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Abstract 

 
We have analyzed a single server queueing model in which the arrival of customers according to 

the Markovian arrival process, the service process according to phase type distributions and the 

standby server who is serving at a lower rate also follows the phase type distribution. If any of the 

customers present in the system when the server completes a vacation who starts the setup process 

to initiate service to the customers. After service completion, the main server begins the closedown 

process. The total number of customers are present in the system under the steady-state probability 

vector has been investigated by using the Matrix-Analytic method. We have examined the stability 

condition, the analysis of the busy period and derived some important performance measures of our 

model. Numerical results and graphical representation are discussed for the proposed model. 
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   1. Introduction   
  

 On the basis of the study, the concept of the Markovian Arrival Process (MAP) has been 

introduced by Neuts (1981), the PH-representation is a Markov renewal process in service times 

and in general, MAP is the non-renewal process and it is commensurate to the Versatile modeling 

tool of Markovian Point Process (VMPP). This point process is fairly extensively described and 

well developed by the MAP is a specific type of semi-Markov process with a transition probability 

matrix (TPM). Later, it was realized that the VMPP and Batch Markovian Arrival Process (BMAP) 

are equivalent processes.  

 The Matrix-analytic methods(MAM) had been first introduced and examined by 

Neuts(1981). Qi-Ming He (2004), has analyzed the fundamentals of Matrix-Analytic methods such 

that the concept of arrival and the service process. Chakravarthy(2010) has described the various 

types of arrivals in which the customer’s arrival follows the Markovian Arrival Process (MAP) 

with representation (D0, D1) of a square matrix whose order is m. The representation of the service 

times is (𝛼, T) which follows phase type distributions whose matrix order is n. Let the generator Q 

is defined by Q = D0 + D1, is an irreducible stochastic matrix. The matrix D0 governs for transitions 

corresponding to no arrival, it has non-negative off-diagonal elements and non-singular with 
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negative diagonal elements. The matrix D1 governs for transitions corresponding to arrival such 

that both diagonal and off-diagonal elements are non-negative.  

 If 𝜋1 is the unique probability vector of the Markov process described by the irreducible 

generator Q satisfying   𝜋1Q = 0 and 𝜋1e = 1. The constant 𝜆 = 𝜋1D1e makes reference to the 

fundamental arrival rate, it will give us the expected number of customers arrive per unit time 

under the stationary version of the Markovian Arrival Process. The Marked Markovian Point 

Process (MMPP) is a special type of a doubly stochastic Poisson process whose arrival rate is 

modified by the states of an irreducible finite-state Continuous-Time Markov Chain (CTMC).  

 Attahiru Sule Alfa (1995) examined a discrete MAP/PH/1 in which the server offers 

service for a limited period of time and then the server goes on to another queue, in such a case it 

may consider server proceeds on a vacation. Jinbiao Wu et al. (2009) investigated the two types of 

arrivals such that positive and negative arrivals on the batch Markovian arrival process and the 

customer may go for G-queue with the second optional service. When the system empty, the server 

allows to take multiple vacations and they developed queue size distribution using the 

supplementary variable technique. Chesoong Kim et al. (2017) described unreliable BMAP/PH/N 

queueing type with breakdown occurrence moments are considered by Markovian arrival process 

and if the server fails immediately the repair period starts in which the duration of repair follows 

PH-distribution. Ayyappan and Shyamala (2014) have examined the concepts of setup time, 

breakdown and repair in a coherent way of batch arrival of customers with two heterogeneous 

servers.  

 Chakravarthy and Neuts (2014) have analyzed the queueing model of multi servers with 

two types of arrivals in which one type of customer is regular customers whose arrival follows the 

Markovian arrival process and another type is special customers whose arrival follows phase type 

renewal process. The regular customer requires only one server’s attention but the special 

customer requires attention to all the servers. Furthermore, special customers possibly pre-empting 

the services of regular customers. Qi-Ming He and Attahiru Sule Alfa (2015) have studied the 

MAP/PH/K queueing model of the construction of Markov chains. Among these Markov chains, 

the first one is introduced through tracking service phases for the server which is construction of 

transition probability matrix in a straightforward manner and the second one is introduced 

through counting servers for phases which are using an algorithm for construction transition 

probability matrix. Zenios (1999) analyzed the queueing model with reneging such that the 

transplant waiting due to fear of organ transplantation that may lead to death. He has taken a 

survey at the end of 1996, the registered candidates for transplantation are 34,550 candidates but 

among these only 7,833 transplantations had performed and the remaining candidates were 

reneged due to impatience.  

 Arumuganathan and Jayakumar (2005) have analyzed the bulk queueing model with 

setup and closedown times. After completion of vacation if the queue size has reached N the server 

starts the setup process and the server starts the closedown process when the queue size less than 

N. Subsequently, they developed the cost model for their model. Wei Sun et al. (2012) developed 

Markovian queueing systems with three types of setup/closedown policies in which types are 

interruptible, skippable and insusceptible. Among these insusceptible explains if the customer 

comes during closedown times the service will start to the customer. The second type explains if a 

customer comes during closedown, they would be served after the closedown finishes and skipped 

the setup time and the third type tell the customers to arrive during the closedown time they could 

get service and they have to wait until the setup time finishes.  

 Tsung - Yin Wang (2012) has studied the Geo/G/1 queueing model with startup under N-

policy. This N-policy is applicable for the server temporarily unavailable to the waiting customers. 

Service completed to all the customers, the server is being shut down in a closedown time. 

Zhisheng Niu (2003) examined the single server batch Markovian arrival processes of setup and 

closedown under single and multiple vacation queue in which they described the potential 
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applications that the first one is switched virtual connection-based Internet protocols over 

Automated Teller Machine networks and the second one is multiple protocol label switched 

networks.  

 Many researchers incorporating their model with standby support. Sreekanth Kolledath et 

al. (2017) have analyzed a survey on standby support queueing models. They described different 

types of standby’s are cold standby, warm standby, hot standby, mixed standby and standby 

switching. Among these the cold standby tells about the standby with zero failure rate, the warm 

standby tells about the standby with a lower failure rate than compared to the primary 

components, the hot standby tells about the standby has the same failure rate as the primary 

components, mixed standby is the new concept of the combination of cold and warm standby and 

the standby switching explains when switching the standby in place of the main one which may be 

unsuccessful that is standby switching failure has happened. In this situation, until switching is 

successful all the standby’s are try to switch over one by one. Furthermore, we have referred to the 

concepts of standby in Subramanian and Sarm (1987) and Khalaf et al. (2011).  

 In real-life situations, pupils would like to do any of the work they have to do some of the 

preparatory action known as the setup process. After completion of that work, they do some 

shutdown action known as the closedown process. For example, the grocery store, supermarkets, 

Industries, computer systems, laptops, communication systems and hypermarkets. These 

examples are suitable for our model as setup time, closedown time, vacation, breakdown and 

standby server. Among these examples, the hypermarkets are an interesting concept of the 

combination of supermarkets and departmental stores. It has a wide range of shopping facilities 

such as including general merchandise and all kinds of grocery lines on one floor itself and it 

needs a large landscape to locate this one. In one trip itself, hypermarkets offer to the customers for 

buying whatever things they need in the routine shopping. These kinds of big-box stores need 

some amount of time to make the setup process and some amount of time to take for closing the 

hypermarkets. During the vacation times of hypermarkets, the reneging might happen due to 

impatience.  

 The remaining part of the article is organized as follows. We describe our mathematical 

model description in section 2. In section 3, we are generating our matrix formulation and 

notations of our model also included. In section 4 we discuss the stability condition and steady-

state probability vector. In section 5, we have analyzed the busy period analysis and in section 6, 

measures of system performance are discussed. In section 7, presents some of the illustrated 

numerical and graphical representations. The main server and standby server service rates are 

compared in section 8. The conclusion of our model has been given in the last section 9.  

 

   2. The Mathematical model Description    
  

 In this model, we consider the arrival of customers follows the Markovian arrival process 

which represents (D0, D1), where D0 and D1 are square matrices of order is m’, the service process 

follows phase type distribution which represents (𝛼, T) of order is n’ and the standby server 

service process also follows the phase type distribution which represents (𝛼1, 𝜃T) of matrix order 

is n’ with T0 + Te = 1 such that T0 = -Te and we are taking 𝛼 and 𝛼1 are the same for the purpose of 

differentiating the main server and standby server such that 𝛼 = 𝛼1. While the main server giving 

service to the customers, the server may breakdown at any time. When the breakdown has 

occurred, the main server goes for the repair process, immediately standby server switch over 

instead of the main server, then the standby server carry over the service process but at the lower 

rate compared to the main server service rate with representation 𝜃T where 0<𝜃<1. When the main 

server returns to the service station after rejuvenating from the repair, at that moment if the 

standby server is in the idle state. Obviously, the main server would be in the idle state until the 

customer’s arrival to the system otherwise if the standby server is busy when the main server 
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return to the system from the repair process then the main server would interrupt the standby 

server and carry over the service process. The breakdown times and repair times are exponentially 

distributed. After completing service to the customers, if there is no one in the system the main 

server starts the closedown process, afterward closedown the main server goes for vacation. When 

the main server return from vacation if there is no customer in the system then the server will go 

for vacation repeatedly until if the server finds at least one customer in the queue. The duration of 

vacation times follows exponential distribution at the rate 𝜂. After completion of vacation, if there 

is a customer in the queue then the main server does the setup process and then starts giving 

service to customers who are standing in the queue. Due to impatience, the customers who have an 

aspiration to get service may have reneged from the system that is they leave the system during 

the main server vacation period and the renege rate is 𝜁. The parameters of setup rate and 

closedown rate are 𝜎 and 𝛾 respectively.   

 

 

  

  

Figure  1: Pictorial Representation of our proposed model. 

   

 

 

   3. The Matrix Generation - QBD process   
  

 In this section, we have described the notation of our model as follows for the purpose of 

generating the QBD Process.  

  

  Notations for Matrix Generation  

    

    • ⊗ - Kronecker product of any two of the different order of matrices by using this 

symbol.  

    • ⊕ - Kronecker sum of any two of the different order of matrices by using this symbol. 
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    • In - It denotes an n-dimensional Identity matrix.  

    • Im - It denotes an m-dimensional Identity matrix.  

    • Inm - It denotes an nm-dimensional Identity matrix. 

 

    • e - Column vector of suitable dimension each of its entry is 1.  

    • en - Column vector whose dimension is n and each of its entries are 1.  

    • enm - Column vector whose dimension is nm and each of its entries are 1.  

    • Let us denote 𝜆 be the arrival rate and is defined as 𝜆 = 𝜋1D1em, where 𝜋1 is the 

Probability vector of the generator matrix D = D0 + D1.  

    • The normal service rate of the main server and the standby server is denoted by 𝛿 and 

𝜃𝛿 where 𝛿 = [𝛼(−𝑇)−1𝑒𝑛]−1.  

    • Define N(t) indicates the number of customers in the system. 

