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Gheorgy Konstantinovich Miscoy  

(09.01.1944-12.09.2020) 
 

  

On the12-th of September 2020 passed away Gheorghe 

Mishkoy, outstanding scientist, teacher, applied statistician, 

friend.  His scientific degree was habilitated Doctor of Physics 

and mathematics, professor, academician at the Academy of 

Science of Moldova. 

  

Illustrious scientist, mathematician, academician Gheorghe 

MISHKOY contributed to the development and strengthening 

of the applied mathematics. And he did this nationally and 

internationally during his 49 years of active, fruitful scientific, 

pedagogical and management remarkable work. 

  

Gheorghe started his fundamental scientific activity at the 

Moscow State University named after M.V. Lomonosov. He 

worked as graduate student under the supervision of the 

famous scientist Gennadi Pavlovich Klimov, now living in the 

United States. At this time, research in the field of priority queueing systems was very popular and 

intensively developed at Moscow State University. Under the guidance of an outstanding scientist 

B.V. Gnedenko a group of young scientists and graduate students worked in this direction of 

research where G. Mishkoy was actively involved. The result of this activity was his Ph.D. thesis 

defended in 1974. His high achievement was acknowledged through a small monography issued 

by the University one year later. The continuation of these studies and numerous new results 

obtained by him were presented in his doctoral dissertation defended at the Institute of 

Cybernetics at the Academy of Sciences of Ukraine, in Kiev, 1989. 

  

These results have left a deep mark in the scientific career of the Gheorghe. He remained faithful to 

this area of work throughout his subsequent scientific life. During his career Gheorghe stood 

firmly and resultative not only to the priority queues direction of research, but also continued to 

supervise and support the entire scientific, business, academic growth of the young students in 

Moldova, as well as the practical application of mathematical knowledge. Gheorghe lived and 

worked in his home country, but he used to keep all his friendly contacts with colleagues from 

Moscow, Kiev, Russia, and Ukraine and from universities of the whole world. For his outstanding 

results and contributions to the country Gheorghe Mishkoy was appointed as member-

correspondent to the Moldovans Academy of Sciences in the year of 1995 and was elected for 

Academician in 2012. He established there the Department of Probability Theory and Applications 

for the needs of his country and for the perspectives of young scientists. 

  

All subsequent professional activities of Academician Gheorghe MISHKOY were integrated into 

the Institute of Mathematics and Informatics of Academy of Sciences of Moldova. The Institution is 

named after Vladimir Andrunakievichas. Gheorghe worked at the same time for the International 

Independent University of Moldova. At the Institute of Mathematics and Informatics Gheorghe 

passed through the stages from an engineer to the head of a department and ultimately to the 

highest rank of academician of Moldova. In 2004-2008 working as academic coordinator of the 

Department of Precision and Economic Sciences of the Moldova Academy of Sciences, he made a 

significant contribution to the implementation of mathematical modeling in economy and other 
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areas. At the Institute of Mathematics and Informatics for the first time in the Republic of Moldova, 

the scientific direction “Theory of Probabilities and its applications” has been founded by 

Gheorghe Mishkoy. 

 

 The fruitful scientific activity of this remarkable scientist is innovative and is marked by a number 

of significant results: the development of mathematical theory of queueing systems with priorities 

and semi-Markov transitions between states; construction of multi-dimensional versions of 

Kendall and Pollachek-Khinchin functional equations for polling systems; development of 

algorithms for modeling and numerical calculation of non-stationary characteristics and many 

others. In 2014 Gheorghe was invited guest speaker for the Flint International Conference on 

Statistics, organized in favor of The World Year of Statistics. Selected articles, one of which is his 

talk were published in world recognized journals.  

 

 
 

Professionally, Academician Gheorghy MISHKOY harmoniously combined scientific research with 

teaching and educational activities. As a professor at the State University of Moldova, and the 

International Independent University of Moldova as well as in a number of other universities, he 

taught modern courses in mathematical statistics, econometrics, actuarial and financial 

mathematics, queueing theory. 

 

Academician Gheorghe MISHKOY made a significant contribution to the training of highly 

qualified personnel, under his guidance and supervision, eight Doctors of Mathematical Sciences 

and habilitated doctors successfully got their doctors degree. Scientific results for many years are 

reflected in more than 300 scientific articles published in national and international journals, 

including 7 monographs, 4 textbooks. Numerous reports on various prestigious international 

scientific events in Austria, England, Holland, Spain, Canada, Russia, Romania. USA, France, 

Japan are tracing his scientific life. 

 

The contributions of Academician Gheorghe MISHKOY to the development of science in the 

Republic of Moldova were highly appreciated and awarded. Gheorghe is granted by the title of 

Honorary Citizen and the Orden of "Gloria Muncii". He also is acknowledged with numerous 

prestigious academic awards: the silver medal of the ASM (2006), medals "Dimitri Cantemir" 

(2014), medals "Scientific merit", etc. 
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International recognition of his outstanding merits was confirmed by the electing Gheorghe 

MISHKOY as a member of the International Institute for Mathematical Research FIELDS (Toronto, 

Canada, 2010) and as member of the International Institute of Mathematical Statistics (USA, 1992). 

 

The loss of Academician Gheorghe MISHKOY is huge for the entire scientific community and for 

the society in Republic of Moldova. In these difficult moments, we express our sincere 

condolences. Our thoughts and prays are with the staff of the Moldovan Academy, the 

Mathematical institute, his family and all the friends who knew Gheorghe. 

  

May his soul rest in peace!  

 

Gnedenko Forum Editorial 
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Fatigue of Unidirectional Fiber Composite and Static 

Strength of its Components. Simplified Daniels-Epsilon 

Sequence 
 

Yu. Paramonov 
● 

Riga Technical University, 

Aeronautical Institute, Riga, Latvia 

e-mail: yuri.paramonov@gmail.com 
 

Abstract  
 

A simple method is proposed for obtaining such a description of the average fatigue curve (and 

residual static strength) of a unidirectional fiber composite (UFC), which is directly related to the 

parameters of the static strength distribution of its components (SSDC), which are the longitudinal 

items bearing the main longitudinal load. This description makes it possible to predict changes in the 

fatigue life of the UFC when the SSDC changes. The method is based on a Daniels_epsilon_sequence 

(DeS), which is a modification of Daniels_sequence (DS) which takes into account the short-term 

damaging effects of one separate cycle of fatigue loading.  Here we use a specific version of it in which 

the number of components of a critical link of UFC is equal to infinity. We call this version as 

simplified DeS. The concept of a DeS_fatigue equivalent distribution (DeS_FED) of local static 

strength of LI is introduced. The DS the calculations of fatigue life using the DeS_FED coinside with 

the test data. The simplified DeS model studied in this article should be used for preliminary analysis 

of the mean SN curve.  For the more detailed analysis should be used the models considered by author 

some earlier which include the use of the theory of Markov processes and the Monte Carlo method, 

which allows modeling and statistical aspects of the problems under consideration, but require much 

more time-consuming calculations. At the end of the paper a numerical example of processing the 

fatigue test data and prediction a new fatigue life at some SSDC changes are given. 
 

 Keywords: Composite, Daniels’_epsilon_sequence, fatigue life, residual strength. 

 

 

1. Introduction 
 

In our previous publications [1, 2] it was shown that the use of the Daniels’ sequence and 

Daniels’_epsilon_sequence (DeS) allows  

 

1) to describe the process of step-by-step growth of local stresses in a weak link of theUFC. 

