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Abstract 
 

This paper studies an 𝑀/𝑀/1 queueing system with second optional service, correlated reneging 

and working vacations. All arriving customers require the first essential service whereas only a 

portion of them require a second optional service. The matrix geometric method is used to 

compute the stationary probability distribution of the system size. Further, various system 

performance measures are obtained and a cost optimization problem is considered using bat 

algorithm (BA). A variety of numerical illustrations are summarized in tables and graphs to 

provide an insight into the performance characteristics of the studied model.  

 

Keywords: first essential service, second optional service, single working 

vacation, multiple working vacations, correlated reneging 

 

I. Introduction 
 

Vacation queues have been one of the intensive research topics for long time. There has been a 

considerable attention paid to the queueing models with server vacations, see Doshi [4]. During 

the vacation period, the server can be utilized for ancillary work, for example, in web services, file 

transfer services, manufacturing systems, etc. Such queueing model was first introduced by Servi 

and Finn [17] in an 𝑀/𝑀/1 queueing system with working vacations and applied those results to 

analyze the performance of gate way router in communication networks. Later, Selvaraju and 

Goswami [16] have considered a single server impatient customers Markovian queueing system 

with single working vacation (SWV) and multiple working vacations (MWV). Rajadurai et al. [14] 

gave an analysis of a single server feedback retrial queueing system with subject to server 

breakdown and repair under MWV policy using probability generating function technique. 

As for optional service, Madan [10] first investigated an 𝑀/𝐺/1 queueing system with 

second optional service (SOS), in which some of the customers may require a SOS immediately 

after completion of the first essential service (FES). Using matrix geometric method, Jain and 

Chauhan [5] was able to approximate working vacation (WV) queueing system with SOS and 

unreliable server. Batch arrival bulk service queue with unreliable server, SOS and two different 

types of vacations has been investigated by Ayyappan and Supraja [2]. Manoharan and Sasi [11] 

discussed an 𝑀/𝐺/1 queueing system with SOS and second optional vacation. A retrial queueing 

system with SOS under Erlang services has been investigated by Sekar et al. [15] using matrix 

geometric method. 
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Naturally, server vacations increase the waiting time of the customers. Due to longer wait 

in the queue, some customers may get discouraged and may decide to leave the queue without 

receiving the service (reneging). Such type of situations occur in real life like customers waiting in 

call centers, hospital emergency rooms, web services, programs waiting to be processed on a 

computer, etc. Queueing models with reneging have been investigated by many authors like 

Ancker and Gafarian [1], Baruah et al. [3], etc. The transient and steady-state behavior of the 

𝑀/𝑀/1 queue having customers’ impatience with threshold has been discussed in Sharma et al. 

[18]. Mohan [12] introduced the concept of correlation in gambler’s ruin problem. In Kim and Kim 

[7] , waiting time distribution of an 𝑀/𝑀/1 queue was investigated where the inter arrival time 

between the  𝑛𝑡ℎ and (𝑛 + 1)𝑡ℎ customers and the service time of the 𝑛𝑡ℎ customer are correlated 

random variables with Downton’s bivariate exponential distribution. A catastrophic queueing 

model with correlated input for the cell traffic generated by new broadband services has been 

studied by Jain and Kumar [6]. Kumar [8] studied a catastrophic-cum-restorative queueing 

problem with correlated input and impatient customer. There is another concept of correlated 

reneging wherein a customer’s reneging at any time instant depends solely on the previous time 

instants’ reneging or non-reneging. Transient numerical analysis of a single server queueing model 

with correlated reneging, balking and feedback has been carried out by Kumar and Soodan [9]. 

Existing literature shows frequent research topics related with WVs and SOS. However, a 

research gap observes no previous work on SOS, WVs in a queue with correlated reneging. As 

these topics are important in the real life situations, we consider an infinite capacity single server 

queueing system with SOS, WVs and correlated reneging. We have used matrix geometric method 

to obtain the steady state system length distributions. Some performance measures have been 

discussed. We employ the recently developed bat algorithm which was introduced by Yang [19] to 

achieve the optimal values of decision parameters and the expected cost. Particular cases of the 

model have been given. Later, a variety of numerical illustrations have been presented through 

tables and graphs. 

The remainder of the model is structured as follows: Model description and practical 

justification of the model are presented in Section 2. In Section 3, the mathematical formulation of 

the model is given. Matrix geometric solution is given in Section 4. Section 5 is devoted to some 

performance measures, cost model and special cases of the model. Numerical investigations are 

given in the form of tables and graphs in Section 6. Finally, Section 7 concludes our paper.  

 

II. Model Description 
 
      Consider a single server queueing system with SOS, WVs and correlated reneging. The model 

under consideration is schematically represented in Figure 1. 

The queueing model is based on the following assumptions.    

1. Customers arrive according to a Poisson process with rate 𝜆.   

2. The FES is provided to all customers. Immediately after completion of FES, a 

customer may demand SOS with probability 𝑟 or he may leave the system with the 

complementary probability (1 − 𝑟). The service times of both FES and SOS are 

exponentially distributed with parameters 𝜇
1
 and 𝜇

2
, respectively.   

3. At the end of a service, if there is no customer in the system, the server begins a 

WV of random length which is exponentially distributed with parameter 𝜃. 

During WV, service is provided according to a Poisson distribution with 

parameter 𝜂. In SWV, when the server returns from WV period and finds no 

customer in the system, it does not take another WV but remains idle until the 

next arrival. But MWV policy requires the server to keep taking vacations until it 

finds at least one customer waiting in the system at a vacation completion instant. 