 

    • Define V(t) indicates the status of server at time t,  

 𝑉(𝑡) =

(

 
 

1, ifthemainserverisinbusy,
2, ifthemainserverisinthebreakdown,
3, ifthemainserverisinthesetupprocess,
4, ifthemainserverisintheclosedown,
5, ifthemainserverisonvacation.

  

   

    • J(t) is the service process considered by phases.  

    • M(t) is the arrival process considered by phases. 

 

  

 Let {(N(t) , V(t) , J(t) , M(t) : t … 0 } be the Continuous-Time Markov Chain (CTMC) with 

state level independent Quasi-Birth-and-Death process whose state space is as follows, 

 

 Φ = l(0) ∪ l(p). 

 

  where, 

 l(0) = {(0,2,s) : 1 ≤ s ≤ m} ∪ {(0,4,s) : 1 ≤ s ≤ m} ∪ (0,5,s) : 1 ≤ s ≤ m}.  

 for p ≥ 1, 

 l(p) = {(p,1,r,s):1 ≤ r ≤ n; 1 ≤ s ≤ m} ∪ {(p,2,r,s): 1 ≤ r ≤ n; 1 ≤ s ≤ m} 

  ∪ {(p,3,s) : 1 ≤ s ≤ m} ∪ {(p,4,s) : 1 ≤ s ≤ m} ∪ {(p,5,s) : 1 ≤ s ≤ m}.  

 The infinitesimal matrix generation of the QBD Process is given by,   

 𝑄 =

[
 
 
 
 
 
 
 
𝐵00 𝐵01 0 0 0 0 ⋯ ⋯
𝐵10 𝐴1 𝐴0 0 0 0 ⋯ ⋯
0 𝐴2 𝐴1 𝐴0 0 0 ⋯ ⋯
0 0 𝐴2 𝐴1 𝐴0 0 ⋯ ⋯
0 0 0 𝐴2 𝐴1 𝐴0 ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱

]
 
 
 
 
 
 
 

  

 

   

 The entries in the block matrices of Q are defined as follows, 

𝐵00 = [

𝐷0 − Ψ𝐼𝑚 Ψ𝐼𝑚 0
0 𝐷0 − 𝛾𝐼𝑚 𝛾𝐼𝑚
0 0 𝐷0

],  
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 𝐵01 = [

0 𝛼1 ⊗ 𝐷1 0 0 0
0 0 0 𝐷1 0
0 0 0 0 𝐷1

],   

 𝐵10 =

[
 
 
 
 
 
0 𝑇0 ⊗ 𝐼𝑚 0
𝜃𝑇0 ⊗ 𝐼𝑚 0 0
0 0 0
0 𝜁𝐼𝑚 0
0 0 𝜁𝐼𝑚

]
 
 
 
 
 

,   

 𝐴1 =

[
 
 
 
 
𝑇 ⊕ 𝐷0 − 𝜏𝐼𝑛𝑚 𝜏𝐼𝑛𝑚 0 0 0
Ψ𝐼𝑛𝑚 𝜃𝑇 ⊕ 𝐷0 − Ψ𝐼𝑛𝑚 0 0 0
𝛼 ⊗ 𝜎𝐼𝑚 0 𝐷0 − 𝜎𝐼𝑚 0 0
0 0 0 𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚 𝛾𝐼𝑚
0 0 𝜂𝐼𝑚 0 𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]

 
 
 
 

,  

 𝐴0 =

[
 
 
 
 
 
𝐼𝑛 ⊗ 𝐷1 0 0 0 0
0 𝐼𝑛 ⊗ 𝐷1 0 0 0
0 0 𝐷1 0 0
0 0 0 𝐷1 0
0 0 0 0 𝐷1

]
 
 
 
 
 

,  

 𝐴2 =

[
 
 
 
 
 
𝑇0𝛼 ⊗ 𝐼𝑚 0 0 0 0
0 𝜃𝑇0𝛼1 ⊗ 𝐼𝑚 0 0 0
0 0 0 0 0
0 0 0 𝜁𝐼𝑚 0
0 0 0 0 𝜁𝐼𝑚

]
 
 
 
 
 

  

 

 

 

   4. Stability Condition   
  

 We have analyzed our model under some condition that whether the system is stable.  

 

 

  4.1. Analysis of Stability condition  
  

 Let us define the matrix A as A = A0 + A1 + A2. It has clearly shown that the arrangement 

of the square matrix A is 2nm+3m and this matrix is an irreducible infinitesimal generator matrix.  

 

 The vector 𝜉 is denoted by 𝜉 = (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5). Let 𝜉 be the steady-state probability 

vector of A satisfying 𝜉A = 0 and 𝜉e = 1, where 𝜉1 and 𝜉2 are of dimension nm and 𝜉3, 𝜉4, 𝜉5 are of 

dimension m. The Markov process has the quasi-birth-and-death structure, there exits stability of 

our model should satisfy 𝜉A0e < 𝜉A2e, is the necessary and sufficient condition of a QBD process. 

The vector 𝜉 is calculated by solving the following equations, 

      
     𝜉1[(𝑇 + 𝑇0𝛼) ⊕ 𝐷 − 𝜏𝐼𝑛𝑚] + 𝜉2[Ψ𝐼𝑛𝑚] + 𝜉3[𝛼 ⊗ 𝜎𝐼𝑚] = 0. 

   
     𝜉1[𝜏𝐼𝑛𝑚] + 𝜉2[(𝜃𝑇 + 𝜃𝑇0𝛼1) ⊕ 𝐷 − Ψ𝐼𝑛𝑚] = 0. 

   
     𝜉3[𝐷 − 𝜎𝐼𝑚] + 𝜉5[𝜂𝐼𝑚] = 0. 

   
     𝜉4[𝐷 − 𝛾𝐼𝑚] = 0. 
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     𝜉4[𝛾𝐼𝑚] + 𝜉5[𝐷 − 𝜂𝐼𝑚] = 0. 

   subject to the normalizing condition  

 
     𝜉1𝑒𝑛𝑚 + 𝜉2𝑒𝑛𝑚 + 𝜉3𝑒𝑚 + 𝜉4𝑒𝑚 + 𝜉5𝑒𝑚 = 1. 

 

  After some algebraical manipulation, the stability condition 𝜉A0e < 𝜉A2e which is turned 

to be as follows,  

 
     (𝜉1 + 𝜉2)[𝑒𝑛 ⊗ 𝐷1𝑒𝑚] + (𝜉3 + 𝜉4 + 𝜉5)[𝐷1𝑒𝑚] < 
 𝜉1[𝑇0 ⊗ 𝑒𝑚] + 𝜉2[𝜃𝑇0 ⊗ 𝑒𝑚] + (𝜉4 + 𝜉5)[𝜁𝐼𝑚]. 

   

 

4.2. Analysis of Steady-state Probability vector  
   

 Let us take the variable 𝑥 is the probability vector and is partitioned as 𝑥 =

(𝑥0, 𝑥1, 𝑥2, . . . . . . ). Hence, 𝑥 be the steady-state probability vector of Q. Here we are mentioning that 

𝑥0 is of dimension 3m and 𝑥1, 𝑥2, . .. are of dimension 2nm+3m. Then 𝑥 satisfies the condition 𝑥𝑄 =

0 and 𝑥𝑒 = 1.  

 

 Moreover, when the stability condition has been satisfied with the subvectors of 𝑥 except 

for 𝑥0 and 𝑥1, commensurate to the different level states are given by the equation as,  

 𝑥𝑗 = 𝑥1 𝑅𝑗−1,    𝑗 2.  

  

 where the rate matrix R denotes the minimal non-negative solution of the matrix 

quadratic equation as 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 0, which is referred by the author Neuts(1981). 

 

 Since our system is stable, and if adding the square matrices of A0, A1 and A2 whose row 

sums are equal to zero, then the rate matrix R is a square matrix of order is 2nm+3m, it is obtained 

from the above quadratic equation and satisfies the relation RA2e = A0e. 

 

 The sub vectors of 𝑥0 and 𝑥1 have obtained by solving the following equations,  
 𝑥0𝐵00 + 𝑥1𝐵10 = 0. 

 𝑥0𝐵01 + 𝑥1(𝐴1 + 𝑅𝐴2) = 0.  

  

 subject to the normalizing condition is  
 𝑥0𝑒3𝑚 + 𝑥1(𝐼 − 𝑅)−1𝑒2𝑛𝑚 + 3𝑚 = 1.  

  

 Thus, the R matrix could be calculated mathematically using essential steps in the 

Logarithmic reduction algorithm of R are given below we have referred the author’s Latouche and 

Ramaswami(1999).  

  Theorem: The structure of the rate matrix R is 

 

 𝑅 =

[
 
 
 
 
 
𝑅11 𝑅12 0 0 0
𝑅21 𝑅22 0 0 0
𝑅31 𝑅32 𝑅33 0 0
𝑅41 𝑅42 𝑅43 𝑅44 𝑅45
𝑅51 𝑅52 𝑅53 0 𝑅55

]
 
 
 
 
 

 (1) 

  

  Proof: The computation of the matrix R, it is clearly shown that R must have the structure 

for our model as given in (1). The main server may be struck with breakdown while giving service 

leads to main server can go for repair, in this situation the standby server giving service at lower 
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rate and the main server is being in service after return from the repair completion. Furthermore, 

here we will give proof of the construction of R. We can rewrite the matrix quadratic equation 

𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 0 is given by,  
 𝑅 = (𝑅2𝐴2 + 𝐴0)(−𝐴1)−1  

  It can easily verify that the structure of the matrix (−𝐴1)−1 as follows,  

 

 (−𝐴1)−1 =
1

𝑉

[
 
 
 
 
 
𝑓11 𝑓12 0 0 0
𝑓21 𝑓22 0 0 0

𝑓31 𝑓32 𝑓33 0 0
𝑓41 𝑓42 𝑓43 𝑓44 𝑓45
𝑓51 𝑓52 𝑓53 0 𝑓55

]
 
 
 
 
 

 (2) 

   where the elements of (−𝐴1)−1 as follows,       
     𝑉 = [[(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚] − [Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚]] × [[𝐷0 − 𝜎𝐼𝑚] 
     × [𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓11 = [[(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚][𝜎𝐼𝑚 − 𝐷0][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓12 = [[𝜏𝐼𝑛𝑚][𝐷0 − 𝜎𝐼𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓21 = [[Ψ𝐼𝑛𝑚][𝐷0 − 𝜎𝐼𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓22 = [[𝜏𝐼𝑛𝑚 − (𝑇 ⊕ 𝐷0)][𝐷0 − 𝜎𝐼𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓31 = [[𝛼 ⊗ 𝜎𝐼𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓32 = [[𝛼 ⊗ 𝜎𝐼𝑚][𝜏𝐼𝑛𝑚][𝛾𝐼𝑚 + 𝜁𝐼𝑚 − 𝐷0][𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓33 = [[Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚] − [(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚]] × [[𝐷0 −