This process is similar to the well-known S-shaped change in some physical parameters during the 

fatigue tests (Fig. 1); 

2) to relate directly the number of the DeS items (the calculated local stresses ) at which the 

value DeS item tend to infinity with the composite DS-fatigue life (DS_FLf) which is a function of 

the parameters of the SSDC; this functon can be used for the regression analysys of the fatigue test 

data and the prediction of the composite fatigue life changes at  some its component static strength 

changes; it is the main specific feature and advantage of the DeS models;  

3) to explain the specific features of the residual strength: a long period of very gradual 

degradation of strength is suddenly replaced by a sharp drop to zero;  

4) to explain the existence of an infinite calculated fatigue life and fatigue limit. 
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The main drawback of the considered previously DS model is this: if the cycle loads only slightly 

exceeds the fatigue limit, the predicted DS_FL is very small. In the work [1], this drawback is 

eliminated by the use the theory of Markov processes. In the work [2] the use of a 

Daniels’_epsilon_sequence (DeS) was proposed.  Some additional parameter which is denoted by 

the symbol  , was introduced in order  makes it easy to control the value of the calculated 

DeS_FLf. This parameter takes into account that only a part of the components whose strength is 

less than the applied load is destroyed during one fatigue loading cycle. The value  , apparently, 

depends on the maximum load in the current cycle, on the SSDC, on the frequency of loading, on 

the structure of the UFC and on the other circumstances.  

 

In the paper [2], the initial number of components n in the considered critical link of UFC is 

assumed to be equal to some finite number. Assumption that the strength of each of these 

components is a random variable allows to model the statistical characteristics of the fatigue life of 

the UFC. But in this article, we make an additional simplification. We assume that this number is 

equal to infinity. It is clear that this assumption is acceptable only if we are interested in analyzing 

the average values of the fatigue life, but just this case is considered in this article. This assumption 

greatly simplifies calculations and is often appropriate in the applications. As it was told already, a 

detailed analysis involving the theory of Markov processes and Monte-Carlo method is described 

in our previous work [1]. 

 

Short history of the investigation of the fatigue of composite is considered in large number of the 

publications. Here we mention only most significant papers. The first scientific publication 

devoted to this problem appears to be the Peirce’s work [3].  Peirce gives an approximate formula 

for the average strength of a bundle of LIs (fibers, bundles, strands) forming the UFC. The normal 

approximation of the strength distribution law of a LI parallel system was shown by Daniels [4, 5]. 

His result was refined by Smith [6] already with a reference to the series-parallel system (SPS), 

definition of which was earlier proposed in [7]. A detail review of the residual strength a given in 

[8, 9]. 

 

The term "Daniels Sequence" first appeared in work [10], but the first calculation of such a 

sequence took place much earlier [11, 12]. Later, some specific versions of DS, the 

Daniels_epsilon_Sequences (DeS) appears and was discussed in [1, 2]. But the models studiet in 

these papers take into account too many factors and required preliminary estimations of too large 

number of parameters. The main purpose of this paper is to offer the model which is much easier 

to use for the construction and the description of the SN fatigue curve and residual strength. 

 

In section 2 of the paper the general mathematical definition of the DeS, in sections 3 and 4 its 

application to the the processing of the fatigue test data is studied. In the following section the 

prediction of the fatigue life after some changes of the statical strength of the components of the 

UFC and the following conclusions are discussed.     

 

2. The Daniel’s epsilon sequence 
 

2.1. The Daniel’s sequence 
 

The UFC can be considered as  the series-parallel system (SPS) with series of Ln links and Cn

parallel items  in every link. But in this section, we consider only one link of SPS that has n  items. 

The strength of such link  was studied by  Daniels [4,5]. I  t is called now the “classical model of 

bundle of n parallel fibers stretched between two clamps”. In general case, strands or some set of 

strands can be considered instead of fibers. Here for all  structural items of these types  we’ll use 
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more general terms  : „longitudional item” (LI) or just „component”.  The connection of the fatigue 

characteristic of one link and the SPS as a whole is described in [11,12].   We assume that the total 

load on the link in question is uniformly distributed among all functional LIs both at the beginning 

of the test and after the destruction of some of them. The state of the UFC is defined by the number 

of undisturbed workable LIs. 

 

First, we will recall the general definition of DS with some corrections. The DS as some random 

process is defined by two components:  a vector 
,1: ,1 ,2 ,( , ,..., )L n L L L nX X X X= , whose components are 

mutually independent random variables with the same cumulative distribution function (cdf), and 

an infinite sequence 0: 0 1 2{ , , ,...}S S S S+ + + +
 = , whose components are random variables with a known 

law of joint probability distribution. In the description of the fatigue test 
,1 ,2 ,, ,...,L L L nX X X  are the 

strengths of the components of UFC, 0 1 2, , ,...S S S+ + +  are the values of the maximum stress in the 

sequence of fatigue loading cycles. Specific realization of the the Daniels sequence (DS) for specific  

loading sequence, 0: 0 1 2{ , , ,...}s s s s+ + + +
 = , 0 1 2 ,...s s s+ + +   is defined by  equation  

0 0s s+=  , 1 1 / (1 ( ) / )i i i cs s s n+
+ += −    0,1,2,...i =                                        (1) 

where 0: 0 1 2{ , , ,...}s s s s+ + + +
 =  is realization of the 0: 0 1 2{ , , ,...}S S S S+ + + +

 = ; ( )is  is the number of of 

elements of vector 
,1: ,1 ,2 ,( , ,..., )L n L L L nx x x x= , realization of  

,1: ,1 ,2 ,( , ,..., )L n L L L nX X X X= , which are 

lower than is
+ . The transition from is  to 1is +  is what we call the step of DS.    

 

We call the Daniels_epsilon_Sequence (DeS) the introdused in [2] modification of DS, which is 

defined by the equation  

0 0s s+= ,     0
1 1 (1 ),   0,1,2,...i i is s s i + += + − =                                    (2) 

where       
0

1 1 / (1 ( ) / )i i is s s n+
+ += −    0,1,2,...i =      ;   0 1  , 

 

As it was told already, the parameter   defines the rate of accumulation of the fatigue damages 

into one cycle and takes into account the fact that the destruction of all ( )is  LIs requires both time 

and sufficient energy supply.  The part of them the fracture of which takes place in one cycle 

depends on the frequency of loading and the other factors. 

 

The ratio ( ) /i cs n  is the empirical estimate, 
^

( )F x , of the cdf, ( )F x . For considered here simplified 

version of the DeS    we assume that the dimension of the vector :   i nX  (number of LIs in the 

considered link) is so much that instead of  
^

( )F x  in (1) can be used ( )F x . 

 

In the fatigue test to study the SN curve we are interested only in the case when 1 2 ...s s s+ + += = =  

where s+ is some specific level of load. Then the equation (2) can be rewriten in this way 

   0 0s s+= ,     0
1 1 (1 ),   0,1,2,...i i is s s i + += + − =                                  (3) 

where       𝑠𝑖+1
0 = 𝑠+/(1 − 𝐹(𝑠𝑖))   𝑖 = 0,1,2, . ..    ;   0 1  , 

 

There are two types of the DeS (see Fig.1).  The first type of it takes place if the parameter s+

is large enough and items of DS has tendency to grow up to infinity.   

 

Let for the fixed s+ and some   the integer function ( ; , ),   1,2,...DeSn s s n+ =  , 1 2, ,...s s s=  determines 

the number of steps at which the sequence DeS reaches the value s . The event when is reaches 
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some large enough critical value Cs  we consider as fatigue failure and define  the DeS Fatigue Life 

(DeS_FLf) to be equal to 

 . ( ; , ),   1, 2,...
CDeS s DeS Cn n s s n+
= =

                                                (4) 

Then for Cs s=  and s =   the DeS_FLfs, the corresponding ,DeS sC
n  and 

,DeSn 
, are equal to 

the values of this function. 

We also introduce the concept of the Daniels residual function as a function that determines the 

residual strength after the DeS reaches the value s . We define it by the equation 

( ) max (1 ( ))DeS
x s

r s x F x


= −
 .                                                   (5) 

 

Now it can be introduced another definition of fatigue life, 
,DeS Rn , which is determined by 

the moment when the residual strength of the tested specimens decreases below a certain 

critical level Cr , 0Cr  . We define   it by equation  

, 1 max( : ( ) ,  0,1,2,...DeS R DeS i Cn i r s r i= +  =                                (6) 

 

The second type of DeS takes place if the stress s+  is small enough. Then after some number of 

steps the increasing of the value of DeS items almost ceases in spite of increasing the number of 

steps up to infinity. The maximal value of cycle parameter s+ for which this fenomenon takes place 

we considered as the Daniels fatigue strength  ( DFSt) or  the Daniels fatigue limit ( DFLt), Ds . The 

fatigue limit is determined by the maximum load value s+ at which equality * 1 *i i
s s+ = can occur for 

some *i . 