When the server returns from its vacation and finds at least one customer in the 
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system, it switches its service rate from 𝜂 to 𝜇
1
 and a busy period starts; otherwise, 

it immediately leaves for another WV.   

4. During WV, customers become impatient and they may renege from the queue. 

The reneging of customers can take place only at the transition marks 𝑡0, 𝑡1, 𝑡2,... 

where 𝐾𝑚 = 𝑡𝑚 − 𝑡𝑚−1, 𝑚 = 1,2,3, .., are random variables with 𝑃[𝐾𝑚 ≤ 𝑥] = 1 −

𝑒𝑥𝑝(−𝛼𝑥); 𝛼 > 0,𝑚 = 1,2,3, . .. 𝑖. 𝑒., the distribution of inter-transition marks is 

negative exponential with parameter 𝛼. The average reneging rate of a customer is 

given by 𝛼𝑛 = 𝑛𝛼, 𝑛 ≥ 1.   

5. The reneging at two consecutive transition marks is governed by the following 

transition probability matrix: 

                                  To       𝑡𝑟 
                                           0     1         

                From 𝑡𝑟−1  
0

1
‖
𝑞
00

𝑞
01

𝑞
10

𝑞
11
‖ 

 where 𝑞
00

+𝑞
01
= 1 and 𝑞

10
+ 𝑞

11
= 1. 

Here, 0 refers to no reneging and 1 refers to the occurrence of reneging. 

Thus, the reneging at two consecutive transition marks is correlated.  

 

 
Figure 1: General structure of the model. 

 

2.1 Practical Justification of the Model 

 
 The above discussed model has real time applications in electronic commerce (also known 

as E-commerce) which is a process of buying and selling of products, making money transfers and 

transferring data over an electronic medium. The whole E-commerce process can be divided into 

three main components, viz. receiving orders, processing order information and shipping. Cross-

selling is a sales technique to increase sales by suggesting additional items to customers. When the 

sales are at their lowest, E-commerce merchant carries out the tasks like contacting suppliers and 

important clients, managing accounts up to date, etc. The speed of a service process will take a hit 

during this time and the customers may cancel the orders as they anticipate longer wait. If an order 

is canceled (not canceled) at any time instant, then there is a chance that an order may or may not 

be canceled at next time instant. Here, orders, selling of products, cross-selling, maintaining 

accounts, canceling of orders at time instants can be represented by the arrivals, FES, SOS, WV, 

correlated reneging, respectively in basic queueing situations.  
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III. Mathematical Formulation of the Model 
 
    At time 𝑡, let 𝑁(𝑡) be the number of customers in the queue, 𝐽(𝑡) be the state of the server, which 

is defined as 

𝐽(𝑡)= {

0, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑜𝑛 𝑊𝑉,

1, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑖𝑑𝑙𝑒 𝑜𝑟 𝑏𝑢𝑠𝑦 (𝑆𝑊𝑉)&

    𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑏𝑢𝑠𝑦(𝑀𝑊𝑉)

 

and 𝑆(𝑡) be the state of the customer which is given as 

𝑆(𝑡)={
0, 𝑛𝑜  𝑟𝑒𝑛𝑒𝑔𝑖𝑛𝑔,

1, 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒  𝑜𝑓  𝑟𝑒𝑛𝑒𝑔𝑖𝑛𝑔.
 

The process {𝐿(𝑡), 𝐽(𝑡), 𝑆(𝑡), 𝑡 ≥ 0} defines a continuous-time Markov process with state 

space 𝜒 ={(𝑛, 𝑗, 𝑠): 𝑛 ≥ 0, 𝑗 = 0,1, 𝑠 = 0,1}. For mathematical formulation purpose, we define the 

following steady-state probabilities: 

𝐸0,0,0(𝐸0,0,1) = Probability that the queue is empty, the server is idle, server is on WV, and a 

customer has not reneged (reneged) at the previous transition mark. 

𝐸0,1,0(𝐸0,1,1) = Probability that the queue is empty, the server is idle, server is in busy state, and a 

customer has not reneged (reneged) at the previous transition mark.  

𝑃𝑛,0,0(𝑃𝑛,0,1) = Probability of 𝑛 customers in the queue, the server is not idle, server is on WV, and a 

customer has not reneged (reneged) at the previous transition mark. 

𝑃𝑛,1,0(𝑃𝑛,1,1) = Probability of 𝑛 customers in the queue, the server is not idle, server is rendering 

FES, and a customer has not reneged (reneged) at the previous transition mark. 

𝑄
𝑛,1,0

(𝑄
𝑛,1,1

) = Probability of 𝑛 customers in the queue, the server is not idle, server is rendering 

SOS, and a customer has not reneged (reneged) at the previous transition mark. 