𝛾𝐼𝑚 − 𝜁𝐼𝑚] 
     × [𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓41 = [[𝛼 ⊗ 𝜎𝐼𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚][𝛾𝐼𝑚 × 𝜂𝐼𝑚]], 

   
     𝑓42 = [[−(𝛼 ⊗ 𝜎𝐼𝑚)][𝜏𝐼𝑛𝑚][𝛾𝐼𝑚 × 𝜂𝐼𝑚]], 

   
     𝑓43 = [[Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚] − [(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚]] × [𝛾𝐼𝑚 × 𝜂𝐼𝑚], 

   
     𝑓44 = [[Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚] − [(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚]] × [[𝐷0 − 𝜎𝐼𝑚] 
     × [𝐷0 − 𝜂𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓45 = [[(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚] − [Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚]] × [[𝐷0 −

𝜎𝐼𝑚][𝛾𝐼𝑚]], 

   
     𝑓51 = [[𝛼 ⊗ 𝜎𝐼𝑚][Ψ𝐼𝑛𝑚 − (𝜃𝑇 ⊕ 𝐷0)][𝜂𝐼𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓52 = [[𝛼 ⊗ 𝜎𝐼𝑚][𝜏𝐼𝑛𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚][𝜂𝐼𝑚]], 

   
     𝑓53 = [[(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚] − [Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚]] 
     × [[𝜂𝐼𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚]], 

   
     𝑓55 = [[Ψ𝐼𝑛𝑚][𝜏𝐼𝑛𝑚] − [(𝑇 ⊕ 𝐷0) − 𝜏𝐼𝑛𝑚][(𝜃𝑇 ⊕ 𝐷0) − Ψ𝐼𝑛𝑚]] 
     × [[𝐷0 − 𝜎𝐼𝑚][𝐷0 − 𝛾𝐼𝑚 − 𝜁𝐼𝑚]]. 
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 In the same way, pre-multiplying a diagonal block matrix with (−𝐴1)−1 matrix, it won’t 

change the structure as seen in (2). Hence, the structure of matrix 𝐴0(−𝐴1)−1 is given by, 

 

 𝐴0(−𝐴1)−1 =
1

𝑉

[
 
 
 
 
 
𝑔11 𝑔12 0 0 0
𝑔21 𝑔22 0 0 0
𝑔31 𝑔32 𝑔33 0 0
𝑔41 𝑔42 𝑔43 𝑔44 𝑔45
𝑔51 𝑔52 𝑔53 0 𝑔55

]
 
 
 
 
 

 (3) 

  where the elements of 𝐴0(−𝐴1)−1 as follows, 

 
     𝑔11 = [𝐼𝑛 ⊗ 𝐷1]𝑓11,    𝑔12 = [𝐼𝑛 ⊗ 𝐷1]𝑓12,    𝑔21 = [𝐼𝑛 ⊗ 𝐷1]𝑓21,    𝑔22 =

[𝐼𝑛 ⊗ 𝐷1]𝑓22 

   
     𝑔31 = [𝐷1]𝑓31,    𝑔32 = [𝐷1]𝑓32,    𝑔33 = [𝐷1]𝑓33,    𝑔41 = [𝐷1]𝑓41,    𝑔42 =

[𝐷1]𝑓42, 

   
     𝑔43 = [𝐷1]𝑓43,    𝑔44 = [𝐷1]𝑓44,    𝑔45 = [𝐷1]𝑓45,    𝑔51 = [𝐷1]𝑓51,    𝑔52 =

[𝐷1]𝑓52, 

   
     𝑔53 = [𝐷1]𝑓53,    𝑔55 = [𝐷1]𝑓55. 

   

 Here, pre-multiplying a block matrix 𝐴2 with (−𝐴1)−1 matrix. Therefore, the structure of 

matrix 𝐴2(−𝐴1)−1 is given by, 

 

 𝐴2(−𝐴1)−1 =
1

𝑉

[
 
 
 
 
 
ℎ11 ℎ12 0 0 0
ℎ21 ℎ22 0 0 0
0 0 0 0 0
ℎ41 ℎ42 ℎ43 ℎ44 ℎ45
ℎ51 ℎ52 ℎ53 0 ℎ55

]
 
 
 
 
 

 (4) 

  where the elements of 𝐴2(−𝐴1)−1 as follows, 

 
     ℎ11 = [𝑇0𝛼 ⊗ 𝐼𝑚]𝑓11,    ℎ12 = [𝑇0𝛼 ⊗ 𝐼𝑚]𝑓12,    ℎ21 = [𝜃𝑇0𝛼 ⊗ 𝐼𝑚]𝑓21, 

   
     ℎ22 = [𝜃𝑇0𝛼 ⊗ 𝐼𝑚]𝑓22,    ℎ41 = [𝜁𝐼𝑚]𝑓41,    ℎ42 = [𝜁𝐼𝑚]𝑓42,    ℎ43 = [𝜁𝐼𝑚]𝑓43, 

   
     ℎ44 = [𝜁𝐼𝑚]𝑓44,    ℎ45 = [𝜁𝐼𝑚]𝑓45,    ℎ51 = [𝜁𝐼𝑚]𝑓51,    ℎ52 = [𝜁𝐼𝑚]𝑓52, 

   
     ℎ53 = [𝜁𝐼𝑚]𝑓53,    ℎ55 = [𝜁𝐼𝑚]𝑓55. 

  

 The sequence of {𝑅(𝑛), 𝑛 = 0,1,2,3, . . . . } is defined by,  

 𝑅(𝑛+1) = [(𝑅(𝑛))2𝐴2 + 𝐴0](−𝐴1)−1,    𝑛 = 0,1,2,3, . . ..  

  

 The matrix quadratic equation 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 0 which has the minimal non negative 

solution as converges monotonically with 𝑅(0) = 0. Hence, the structure of {𝐴0(−𝐴1)−1} and 

{(𝑅(𝑛))2𝐴2(−𝐴1)−1, where 𝑛 = 1,2,3, . . ..} will remains the same as that of (−𝐴1)−1. Using 𝑅(0) = 0, 

we can compute first iteration of R matrix i.e., 𝑅(1) then using first iteration of R matrix we can 

compute second iteration of R matrix i.e., 𝑅(2). Similarly, we can compute the further iterations of R 

matrix. Therefore, the each iteration of R matrix i.e., 𝑅(𝑛) retains the same structure. 
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 Logarithmic Reduction Algorithm of R   

  

  Step 0:  

 H ← (−𝐴1)
−1𝐴0, L ← (−𝐴1)

−1𝐴2, G = L, and T = H.  

  Step 1:  

 U = HL + LH  

 𝑀 = 𝐻2  
 H ← (𝐼 − 𝑈)−1𝑀  

 M ← 𝐿2  

 L ← (𝐼 − 𝑈)−1𝑀  

 G ← G + TL  

 T ← TH  

 Continue Step 1 Until ||𝑒 − 𝐺𝑒||∞𝜀  

  Step 2:  
 𝑅 = −𝐴0(𝐴1 + 𝐴0𝐺)−1.  

 

5. Analysis of the Busy Period   
   

    • A Busy period is nothing but the interval between the customers arrives into the 

empty system and afterward the first interval once again the system becomes empty. So, it is the 

first passage from level 1 to 0. The busy cycle has described the first return time to level 0 with at 

least one visit to a state at any other level.  

    • Prior to examining the busy period, we have introduced an overview of the 

fundamental period. Under consideration of the QBD Process, it is the first passage time from level 

𝑗 to level 𝑗 − 1, 𝑗 2.  

    • The cases 𝑗 = 0,1 commensurate the boundary states have to be discussed 

individually. Note that for each and every level 𝑗, j  1 there corresponds (2nm+3m) states. Thus by 

the state (𝑗, 𝑘) of level 𝑗 we mention that the 𝑘𝑡ℎ state of level 𝑗 when the states are arranged in 

alphabetical order.  

    • Let us denote 𝐺𝑘𝑘’(𝑢, 𝑥) be the conditional probability that it started in the state (𝑗, 𝑘) 

at time t = 0, the QBD process visits the level 𝑗 − 1 but not later than time 𝑥, we could make 𝑢 

transitions to the left and also entering the state (𝑗, 𝑘′).  

 

 

 Let us introduce the concept of the joint transform   

     𝐺𝑘𝑘 

’(𝑧, 𝑠) = ∑∞
𝑢=1 𝑧𝑢 ∫

∞

0
𝑒−𝑠𝑥𝑑𝐺kk 

 ′(𝑢, 𝑥)    ; |𝑧| ≤ 1, 𝑅𝑒(𝑠) ≥ 0 

  

 and the matrix is denoted as follows   

     𝐺(𝑧, 𝑠) = 𝐺𝑘𝑘 

’(𝑧, 𝑠)   

 then the above-defined matrix 𝐺(𝑧, 𝑠) satisfies the equation   

     𝐺(𝑧, 𝑠) = 𝑧(𝑆𝐼 − 𝐴1)−1𝐴2 + (𝑆𝐼 − 𝐴1)−1𝐴0𝐺
2
(𝑧, 𝑠) 

   

    • The matrix of 𝐺 = 𝐺𝑘𝑘’= 𝐺(1,0) would be taken for the first passage times, exclude for 

the boundary states. If we already know the matrix 𝑅 then we could find the matrix 𝐺 using the 

result  
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     𝐺 = −(𝐴1 + 𝑅𝐴2)−1𝐴2 

  

 Otherwise, we may use the concept of a logarithmic reduction algorithm method to find 

the values of G matrix. 

 

  Notations of Boundary level states for Busy Period  

    

    • 𝐺𝑘𝑘’ (1,0)(𝑢, 𝑥) denotes the conditional probability have been discussed for the first 

passage times from level 1 to the level 0 at time t = 0.  

    • 𝐺𝑘𝑘’ (0,0)(𝑢, 𝑥) denotes the conditional probability have been discussed for the return 

time to the level 0.  

    • ℱ1𝑗 denotes the mean first passage time from the level 𝑗 to level 𝑗 − 1, given that the 

process is in the state (𝑗, 𝑘) at time t = 0.  

    • ℱ1 denotes the column vector with entries ℱ1𝑗.  

    • ℱ2𝑗 denotes the mean number of customers to be served during the first passage time 

from level 𝑗 to level 𝑗 − 1, given that the first passage time has started in the state (𝑗, 𝑘).  

    • ℱ2 denotes the column vector with entries ℱ2𝑗.  

    • ℱ1(1,0) denotes the mean first passage time from level 1 to the level 0.  

    • ℱ2(1,0) denotes the mean number of service completed during the first passage time 

from the level 1 to the level 0.  

    • ℱ1(0,0) denotes the first return time to the level 0.  

    • ℱ2(0,0) denotes the mean number of service completion in between first return time to 

the level 0.  