 

In [2] it is shown that regardless of the value of   for load level, s
+

, more than max (1 ( ))x F x−  the 

event * 1 *i i
s s+ =  can not take place but at every 1,2,...i = , the inequality 1i is s+  takes place; the items 

of the DeS grow up to infinity, all LIs will be destroyed, the value of the DeS_FLf is final. So the 

value  

              max (1 ( ))Ds x F x= −  ,                                                    (7) 

can be used as the definition of the Daniels fatigue limit (DFLt).    

 

It is necessary to note the obvious. The values of Ds  in (7) and (0)DeSr  in (5) coincide with the value 

of the static strength of the “classical model of bundle of n parallel fibers stretched between two 

clamps” predicted by Daniels [4,5]. The difference between these values takes place only if there is 

a difference in the distribution functions of the strength of LIs, ( )F x .  

 

The mathematics of the above analysis is valid for any parallel system for which equations (1) and 

(2) are valid. The connection of this mathematics with the fatigue phenomenon of an UFC occurs if 

instead of the distribution of static strength, ( )F x , we use some other cdf ( )LF x of  the local 

strength of the element working as part a the" weak segment " of the UFC.  The length of the LI in 

the "weak segment" (the link in the considered here model) does not match the length of LI for 

laboratory static strength tests, the structure of the "weak segment" has a special support 

conditions, …   So, in the following we will usually use the ( )LF x  instead of ( )F x . 

 

Later on it will be shown that  processing the test data we can find the function ( )s  +=  in such a 

way that the the DeS_FLfs, ,DeS sC
n  or 

,DeSn 
, wil be equal to the corresponding test fatigue lifes. 

This function together with the equations (3) and (7) gives the description of fatigue curve which is 

directly related to the parameters of the static strength distribution of its components (SSDC). 
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Next, we will consider two examples of using the considered mathematical apparatus (as we will 

say, using the DeS approach) to process the results of fatigue tests in order to establish a 

connection between the description of the fatigue curve of a composite and the static strength of its 

components. In the second example, the analysis of residual strength will also be considered. 

 

3. Application to the fatigue curve analysis. Numerical example 1 
 

In this part of the article, we will review the analysis of data on fatigue tests of composite samples 

and on the static strength of its components presented in (13). 

 

3.1. The cdf of the local tensile strength 

 
Two simple assumptions help to explain (and to model) why during fatigue tests the composite 

collapses at the load significantly lower than its static strength: 

 A) The local strength in the considered specificweak  link Lk time lower than in other links, 1Lk  ;  

B) in the considered specific link the local stress Ck time greater than in other links ,  1Ck  .  

 

Let's consider the difference between the influence of coefficients Ck and Lk  on the results of 

analysis of fatigue test data. For simplicity we assume that   is equal to 1. And instead of the  

symbol DeS, we'll use the DS symbol. Here we study the case of the lognormal distribution with 

the cdf  ( )0 1( ) (log( ) ) /F x x  =  −  , where (.)  is cdf of the standard normal distribution, but all 

the following will be true in more general case (for example, for Weibull distributions with cdf 

( )( )0 1( ) 1 exp exp (log( ) ) /F x x  = − − −  ).  Note that if the explanation B of the local stress 

concentration is accepted, then instead of equation (3), we should use its corrected version - 

equation (3 b)  

0 0s s+= ,     0
1 1 (1 ),   0,1,2,...i i is s s i + += + − = , where 

0
1 / (1 ( ))i C L is k s F s+
+ = −    0,1,2,...i = ; 0 1  ,    

(3b)   

                    

It is clear that the use of Ck s
+  instead of s+ increases the values of DeS curve by Ck  times and  

reduces DeS_FLs, ;DeS sC
n . But it can be shown that fatigue limit Ds  remains unchanged (see [1]). 

Now, if we use simultaneously Ck and Lk     then ( )0 1( ) ( / ) (log( ) ) / )L C C C LL
F k x P X k k x k k x  =  =  −

and in equation (7) we use ( ) ( )L CF x F k x=  instead of ( )F x then the fatigue limit is determined by 

the product of L Ck k . And if 1Lk =  then instead of equation (7), we should use its corrected version 

- equation (7a)  

max (1 ( )) /D L Cs x F x k= −  ,                                                    (7a) 

 

It is also clear that the values of the residual strength determined by the equation (5) do not 

depend on the Ck , but depend on the Lk and determine the local residual strength in the critical 

link under consideration. And equation (5) defines the residual static strength of the whole 

composite only in the case when 1Lk = . For this reason, some later in section 4 we use the 

explanation B for processing the data of residual strength. 

 

In order to see the difference between the influence of Ck  and Lk  under different values   the 

calculation  of DeS curves and the corresponding DeS_FLfs for two pairs: ( 1.75 , 1.0C Lk k= = ) and (
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1.0 , 1.75C Lk k= = )  with two epsilon values: .0000 = 0 1  and .00000 = 0 1 were made.    In the 

work [13]  in the Table 2.1 the results of the carbon fiber strand specimen tensile test, in  the table 

2.11 of the results of the fatigue test at an approximately pulsed ( min max/ 0.1s s = ) load on CFRP 

specimens are presented. The results of processing the data from static strength tests of carbon 

fiber strand specimens, including testing hypotheses about the type of distribution law using 

OSPPT and  criteria [11,14,15] show that the hypothesis about the lognormal distribution 

("normal" on a logarithmic scale) was more plausible than the Weibull distribution. For the cdf  

0 1( ) ((log( ) ) / )F x x  =  −  the following parameter estimates are received 0 16.48,   =0.168   =

(where (.) is the cdf of the standard normal distribution). 

 

The results of calculation DeS curves and ( ; , )DeS Cn s s +

for 600Cs =  are shown on Fig. 1. It turned 

out that at high stress loads there is some small difference in the values of DeSFLf  for two pairs: (

1.75 , 1.0C Lk k= = ) and ( 1.0 , 1.75C Lk k= = ). But this difference disappears and for  0.00001 =  

and for  0.000001 =  if the load values   are small. So if we need to know only the fatigue curve, 

there is no big difference : to use the Ck or Lk  parameter, but if the residual strength data is also 

analyzed at the same time, it is more convenient to use parameter Ck   assuming parameter Lk  to 

be 1 because , as it was told already the equation (5) defines local residual stress corresponding to 

cdf (.)LF . 

 

  
0.00001 = ; 1.75 , 1.0C Lk k= =  DeS_DFLs :  8000       

19000       47000      154000      349000     1507000     

>6000000 

0.00001 = ; 1.0 , 1.75C Lk k= =  DeS_DFLs : 

37000       50000       82000      195000      396000     

1558000     >6000000 

  

0.000001 = , 1.75 , 1.0C Lk k= =  DeS_DFLs : 

71000  182000  461000  1531000 3483000 

>6000000     >6000000 

0.000001 = , 1.0 , 1.75C Lk k= =  DeS_DFLs : 

343000  473000  785000  1919000  3920000  

>6000000    >6000000 

Figure 1:   DeS and ( ; , )DeS Cn s s +

for load levels: 333.5 323.7 309.7 290.1 279.6  270.8  250.2 MPa 
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There is a need to investigate the influence of the parameter  more closely. In first and second 

lines of Table 1 the results of the fatigue test [13] are shown. The results of calculating the 

corresponding (600; , )DeSn s +

for  1.75Ck =  and different   are presented.  