 

Steady-state equations: 

  

 (𝜆 + 𝜔𝜃)𝐸0,0,0 = 𝜂𝑃0,0,0 + (1 − 𝑟)𝜇1𝑃0,1,0 + 𝜇2𝑄0,1,0, (1) 

 (𝜆 + 𝜔𝜃)𝐸0,0,1 = 𝜂𝑃0,0,1 + (1 − 𝑟)𝜇1𝑃0,1,1 + 𝜇2𝑄0,1,1, (2) 

 (𝜆 + 𝜃 + 𝜂)𝑃0,0,0 = 𝜂𝑃1,0,0 + 𝜆𝐸0,0,0, (3) 

 (𝜆 + 𝜃 + 𝜂)𝑃0,0,1 = 𝜂𝑃1,0,1 + 𝜆𝐸0,0,1 + 𝛼[𝑞11𝑃1,0,1 + 𝑞01𝑃1,0,0], (4) 
 (𝜆 + 𝜃 + 𝜂 + 𝑛𝛼)𝑃𝑛,0,0 = 𝜆𝑃𝑛−1,0,0 + 𝜂𝑃𝑛+1,0,0 + 

 𝑛𝛼[𝑞00𝑃𝑛,0,0 + 𝑞10𝑃𝑛,0,1], 𝑛 ≥ 1, (5) 
 (𝜆 + 𝜃 + 𝜂 + 𝑛𝛼)𝑃𝑛,0,1 = 𝜆𝑃𝑛−1,0,1 + 𝜂𝑃𝑛+1,0,1 + 

 (𝑛 + 1)𝛼[𝑞01𝑃𝑛+1,0,0 + 𝑞11𝑃𝑛+1,0,1], 𝑛 ≥ 1, (6) 

 𝜆𝐸0,1,0 = 𝜔𝜃𝐸0,0,0, (7) 

 𝜆𝐸0,1,1 = 𝜔𝜃𝐸0,0,1, (8) 
 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃0,1,0 = 𝜃𝑃0,0,0 + (1 − 𝑟)𝜇1𝑃1,1,0 + 

 𝜇
2
𝑄
1,1,0

+ 𝜔𝜆𝐸0,1,0, (9) 

 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃0,1,1 = 𝜃𝑃0,0,1 + (1 − 𝑟)𝜇1𝑃1,1,1 + 

 𝜇
2
𝑄
1,1,1

+ 𝜔𝜆𝐸0,1,1, (10) 

 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃𝑛,1,0 = 𝜆𝑃𝑛−1,1,0 + (1 − 𝑟)𝜇1𝑃𝑛+1,1,0 + 

 𝜇
2
𝑄
𝑛+1,1,0

+ 𝜃𝑃𝑛,0,0, 𝑛 ≥ 1, (11) 

 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃𝑛,1,1 = 𝜆𝑃𝑛−1,1,1 + (1 − 𝑟)𝜇1𝑃𝑛+1,1,1 + 

 𝜇
2
𝑄
𝑛+1,1,1

+ 𝜃𝑃𝑛,0,1, 𝑛 ≥ 1, (12) 

 (𝜆 + 𝜇2)𝑄0,1,0 = 𝑟𝜇1𝑃0,1,0, (13) 

 (𝜆 + 𝜇2)𝑄𝑛,1,0 = 𝑟𝜇1𝑃𝑛,1,0 + 𝜆𝑄𝑛−1,1,0, 𝑛 ≥ 1, (14) 

 (𝜆 + 𝜇2)𝑄0,1,1 = 𝑟𝜇1𝑃0,1,1 (15) 

 (𝜆 + 𝜇2)𝑄𝑛,1,1 = 𝑟𝜇1𝑃𝑛,1,1 + 𝜆𝑄𝑛−1,1,1, 𝑛 ≥ 1. (16) 

           

Here, 𝜔 = 1 or 0 correspond to the steady-state equations for SWV or MWV.  
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IV. Matrix Geometric Solution 
 
          Matrix geometric method is used for the analysis of quasi-birth-death (QBD) process with 

continuous time Markov chains whose transition rate matrices have a repetitive block structure. 

The method was developed by Neuts [13]. The transition rate matrix 𝑄 of the Markov chain 

corresponding to the coefficients of equations (1) to (16) has the block tridiagonal form given by: 

𝐐 =

(

 
 
 
 
 
 
 

𝐀0 𝐂0
𝐁1 𝐀1 𝐂1

𝐁2 𝐀2 𝐂1
𝐁3 𝐀3 𝐂1

⋮ ⋮ ⋮
⋮ ⋮ ⋮

𝐁𝑁−1 𝐀𝑁−1 𝐂1
𝐁𝑁 𝐀𝑁 𝐂1

⋮ ⋮ ⋮ )

 
 
 
 
 
 
 

 

 

The transition rate matrix 𝑄 of the QBD process has the sub-matrices given as: 

𝐀0=

{
 
 

 
 
(

−(𝜆 + 𝜃) 0 𝜃 0

0 −(𝜆 + 𝜃) 0 𝜃

0 0 −𝜆 0

0 0 0 −𝜆

) (𝑓𝑜𝑟 𝑆𝑊𝑉),

(
−𝜆 0

0 −𝜆
) (𝑓𝑜𝑟 𝑀𝑊𝑉),

, 

𝐂0=

{
 
 

 
 
(

𝜆 0 0 0 0 0

0 𝜆 0 0 0 0

0 0 𝜆 0 0 0

0 0 0 𝜆 0 0

) (𝑓𝑜𝑟 𝑆𝑊𝑉),

(
𝜆 0 0 0 0 0

0 𝜆 0 0 0 0
) (𝑓𝑜𝑟 𝑀𝑊𝑉),

 

𝐂1 =

(

  
 

𝜆 0 0 0 0 0

0 𝜆 0 0 0 0

0 0 𝜆 0 0 0

0 0 0 𝜆 0 0

0 0 0 0 𝜆 0

0 0 0 0 0 𝜆)

  
 
, 𝐴1 =

(

 
 
 