  

 For the boundary levels 1 and 0 we get,   

     𝐺
(1,0)

(𝑧, 𝑠) = 𝑧(𝑆𝐼 − 𝐴1)−1𝐵10 + (𝑆𝐼 − 𝐴1)−1𝐴0𝐺(𝑧, 𝑠)𝐺
(1,0)

(𝑧, 𝑠)     

 0.3𝑐𝑚    𝐺
(0,0)

(𝑧, 𝑠) = (𝑆𝐼 − 𝐵00)−1𝐵01𝐺
(1,0)

(𝑧, 𝑠) 
   

 Thus, the following instances are calculated using the matrices as 𝐺(𝑧, 𝑠), 𝐺
(0,0)

(𝑧, 𝑠) and 

𝐺
(1,0)

(𝑧, 𝑠) are stochastic in nature. We can compute the instants as follows,   

     ℱ1 = −
∂

∂𝑠
𝐺(𝑧, 𝑠)|

𝑧=1,𝑠=0
𝑒 = −[𝐴1 + 𝐴0(𝐼 + 𝐺)]−1𝑒 (5) 

   

     ℱ2 =
∂

∂𝑧
𝐺(𝑧, 𝑠)|

𝑧=1,𝑠=0
𝑒 = −[𝐴1 + 𝐴0(𝐼 + 𝐺)]−1𝐴2𝑒 (6) 

   

     ℱ1(1,0) = −
∂

∂𝑠
𝐺

(1,0)
(𝑧, 𝑠)|

𝑧=1,𝑠=0
𝑒 = −[𝐴1 + 𝐴0𝐺]−1(𝐴0ℱ1 + 𝑒) (7) 

   

     ℱ2(1,0) =
∂

∂𝑧
𝐺

(1,0)
(𝑧, 𝑠)|

𝑧=1,𝑠=0
𝑒 = −[𝐴1 + 𝐴0𝐺]−1(𝐴0ℱ2 + 𝐵10𝑒) (8) 

   

     ℱ1(0,0) = −
∂

∂𝑠
𝐺

0,0
(𝑧, 𝑠)|

𝑧=1,𝑠=0
𝑒 = −𝐵00−1[𝐵01ℱ1(1,0) + 𝑒] (9) 

   

     ℱ2(0,0) =
∂

∂𝑧
𝐺

(0,0)
(𝑧, 𝑠)|

𝑧=1,𝑠=0
𝑒 = −𝐵00−1[𝐵01ℱ2(1,0)]. (10) 
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6. Measures of System Performance   
   

 The system performance measures are listed in this section for computation as follows,   

 

    1.  Probability that the Main server is Busy in the system:  
  𝑃𝑀𝑆𝐵 = ∑∞

𝑝=1 ∑𝑛
𝑟=1 ∑𝑚

𝑠=1 𝑥𝑝1𝑟𝑠  

 

    2.  Probability that the Main server is the breakdown:  
  𝑃𝑀𝑆𝐵𝐷 = ∑𝑚

𝑠=1 𝑥02𝑠 + ∑∞
𝑝=1 ∑𝑚

𝑠=1 𝑥𝑝2𝑟𝑠  

 

    3.  Probability of the Main server is in the setup process:  
  𝑃𝑀𝑆𝑆 = ∑∞

𝑝=1 ∑𝑚
𝑠=1 𝑥𝑝3𝑠  

 

    4.  Probability of the Main server is in closedown period:  
  𝑃𝑀𝑆𝐶𝐷 = ∑∞

𝑝=0 ∑𝑚
𝑠=1 𝑥𝑝4𝑠  

 

    5.  Probability of the Main server is on vacation:  
  𝑃𝑀𝑆𝑉𝐴𝐶 = ∑∞

𝑝=1 ∑𝑚
𝑠=1 𝑥𝑝5𝑠  

 

    6.  Expected system size:  
 𝜇𝑁𝑆 = ∑∞

𝑝=1 𝑝𝑥𝑝𝑒2𝑛𝑚+3𝑚 = 𝑥1(𝐼 − 𝑅)−2𝑒2𝑛𝑚+3𝑚  

 

    7.  Expected Queue size during the Main server is in Busy Period:  
  𝜇𝑄𝑀𝑆𝐵 = ∑∞

𝑝=1 ∑𝑛
𝑟=1 ∑𝑚

𝑠=1 (𝑝 − 1)𝑥𝑝1𝑟𝑠𝑒𝑛𝑚  

 

    8.  Expected Queue size during the Main server is in the breakdown:  
 𝜇𝑀𝑆𝐵𝐷 = ∑∞

𝑝=1 ∑𝑛
𝑟=1 ∑𝑚

𝑠=1 (𝑝 − 1)𝑥𝑝2𝑟𝑠𝑒𝑛𝑚  

 

    9.  Expected Queue size during the Main server is in the setup process:  
 𝜇𝑀𝑆𝑆 = ∑∞

𝑝=1 ∑𝑚
𝑠=1 𝑝𝑥𝑝3𝑠𝑒𝑚  

 

    10.  Expected Queue size during the Main server is in the closedown period:  
 𝜇𝑀𝑆𝐶𝐷 = ∑∞

𝑝=0 ∑𝑚
𝑠=1 𝑝𝑥𝑝4𝑠𝑒𝑚  

 

    11.  Expected Queue size during the Main server is in Vacation:  
 𝜇𝑀𝑆𝑉 = ∑∞

𝑝=0 ∑𝑚
𝑠=1 𝑝𝑥𝑝5𝑠𝑒𝑚  

 

    12.  Average Queue size:  
 𝜇𝑄𝑆 = 𝜇𝑄𝑀𝑆𝐵 + 𝜇𝑀𝑆𝐵𝐷 + 𝜇𝑀𝑆𝑆 + 𝜇𝑀𝑆𝐶𝐷 + 𝜇𝑀𝑆𝑉  

 

 

7. Numerical Results   
  

 In this part, we are analyzing the model behavior in the form of numerical and graphical 

illustrations. The following five different MAP representations has mean value is same that is, 1 for 

all the different arrival process. These five sets of arrival values has taken as input data in 

published works in the literature, see Chakravarthy (2010).  
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  Arrival in Erlang(ERLA) :   

 𝐷0 = [

−3 3 0
0 −3 3
0 0 −3

], 𝐷1 = [

0 0 0
0 0 0
3 0 0

]  

  

  Arrival in Exponential(EXPA) :   

 𝐷0 = [
−1

], 𝐷1 = [
1

]  

  

  Arrival in Hyperexponential(HEXA) :   

 𝐷0 = [
−1.90 0
0 −0.19], 𝐷1 = [

1.710 0.190
0.171 0.019]   

 

  

 

 

  Arrival in MAP-Negative Correlation(MNCA) :   

 𝐷0 = [
−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

], 𝐷1 = [

0 0 0
0.01002 0 0.99241
223.539 0 2.258

]   

 

   Arrival in MAP-Positive Correlation(MPCA) :   

 𝐷0 = [
−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

], 𝐷1 = [

0 0 0
0.99241 0 0.01002
2.258 0 223.539

]   

  

 

 Let us consider three phase type distributions for the service process. Normalization of 

these three representations has done to get service rate 𝛿. These sets of service values has taken as 

input data in published works in the literature, see Chakravarthy (2010).  

 

  Service in Erlang(ERLS) :   

 𝛼 = (
1,0

), 𝑇 = [
−2 2
0 −2]  

   

  Service in Exponential(EXPS) :   

 𝛼 = (
1

), 𝑇 = [
−1

]  

 

   Service in Hyperexponential(HEXS) :   

 𝛼 = (
0.8,0.2

),𝑇 = [
−2.80 0
0 −0.28]  
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Illustrated Example 1:   

We have examined the consequence of the renege rate 𝜁 against the expected system size 

in the following table. We fix 𝜆 = 1 ; 𝜃 = 0.7; Ψ = 3; 𝛾 = 6; 𝜎 = 8; 𝛿 = 4 ; 𝜂 = 5; 𝜏 = 2.  

  Table 1: Expected System size ‘ 

  Erlang service  

𝜁   ERLA   EXPA   HEXA   MNCA   MPCA 

8  0.2551100830   0.3191208819   0.4237650475   0.4033760196   19.5652579340 

13  0.1876854481   0.2403341600   0.3314934478   0.3076333066   19.3768425434 

18  0.1485579728   0.1928559259   0.2726619048   0.2483769578   19.2023395965 

23  0.1229681989   0.1610892244   0.2317527947   0.2081541358   19.0357254576 

28  0.1049145893   0.1383294179   0.2016045028   0.1790782187   18.8745536749 

33  0.0914907791   0.1212157553   0.1784409219   0.1570846970   18.7176231039 

38  0.0811162436   0.1078763507   0.1600754865   0.1398694196   18.5642607563 

43  0.0728570202   0.0971852548   0.1451515493   0.1260294489   18.4140497046 

48  0.0661255200   0.0884242695   0.1327815261   0.1146619073   18.2667099490 

 

 

  Table 2: Expected System size  

  Exponential service  

𝜁   ERLA   EXPA   HEXA   MNCA   MPCA 

8  0.2660071394   0.3337868611   0.4545621888   0.4165792561   19.5853519487 

13  0.1959931546   0.2514044546   0.3554004824   0.3180855132   19.3960615220 

18  0.1552672619   0.2017442209   0.2921818413   0.2570158696   19.2210068115 

23  0.1285938228   0.1685137353   0.2482416632   0.2155124581   19.0539913023 

28  0.1097574927   0.1447040698   0.2158754166   0.1854852167   18.8925006470 

33  0.0957419592   0.1268006869   0.1910190187   0.1627575449   18.7353016465 

38  0.0849044456   0.1128456776   0.1713193512   0.1449587238   18.5817042082 

43  0.0762731206   0.1016612272   0.1553168399   0.1306438676   18.4312814390 

48  0.0692360437   0.0924960096   0.1420568962   0.1188823783   18.2837471323 

 

 

  Table 3: Expected System size  

  Hyperexponential service  

𝜁   ERLA   EXPA   HEXA   MNCA   MPCA 

8  0.3475067705   0.4289873057   0.6229687643   0.5140562334   19.7220351977 

13  0.2572426019   0.3236600000   0.4859931583   0.3946837704   19.5250809913 

18  0.2043399957   0.2599631914   0.3987735746   0.3200301148   19.3452627410 

23  0.1695337242   0.2172643308   0.3382751167   0.2690145569   19.1748608531 

28  0.1448792919   0.1866366331   0.2938010054   0.2319627085   19.0107486316 

33  0.1264946416   0.1635891620   0.2597065716   0.2038376098   18.8513991043 

38  0.1122553475   0.1456147747   0.2327267733   0.1817628664   18.6959635987 

43  0.1009001983   0.1312030431   0.2108393303   0.1639773995   18.5439220356 

48  0.0916328750   0.1193894349   0.1927236849   0.1493429129   18.3949298110 

   

 From the above tables 1, 2 and 3, we conclude that while increasing the reneging rate, the 

expected system size decreases in case of the variety of arrangements of services and arrivals. 