 

 

Table 1: Comparison of test data and calculations of DeS_FLfs 

  

S 333.5 323.7 309.7 290.1 

Test (cycles) 4928 115733 373199 1004800 

  DeS_FLf 

0.1 1                       3            5           16           

0.01 8                           19           47          154              

0.00001 7038              18129        46031       153012       

 

The analysis of the Table shows that for relatively small value of  , 0.01  , DeS_FLf is 

approximately proportional to the 1/   and to some specific value ( , )DeS DeSN s + of the DeS_FLf 

which is defined by some  function ( , )DeSN s +  for some specific value of DeS = .The values of 

DeS_FLf for some other   , 0.01  , is defined by equation             

 ( , ) ( / ) ( , )DeS DeS DeS DeSN s N s   + += .                                                   (8) 

 

Now we see that in order to get reasinoble fitting of the test SN curve by the use of The equation 

(8) we should fine the function ( )s  corresponding to equation 

( , ( )) ( )DeS TN s s N s+ + += ,                                                                 (9) 

where ( )TN s+  mean test fatigue life as function of s+ which define SN curve. 

 

By the way, let us note, the tedious calculations with a very small   value in some cases can be 

replaced by faster calculations with a larger   value. However, this rule does not take place for 

0.01  .  

 

3.2.  The DeS fatigue equivalent distribution of the local strength 

 
Using the corresponding value of the parameter  we can obtain arbitrarily large calculated fatigue 

life .   But the natural question appears: is there such a cdf, we denote it by (.)DeSF , that the 

calculations using the equation (3) and a pair (  , (.)LF ) give the same results as when using the 

same equation but pair (1 , (.)DeSF )  (using value 1 = ). The function (.)DeSF  should correspond to 

the equation 

(1 ) / (1 ( )) / (1 ( ))L DeSs s F s s F s  + +− + − = − ,           s s+    . 

 

It is easy to get the following solution  for (.)DeSF  

( )) 1 (1 ( )) / ((1 ( ))(1 ) )DeS L LF s s F s F s s s + += + − − − +   ,     s s+    .                              (10) 

 

The function (.)DeSF  we will call the DeS fatigue equivalent distribution (DeS_FD) of local strength. The 

fatigue life calculated using this function and DS approach (instead of DeS approach) would 

coincide with the data of fatigue tests.   
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3.3 Approximation 

 
The way to calculate the DeS_FLf  is the use of requrent formule  (3) and its modifications. It is 

easy if the DeS_FLf is not too large. In other case it is very exhausting work. The following 

approximation can be used.  

 

Let us consider i  as continuous variable. If i  is very large then the difference ( 1i is s+ − )  is very 

small and in subsequent calculations it can be used as a derivative / ( / (1 ( ))C L ids di s k s F s += − + − . 

Then the value of step corresponding to increasing is from 0s  to s  

0( , , ) (1/ ) ( , ),oi s s K s s =                                         (11) 

where 

 0 0
( , ) (1/ ( / (1 ( )))

s

C Ls
K s s x k s F x dx+= − + − .                                               (12) 

 

If    0 Cs k s+= ,    Cs s=   then     we can get  the approximate estimate  of ( ; , )DeS Cn s s +

.                                   

For example, in Table 1 we see the values (600; ,0.00001)DeSn s+ : 7038; 18129; 46031; 153012 for  s
+

=333.5, 323.7, 309.7, 290.1. Corresponding calculations using equation (9) give the very similar 

results : 7108 ;  18312 ;  46503 ;  154498  .  

Let us note that the integral 0( , )K s s   can be used for approximate calculation of the ( ; , )DeS Cn s s +

and then for calculation of the approximate function ( )s which is necessary for fitting real test 

fatigue lives.  

 

4. Numerical example 2. Residual strength 
 

Now we consider the processing of the result of the fatigue test in which the data   not only  about 

the fatigue life but about the residual strength was obtained. The test data was taken from Tables 

1-3  in Ref. [16] concerned T300/934 graphite/epoxy laminates with 2 2[0 / 45 / 90 45 / 90 / 45 / 0]−   lay-

up. In Table 1 of this paper the static strength of 25 specimens, in Table 2 numers of cycles to 

failure at three different stress levels (namely: for  max = 400, 380 and 290 MPa, min max/ 0R  = = ) 

and   in Table 3 two sets of residual strength data are reported for  15 and 18 specimens subjected 

to cyclic loading up to 3,640,000 and 31,400 cycles at a maximum stress, max = 290 and 345 MPa 

respectively.  

 

The tested specimens are not the UFC.  But we suppose  that the failure of this composite takes the 

place after the failure of some weak microvolume (WMV) which is the bundle of the n  parallel 

LIs. We make (enough rough) assumption that this WMV is a UFC - equivalent which  has  the same 

distribution of fatigue strength. In work [16], there is no information about the static strength of the 

composite components. We will use the data which we have  used already in the previous example 

in which carbon fiber longitudinal elements were also used for the test specimens. This, of course, 

means that the following should be considered as an example of the application of the technique in 

question, and not as a study of a specific experiment. We accept  also the lognormal distribution 

0 1( ) ((log( ) ) / )F x x  =  −  of the static strength of LIs with the  same values of parameters 

0 16.475,  0.168 = =  as in the section 3.1.  

 

After transformation of equation (11) we can calculate the value of   

                      ( , ) / ( ),o TK s s N s + +=                                                (13) 
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which should ensure the equality of the calculated DeS_FL and the corresponding test value for 

specific load level. For two load levels, 345 and 290 MPa, we have got the corresponding values  :  

0.00000242 and 0.00000464. Then using these values further in equations (3 b), (5) and (8) , we get 

the results shown in Fig. 2. In the left part of this figure, for the load level of 345 MPa, the following 

is shown : a1) DeS curves (-), calculated (--) and test residual strengths (+); a2) cdf (.)LF  and cdf

(.)DeSF ; a3) “the derivatives” of these functions (df= ( )1 1( ( ) ( )) /L i L i i iF s F s s s+ +− −  ;  def=

( )1 1( ( ) ( )) /DeS i DeS i i iF s F s s s+ +− − , 1,2,...i = ) .  

 

  

a1 b1 

  
a 2 b 2 

        

a 3 a 4 

Figure.2. Daniels’ sequences (DeS) , calculated (--) and test residual strength (+) (a1, b1); cdf (.)LF  

and Daniels’- equivalent cdf  (.)DeSF  (a2, b2) and the “derivatives” of these functions (a3, b3) for 

two load levels 345(a) and 290(b) MPa. 
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The right part of the figure shows similar results for the load level of 290 MPa.  Let us note that the 

Daniels fatigue equivalent distribution, (.)DeSF , provides another measurement of differences in 

the static strength distributions of separate longitudinal components, (.)F , and inside the structure 

of the composite. 

 

On the sub-plots a1 and  b1, we see that equation (5) for the assumed distribution function (.)LF  

gives a plausible description of the residual strength. It is useful to note: the DeS curve rushes to 

infinity and the calculated residual strength rushes to zero at the same number of cycles. Since 

equation (10) is suitable only for relatively low load levels, for levels 400 and 380 MPa, the values 

of   were selected from the equation of the coincidence of the calculated and tested values of 

durability: 0.0000181 and  0.00000166. The final calculated fatigue curve is shown in Fig. 3.  

 

 

 

 

 
 

Figure 3.  DeS_SN, log10DeS_SN (-) and tast data 

    

Let us clarify that the description of the fatigue curve is obtained by selecting the  coefficient 

1.6Ck = , using equation (3b) and preliminary calculation values of  :  0.00000242 and 0.00000464 

using equation (10) for loading levels 345 and 290 MPa and by direct selection 0.0000181 and  

0.00000166 for levels 400 and 380 MPa.  

 

5. Prediction 
 

The study of the possibility and accuracy of predicting changes in the fatigue life of a composite 

with changes in the static strength of its components using the DeS approach requires a volumetric 

experiment. And this is the task of subsequent research. Here we will limit ourselves to analyzing 

the effect of reducing the spread of static strength, more precisely, the parameter 1  on the 

calculated average fatigue life at the level of loads considered in the last example. A comparison of 

the results of the the calculations DeS_FLf for the two different values 1  but the same all the other 

parameters is shown in Table 2.  