𝛿1 0 𝜃 0 0 0

0 𝛿1 0 𝜃 0 0

0 0 𝛿3 0 𝑟𝜇
1

0

0 0 0 𝛿3 0 𝑟𝜇
1

0 0 0 0 𝛿4 0

0 0 0 0 0 𝛿4 )

 
 
 
, 

𝐁1=

{
 
 
 
 
 
 

 
 
 
 
 
 

(

 
 
 
 

𝜂 0 0 0

0 𝜂 0 0

(1 − 𝑟)𝜇
1

0 0 0

0 (1 − 𝑟)𝜇
1

0 0

𝜇
2

0 0 0

0 𝜇
2

0 0)

 
 
 
 

(𝑓𝑜𝑟 𝑆𝑊𝑉),

(

 
 
 
 

𝜂 0

0 𝜂

(1 − 𝑟)𝜇
1

0

0 (1 − 𝑟)𝜇
1

𝜇
2

0

0 𝜇
2 )

 
 
 
 

(𝑓𝑜𝑟 𝑀𝑊𝑉),
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𝐁𝑖 =

(

 
 
 
 

𝜂 (𝑖 − 1)𝛼𝑞
01

0 0 0 0

0 𝜂 + (𝑖 − 1)𝛼𝑞
11

0 0 0 0

0 0 (1 − 𝑟)𝜇
1

0 0 0

0 0 0 (1 − 𝑟)𝜇
1

0 0

0 0 𝜇
2

0 0 0

0 0 0 𝜇
2

0 0)

 
 
 
 

, 2 ≤ 𝑖 ≤ 𝑁 − 1, 

𝐁𝑖 =

(

 
 
 
 

𝜂 (𝑁 − 1)𝛼𝑞
01

0 0 0 0

0 𝜂 + (𝑁 − 1)𝛼𝑞
11

0 0 0 0

0 0 (1 − 𝑟)𝜇
1

0 0 0

0 0 0 (1 − 𝑟)𝜇
1

0 0

0 0 𝜇
2

0 0 0

0 0 0 𝜇
2

0 0)

 
 
 
 

, 𝑖 ≥ 𝑁, 

𝐀𝑖 =

(

 
 
 
 

𝛿2 + (𝑖 − 1)𝛼𝑞00 0 𝜃 0 0 0

(𝑖 − 1)𝛼𝑞
10

𝛿2 0 𝜃 0 0

0 0 𝛿3 0 𝑟𝜇
1

0

0 0 0 𝛿3 0 𝑟𝜇
1

0 0 0 0 𝛿4 0

0 0 0 0 0 𝛿4 )

 
 
 
 

, 2 ≤ 𝑖 ≤ 𝑁 − 1, 

𝐀𝑖 =

(

 
 
 
 

𝛿5 + (𝑁 − 1)𝛼𝑞00 0 𝜃 0 0 0

(𝑁 − 1)𝛼𝑞
10

𝛿2 0 𝜃 0 0

0 0 𝛿3 0 𝑟𝜇
1

0

0 0 0 𝛿3 0 𝑟𝜇
1

0 0 0 0 𝛿4 0

0 0 0 0 0 𝛿4 )

 
 
 
 

, 𝑖 ≥ 𝑁. 

where 𝛿1 = −(𝜆 + 𝜃 + 𝜂),𝛿2 = −(𝜆 + 𝜃 + 𝜂 + (𝑖 − 1)𝛼),  𝛿3 = −(𝜆 + 𝜇
1
),  𝛿4 = −(𝜆 + 𝜇2) and 𝛿5 =

−(𝜆 + 𝜃 + 𝜂 + (𝑁 − 1)𝛼). 

Let 𝐏 be the corresponding steady state probability vector of Q. By partitioning the vector 

𝐏 as 𝐏 = {𝐏0, 𝐏1, 𝐏2, … } where 

𝐏0=[𝐸0,0,0, 𝐸0,0,1, 𝐸0,1,0, 𝐸0,1,1], (for SWV) and 𝐏0=[𝐸0,0,0, 𝐸0,0,1], (for MWV), 

𝐏𝑖+1=[𝑃𝑖,0,0, 𝑃𝑖,0,1, 𝑃𝑖,1,0, 𝑃𝑖,1,1, 𝑄𝑖,1,0, 𝑄𝑖,1,1], 𝑖 ≥ 0. 

According to Neuts [13] , the system is stable and the steady state probability vector exists 

if and only if 𝐘𝐂1𝐞6 < 𝐘𝐁𝑁𝐞6 where 𝐘 is an invariant probability of the matrix 𝐌=𝐀𝑁 + 𝐁𝑁 + 𝐂1. 

𝐞𝑛 denotes a column vector with size 𝑛, and all elements equal to 1. 𝐘 satisfies the equations 𝐘𝐌 =

0 and 𝐘𝐞6 = 1.  

Apparently, when the stability condition is satisfied, the sub-vectors of 𝐏, corresponding to 

different levels satisfy  

 𝐏𝑛 = 𝐏𝑁𝐑
𝑛−𝑁, 𝑛 ≥ 𝑁, (17) 

 where the matrix 𝑅 is the minimal non-negative solution of the matrix quadratic equation  

 𝐂1 + 𝐑𝐀𝑁 + 𝐑
2𝐁𝑁 = 𝟎, (18) 

 which can be obtained by using the following iterative procedure. 

 

 Computational algorithm for R: 

Step 1: Set 𝑘 = 1. 

Step 2: Set 𝐔 = 𝐀𝑁 and calculate 𝐆 = (𝐈 − 𝐔)−1𝐁𝑁. 