Nevertheless, ERLA slowly decreases than the EXPA, HEXA rapidly. Among these, MPCA 

decreases much faster than the other arrivals. 
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Illustrated Example 2:   

We have examined the consequence of the service rate 𝛿 of main server against the 

expected system size in the following table. We fix 𝜆 = 1 ; Ψ = 5; 𝜎 = 8; 𝛾 = 6; 𝜁=9; 𝜃 = 0.7; 𝜂 = 5; 𝜏 = 2.  

  Table 4: Expected System size  

  Erlang service  

𝛿   ERLA   EXPA   HEXA   MNCA   MPCA 

4  0.2379764747   0.2994591234   0.4013151438   0.3798100776   19.5258931834 

5  0.2065039525   0.2487301273   0.3063421739   0.3207713481   14.4614145429 

6  0.1880284636   0.2199680438   0.2582097489   0.2861007651   11.4819360299 

7  0.1758546173   0.2015441054   0.2295481094   0.2632472972   9.5197772389 

8  0.1672205738   0.1887802063   0.2106828814   0.2470346455   8.1299142452 

9  0.1607759003   0.1794400127   0.1973928640   0.2349313955   7.0938468136 

10  0.1557808065   0.1723229710   0.1875600607   0.2255502697   6.2917434540 

11  0.1517955387   0.1667282839   0.1800107682   0.2180662304   5.6523974928 

12  0.1485420686   0.1622200781   0.1740444599   0.2119573947   5.1308356413 

 

 

  Table 5: Expected System size  

  Exponential service  

𝛿   ERLA   EXPA   HEXA   MNCA   MPCA 

4  0.2482351638   0.3132315037   0.4304393361   0.3923562659   19.5457697200 

5  0.2120552776   0.2567327335   0.3227377870   0.3276776653   14.4728125522 

6  0.1914637163   0.2252509825   0.2687014614   0.2904550358   11.4893149129 

7  0.1781755609   0.2053235695   0.2368546405   0.2662474615   9.5249442035 

8  0.1688892137   0.1916365013   0.2160806861   0.2492348851   8.1337368759 

9  0.1620323328   0.1816856929   0.2015562395   0.2366207794   7.0967923028 

10  0.1567611666   0.1741418179   0.1908778569   0.2268934813   6.2940852915 

11  0.1525823509   0.1682358002   0.1827228795   0.2191636915   5.6543062914 

12  0.1491880874   0.1634927441   0.1763070028   0.2128737519   5.1324233062 

 

 

  Table 6: Expected System size  

  Hyperexponential service  

𝛿   ERLA   EXPA   HEXA   MNCA   MPCA 

4  0.3246765587   0.4027499695   0.5896485286   0.4848163361   19.6805443062 

5  0.2546633015   0.3080706837   0.4156634604   0.3790445701   14.5503737715 

6  0.2183704443   0.2586826177   0.3294321844   0.3228206429   11.5395557565 

7  0.1965817028   0.2289316791   0.2796591165   0.2883845215   9.5600778968 

8  0.1822049566   0.2092691192   0.2479171397   0.2652822023   8.1596645385 

9  0.1720738738   0.1954065551   0.2262029037   0.2487705926   7.1167066591 

10  0.1645808739   0.1851571755   0.2105570033   0.2364084960   6.3098612364 

11  0.1588301261   0.1772982721   0.1988249493   0.2268191719   5.6671156423 

12  0.1542858532   0.1710966489   0.1897458792   0.2191703336   5.1430353189 

 

From the above tables 4, 5 and 6, we conclude that while increasing the main server service 

rate, the expected system size decreases in case of the variety of arrangements of services and 

arrivals. Eventhough, ERLA and EXPA decreases slowly, HEXA and MNCA decreases gradually 

and the MPCA decreases rapidly than compared to the other arrivals.  



G. Ayyappan, K. Thilagavathy 
ANALYSIS OF MAP/PH/1 QUEUEING MODEL WITH SETUP, 

CLOSEDOWN, MULTIPLE VACATIONS, STANDBY SERVER, 

BREAKDOWN, REPAIR AND RENEGING 

RT&A, No 2 (57) 
Volume 15, June 2020 

 

119 

 

Illustrated Example 3:   

We have examined the consequence of the repair rate Ψ against the expected system size 

in the following table. We fix 𝜆 = 1 ; 𝜃 = 0.7; 𝜎 = 8; 𝛾 = 6; 𝜁=9; 𝛿 = 4 ; 𝜂 = 5; 𝜏 = 2.   

  Table 7: Expected System size  

  Erlang service  

Ψ   ERLA   EXPA   HEXA   MNCA   MPCA 

4  0.2351597114   0.2946564762   0.3905212078   0.3743593312   18.9274045812 

6  0.2319256796   0.2890301295   0.3781560286   0.3679926754   18.2284868245 

8  0.2300699236   0.2857783885   0.3712174710   0.3643031902   17.8330653966 

10  0.2288467240   0.2836400981   0.3667572229   0.3618672995   17.5787028633 

12  0.2279733379   0.2821209855   0.3636427225   0.3601306660   17.4013390100 

14  0.2273159732   0.2809839024   0.3613424418   0.3588270709   17.2706052797 

16  0.2268022053   0.2800998845   0.3595729794   0.3578113063   17.1702481848 

18  0.2263890870   0.2793924588   0.3581691038   0.3569969784   17.0907820211 

20  0.2260494077   0.2788132852   0.3570278602   0.3563293036   17.0262983354 

 

 

  Table 8: Expected System size  

  Exponential service  

Ψ   ERLA   EXPA   HEXA   MNCA   MPCA 

4  0.2447096506   0.3075250014   0.4177427601   0.3860232879   18.9461545159 

6  0.2406602054   0.3008823356   0.4032632476   0.3786534491   18.2459354054 

8  0.2383541519   0.2970792602   0.3951810279   0.3744184322   17.8497897169 

10  0.2368484292   0.2945978474   0.3900064894   0.3716437228   17.5949679582 

12  0.2357825582   0.2928457732   0.3864044486   0.3696776380   17.4172877193 

14  0.2349862035   0.2915406696   0.3837506133   0.3682089168   17.2863230878 

16  0.2343676345   0.2905299637   0.3817132155   0.3670688570   17.1857901956 

18  0.2338728056   0.2897237091   0.3800993764   0.3661576879   17.1061857821 

20  0.2334677012   0.2890653405   0.3787892125   0.3654124806   17.0415905583 

 

 

  Table 9: Expected System size  

  Hyperexponential service  

Ψ   ERLA   EXPA   HEXA   MNCA   MPCA 

4  0.3161898145   0.3913958479   0.5673779642   0.4725395327   19.0733802339 

6  0.3066305618   0.3784862880   0.5422524487   0.4585297312   18.3645535023 

8  0.3013461895   0.3712989978   0.5283974514   0.4506946122   17.9636497210 

10  0.2979805242   0.3667051229   0.5196056510   0.4456686565   17.7058140995 

12  0.2956447368   0.3635109574   0.5135264742   0.4421640141   17.5260552766 

14  0.2939269314   0.3611595202   0.5090707869   0.4395779898   17.3935710289 

16  0.2926095607   0.3593553104   0.5056641815   0.4375899624   17.2918789671 

18  0.2915667102   0.3579267684   0.5029748399   0.4360133363   17.2113612827 

20  0.2907203721   0.3567673791   0.5007976263   0.4347320116   17.1460279908 

   

From the above tables 7, 8 and 9, we conclude that while increasing the repair rate, the 

expected system size decreases in case of the variety of arrangements of services and arrivals. 

Though, ERLA and EXPA decreases slowly, HEXA and MNCA decreases than ERLA, EXPA and 

the MPCA decreases fastly than compared to the other arrivals.  
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Illustrated Example 4:   

We have examined the consequence of the vacation rate 𝜂 against the expected system size 

in the following table. We fix 𝜆 = 1 ; Ψ = 3; 𝜎 = 8; 𝜃 = 0.7; 𝜁=9; 𝛿 = 4 ; 𝛾 = 6; 𝜏 = 2.  

  Table 10: Expected System size  

  Erlang service  

𝜂   ERLA   EXPA   HEXA   MNCA   MPCA 

3  0.2048797964   0.2580248808   0.3496636085   0.3295547779   19.3974064241 

5  0.2379764747   0.2994591234   0.4013151438   0.3798100776   19.5258931834 

7  0.2609374022   0.3264662539   0.4321131261   0.4126041589   19.5849169838 

9  0.2778495302   0.3454994764   0.4525827108   0.4356964425   19.6195291979 

11  0.2908481194   0.3596511214   0.4671791623   0.4528335256   19.6425405482 

13  0.3011626554   0.3705930064   0.4781152395   0.4660511754   19.6590576277 

15  0.3095532427   0.3793097174   0.4866153454   0.4765521438   19.6715425632 

17  0.3165160745   0.3864195048   0.4934122466   0.4850930542   19.6813385223 

19  0.3223893119   0.3923304733   0.4989714475   0.4921737642   19.6892448290 

 

 

  Table 11: Expected System size  

  Exponential service  

𝜂   ERLA   EXPA   HEXA   MNCA   MPCA 

3  0.2125347615   0.2684064944   0.3724672735   0.3392800892   19.4162589083 

5  0.2482351638   0.3132315037   0.4304393361   0.3923562659   19.5457697200 

7  0.2729429633   0.3424982484   0.4652043037   0.4269134345   19.6054778723 

9  0.2911060532   0.3631501692   0.4884068653   0.4512048870   19.6405877132 

11  0.3050432170   0.3785206714   0.5050054121   0.4692067998   19.6639788918 

13  0.3160871004   0.3904145455   0.5174736353   0.4830756755   19.6807958537 

15  0.3250602101   0.3998959660   0.5271852411   0.4940835793   19.6935236950 

17  0.3324986711   0.4076338334   0.5349648003   0.5030296401   19.7035204476 

19  0.3387673636   0.4140700670   0.5413374657   0.5104411633   19.7115955170 

 

 

  Table 12: Expected System size  

  Hyperexponential service  

𝜂   ERLA   EXPA   HEXA   MNCA   MPCA 

3  0.2689766678   0.3360384794   0.4968181848   0.4105364262   19.5428638563 

5  0.3246765587   0.4027499695   0.5896485286   0.4848163361   19.6805443062 

7  0.3631292339   0.4465468202   0.6463852161   0.5328031754   19.7458368472 

9  0.3913353241   0.4775803982   0.6847672480   0.5663216126   19.7850697502 

11  0.4129378486   0.5007531426   0.7125078950   0.5910302936   19.8116452740 

13  0.4300271643   0.5187319646   0.7335154646   0.6099806636   19.8310007263 

15  0.4438915101   0.5330955374   0.7499870410   0.6249636134   19.8458016026 

17  0.4553693955   0.5448394330   0.7632546739   0.6370991280   19.8575241033 

19  0.4650307329   0.5546232529   0.7741738593   0.6471232193   19.8670586028 

 

From the above tables 10, 11 and 12, we conclude that when we are increasing the vacation 

rate then the expected system size is also increases in the variety of arrangements of arrivals and 

services. Nonetheless, ERLA and EXPA increases slowly, HEXA and MNCA increases rapidly but 

in the case of MPCA increases gradually than compared to the other arrivals.  
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  Illustrated Example 5:   

 We have examined the consequence of the setup rate 𝜎 against the expected system size in 

the following table. We fix 𝜆 = 1 ; 𝜃 = 0.7; Ψ = 3; 𝛾 = 6; 𝜁=9; 𝛿 = 4 ; 𝜂 = 5; 𝜏 = 2.  