 

Table 2. Comparison of the calculations of DeS_FLfs for two values 1  

 

s+  480 380 345 290 

Test (cycles) 5313 95760 158489 1772812 

1  DeS_FLf 

0.168 5500 95900 158600 1772800 

0.015 4800 88100 164300 >4000000 
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We see a significant increase in DeS_FLf when the load is close to the fatigue limit. But with a 

relatively high load, the decrease led to a slight decrease in DeS_FLf. Recall that the same effect 

applies to calculating the average static strength. For the studied here lognormal distribution the 

average static strength is equal to ( )
2

0 1exp( / 2) + . These conclusions should be taken into 

account in the desine of a new composite which is similar to the studied here. 

 

 

Conclusions 
 

It is shown that a simplified version of DeS can be used for such description of the average fatigue 

curve (and residual static strength) of an UFC, which is directly related to the parameters of the 

static strength distribution of its components (SSDC). This description is very desirable because it 

makes it possible to predict changes in the fatigue characteristics of the UFC when the static 

strength characteristics of its components change.   A numerical example of processing the test 

data on fatigue life and residual strength of a carbon-fiber reinforced composite confirms the 

reasonable coincidence of the calculation result and test data. The offered type of description of 

fatigue curve  

 

The concept of a DeS fatigue equivalent distribution (DeS_FED) of local static strength of LI is 

introduced. The fatigue life calculated using this distribution and the basic Daniels sequence (DS) 

would coincide with the data of fatigue tests. Comparison of the DeS_FED with the real SSDC 

shows the specific behavior of the UFC components under short-term loading during a single 

fatigue loading cycle, as opposed to loading during static tests.  

 

The application of the proposed method for processing fatigue tests data of composite material 

samples that differ in structure from the UFC will allow us to judge the influence of its features on 

the fatigue curve. 

 

Randomization of the considered version of the DeS, using the Monte Carlo method allows to 

analyze the scatter of the fatigue life. But this time the search of the parameters of the 

corresponding nonlinear regression is a difficult task an example of this analysis is given in [2]. 

Against all the odds, we think that, in due course, the structure of the models suggested will be of 

the interest not only for the graduation theses of the students but also for the engineering 

applications, in particular, for the prediction of the variations fatigue life of the UFC after the 

changes in the parameters of their components. 
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Abstract 
 

In this bloodthirsty scenario of competition, rapid and cost-effective production is a key obligation 

for endurance. To attain this objective the thought of production area is fetching people now days. 

In this sector, non- identical equipment is arranged rationally to execute desired procedure to 

convert unprocessed materials into the processed material. Sometimes during the manufacturing, 

the problem of waiting line arises because of some unpredictable reasons, so here this paper reveals 

the same problem with its effects on system reliability and availability, also system sensitive 

nature is analyzed with respect to unexpected failures. Supplementary variable technique and 

copula method is used to solve the system.    

 

Keywords: Markov processes, steady state behavior, supplementary variable 

technique, reliability, wait in line etc.  

 

 

1. Introduction 
 

Wait in line theory has an important role in almost all analysis of repair services. Wait in line 

models are very helpful tool for calculating the performance of various repair systems like 

automated systems, production systems, computer systems, telecommunication systems, 

networking systems like computer networking or communication networking, and flexible 

manufacturing systems. Conventional wait in models forecast the system performance on the basis 

of the assumption that all service facilities offer failure-free service  

 With reference to the above facts, here we have discussed the behavior analysis of an 

engineering system having three-subsystems 1, 2 and 3, connected in series, having waiting line for 

repair. First subsystem has two units one is key unit and another is active superfluous. Second 

subsystem has one key Unit and another is cold superfluous while Third subsystem consists of two 

units’ connected in parallel arrangement. The system can completely fail due to failure of any of 

the subsystems [3]. In the beginning when the system starts working, the key units of subsystem 1 

and 2 and both units of the subsystem 3 are fully operational. When the main units of the 

subsystems 1 and 2 fail, the supporting units are switched on automatically and failed units are 

sent for repair to repairing section [1, 2]. Here, a realistic situation is taken into the consideration 

that when main units and supporting units of both subsystems 1 and 2 are failed and they are sent 

for repair to repairing section, they are in waiting line because repairmen is busy somewhere else. 

In this case a wait in line is there at repair section. So the main concern of the study is that all the 

four units are waiting for repair [4]. Transition state diagram is shown by Figures 1. Table 1 shows 

the state specification of the system. 
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Assumptions 
 

• In the beginning the system is in good operating state. 

• All Subsystems are connected in series. 

• System has two states only good and failed not degraded. 

• Catastrophic failure is also responsible for system failure in the study also they require 

constant and exponential repair. So, copula technique is used for finding probability 

distribution [5]. 

• Repair facility which follows general time distribution is there for the service of both the 

subsystems of unit 3 and also failure are exponential in both cases. 

• For the subsystems 1 and 2 failure and repairs both are exponential.  
 

Table 1: State specification of the system 
States Description System 

State  

S0 The system is in good working state G 

S1 The system is in working state when key unit is failed. G 

S2 The system is in failed state because of failure of superfluous unit. F 

S3 When all four units are in waiting at repair section, system is in failed state.  F 

S4 The system is in working state when superfluous unit of subsystem 1 is 

failed. 

G 

S5 The system is in failed state due to the failure of key unit of subsystem 1. F 

S6 The system is in working condition when key unit subsystem 2 is failed. G 

S7 The system is in failed state when superfluous unit of subsystem 2 is failed. F 

S8 The system is in operable condition when key unit of subsystem 3 failed. G 

S9 The system is in failed state from the state S8 due to failure of superfluous 

unit of subsystem 3. 

FR 

S10 The system is in operable condition when superfluous unit of subsystem 3 

is failed. 

G 

S11 The system is in failed state from the state S10 due to failure of key unit of 

subsystem 3.  

FR 

S12 The system is in failed state from the state S1 due to failure of subsystem 3. FR 

S13 The system is in failed state from the state S6 due to failure of subsystem 3. FR 

S14 System is failed state because of catastrophic failure.  FR 

                         G: Good state; F: Failed State; FR= Failed state and under repair.    

 

2. Notations 
Pr               Probability 

)(0 tP
        Pr (at time t system is in good state S0) 

)(tPi     Pr {the system is in failed state due to the failure of the ith subsystem at time 

t},                          where i=2, 5, 7, 14. 

i                Failure rates of subsystems, where i=a1, a2, b1, b2, c1, c2, CSF. 
              Arrival rate of all four units of subsystems 1 and 2 to the repair section named as a1, a2,  

        b1, b2. 
              Repair rate of unit’s a1, a2, b1, b2. 

)(ki          General repair rate of ith system in the time interval (k, k+), where i= c1, c2, (names for      
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the units of subsystem 3) CSF and k=v, g, r, l. 

)(3 tP
         Pr (at time t there is a queue (a1, a2, b1, b2) in the maintenance section due 

to                                        servicing of some other unit and all four machines are waiting for repair. 

),,( tkjPi    Pr (at time t system is in failed state due to the failure of jth unit when kth 

unit                      has been already failed, where i=9, 11. j=g, v. and k=v, g.   

K1, K2             Profit cost and service cost per unit time respectively. 

Let 
leu =1 and 

)(2 lu CSF=
 then the expression for joint probability according to Gumbel-

Hougaard family of copula is given as 
])))((logexp[)( /1   lll CSFCSF +=

 

 

 
 

Figure 1: Transition state diagram  
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3. Formulation of the mathematical model 
 
The following differential equations have been obtained by considering limiting procedures and 

different probability constraints which satisfying the model: 

)(0212121
tP

dt

d
CSFccbbaa 
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




+++++++  += 
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ditPi
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Boundary Conditions: 
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)(),,0( 89 2
tPtvP c=                                                                                                   … (18) 
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)(),0( 014 tPtP CSF=                                                                                                   … (23) 

Initial condition: 

1)0(0 =P , otherwise zero.                                                                                         

Solving equations (1) through (15) by taking Laplace transform and by using initial and boundary 

conditions we obtained following probabilities of system is in up) and down states at time t, 
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Steady state behavior of the system By Abel’s lemma we have, 
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where,                                                                                                                                                                                    
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Sensitivity analysis: 

Here we have done sensitivity analysis of the system for catastrophic failure rate and key 

unit of subsystem 1. 