Step 3: Increment 𝑘 by 1. 

Step 4: Replace 𝐔 = 𝐀𝑁 + 𝐂1𝐆   and    𝐆 = (𝐈 − 𝐔)−1𝐁𝑁.  

Step 5: Repeat Steps 3 and 4 until ∥ 𝐞𝑛 − 𝐆𝐞𝑛 ∥∞< 𝜖, where 𝜖 is a stopping tolerance. 

Step 6: Calculate 𝐑 = 𝐂1(𝐈 − 𝐔)
−1. 

From the equation 𝐏𝐐 = 𝟎, the governing system of difference equations can be given as  

 𝐏0𝐀0 + 𝐏1𝐁1 = 𝟎, (19) 
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 𝐏0𝐂0 + 𝐏1𝐀1 + 𝐏2𝐁2 = 𝟎, (20) 

 𝐏𝑛−1𝐂1 + 𝐏𝐧𝐀𝑛 + 𝐏𝑛+1𝐁𝑛+1 = 𝟎, 2 ≤ 𝑛 ≤ 𝑁 − 1, (21) 

 𝐏𝑛−1𝐂1 + 𝐏𝑛𝐀𝑁 + 𝐏𝑛+1𝐁𝑁 = 𝟎, 𝑛 ≥ 𝑁, (22) 

 and the normalizing condition  

 ∑∞𝑛=0 𝐏𝑛𝐞𝑛 = 1. (23) 

 From equations (19) to (22), after some mathematical manipulations, we get  

 𝐏𝑛−1 = 𝐏𝑛𝛟𝑛
, 1 ≤ 𝑛 ≤ 𝑁, (24) 

 𝐏𝑁[𝛟𝑁
𝐂1 + 𝐀𝑁 + 𝐑𝐁𝑁] = 𝟎. (25) 

 where  

𝛟
1
= −𝐁1(𝐀0

−1), 𝛟
2
= −𝐁2[𝛟1

𝐂0 + 𝐀1]
−1, 𝛟

𝑛
= −𝐁𝐧(𝐀𝐧−𝟏 + 𝛟𝐧−𝟏

𝐂𝟏)
−𝟏, 3 ≤ 𝑛 ≤ 𝑁. 

 solving equations (23) and (24), we get  

 𝐏𝑁[∑
𝑁
𝑗=1 ∏

𝑚
𝑖=𝑁 𝛟𝑖

+ (𝐈 − 𝐑)−1]𝐞𝑛 = 1. (26) 

Solving equations (25) and (26), we obtain 𝐏𝑁. We use equations (17) and (24) to get 𝐏𝑛 for 𝑛 ≥ 0.  

 

V.  Performance Measures 
 
• Expected number of customers in the queue, when the server is busy in FES and SOS, 

respectively are  
 𝐸[𝑄𝐹] = ∑∞𝑛=1 𝑛𝑃𝑛,1,0 +∑

∞
𝑛=1 𝑛𝑃𝑛,1,1; 𝐸[𝑄𝑆] = ∑

∞
𝑛=1 𝑛𝑄𝑛,1,0 + ∑

∞
𝑛=1 𝑛𝑄𝑛,1,1. 

• Expected number in the queue, when the server is in WV is given as  
 𝐸[𝑄𝑊𝑉] = ∑

∞
𝑛=1 𝑛𝑃𝑛,0,0 + ∑

∞
𝑛=1 𝑛𝑃𝑛,0,1. 

• Expected number of customers in the system is  
 𝐸[𝐿] = ∑∞𝑛=0 (𝑛 + 1)[𝑃𝑛,1,0 + 𝑃𝑛,1,1] + ∑

∞
𝑛=0 (𝑛 + 1)[𝑃𝑛,0,0 + 𝑃𝑛,0,1] + ∑

∞
𝑛=0 (𝑛 + 1)[𝑄𝑛,1,0 + 𝑄𝑛,1,1]. 

• Expected reneging rate of the customer is  
 𝐸[𝑅𝐶] = ∑∞𝑛=1 𝑛𝛼𝑃𝑛,0,0 +∑

∞
𝑛=1 𝑛𝛼𝑃𝑛,0,1. 

• Expected number of customers served is  
 𝐸𝐶𝑆 = ∑∞𝑛=0 𝜂(𝑃𝑛,0,0 + 𝑃𝑛,0,1) + ∑

∞
𝑛=0 𝜇1(𝑃𝑛,1,0 + 𝑃𝑛,1,1) + ∑

∞
𝑛=0 𝑟𝜇2(𝑄𝑛,1,0 + 𝑄𝑛,1,1). 

 

• Probability that the server is on WV is  

 𝑃𝑊𝑉 = ∑
∞
𝑛=0 𝑃𝑛,0,0 + ∑

∞
𝑛=0 𝑃𝑛,0,1. 

• Probability that the server is idle is  

 𝑃0 = 𝐸0,0,0 + 𝐸0,0,1 + 𝐸0,1,0 + 𝐸0,1,1(𝑓𝑜𝑟 𝑆𝑊𝑉); 𝑃0 = 𝐸0,0,0 + 𝐸0,0,1(𝑓𝑜𝑟 𝑀𝑊𝑉) 

 

• Probability that the server is busy with FES and SOS is  
 𝑃𝐵𝐹 = ∑∞𝑛=0 𝑃𝑛,1,0 + ∑

∞
𝑛=0 𝑃𝑛,1,1; 𝑃𝐵𝑆 = ∑

∞
𝑛=0 𝑄𝑛,1,0 + ∑

∞
𝑛=0 𝑄𝑛,1,1. 