  Table 13: Expected System size  

  Erlang service  

𝜎   ERLA   EXPA   HEXA   MNCA   MPCA 

7  0.2459777032   0.3089365521   0.4130365944   0.3898273658   19.5394272035 

11  0.2230858302   0.2816829834   0.3792769140   0.3609173026   19.5001558027 

15  0.2128018626   0.2693028343   0.3638927871   0.3476665782   19.4819360808 

19  0.2069616016   0.2622371767   0.3551019328   0.3400646246   19.4714200228 

23  0.2031965713   0.2576700983   0.3494163091   0.3351341033   19.4645746841 

27  0.2005674189   0.2544758358   0.3454383758   0.3316773097   19.4597637942 

31  0.1986274089   0.2521164492   0.3424995291   0.3291194092   19.4561977552 

35  0.1971369360   0.2503025272   0.3402398004   0.3271501234   19.4534487560 

39  0.1959559466   0.2488645462   0.3384482366   0.3255872405   19.4512648638 

 

  Table 14: Expected System size  

  Exponential service  

𝜎   ERLA   EXPA   HEXA   MNCA   MPCA 

7  0.2563481281   0.3228302711   0.4424163840   0.4024462732   19.5593192999 

11  0.2331297801   0.2952183454   0.4078875333   0.3733239025   19.5200048733 

15  0.2226919076   0.2826652387   0.3921160745   0.3599734036   19.5017673293 

19  0.2167619277   0.2754977271   0.3830919110   0.3523134799   19.4912413486 

23  0.2129380461   0.2708635304   0.3772503625   0.3473450301   19.4843894587 

27  0.2102672745   0.2676217056   0.3731608641   0.3438614526   19.4795737454 

31  0.2082962544   0.2652268528   0.3701382388   0.3412836023   19.4760038850 

35  0.2067817721   0.2633854671   0.3678132866   0.3392988602   19.4732517000 

39  0.2055816379   0.2619255910   0.3659695047   0.3377236335   19.4710650544 

 

 

  Table 15: Expected System size  

  Hyperexponential service  

𝜎   ERLA   EXPA   HEXA   MNCA   MPCA 

7  0.3333551730   0.4130708338   0.6030453013   0.4952896493   19.6941862430 

11  0.3085394278   0.3833293074   0.5642591570   0.4650633254   19.6546155835 

15  0.2974150057   0.3697515263   0.5463606703   0.4512114996   19.6362724604 

19  0.2911082897   0.3619815009   0.5360605806   0.4432663296   19.6256896147 

23  0.2870474039   0.3569506282   0.5293684884   0.4381139280   19.6188021143 

27  0.2842140195   0.3534278749   0.5246714808   0.4345018467   19.6139618281 

31  0.2821245619   0.3508236306   0.5211932306   0.4318290984   19.6103738246 

35  0.2805199810   0.3488201520   0.5185139054   0.4297713517   19.6076075622 

39  0.2792490027   0.3472310819   0.5163866252   0.4281381748   19.6054095731 

 

From the above tables 13, 14 and 15, we examined that when we are increasing the setup 

rate, the expected system size decreases in the variety of arrangements of services and arrivals. 

Though, ERLA and EXPA decreases slowly, HEXA and MNCA decreases than ERLA, EXPA but in 

the case of MPCA decreases gradually than compared to the other arrivals.  
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Illustrated Example 6:   

 We have examined the consequence of the breakdown rate 𝜏 against the expected system 

size in the following table. We fix 𝜆 = 1 ; 𝜃 = 0.7; Ψ = 3; 𝛾 = 6; 𝜁=9; 𝛿 = 4 ; 𝜂 = 5; 𝜎 = 8.  

  Table 16: Expected System size  

  Erlang service  

𝜏   ERLA   EXPA   HEXA   MNCA   MPCA 

1.2   0.2325503701   0.2902695261   0.3821097387   0.3693639979   18.5182290797 

1.4   0.2339881967   0.2927164860   0.3872259225   0.3721512928   18.7936229079 

1.6   0.2353697421   0.2950595706   0.3921235659   0.3748163882   19.0524217592 

1.8   0.2366981857   0.2973051588   0.3968158982   0.3773669628   19.2960816647 

2.0   0.2379764747   0.2994591234   0.4013151438   0.3798100776   19.5258931834 

2.2   0.2392073439   0.3015268799   0.4056326106   0.3821522351   19.7430042545 

2.4   0.2403933354   0.3035134296   0.4097787711   0.3843994331   19.9484393654 

2.6   0.2415368142   0.3054233983   0.4137633345   0.3865572118   20.1431157099 

2.8   0.2426399843   0.3072610704   0.4175953123   0.3886306959   20.3278568743 

 

  Table 17: Expected System size  

  Exponential service  

𝜏   ERLA   EXPA   HEXA   MNCA   MPCA 

1.2   0.2416670895   0.3026331558   0.4081984191   0.3805408844   18.5362367193 

1.4   0.2434137950   0.3054613010   0.4141292614   0.3837002241   18.8121367719 

1.6   0.2450878289   0.3081652249   0.4198026751   0.3867164611   19.0714145056 

1.8   0.2466935983   0.3107528650   0.4252344938   0.3895989516   19.3155280116 

2.0   0.2482351638   0.3132315037   0.4304393361   0.3923562659   19.5457697200 

2.2   0.2497162727   0.3156078338   0.4354307133   0.3949962680   19.7632892724 

2.4   0.2511403881   0.3178880161   0.4402211261   0.3975261857   19.9691127063 

2.6   0.2525107158   0.3200777309   0.4448221522   0.3999526729   20.1641586293 

2.8   0.2538302269   0.3221822235   0.4492445268   0.4022818646   20.3492519179 

 

  Table 18: Expected System size  

  Hyperexponential service  

𝜏   ERLA   EXPA   HEXA   MNCA   MPCA 

1.2   0.3102292500   0.3832114374   0.5520675036   0.4635680590   18.6585235243 

1.4   0.3140934994   0.3884433265   0.5621199692   0.4692715155   18.9377955214 

1.6   0.3177817606   0.3934329312   0.5717146896   0.4747016151   19.2002701798 

1.8   0.3213058493   0.3981967858   0.5808816904   0.4798774333   19.4474184089 

2.0   0.3246765587   0.4027499695   0.5896485286   0.4848163361   19.6805443062 

2.2   0.3279037649   0.4071062588   0.5980405239   0.4895341627   19.9008081433 

2.4   0.3309965207   0.4112782628   0.6060809685   0.4940453865   20.1092456548 

2.6   0.3339631373   0.4152775420   0.6137913152   0.4983632567   20.3067843045 

2.8   0.3368112576   0.4191147133   0.6211913473   0.5024999226   20.4942570689 

   

 From the above tables 16 ,17 and 18, we conclude that maximizing the breakdown rate 

then the expected system size is also maximizes in different arrangements of services and arrivals 

of ERLA, EXPA, HEXA, MNCA and MPCA. Nevertheless, Erlang arrival and exponential arrival 

increases slowly, hyperexponential arrival and negative correlation arrival increases rapidly but in 

the case of positive correlation arrival increases gradually than compared to the other arrivals.  
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Illustrated Example 7:   

We have examined the consequence of the standby server service rate 𝜃𝛿 against the 

expected system size in the following table. We fix 𝜆 = 1 ; Ψ = 3; 𝜎 = 8; 𝛾 = 6; 𝜁=9; 𝛿 = 4 ; 

𝜂 = 5; 𝜏 = 2.  

  Table 19: Expected System size  

  Erlang service  

𝜃𝛿   ERLA   EXPA   HEXA   MNCA   MPCA 

2.2   0.2493345337   0.3189650962   0.4442998622   0.4016843196   21.5840044974 

2.4   0.2451019008   0.3117401217   0.4282485811   0.3936201806   20.8508674817 

2.6   0.2413398016   0.3052737730   0.4140070993   0.3863659406   20.1663913544 

2.8   0.2379764747   0.2994591234   0.4013151438   0.3798100776   19.5258931834 

3.0   0.2349534663   0.2942073951   0.3899556725   0.3738598100   18.9252717370 

3.2   0.2322228221   0.2894444617   0.3797470180   0.3684374863   18.3609199326 

3.4   0.2297449241   0.2851080872   0.3705365387   0.3634777414   17.8296526306 

3.6   0.2274868176   0.2811457369   0.3621954802   0.3589252447   17.3286467252 

3.8   0.2254209087   0.2775128340   0.3546148072   0.3547329083   16.8553911568 

 

  Table 20: Expected System size  

  Exponential service  

𝜃𝛿   ERLA   EXPA   HEXA   MNCA   MPCA 

2.2   0.2620613084   0.3355792516   0.4791805431   0.4171768202   21.6079764679 

2.4   0.2569279619   0.3273268675   0.4610597903   0.4080428441   20.8733500039 

2.6   0.2523461596   0.3199161494   0.4449036704   0.3998098925   20.1875135419 

2.8   0.2482351638   0.3132315037   0.4304393361   0.3923562659   19.5457697200 

3.0   0.2445286090   0.3071765721   0.4174381012   0.3855803680   18.9440047937 

3.2   0.2411715731   0.3016705653   0.4057075188   0.3793968794   18.3786007973 

3.4   0.2381183070   0.2966453703   0.3950849869   0.3737337400   17.8463630966 

3.6   0.2353304623   0.2920432536   0.3854325696   0.3685297555   17.3444602783 

3.8   0.2327757010   0.2878150282   0.3766327917   0.3637326873   16.8703739928 

 

  Table 21: Expected System size  

  Hyperexponential service  

𝜃𝛿   ERLA   EXPA   HEXA   MNCA   MPCA 

2.2   0.3547810935   0.4431870322   0.6674822570   0.5295597332   21.7696904127 

2.4   0.3437154609   0.4283603500   0.6389033334   0.5131722013   21.0252665947 

2.6   0.3337276417   0.4149413304   0.6130742909   0.4983227530   20.3304822178 

2.8   0.3246765587   0.4027499695   0.5896485286   0.4848163361   19.6805443062 

3.0   0.3164438165   0.3916345369   0.5683321841   0.4724883079   19.0712565623 

3.2   0.3089294302   0.3814663829   0.5488748637   0.4611988887   18.4989294453 

3.4   0.3020484686   0.3721358261   0.5310622021   0.4508287634   17.9603060193 

3.6   0.2957283944   0.3635488745   0.5147098562   0.4412755675   17.4525004402 

3.8   0.2899069400   0.3556245899   0.4996586252   0.4324510585   16.9729466378 

  

From the above tables 19, 20, and 21, we conclude that increasing the standby service rate, 

the expected system size decreases in case of the variety of arrangements of services and arrivals. 

