7 shows schematic design)
- 8x8 bit UT multiplier using McCMOS technique (fig. 8 shows schematic design)
- 16x16 bit UT multiplier using McCMOS technique (fig.9 shows schematic design)
- 32x32 bit UT multiplier using McCMOS technique (fig. 10 shows schematic design)

The comparison of delay, power, no of transistor used in different designed multipliers is illustrated in table 2.1.

Multiplier	Delay	Power	Power-delay	No. of transistor
			product	used
2x2 CMOS	30.12 nsec	0.7114 μW	21.0746 nsec- μW	60
4x4 McCMOS	29.68 nsec	4.97 μW	21.42737 nsec- μW	618
4x4 CMOS	30.14 nsec	4.96 μW	147.5096 nsec- μW	618
8x8 McCMOS	29.67 nsec	26.31 μW	149.4944 nsec- μW	3222
8x8 CMOS	30.14 nsec	26.92 μW	780.6177 nsec- μW	3222
16x16 McCMOS	29.68 nsec	0.108 mW	811.3688 nsec- mW	14382
16x16 CMOS	30.14 nsec	0.130 mW	3.20544 nsec- mW	14382
32x32 McCMOS	29.68 nsec	0.564 mW	3.9182 nsec- mW	60510
32x32 CMOS	30.12 nsec	0.575 mW	16.73952 nsec- mW	60510

Table 2.1 Comparison of Designed UT Multipliers

The comparison of delay, power, no of transistor used in reported work and proposed multiplier is illustrated in table 2.2.

UT Multiplier	Delay	Power	Power-delay	No. of transistor
			product	used
Paper [2]	59 nsec	500 mW	16615.2 nsec- mW	23600
Paper [3]	15 ns	277 mW	1179.38 nsec- mW	27704
Paper [6] with CSA	96.5 ns	22.1 mW	29.5 nsec- mW	-
Paper [6] with CLA	54.1 ns	21.8 mW	2132.65 nsec- mW	-
Paper [7]	29.67 nsec.	0.56 mW	17.319 nsec- mW	60510
Proposed 32x32 CMOS	30.12 nsec	0.575 mW	16.73952 nsec- mW	60510
Proposed 32x32 McCMOS	29.68 nsec	0.564 mW	3.9182 nsec- mW	60510

Table 2.2 Comparison of UT Multiplier with Reported Work

Our proposed 32x32 bit multiplier using McCMOS and UT Sutra of Vedic mathematics is much far better as compared to reported work in terms of Power-Delay Product.