 

  

5.1   Special Cases of the Model 
 
Case 1: Taking particular values of the parameters as 𝛼 = 0, 𝑟 = 0, 𝜇

2
= 0 and 𝜔 = 0, our model 

reduces to 𝑀/𝑀/1 queueing model with MWV and results match with Servi and Finn [17]. 

Case 2: The present model reduces to an 𝑀/𝑀/1 queueing model with SWV and MWV by taking 

values of the parameters as 𝛼 = 0, 𝑟 = 0 and 𝜇
2
= 0. Results match with Selvaraju and Goswami 

[16] (by taking 𝛼 = 0 in their paper).  

 

5.2   Cost Model 
 

 This section develops a cost model in order to carry out an economic analysis of the 

queueing system under consideration. We formulate an expected cost function per unit time, 

where the service rate in FES (𝜇
1
) and that in SOS (𝜇

2
) are decision variables. 
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Let us define 

𝑐1 ≡ Cost per unit time when the customer waits for the service, 

𝑐2 ≡ Cost per unit time when the server is on WV, 

𝑐3 ≡ Cost per unit time when the customer reneges, 

𝑐4 ≡ Cost per unit time when the server is busy with SOS. 

Using the above cost parameters, the following cost optimization problem is designed as  

  
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜏𝑐[𝜇1, 𝜇2] = 𝑐1𝜇1𝐸[𝐿] + 𝑐2𝜂𝑃𝑊𝑉 + 𝑐3𝐸[𝑅𝐶] + 𝑐4𝜇2. 

 

Let 𝑅𝑒𝑣 be the revenue earned by providing service to a customer, 𝜏𝑟 be the total expected revenue 

per unit time of the system and 𝜏𝑝 be the total expected profit per unit time of the system. Thus,            

                     𝜏𝑟 = 𝑅𝑒𝑣 × 𝐸𝐶𝑆, 𝜏𝑝 = 𝜏𝑟 − 𝜏𝑐. 

 

5.3   Bat Algorithm 
 

 Bat algorithm is an innovative technique proving to give better solution than many 

popular traditional and heuristic algorithms for solving complex engineering problems. The bat 

algorithm is a meta-heuristic algorithm for global optimization. It was inspired by the echolocation 

behavior of micro bats, with varying pulse rates of emission and loudness. The bat algorithm was 

developed by Yang in 2010. 

The bat algorithm works with the following three idealized rules  

1. All bats use the echolocation to detect the distance from a food source and also have the 

knowledge to distinguish between foods/victims and background barriers.  

2. Bats fly randomly in the surroundings with velocity 𝐕𝐢 at position 𝐱𝐢 with a frequency 𝑓
𝑚𝑖𝑛

, 

varying wavelength 𝑊 and loudness 𝐿0 in search for prey. They can automatically regulate 

the frequency(or wavelength) of their emitted pulses and change the rate of pulse emission 

(𝑝) correspondingly in the range between 0 and 1, depending on the proximity of their 

target.  

3. Though the loudness can vary in a variety of ways, we consider that the loudness varies 

from a large (positive) 𝐿0 to a minimum constant value 𝐿𝑚𝑖𝑛.   

In addition to these assumptions, for simplicity, the frequency 𝑓 is taken in a range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] 

corresponds to a range of wavelengths [𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥]. We can either use wave lengths or 

frequencies for implementation, we use 𝑓
𝑚𝑖𝑛

= 0 and 𝑓
𝑚𝑎𝑥

 depending on the domain size of the 

problem of interest. Therefore, with the help of the mentioned assumptions, the updated 

equations for frequency 𝑓
𝑖
, position 𝐱𝐢 and velocity 𝐕𝐢 are as follows  

 𝑓
𝑖
= 𝑓

𝑚𝑖𝑛
+ (𝑓

𝑚𝑎𝑥
− 𝑓

𝑚𝑖𝑛
)𝛝, 

 𝐕𝐢
𝐭+𝟏 = 𝐕𝐢

𝐭 + (𝐱𝑖
𝑡 − 𝐱∗)𝑓

𝑖
, 

 𝐱𝑖
𝑡+1 = 𝐱𝑖

𝑡 + 𝐕𝐢
𝐭+𝟏. 

 where   

    • 𝛝 ∈ [0,1] is a uniformly distributed random vector.  

    • 𝑓
𝑖
 is the frequency that 𝑖𝑡ℎ bat emits and 𝑓

𝑚𝑖𝑛
, 𝑓

𝑚𝑎𝑥
 are the lower and upper bounds of 

frequencies, respectively.  

    • 𝑉𝑖
𝑡 is the velocity of 𝑖𝑡ℎ bat after t generations.  

    • 𝑥𝑖
𝑡 is the position of 𝑖𝑡ℎ bat after t generations.  

    • 𝑥∗ is the current best position (solution) of the fitness function among all the bats.  

 After selecting a solution among the current best solutions, for the local search we use the 

random walk for each bat. Hence, the new position updating formula is generated locally and is 

expressed as  

 𝐱𝑛𝑒𝑤 = 𝐱𝑜𝑙𝑑 + 𝜖1𝐿
(𝑡) 

where 𝜖1 ∈ [−1,1] is a random number and 𝐿(𝑡) =< 𝐿𝑖
𝑡 > is the average loudness of all the bats at 
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time instant 𝑡. Now to control the step size, the new position updating formula is rewritten as  

 𝐱𝑛𝑒𝑤 = 𝐱𝑜𝑙𝑑 + 𝜍𝜖𝑡𝐿
(𝑡) 

where, the value of 𝜖𝑡 is taken from the Gaussian normal distribution N(0,1), and 𝜍 is a scaling 

factor having standard value 0.001.  