Eventhough, ERLA and EXPA decreses slowly, HEXA and MNCA decreases their values than 

ERLA and the MPCA decreases more rapidly than compared to the other arrivals.  
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Illustrated Example 8:   

We have examined the consequence of the closedown rate 𝛾 against the expected system 

size in the following table. We fix 𝜆 = 1 ; Ψ = 3; 𝜎 = 8; 𝜃 = 0.7; 𝜁=9; 𝛿 = 4 ; 𝜂 = 5; 𝜏 = 2.  

  Table 22: Expected System size  

  Erlang service  

𝛾   ERLA   EXPA   HEXA   MNCA   MPCA 

6  0.2379764747   0.2994591234   0.4013151438   0.3798100776   19.5258931834  

9  0.2395334980   0.3014656569   0.4047552133   0.3816022397   19.5279632231 

12  0.2402164837   0.3023627617   0.4062973564   0.3823623790   19.5286980831 

15  0.2405789359   0.3028461514   0.4071288880   0.3827566641   19.5290420827 

18  0.2407949971   0.3031378197   0.4076307286   0.3829876942   19.5292306987 

21  0.2409343973   0.3033278535   0.4079577337   0.3831347288   19.5293453188 

24  0.2410296700   0.3034587825   0.4081830537   0.3832340971   19.5294202030 

27  0.2410977093   0.3035529176   0.4083450702   0.3833043942   19.5294718322 

30  0.2411480148   0.3036229156   0.4084655580   0.3833559509   19.5295089408 

 

  Table 23: Expected System size  

  Exponential service  

𝛾   ERLA   EXPA   HEXA   MNCA   MPCA 

6  0.2482351638   0.3132315037   0.4304393361   0.3923562659   19.5457697200 

9  0.2498484226   0.3154037298   0.4343315782   0.3941987613   19.5478091696 

12  0.2505494261   0.3163754300   0.4360797056   0.3949768093   19.5485318940 

15  0.2509192056   0.3168992191   0.4370235337   0.3953792754   19.5488698925 

18  0.2511387310   0.3172153589   0.4375937005   0.3956146569   19.5490551173 

21  0.2512799490   0.3174213865   0.4379655094   0.3957642577   19.5491676409 

24  0.2513762514   0.3175633626   0.4382218574   0.3958652568   19.5492411422 

27  0.2514449089   0.3176654569   0.4384062772   0.3959366509   19.5492918133 

30  0.2514956029   0.3177413838   0.4385434836   0.3959889793   19.5493282322 

 

 

  Table 24: Expected System size  

  Hyperexponential service  

𝛾   ERLA   EXPA   HEXA   MNCA   MPCA 

6  0.3246765587   0.4027499695   0.5896485286   0.4848163361   19.6805443062 

9  0.3269565720   0.4059890577   0.5960709245   0.4871727892   19.6825830695 

12  0.3279220141   0.4074410391   0.5989721822   0.4881523092   19.6833068224 

15  0.3284224851   0.4082249413   0.6005447623   0.4886538794   19.6836459575 

18  0.3287159437   0.4086986463   0.6014975096   0.4889451390   19.6838321413 

21  0.3289030001   0.4090076556   0.6021201914   0.4891292753   19.6839454308 

24  0.3290296693   0.4092207649   0.6025502744   0.4892530810   19.6840195391 

27  0.3291194782   0.4093741107   0.6028601346   0.4893403108   19.6840706941 

30  0.3291854945   0.4094882160   0.6030909498   0.4894040754   19.6841075030 

   

From the above tables 22, 23 and 24, we conclude that increasing the closedown rate then 

the expected system size is also increases in the variety of arrangements of services and arrivals. 

Eventhough, ERLA and EXPA increases slowly, HEXA and MNCA increases their values than 

EXPA but in the case of MPCA increases gradually than compared to the other arrivals.  

  



G. Ayyappan, K. Thilagavathy 
ANALYSIS OF MAP/PH/1 QUEUEING MODEL WITH SETUP, 

CLOSEDOWN, MULTIPLE VACATIONS, STANDBY SERVER, 

BREAKDOWN, REPAIR AND RENEGING 

RT&A, No 2 (57) 
Volume 15, June 2020 

 

125 

 

Illustrated Example 9:  

 We fix 𝜆 = 1 ; Ψ = 3; 𝜃 = 0.7; 𝜁 = 9; 𝜂 = 5; 𝜏 = 2; 𝛾 = 6.   

 

Figure  2: The graph of 𝐸𝑘/𝐸𝑘/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

Figure  3: The graph of 𝐸𝑘/𝑀/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

Figure  4: The graph of 𝐸𝑘/𝐻𝑘/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

     

  We observe from figures 2, 3 and 4 that the impact of setup rate and main server service 

rate on the probability of the main server service is in the busy mode. We have examined the 

probability of the main server is in the busy mode decreases while we are increasing both the setup 

rate and main server service rate for the arrangement of Erlang arrival with ERLS, EXPS and 

HEXS. However, the Erlang arrival decreases slowly in hyperexponential service. 
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We fix 𝜆 = 1 ; Ψ = 3; 𝜃 = 0.7; 𝜁 = 9; 𝜂 = 5; 𝜏 = 2; 𝛾 = 6.  

 

Figure  5: The graph of 𝑀/𝐸𝑘/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

Figure  6: The graph of 𝑀/𝑀/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

Figure  7: The graph of 𝑀/𝐻𝑘/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

We observe from figures 5, 6 and 7 that the impact of setup rate and main server service 

rate on the probability of the main server service is in the busy mode. We have examined the 

probability of the main server is in the busy mode decreases while we are increasing both the setup 

rate and main server service rate for the arrangement of exponential arrival with ERLS, EXPS and 

HEXS. Nevertheless, the Erlang service times decreases than the hyperexponential service times.  
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We fix 𝜆 = 1 ; Ψ = 3; 𝜃 = 0.7; 𝜁 = 9; 𝜂 = 5; 𝜏 = 2; 𝛾 = 6.  

 

Figure  8: The graph of 𝐻𝑘/𝐸𝑘/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

Figure  9: The graph of 𝐻𝑘/𝑀/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

 

Figure  10: The graph of 𝐻𝑘/𝐻𝑘/1 - setup 

rate(𝜎) and main server service rate(𝛿) 

versus probability that the main server is in 

busy 

     

 We observe from figures 8, 9 and 10 that the consequence of setup rate and main server 

service rate on the probability of the main server is in the busy mode. We have examined the 

probability of the main server is in the busy mode decreases while we are increasing both the setup 

rate and main server service rate for the arrangement of hyperexponential arrival with ERLS, EXPS 

and HEXS. Meanwhile, the hyperexponential arrival decreases slowly in hyperexponential service 

times.  
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We fix 𝜆 = 1 ; Ψ = 3; 𝜃 = 0.7; 𝜁 = 9; 𝜂 = 5; 𝜏 = 2; 𝛾 = 6.  

 

Figure  11: The graph of the 𝑀𝐴𝑃 −

𝑁𝐶/𝐸𝑘/1 - setup rate(𝜎) and main server 

service rate(𝛿) versus probability that the 

main server is in busy 

 

Figure  12: The graph of the 𝑀𝐴𝑃 −

𝑁𝐶/𝑀/1 - setup rate(𝜎) and main server 

service rate(𝛿) versus probability that the 

main server is in busy 

 

Figure  13: The graph of the 𝑀𝐴𝑃 −

𝑁𝐶/𝐻𝑘/1 - setup rate(𝜎) and main server 

service rate(𝛿) versus probability that the 

main server is in busy 

 

We observe from figures 11, 12 and 13 that the impact of setup rate and main server 

service rate on the probability of the main server service is in the busy mode. We have examined 

the probability of the main server is in the busy mode decreases while we are increasing both the 

setup rate and main server service rate for the arrangement of MAP-Negative correlation arrival 

(MNCA) with ERLS, EXPS and HEXS. Nevertheless, MAP-Negative correlation arrival decreases 

slowly in HEXS than ERLS service times.  
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We fix 𝜆 = 1 ; Ψ = 3; 𝜃 = 0.7; 𝜁 = 9; 𝜂 = 5; 𝜏 = 2; 𝛾 = 6.  

 

Figure  14: The graph of the 𝑀𝐴𝑃 −

𝑃𝐶/𝐸𝑘/1 - setup rate(𝜎) and main server 

service rate(𝛿) versus probability that the 

main server is in busy 

 

Figure  15: The graph of the 𝑀𝐴𝑃 − 𝑃𝐶/𝑀/1 

- setup rate(𝜎) and main server service 

rate(𝛿) versus probability that the main 

server is in busy 

 

Figure  16: The graph of the 𝑀𝐴𝑃 −

𝑃𝐶/𝐻𝑘/1 - setup rate(𝜎) and main server 

service rate(𝛿) versus probability that the 

main server is in busy 

 

We observe from figures 14, 15 and 16 that the impact of setup rate and main server 

service rate on the probability of the main server service is in the busy mode. We have examined 

the probability of the main server is in the busy mode decreases while we are increasing both the 

setup rate and main server service rate for the arrangement of MAP-Positive correlation 

arrival(MPCA) with ERLS, EXPS and HEXS. Nevertheless, MAP-Positive correlation arrival 

decreases slowly in the hyperexponential service times.  
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Illustrated Example 10:  

 We fix 𝜆 = 1 ; 𝛿 = 4; Ψ = 3; 𝜃 = 0.7; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8.  

 

Figure  17: The graph of the 𝐸𝑘/𝐸𝑘/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  18: The graph of the 𝐸𝑘/𝑀/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  19: The graph of the 𝐸𝑘/𝐻𝑘/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

We observe from figures 17,18 and 19 that the impact of closedown rate and reneging rate 

on the probability of the main server service is on vacation. We have examined the probability of 

the main server is in the vacation increases while we are increasing both the closedown rate and 

reneging rate for the arrangement of Erlang arrival with ERLS, EXPS and HEXS. However, the 

Erlang arrival increases fastly in hyperexponential service times.  
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We fix 𝜆 = 1 ; 𝛿 = 4; Ψ = 3; 𝜃 = 0.7; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8.  

 

Figure  20: The graph of the 𝑀/𝐸𝑘/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  21: The graph of the 𝑀/𝑀/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  22: The graph of the 𝑀/𝐻𝑘/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

We observe from the figures 20, 21 and 22 that it shows the consequence of closedown rate 

and reneging rate on the probability of the main server service is on vacation. We have examined 

that the probability of the main server is in the vacation increases while we are increasing both the 

closedown rate and reneging rate for the arrangement of exponential arrival with ERLS, EXPS and 

HEXS. Therefore, the exponential arrival highly increases in hyperexponential service times.  
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We fix 𝜆 = 1 ; 𝛿 = 4; Ψ = 3; 𝜃 = 0.7; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8.  