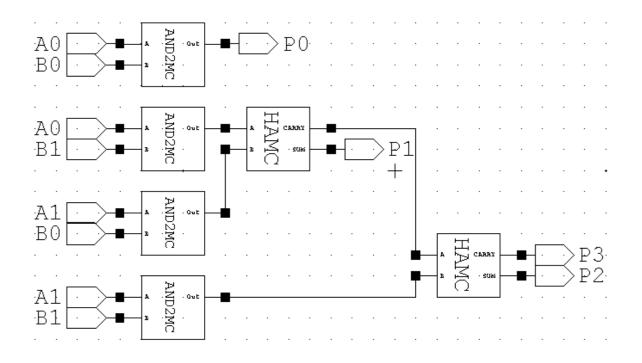


Figure 5) 2 x 2 Bit Multiplier and & its symbol

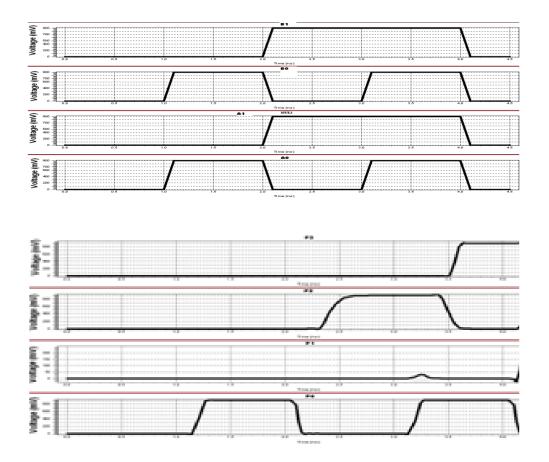


Figure 6 Input Output waveforms of 2x2 Bit multiplier

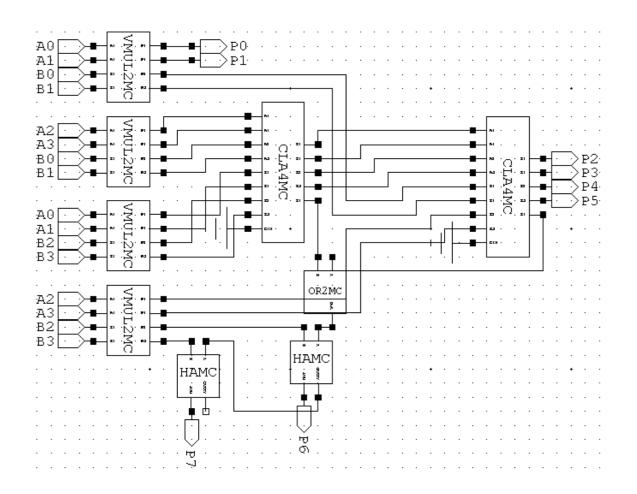


Figure7) 4 x 4 Bit Multiplier

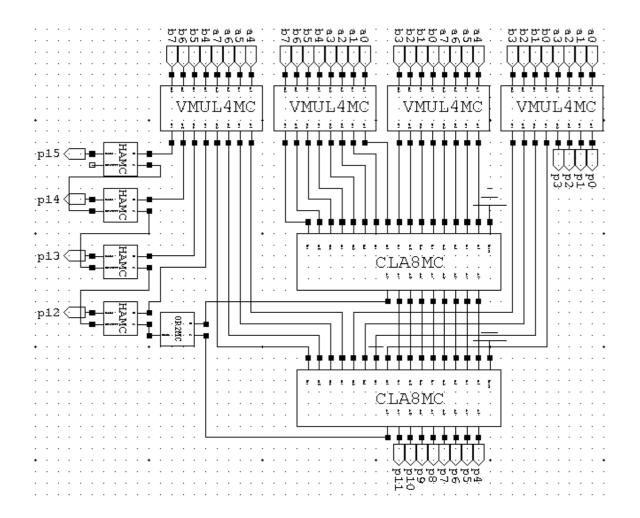
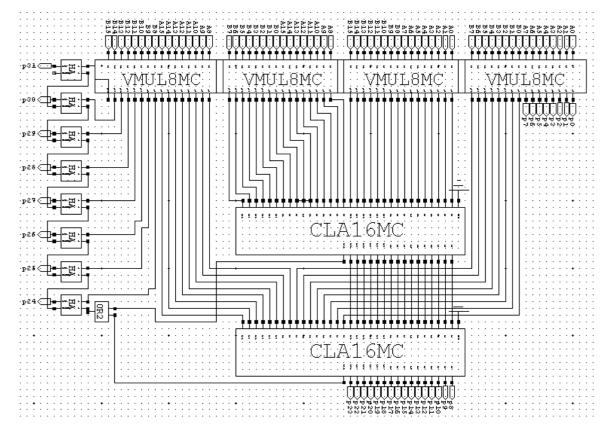



Figure8) 8 x 8 Bit Multiplier

Sarita CHauhan MCCMOS BASED LOW POWER AND HIGH SPEED 32 X 32 BIT NIKHILUM MULTIPLIER

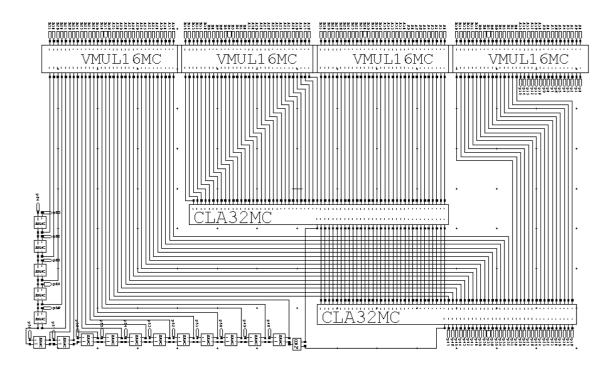


Figure10) 32 x 32 Bit Multiplier

2. Design Of The 32x32 Bit Nikhilum Multiplier

The basic structure of the Nikhilum Multiplier is shown in fig11. In the design for 32x32 bit Nikhilum (NM) Multiplier using McCMOS technique, we designed following fundamental blocks:

- 2x2 bit NM multiplier using McCMOS technique (fig. 12 shows schematic design)
- 4x4 bit NM multiplier using McCMOS technique (fig. 13 shows schematic design)
- 8x8 bit NM multiplier using McCMOS technique (fig. 14 shows schematic design)
- 16x16 bit NM multiplier using McCMOS technique (fig.15 shows schematic design)
- 32x32 bit NM multiplier using McCMOS technique (fig. 16 shows schematic design)