 

VI.   Numerical Investigations 
 
This section is devoted to study numerically the performance measures and cost profit aspects 

associated with the model using Mathematica software. The parameters of the model are assumed 

to be 𝜆 = 0.8, 𝜇
1
= 3.5, 𝜇

2
= 3.0, 𝜂 = 2.5, 𝜃 = 0.5, 𝛼 = 0.7, 𝑟 = 0.6, 𝑞

00
= 0.6, 𝑞

11
= 0.5. For the 

economic analysis of the system, we fix the different costs as 𝑐1 = 5, 𝑐2 = 4, 𝑐3 = 3, and 𝑐4 = 2, for 

bat algorithm, we assume 𝑓
𝑚𝑖𝑛

= 0, 𝑓
𝑚𝑎𝑥

= 2, 𝐿 = 0.5, 𝑝 = 0.5, lower and upper bounds of 𝜇
1
 and 

𝜇
2
 are taken as [1.5, 4.5] and [1.0, 4.0], respectively. 

             

 

 
 

Figure  2: Effect of 𝛼 on 𝐸[𝐿] for different 𝑟. 

 

Table 1: Effect of 𝑟 on performance measures. 

 

      SWV   MWV 

  Cases  𝐸[𝐿] 𝑃0 𝐸[𝐿] 𝑃0 

 
𝑟 = 0 

 

Correlated 

reneging 

 0.30435  0.75028  0.30917   0.73764 

No reneging  0.37128  0.72819  0.41401   0.70354 

 
𝑟 = 0.3 

Correlated 

reneging 

 0.38191  0.70939  0.34312   0.72109 

No reneging  0.45345  0.68633  0.46087   0.68318 

 
𝑟 = 0.6 

Correlated 

reneging 

 0.47796  0.66375  0.38789   0.70126 

No reneging  0.55452  0.63993  0.52144   0.65913 
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Table 2: Effect of 𝑟 and 𝜇1 on performance measures. 

 

   SWV MWV 

 Cases  𝐸[𝐿] 𝑃0 𝐸[𝐿] 𝑃0 

 
𝑟 = 0 

𝜇
1
= 3.6 

𝜇
1
= 3.8 

𝜇
1
= 4.0 

0.29911 

0.29826 

0.29757 

0.75334 

0.75892 

0.76387 

0.30689 

0.30288 

0.29944 

0.73883 

0.74099 

0.74289 

 
𝑟 = 0.3 

𝜇
1
= 3.6 

𝜇
1
= 3.8 

𝜇
1
= 4.0 

0.35797 

0.35550 

0.35341 

0.71279 

0.71900 

0.72449 

0.34001 

0.33453 

0.32985 

0.72252 

0.72508 

0.72734 

 
𝑟 = 0.6 

𝜇
1
= 3.6 

𝜇
1
= 3.8 

𝜇
1
= 4.0 

0.43122 

0.42638 

0.42227 

0.66757 

0.67451 

0.68065 

0.38355 

0.37591 

0.36941 

0.70298 

0.70607 

0.70878 

 
 

Table 3: Effect of 𝑞11 and 𝑞00 on 𝜏𝑐, 𝜏𝑟 and 𝜏𝑝. 

 

              SWV      MWV 

      𝜏𝑐     𝜏𝑟 𝜏𝑝 𝜏𝑐 𝜏𝑟 𝜏𝑝 

𝑞
11
= 0.2 

𝑞
11
= 0.4 

𝑞
11
= 0.6 

15.7559 

15.6551 

15.5365 

41.3303 

41.1014 

40.8314 

25.5743 

25.4463 

25.2950 

15.1813 

15.0058 

14.7985 

37.6903 

37.2814 

36.7970 

22.5090 

22.2756 

21.9986 

𝑞
00
= 0.3 

𝑞
00
= 0.5 

𝑞
00
= 0.7 

15.4533 

15.5335 

15.6963 

40.6499 

40.8292 

41.1860 

25.1966 

25.2957 

25.4897 

14.6526 

14.7933 

15.0775 

36.4701 

36.7929 

37.4326 

21.8175 

21.9997 

22.3551 

 
 

Table 4: Effect of 𝜆, 𝑞
11

 and 𝑟 on optimum cost. 

 

 

 

 

 

  

 𝜇
1
∗  𝜇

2
∗  𝜏𝑐

∗ 

𝜆 = 0.6 
𝜆 = 0.8 
𝜆 = 1.0 

2.2495 

2.5264 

2.9319 

1.6517 

2.1841 

2.6845 

9.8199 

13.2489 

17.2492 

𝑞
11
= 0.4 

𝑞
11
= 0.6 

𝑞
11
= 0.8 

2.5313 

2.5176 

2.4924 

2.2132 

2.2015 

2.1524 

13.6841 

13.5692 

13.4325 

𝑟 = 0.2 
𝑟 = 0.4 
𝑟 = 0.6 

1.8532 

2.4609 

2.7886 

1.3842 

1.9185 

2.4301 

10.7163 

11.9251 

12.1792 
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Figure 3: Effect of 𝜇1 on 𝐸[𝐿]. 