S = -t*exp (-(Lcsf + La1 + La2 + Lb1 + Lb2 + Lc1 + Lc2)*t) 

 

5. Results and Discussion 
 

Here reliability, availability and sensitivity analysis with respect to catastrophic failure and key 

unit of subsystem 1 is done for the considered system by employing Supplementary variables 

technique and Copula methodology. The Figure 2 shows the movement of reliability of the system 

against time for fixed values of failure and repair rates. From the graph we conclude that the 

reliability of the system reduces hastily with passage of time because of waiting line for repair in 

the repair section.  

Figure 3 talks about the availability of the system which says that the availability reduces 

approximately in a constant manner as time increases. 

The sensitivities of the system reliability R (t) with respect to system parameters like 

catastrophic failure and key unit of subsystem 1 are shown in figures-4 and 5. It can easily be 

observed that there is very negligible impact of both the parameters on system sensitivity. 
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Figure 2: Reliability against time                        Figure 3: Availability against time  

 

 

 
 
   Figure 4: Sensitivity Analysis for catastrophic failure  
 

 

 
   

Figure 5: Sensitivity Analysis for key unit of system1 
 
 

 



Surabhi Sengar 

SENSITIVITY ANALYSIS WITH WAIT IN LINE THEORY 
RT&A, No 4 (59) 

Volume 15, December 2020  

34 

References 

 
[1]  Barlow, R. E. and Proschan, F. (1975).  Statistical Theory of Reliability and Life Testing: 

Probability models, New York: Holt, Rinehart and Winston. 

[2]  Brown, M. and Proschan, F. (1983), Imperfect repair. Journal of Applied Probability: 20: 851-

 859. 

[3]  Liebowitz, B. R. (1966), Reliability considerations for a two-element redundant system with 

generalized repair times”, Operation Research: 14, 233-241. 

[4]  Surabhi and Singh (2014), Reliability Analysis of an Engine Assembly Process of Automobiles 

with Inspection Facility. Mathematical Theory and Modelling: 4(6):153-164. 

[5]  Sengar, Surabhi and Singh, S. B. (2012), Operational Behaviour and Reliability Measures of a 

Viscose Staple Fibre Plant Including Deliberate Failures, International journal of reliability 

and applications: Vol. 13, No.1, pp.1-17. 

 

Received: August 09, 2020 

Accepted: Oktober 12, 2020 

 



S.R. Sruthi and Dr.P.R. Jayashree  

RAM ANALYSIS OF Er/M/1/N QUEUEING SYSTEM 
RT&A, No 4 (59) 

Volume 15, December 2020  

35 

RAM Analysis of Er/M/1/N Phase-Type Queueing System 

with Working and Working-Breakdown States 
 

S.R. Sruthi 

• 
Research Scholar, Department of Statistics, 

Presidency College (Autonomous), 

Chennai-05. email: srsruthi1986@gmail.com 

 

Dr.P.R. Jayashree 

• 
Assistant Professor, Department of Statistics 

Presidency College (Autonomous), 

Chennai-05. email: vprjaya@gmail.com 

 
 

 

Abstract 

 
 In this paper, the Reliability, Availability and Maintainability (RAM) analysis for the finite 

capacity Erlangian Phase-type Queueing model is studied with regard to failure and recovery 

rates.   The arrival process of the machines to repair is assumed to follow Erlang distribution and 

the service process is exponentially distributed in FCFS discipline. Apart from the multi-phases in 

the queueing system two different environmental states such as the working and working-

breakdown states were also taken into consideration. The transient state differential-difference 

equations for the general case and for the special case of N=5 is obtained. The results are presented 

numerically and graphically along with some special metrics such as MTBF and MTTR. The 

sensitivity analysis is also performed to find changes in different parametric values for the model. 

 

Keywords: Availability, Erlang distribution, Multi-phase queueing system, 

Maintainability, Reliability, Sensitivity Analysis. 

 

 

 

I. Introduction 

 
Queueing theory was developed in order to provide models to predict the behaviour of systems 

that aims to provide service for randomly arising demands. Any system in which arrivals place 

demands upon a finite capacity resource may be determined as queueing system. In order to 

describe the queueing of systems more effectively it is necessary to understand Erlang theory. The 

main assumption of the Erlang in queueing model is that the calls arrive as a Poisson process and 

when there is more than one inter-related Poisson process occurring in phases it is considered to be 

Phase-Type distribution with continuous variable. Thus, in Phase-Type theory Erlang distribution 

is considered to be a special case. The phase-type distribution and phase-type renewal processes 

were introduced by Neuts [7], who formed the substrata for the definition of the N-process and the 

Markov-modulated Poisson process (MMPP). Binkowski and Carragher [3] employed an 

Er/Ek/1/N queuing system to model the operation of a stockyard mining. Baba [2] studied GI/M/1 

queue with working vacations by using the matrix analytic method and subsequently, for the 

queue with working vacation and vacation interruption. Plumchitchom and Thomopoulos [8] 
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made a study on a single-server queuing system with Erlang distributed inter-arrival and service 

times, Li et al. [5] studied the GI/M/1 queue such that the vacation time follows an exponential 

distribution.  

Along with Queueing of the systems, it is also important to analyze the performance of the 

industrial systems by using the most important metric such as the Reliability. In order to receive 

effective results in the Industrial systems it is proved to analyze the Availability and 

Maintainability of the machines along with Reliability. Performance modelling and availability 

analysis are applied by many researchers on different industrial systems such as the paper plant, 

paint, and thermal power plant Industry etc., Singh, and Goyal, [11] developed a methodology to 

study the transient behaviour of repairable mechanical biscuit shaping system on a biscuit 

manufacturing plant for determining the availability of the system based on Markov modelling. 

Lin, et al. [6] made a study on reliability using both classical and Bayesian semi-parametric frame-

works, they illustrated modelled a wheel- set’s degradation data and analyzed to ease the 

calculation of system reliability during applying preventive maintenance. The differential 

equations have been solved using Laplace Transforms. These Laplace Transform are commonly 

used in the transient state to obtain the state probabilities. Aggarwal, et. al. [1] presented a model 

using Markov birth-death process with the concept of fuzzy reliability and availability assuming 

that the failure and repair rates of each subsystem as exponential distribution. 

In this paper RAM analysis of the Er/M/1 finite space queueing model for different 

environmental states such as the Working state and the Working-Breakdown state is studied. The 

differential-difference equations for the model are formed and a special case of N=5 is considered. 

The transient equations are solved using Fourth-Order Runge Kutta numerical method. The results 

are shown numerically and graphically for reliability, availability and maintainability analysis for 

the queueing system.  The Sensitivity Analysis is also carried out for the changes in different 

parametric values involved in the model. 

 

II. Assumptions and Notations 

 
The following are the assumptions that are used in this model: 

➢ The arrival of machines for repair to the queueing system is independent according 

to the Erlang process with a constant parameter λ 

➢ The service process is exponentially distributed with First Come First Service 

(FCFS) queue discipline 

➢ When the system is in the working state (i.e., there should be at least one machine) 

failure occurs at the interarrival phase which is also exponentially distributed and 

once the failure occurs in the system the process is moved to the working-

breakdown state where the it is performed at a low rate 

➢ Whenever working-breakdown occurs in the system, it is immediately recovered in 

the recovery state which is also exponentially distributed. Once the system recovers 

it performs its activity at a normal arrival rate    

➢ All inter-arrival times and the service times are independent of each other 

The following are the notations that are used in this paper: 

N(t)  : Total no of machines in the system at any time t 

Er : Erlang distribution with r identical phases 

S(t)  : The environmental state at any instant of time t which is 

               given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

   
λ  : Arrival rate 

µ1 : Service rate for working state  

µ2 : Service rate for working-breakdown state (µ1 > µ2). 