STEPS INVOLVED FOR MULTIPLICATION USING NIKHILUM (NM) SUTRA

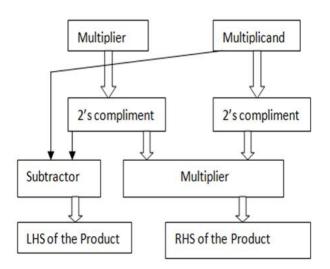


Fig 11 Block Diagram of Nikhilum Sutra

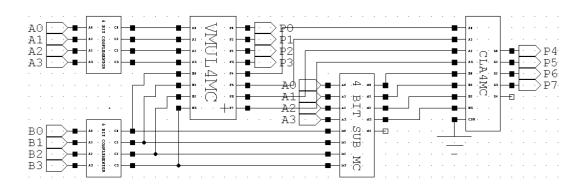


Figure12) 4 x 4 Bit Multiplier

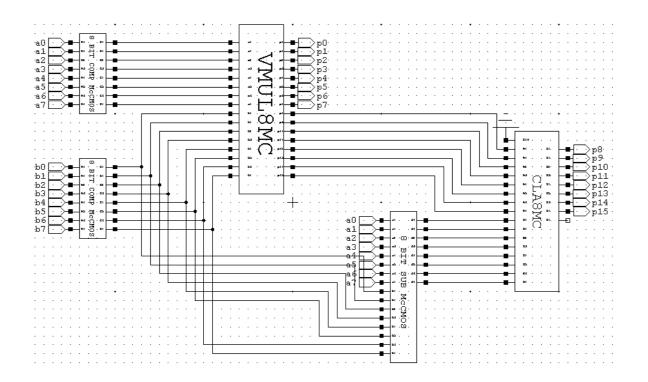


Figure13) 8 x 8 Bit Multiplier

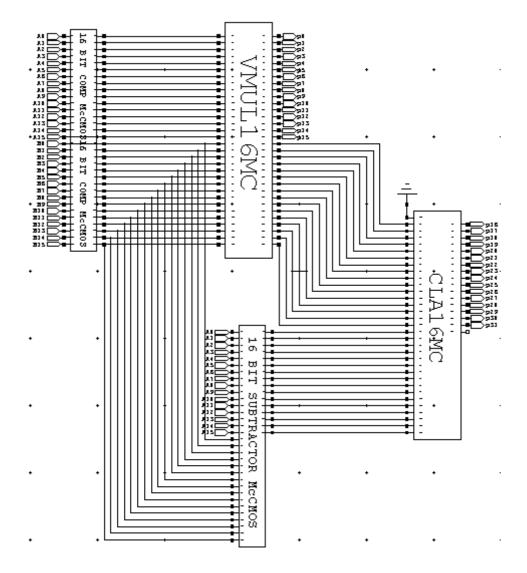


Figure14) 16 x 16 Bit Multiplier

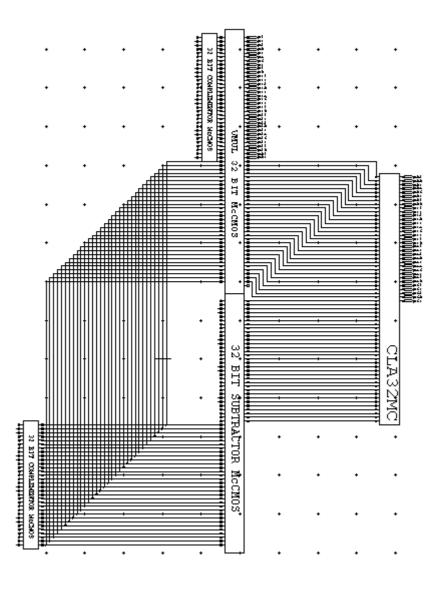


Figure 15) 32 x 32 Bit Multiplier

3. Conclusion

The proposed Vedic multiplier (discussed in section 3) is simulated using Tanner Tool v14.1. The Comparison between proposed multiplier and other reported multiplier is shown in table I.