 

 

 

 
 

Figure 4: Effect of 𝑞
11

 on 𝐸[𝐿]. 
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Figure 5: Effect of 𝜂 on 𝐸[𝐿] and 𝑃0 for different values of 𝜃. 

 

 

 

 
Figure 6: Effect of 𝜆 on 𝜏𝑐 and 𝜏𝑟. 
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Figure 7: Effect of 𝜇
1
 and 𝜇

2
 on 𝜏𝑐. 

 

The effect of reneging rate (𝛼) on average system length (𝐸[𝐿]) is shown in Figure 2. It is clear that 

as 𝛼 increases, 𝐸[𝐿] decreases for both the models. In absence of SOS (𝑟 = 0) , we see an interesting 

behavior; for 𝛼 < 1 system length in SWV is smaller, for 𝛼 > 1 system length in MWV is smaller 

and at 𝛼 = 1 they coincide. In presence of an optional service, obviously MWV gives smaller 

system size because of the predominant effect of reneging. 

In Tables 1 and 2, for fixed 𝜇
1
, as SOS probability (𝑟) increases, the average system length 

(𝐸[𝐿]) increases and idle probability 𝑃0 decreases. Further, for fixed 𝑟, as 𝜇
1
 increases a completely 

opposite trend is observed. 

Table 3 illustrates the impact of reneging (non-reneging) probabilities of customers at both 

transition marks 𝑞
11

 (𝑞
00

) on total expected cost (𝜏𝑐), total expected revenue (𝜏𝑟) and total expected 

profit (𝜏𝑝) for both the models. As expected, an increase in 𝑞
11

, decrease 𝜏𝑐, 𝜏𝑟 and 𝜏𝑝. This is 

because of the significant number of lost customers. On the other hand, opposite trend is observed 

for 𝑞
00

. Therefore, it reveals the fact that 𝑞
00

 has positive effect on the economy of the system as it 

enforces the customers to be held in the system. 

In table 4, using bat algorithm, the effect of 𝜆, 𝑞
11

 and 𝑟 on optimal service rates (𝜇1
∗ and 

𝜇
2
∗) and minimum expected cost (𝜏𝑐

∗) is shown for MWV model. We observe that 

▪ when arrival rate (𝜆) increases,𝜇
1
∗ , 𝜇

2
∗  and 𝜏𝑐

∗ increase as expected in the view of stability 

of the system.   

▪ most importantly, increase in reneging probability (𝑞11), substantially reduce the 

optimal service rates and minimum cost due to lost customers.  

▪ as 𝑟 increases,𝜇
1
∗ , 𝜇

2
∗  and 𝜏𝑐

∗ increase. This agrees with our intuition.  

In Figure 3, we show the effect of 𝜇
1
 on the system lengths for the model with SWV, MWV and no 

vacation. The graphs show the larger system lengths in the absence of vacation. This is explained 

by the fact that reneging occurs only during WV. When there is no WV, customers are remain in 

the system till they get served. 

Figure 4 depicts that an increase in 𝑞
11

, decreases the system length (𝐸[𝐿]), which is 

obviously true. Through Figure 5 we demonstrate the effect of the service rate in WV period (𝜂) on 

𝐸[𝐿] and 𝑃0 for different values of vacation rate (𝜃) in SWV model. It is quite obvious that for a 
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fixed 𝜃, increase in 𝜂, decreases 𝐸[𝐿] and increases 𝑃0. Moreover, upon increasing of 𝜃, reverse 

trend is observed. 

The impact of arrival rate 𝜆 on 𝜏𝑐 and 𝜏𝑟 for MWV policy is shown in Figure 6. We observe 

that, 𝜏𝑐 and 𝜏𝑟 increase with the increasing of 𝜆. This is quite reasonable, the bigger the arrival rate, 

the greater the total expected cost and the total expected revenue. In Figure 7, we portray the three-

dimensional surface plot generated through the joint variation of decision parameters 𝜇
1
 and 𝜇

2
 for 

MWV model. It prompts the convex nature of 𝜏𝑐 with respect to 𝜇
1
 and 𝜇

2
. As per the restriction of 

the system resources, the analyst can design parameters for the optimal service cost. 

 

VII.   Conclusion 
 
In this paper, we have carried out an analysis of infinite buffer single server queueing system with 

SOS and correlated reneging under single and multiple working vacation policies. Using matrix 

geometric method, we derived the steady-state probabilities of the system. Some performance 

measures are developed. A cost model was established, and bat algorithm is applied to determine 

the optimal values of service rates in FES and SOS with the aim of minimizing the expected cost 

per unit time. The effects of various parameters on the system performance measures were 

explored by numerical experiments. Our study shows that 

▪ increasing the service rates reduces the average system length.  

▪ increase of the non-reneging probability of the customer at both transition marks, 

increases the expected system length and it shows the positive effect on the economy of 

the system as it increases the revenue.   

▪ MWV model has lower system lengths for higher reneging rates due to the departures 

of customers by the way of reneging. 

According to the analysis of expected system length by numerical examples, we find that our 

model represents some practical problems reasonably. The obtained results have potential 

applications in modeling computer and telecommunication systems, computer networks, 

manufacturing, and so on. So, the service companies may design the reasonable WV rate, service 

rates and correlated reneging rates to enable the companies to operate more flexibly and 

efficiently. To make the system modeling more closer to real world problems, we extend our 

model to consider general service times and server breakdowns.   
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