0,  if the server is in the working environment state for Phase 1 & 2
( )

1,  if the server is in the working breakdown state for Phase 1 & 2
S t


= 

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α : Failure rate of the queueing system 

β : Recovery rate of the queueing system 

The transient state-probabilities that are used in this model: 

P0,0,0(t) :   Probability of arrival of a machine (i.e., at least one 

                machine) in the system 

Pn, i, j(t): Probability that there are (n-1) machines in the system with 

               i (i=0, 1, …, r) phases and j (j=1,2) states 

 

 

III. Description of the model 

 
The RAM analysis of an Erlang phase type arrival and single server queue with finite 

capacity queueing system is considered. The arrival of machines to repair follows Erlang 

distribution with the parameter rλ is used for this model. Two different service mechanisms are 

exponentially distributed with parameters µ1 and µ2 are considered for this model based on the 

environmental states namely, working and working break-down states respectively. When the 

system is not empty (i.e., at least one machine in the system) failure occurs in the arrival process of 

the system with the failure rate α. Therefore, whenever failure occurs it is immediately recovered 

in the recovery state with rate β. The failure and recovery rate are assumed to be exponentially 

distributed. The state-transition diagram for the RAM analysis of the phase type Erlang queuing 

model is presented in Figure 1: 

 

 
Figure 1: State-Transition Diagram of Er/M/1 

 
By using the state-transition diagram, the transient state differential-difference equations 

are formed for the Erlangian Phase-type queueing model with working and working-breakdown 

states. 
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The system reliability at time t is calculated as follows: 

2 1

, ,

0 1 0

( )
N

n i j

n i j

R t P
= = =

=
      (3.13) 

The system Availability at time t is calculated by considering all the working states is as follows: 
2

, ,

0 1 0

( )
N

n i j

n i j

A t P
= = =

=
      (3.14) 

The system Maintainability at time t is calculated by considering working-breakdown state which 

is calculated as follows: 
2

, ,

0 1 1

( )
N

n i j

n i j

M t P
= = =

=
      (3.15) 

 Apart from the RAM, the special metrics such as MTBF (Mean time between failures) and 

MTTR (Mean Time till Recovery) are also calculated as follows: 

  

1
MTBF


=

 

  

1
MTTR


=
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IV. Special case 
 

The differential-difference equations for N=5 is formed for the transient state of the Reliability 

model for the Erlangian Phase-type queueing system. The equations for the working and working-

breakdown states are given below:  

 

 

 
 

V. Numerical illustration 
 

The transient behaviour of the Reliability, Availability and Maintainability for the 

Erlangian Phase-Type queueing model of N=5, has been analyzed and are solved by using Fourth-

Order Runge-Kutta numerical method. Assuming the time range from t=0 to t=200 (in hours) and 

the parametric values as λ=0.6, µ1=1.0, µ2=0.7, α=0.05, β=0.03, the values of Pn(t), the transient 
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probabilities are obtained by solving the system of equations 3.1.1- 3.1.20.  

Figure 2 shows the probability distribution, Pn(t), time-dependent total system size for the 

queueing system. The probability curves are displayed to understand the distribution trend of the 

system probabilities over the specified time interval.  

    

 
   

    Figure 2 

 

Figure 3, represents the Reliability of the system of the Erlangian Phase-Type queueing 

model.  It is found out that as time increases the reliability of the system decreases. The reliability 

of the system is found out to be 38% after 200 hours. Figure 4, shows the Availability of the system 

and it is found out that as time increases the availability of the system decreases. Figure 5, depicts 

the maintainability of the system of the Erlangian Phase-Type queueing model. It is seen that as 

time increases the maintainability of the system increases. It is found out that the Maintainability 

of the system is 62% after 200 hours. The values of MTBF (Mean Time Between Failures) and 

MTTR (Mean Time till Repair) for the Erlangian Phase-Type Queueing system are found to be 20 

hours/failure and 33 hours/recovery. 

 

 
 

  Figure 3     Figure 4 
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     Figure 5 

 

 

VI. Sensitivity analysis 
 

For different parametric values sensitivity analysis has been carried out for RAM model 

for the Erlangian Phase-Type queueing model. Figures 6,7 and 8 shows the Reliability, Availability 

and Maintainability for different sets of Failure rates (0.05,0.06,0.07). By keeping other parameters 

constant, it is observed that as the failure rate value increases Reliability and Availability of the 

system decreases, whereas Maintainability of the system increases.  

 

 

 
 

Figure 6          Figure 7 
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     Figure 8 

 

Figures 9 and 10 illustrates Reliability and Maintainability of the system for different 

Recovery rates (0.03,0.04,0.05) by keeping the other parameters constant. It can be seen from the 

graph that as the recovery rate value increases the Reliability of the system increases whereas 

Maintainability decreases.  

 

 
 

Figure 9     Figure 10 

 

Table 1, represents the changes in the Reliability, Availability and Maintainability of the 

system for different values of arrival rates and failure rates by keeping the other parameters 

constant. It is found out that as the failure rate value increases keeping the arrival rate constant 

Reliability and Availability of the system decreases whereas the Maintainability of the system 

increases. It is also found that after 100 hours the Reliability, Availability and Maintainability of the 

system becomes constant. 
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Table 1: Sensitivity Analysis for the change of Arrival (0.1,0.2,0.3) and Failure (0.03,0.04,0.05) rate 

values 

ARRIVAL RATE Vs FAILURE RATE 

TIME   λ=0.1 λ=0.2 λ=0.3 

    R(t) M(t) A(t) R(t) M(t) A(t) R(t) M(t) A(t) 

  α1=0.03 0.4014 0.5986 0.3012 0.4116 0.6004 0.3112 0.4218 0.6115 0.3213 

40 α1=0.04 0.3083 0.6917 0.2019 0.3185 0.7019 0.2120 0.3287 0.7121 0.2221 

  α1=0.05 0.2423 0.7577 0.1353 0.2525 0.7679 0.1455 0.2627 0.7781 0.1556 

60 α1=0.03 0.3180 0.6820 0.1653 0.3283 0.6922 0.1755 0.3386 0.7024 0.1857 

  α1=0.04 0.2398 0.7602 0.0907 0.2400 0.7704 0.1009 0.2502 0.7806 0.1911 

  α1=0.05 0.1894 0.8106 0.0498 0.1996 0.9007 0.0599 0.2008 0.9109 0.06 

80 α1=0.03 0.2806 0.7194 0.0907 0.2907 0.7295 0.0948 0.3008 0.7310 0.1909 

  α1=0.04 0.2147 0.7853 0.0408 0.2248 0.7954 0.0509 0.2349 0.8057 0.061 

  α1=0.05 0.1735 0.8265 0.0183 0.1836 0.8367 0.0285 0.1937 0.8469 0.0387 

100 α1=0.03 0.2637 0.7363 0.0498 0.2738 0.7466 0.0599 0.2839 0.7578 0.0611 

  α1=0.04 0.2054 0.7946 0.0183 0.3055 0.8047 0.0285 0.4056 0.8149 0.0387 

  α1=0.05 0.1687 0.8313 0.0067 0.1788 0.8415 0.0168 0.1889 0.8517 0.0269 

120 α1=0.03 0.2562 0.7438 0.0273 0.2562 0.7438 0.0273 0.2562 0.7438 0.0273 

  α1=0.04 0.2020 0.7980 0.0082 0.2020 0.7980 0.0082 0.2220 0.7980 0.0082 

  α1=0.05 0.1673 0.8327 0.0025 0.1673 0.8327 0.0025 0.1673 0.8327 0.0025 

Table 2, shows the changes in the Reliability, Availability and Maintainability of the system for 

different values of failure rates and service rates for the Working State by keeping the other 

parameters constant. As the Failure rates increases keeping the service rate constant, Reliability 

and Availability of the system decreases but the Maintainability of the system increases. 