DOMED

POWER						
	UT	UTMcCMOS	NM	NMMcCMOS		
4-BIT	4.96E-06	4.98E-06	8.39E-06	4.78E-06		
8-BIT	2.69E-05	2.63E-05	1.94E-05	1.87E-05		
16-BIT	1.30E-04	1.09E-04	1.20E-04	1.17E-04		
32-BIT	5.75E-04	5.64E-04	5.60E-04	5.56E-04		

Table 4.1: Comparison of Vedic multiplier

D	EI	A	Y	

Sarita CHauhan MCCMOS BASED LOW POWER AND HIGH SPEED 32 X 32 BIT NIKHILUM MULTIPLIER

	UT	UTMcCMOS	NM	NMMcCMOS
4-BIT	3.01E-08	2.97E-08	2.90E-08	2.84E-08
8-BIT	3.01E-08	2.97E-08	2.89E-08	2.83E-08
16-BIT	3.01E-08	2.97E-08	2.88E-08	2.81E-08
32-BIT	3.01E-08	2.97E-08	2.78E-08	2.78E-08

Table 4.2: Comparison of 32x32 bit multipliers

S. No.	Parameter of	Paper	Paper	Paper	Paper	Nikhilum
	comparison	[2]	[3]	[5]	[6]	Design
1	Delay (ns)	59	15	625.292	54.1	27.82
2	Power (mW)	500	277	29.34	21.8	0.556
3	Power-Delay Product (mW-nsec)	29500	4155	18346.067	1179.38	15.46792
4	Transistors used	23600	27704	-	-	64862

As shown in the table 4.2 our designed is much better in terms of Power dissipation. Also delay is improved. No of transistor is large but this is the sacrifice we have to pay for a less power delay product. The **99% improvement in PDP with respect to the lowest paper [6] is achieved.**

4. Acknowledgement:

We sincerely thanks to the PTM website to provide the Technology file of 16 nm.

References

- [1] YOSHIHISA HARATA, et al., "A High-Speed Multiplier Using a Redundant Binary Adder Tree", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-22,NO. 1, FEBRUARY1987
- [2] SHOJI KAWAHITO,et. al., "A 32 X 32-bit Multiplier Using Multiple-Valued MOS Current-Mode Circuits", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 1, FEBRUARY 1988
- [3] MASATO NAGAMATSU, "A 15-ns 32 X 32-b CMOS Multiplier with an Improved Parallel Structure", IEEE JOURNAL OF SOLID-STATECIRCUITS, VOL. 25, NO. 2, APRIL 1990
- [4] Hanho LEE, "Power Aware Scalable Pipelined Booth Multiplier" IEICE Transaction on faudamentals, Vol. E-88-A, NO. 11, Nov. 2005.
- [5] Hasan Krad and Aws Yousif Al-Taie, "Performance Analysis of a 32-Bit Multiplier with a Carry-Look-Ahead Adder and a 32-bit Multiplier with a Ripple Adder using VHDL", Journal of Computer Science 4 (4): 305-308, 2008 ISSN 1549-3636© 2008 Science Publications
- [6] Raminder Preet Pal Sing1, Parveen Kumar, Balwinder Singh, "Performance Analysis of 32-Bit Array Multiplier with a Carry Save Adder and with a Carry-Look-Ahead Adder", International Journal of Recent Trends in Engineering, Vol 2, No. 6, November 2009.
- [7] D.Venu Gopal1* and M. Mohan Reddy, "Design and Implementation of a Fast Unsigned 32bit Multiplier Using Verilog HDL", International Journal of Computer Sciences and Engineering, Volume-2, Issue-5 E-ISSN: 2347-2693, 2014.
- [8] Sumit Vaidya and Deepak Dandekar. "delay-power performance comparison of multipliers in vlsi circuit design". International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010

- [9] Dr. K.S. Gurumurthy, M.S Prahalad "Fast and Power Efficient 16×16 Array of Array Multiplier using Vedic Multiplication",
- [10] M. Ramalatha, K. Deena Dayalan, P. Dharani, S. Deborah Priya," High Speed Energy Efficient ALU Design using Vedic Multiplication Techniques ", ACTEA 2009
- [11] Abhijit Asati and Chandrashekhar "A High-Speed, Hierarchical 16×16 Array of Array Multiplier Design", IMPACT 2009.
- [12] Kevin Biswas, "Multiplexer Based Array Multipliers," A Ph.D. Dissertation, University of Windsor, Electrical and Computer Engineering, Apr. 2005.
- [13] Himanshu Thapliyal and Hamid R. Arabnia, "A time area power efficient multiplier and square architecture based on ancient Indian Vedic mathematics,www.vedicmathsindia.org.
- [14] Vishal Verma and Himanshu Thapliyal, "High Speed Efficient N X N Bit Multiplier Based On Ancient Indian Vedic Mathematics", Proceedings International Conference On VLSI, Las Vegas, June 2003.