 

Figure  23: The graph of the 𝐻𝑘/𝐸𝑘/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  24: The graph of the 𝐻𝑘/𝑀/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  25: The graph of the 𝐻𝑘/𝐻𝑘/1 - 

closedown rate(𝛾) and reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

We observe from figures 23, 24 and 25 that it shows the consequence of closedown rate 

and reneging rate on the probability of the main server is on vacation. We have examined the 

probability of the main server is in the vacation increases while we are increasing both the 

closedown rate and reneging rate for the arrangement of hyperexponential arrival with ERLS, 

EXPS and HEXS. Nonetheless, the hyperexponential arrival times increases slowly in the case of 

Erlang service times.   
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We fix 𝜆 = 1 ; 𝛿 = 4; Ψ = 3; 𝜃 = 0.7; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8.  

 

Figure  26: The graph of the 𝑀𝐴𝑃 −

𝑁𝐶/𝐸𝑘/1 - closedown rate(𝛾)  and  reneging 

rate(𝜁) versus probability that the main 

server is on vacation 

 

Figure  27: The graph of the 𝑀𝐴𝑃 −

𝑁𝐶/𝑀/1 - closedown rate(𝛾)  and  reneging 

rate(𝜁) versus probability that the main 

server is on vacation 

 

Figure  28: The graph of the 𝑀𝐴𝑃 −

𝑁𝐶/𝐻𝑘/1 - closedown rate(𝛾)  and  reneging 

rate(𝜁) versus probability that the main 

server is on vacation 

 

We observe from figures 26, 27 and 28 that it shows the consequence of closedown rate 

and reneging rate on the probability of the main server service is on vacation. We have examined 

the probability of the main server is in the vacation increases while we are increasing both the 

closedown rate and reneging rate for the arrangement of MAP-Negative correlation 

arrival(MNCA) with ERLS, EXPS and HEXS. Nevertheless, MAP-Negative correlation arrival 

increases fastly in case of hyperexponential service times. 
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We fix 𝜆 = 1 ; 𝛿 = 4; Ψ = 3; 𝜃 = 0.7; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8.  

 

Figure  29: The graph of the 𝑀𝐴𝑃 −

𝑃𝐶/𝐸𝑘/1 - closedown rate(𝛾)  and  reneging 

rate(𝜁) versus probability that the main 

server is on vacation 

 

Figure  30: The graph of the 𝑀𝐴𝑃 − 𝑃𝐶/𝑀/1 

- closedown rate(𝛾)  and  reneging rate(𝜁) 

versus probability that the main server is 

on vacation 

 

Figure  31: The graph of the 𝑀𝐴𝑃 −

𝑃𝐶/𝐻𝑘/1 - closedown rate(𝜁) and  reneging 

rate(𝛾) versus probability that the main 

server is on vacation 

 

We observe from figures 29, 30 and 31 that it shows the consequence of closedown rate 

and reneging rate on the probability of the main server service is on vacation. We have examined 

the probability of the main server is in the vacation increases while we are increasing both the 

closedown rate and reneging rate for the arrangement of MAP-Positive correlation arrival(MPCA) 

with ERLS, EXPS and HEXS. Moreover, the hyperexponential service fastly increases in MAP-

Positive correlation arrival.  
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Illustrated Example 11:  

We fix 𝜆 = 1 ; 𝛿 = 4; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8; 𝛾 = 6; 𝜁 = 9.  

 

Figure  32: The graph of 𝐸𝑘/𝐸𝑘/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

Figure  33: The graph of 𝐸𝑘/𝑀/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

Figure  34: The graph of 𝐸𝑘/𝐻𝑘/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

     

 We observe from the figures 32, 33 and 34 that it shows the consequence of standby server 

service rate and repair rate on the expected system size. We have examined that the expected 

system size decreases while we are increasing both the repair rate and standby server service rate 

for the arrangement of Erlang arrival with ERLS, EXPS and HEXS. However, the Erlang arrival 

fastly decreases with hyperexponential service. 

  

  



G. Ayyappan, K. Thilagavathy 
ANALYSIS OF MAP/PH/1 QUEUEING MODEL WITH SETUP, 

CLOSEDOWN, MULTIPLE VACATIONS, STANDBY SERVER, 

BREAKDOWN, REPAIR AND RENEGING 

RT&A, No 2 (57) 
Volume 15, June 2020 

 

136 

 

We fix 𝜆 = 1 ; 𝛿 = 4; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8; 𝛾 = 6; 𝜁 = 9.  

 

Figure  35: The graph of 𝑀/𝐸𝑘/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

Figure  36: The graph of 𝑀/𝑀/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

Figure  37: The graph of 𝑀/𝐻𝑘/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

We observe from the figures 35, 36 and 37 that it shows the consequence of standby server 

service rate and repair rate on the expected system size. We have examined that the expected 

system size decreases while we are increasing both the repair rate and standby server service rate 

for the arrangement of exponential arrival with services of ERLS, EXPS and HEXS. Nevertheless, 

exponential arrival decreases fastly in hyperexponential service, gradually in exponential service 

and slowly in Erlang service times. 
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We fix 𝜆 = 1 ; 𝛿 = 4; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8; 𝛾 = 6; 𝜁 = 9.  

 

Figure  38: The graph of 𝐻𝑘/𝐸𝑘/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

Figure  39: The graph of 𝐻𝑘/𝑀/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

Figure  40: The graph of 𝐻𝑘/𝐻𝑘/1 - repair 

rate(Ψ) and standby server service rate(𝜃𝛿) 

versus the expected system size 

 

We observe from the figures 38, 39 and 40 that it shows the consequence of standby server 

service rate and repair rate on the expected system size. We have examined that the expected 

system size decreases slowly while we are increasing both the repair rate and standby server 

service rate for the arrangement of hyperexponential arrival with services of ERLS, EXPS and 

HEXS. Moreover, the hyperexponential service times decreases than the Erlang service times with 

the hyperexponential arrival times. 
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We fix 𝜆 = 1 ; 𝛿 = 4; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8; 𝛾 = 6; 𝜁 = 9.  

 

Figure  41: The graph of the  𝑀𝐴𝑃 −

𝑁𝐶/𝐸𝑘/1 - standby server service rate(𝜃𝛿) 

and repair rate(Ψ)  versus the expected 

system size 

 

Figure  42: The graph of the  𝑀𝐴𝑃 −

𝑁𝐶/𝑀/1 - standby server service rate(𝜃𝛿) 

and repair rate(Ψ)  versus the expected 

system size 

 

Figure  43: The graph of the  𝑀𝐴𝑃 −

𝑁𝐶/𝐻𝑘/1 - standby server service rate(𝜃𝛿) 

and repair rate(Ψ)  versus the expected 

system size 

 

We observe from the figures 41, 42 and 43 that it shows the consequence of standby server 

service rate and repair rate on the expected system size. We have examined that the expected 

system size decreases randomly while we are increasing both the repair rate and standby server 

service rate for the arrangement of MAP-Negative correlation arrival(MNCA) with services of 

ERLS, EXPS and HEXS. Nonetheless, the MAP-Negative correlation arrival decreases slowly in 

Erlang service times and fastly in hyperexponential service times. 
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We fix 𝜆 = 1 ; 𝛿 = 4; 𝜂 = 5; 𝜏 = 2; 𝜎 = 8; 𝛾 = 6; 𝜁 = 9.  

 

Figure  44: The graph of the  𝑀𝐴𝑃 −

𝑃𝐶/𝐸𝑘/1 - standby server service rate(𝜃𝛿) 

and repair rate(Ψ)  versus the expected 

system size 

 

Figure  45: The graph of the  𝑀𝐴𝑃 −

𝑃𝐶/𝑀/1 - standby server service rate(𝜃𝛿) 

and repair rate(Ψ)  versus the expected 

system size 

 

Figure  46: The graph of the  𝑀𝐴𝑃 −

𝑃𝐶/𝐻𝑘/1 - standby server service rate(𝜃𝛿) 

and repair rate(Ψ)  versus the expected 

system size 

 

 

We observe from the figures 44, 45 and 46 that it shows the consequence of standby server 

service rate and repair rate on the expected system size. We have examined that the expected 

system size decreases rapidly while we are increasing both the repair rate and standby server 

service rate for the arrangement of MAP-Positive correlation arrival(MPCA) with services of ERLS, 

EXPS and HEXS. Furthermore, the Erlang service times slowly decreases than the exponential and 

hyperexponential service times in case of MAP-Positive correlation arrival.  
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8. Comparing the service rate of the Main server and Standby server    
  

 
 

  

Figure  47: Expected system sizes Vs Main server and Standby server service rate of Erlang arrival 

 

    

  From figure 47, by comparing both the service rate of the main server and standby server 

contrast to the expected system size, it decreases rapidly in main server service rate and in the case 

of the standby server service rate decreases slowly.    

 

 
 

Figure  48: Expected system sizes Vs Main server and Standby server service rate of exponential 

arrival 
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From figure 48, by comparing both the service rate of the main server and standby server 

against to the expected system size, it decreases fastly in main server service rate and in the case of 

the standby server service rate decreases gradually.   

 
 

Figure  49: Expected system sizes Vs Main server and Standby server service rate of 

hyperexponential arrival 

 

    

  From figure 49, by comparing both the service rate of the main server and standby server 

contrast to the expected system size, it decreases more rapidly in main server service rate and in 

the case of the standby server service rate decreases gradually.   

 

     

 

Figure  50: Expected system sizes Vs Main server and Standby server service rate of MAP-Negative 

correlation arrival 
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From figure 50, by comparing the service rate of the main server and standby server 

contrast to the expected system size, it decreases rapidly in main server service rate and in the case 

of the standby server service rate decreases slowly.   

 

 
   

Figure  51: Expected system sizes Vs Main server and Standby server service rate of MAP-Positive 

correlation arrival 

   

 In figure 51, by comparing the service rate of the main server and standby server on the 

expected system size, main server service rate decreases such that all types of services converge 

and in the case of the standby server service rate decreases rapidly.  

 

 

9. Conclusion    
  

 In our model, customers arrive in Markovian Arrival Process and the process of service in 

phase type distribution with server breakdown, multiple vacations, reneging, standby server, 

setup, closedown and repair. In our work, we also compute the busy period analysis. Using 

numerical arrivals and services we tabulated the expected system size values for the breakdown 

rate, repair rate, standby server service rate, setup rate, closedown rate, service rate and vacation 

rate. We have compared the both the setup rate and main server service rate contrast to the 

probability that the main server is in the busy mode, both the closedown rate and reneging rate 

contrast to the probability that the main server is on vacation and both the standby server service 

rate and repair rate contrast to expected system size showed through the graphical 

demonstrations. Furthermore, We have compared the service rate of the main server and standby 

server graphically.  
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