 

Table 2: Sensitivity Analysis for the change of Working State in Service rate (0.7,0.8,0.9) and 

Failure (0.03,0.04,0.05) rate values 

FAILURE RATE Vs SERVICE RATE 

TIME   µ1=0.7 µ1=0.8 µ1=0.9 

    R(t) M(t) A(t) R(t) M(t) A(t) R(t) M(t) A(t) 

40 α1=0.04 0.3083 0.6917 0.2019 0.3185 0.6815 0.2007 0.3287 0.6713 0.1995 

  α1=0.05 0.2423 0.7577 0.1353 0.2525 0.7475 0.1251 0.2627 0.7373 0.1149 

  α1=0.06 0.1950 0.8050 0.0907 0.2042 0.8028 0.0890 0.2144 0.7996 0.0800 

60 α1=0.04 0.2398 0.7602 0.0607 0.2400 0.7580 0.0595 0.2502 0.7499 0.05 

  α1=0.05 0.1894 0.8106 0.0498 0.1996 0.8004 0.0396 0.2098 0.7992 0.0294 

  α1=0.06 0.1557 0.8443 0.0273 0.1659 0.8341 0.0171 0.1761 0.8239 0.0069 

80 α1=0.04 0.2147 0.7853 0.0408 0.2248 0.7752 0.0307 0.2349 0.7651 0.0206 

  α1=0.05 0.1735 0.8265 0.0183 0.1836 0.8164 0.0172 0.1937 0.8063 0.0163 

  α1=0.06 0.1460 0.8540 0.0082 0.1561 0.8439 0.0069 0.1662 0.8338 0.0040 

100 α1=0.04 0.2054 0.7946 0.0183 0.2155 0.7845 0.0082 0.2256 0.7744 0.0020 

  α1=0.05 0.1687 0.8313 0.0067 0.1788 0.8212 0.0056 0.1889 0.8111 0.0035 

  α1=0.06 0.1436 0.8564 0.0025 0.1537 0.8463 0.0008 0.1638 0.8362 0.0002 

120 α1=0.04 0.2020 0.7980 0.0082 0.2020 0.7980 0.0082 0.2020 0.7980 0.0082 

  α1=0.05 0.1673 0.8327 0.0025 0.1673 0.8327 0.0025 0.1673 0.8327 0.0025 

  α1=0.06 0.1430 0.8570 0.0007 0.1430 0.8570 0.0007 0.1430 0.8570 0.0007 

 

Table 3, depicts the changes in the Reliability and Maintainability of the system for different 

set of values of Arrival rate and Recovery rate by keeping the other parameters constant. As the 

recovery rate value increases by keeping the Arrival rate constant it is found that the Reliability of 

the system increases but the Maintainability of the system decreases. 
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Table 3: Sensitivity Analysis for the change of Arrival (0.1,0.2,0.3) and Recovery (0.01,0.02,0.03) 

rate values 

ARRIVAL RATE Vs RECOVERY RATE 

TIME   λ=0.1 λ=0.2 λ=0.3 

    R(t) M(t) R(t) M(t) R(t) M(t) 

  β1=0.01 0.4014 0.5986 0.4117 0.5883 0.4222 0.5779 

40 β1=0.02 0.4812 0.5188 0.4917 0.5084 0.5021 0.4890 

  β1=0.03 0.5454 0.4546 0.5554 0.4443 0.5655 0.4340 

60 β1=0.01 0.3180 0.6820 0.3288 0.6719 0.3395 0.6616 

  β1=0.02 0.4299 0.5701 0.4301 0.5698 0.4411 0.5597 

  β1=0.03 0.5137 0.4863 0.5239 0.4762 0.5341 0.4661 

80 β1=0.01 0.2806 0.7194 0.2909 0.7092 0.3013 0.7009 

  β1=0.02 0.4110 0.5890 0.4211 0.5787 0.4314 0.5685 

  β1=0.03 0.5041 0.4959 0.5144 0.4858 0.5249 0.4757 

100 β1=0.01 0.2637 0.7363 0.2741 0.7262 0.2845 0.7161 

  β1=0.02 0.4040 0.5960 0.4142 0.5859 0.4244 0.5757 

  β1=0.03 0.5012 0.4988 0.5113 0.4886 0.5214 0.4784 

120 β1=0.01 0.2562 0.7438 0.2562 0.7438 0.2562 0.7438 

  β1=0.02 0.4015 0.5985 0.4015 0.5985 0.4015 0.5985 

  β1=0.03 0.5004 0.4996 0.5004 0.4996 0.5004 0.4996 

 

Table 4, illustrates the changes in the Reliability and Maintainability of the system for different 

set of values of service rates and recovery rates keeping the other parameters constant.  The table 

shows that as the Recovery rate values increases by keeping Service rate constant it is found that 

Reliability of the system increases whereas the Maintainability of the system decreases. 

 

Table 4: Sensitivity Analysis for the change of Recovery rate (0.7,0.8,0.9) and Service rate 

(0.01,0.02,0.03) values 

RECOVERY RATE Vs SERVICE RATE 

TIME   µ1=0.7 µ1=0.8 µ1=0.9 

    R(t) M(t) R(t) M(t) R(t) M(t) 

  β1=0.01 0.4014 0.5986 0.4115 0.5884 0.4216 0.5782 

40 β1=0.02 0.4812 0.5188 0.4913 0.5086 0.5014 0.5004 

  β1=0.03 0.5454 0.4546 0.5557 0.4444 0.5659 0.4342 

60 β1=0.01 0.3180 0.6820 0.3283 0.6718 0.3285 0.6616 

  β1=0.02 0.4299 0.5701 0.4300 0.5699 0.4311 0.5597 

  β1=0.03 0.5137 0.4863 0.5239 0.4761 0.5341 0.4659 

80 β1=0.01 0.2806 0.7194 0.2709 0.7092 0.2612 0.7009 

  β1=0.02 0.4110 0.5890 0.4213 0.5789 0.4315 0.5688 

  β1=0.03 0.5041 0.4959 0.5144 0.4858 0.5247 0.4757 

100 β1=0.01 0.2637 0.7363 0.2739 0.7262 0.2841 0.7161 

  β1=0.02 0.4040 0.5960 0.4142 0.5859 0.4244 0.5758 

  β1=0.03 0.5012 0.4988 0.5113 0.4887 0.5214 0.4786 

120 β1=0.01 0.2562 0.7438 0.2562 0.7438 0.2562 0.7438 

  β1=0.02 0.4015 0.5985 0.4015 0.5985 0.4015 0.5985 

  β1=0.03 0.5004 0.4996 0.5004 0.4996 0.5004 0.4996 

 

Conclusion 

 
RAM analysis of Er/M/1/N Queueing model with two different environmental states are 

studied in this paper. The state-transition diagram for the transient state of the r phase Erlangian 

queueing model is formed from which the differential-difference equations are obtained. A special 

case of N=5 is solved using Fourth-Order Runge-Kutta numerical method. It is observed that as 
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time increases Reliability and Availability decreases, whereas Maintainability increases. In order to 

find the failure rate and the recovery rate, MTBF and MTTR of the Erlangian Queueing model was 

calculated. Sensitivity values becomes constant after 100 hours for different parametric values.  
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Abstract 

 
In this study we have considered step stress accelerated life testing plan for complete data. The 

lifetimes of the failure items are assumed to follow Nadarajah-Haghighi distribution which is an 

extension of exponential distribution and has all the properties like Weibull, gamma 

exponentiated exponential distribution. The maximum likelihood estimates of the parameters 

and accelerated factors have been estimated and confidence intervals of these parameters are also 

obtained. Newton-Raphson iterative procedure is used to solve the non-linear equations which 

are not in closed form. Later, a simulation study has been performed to check the performance of 

the parameters and hence the theory of the paper. 

 

Keywords: Nadarajah-Haghighi distribution, step-stress accelerated life 

testing plan, maximum likelihood estimation, simulation, R. 

 

 

I. Introduction 
 

In modern advanced technologies era, there is a very high competition among companies to 

maintain the value and honor in the market for their products. Every manufacturer and producer 

are trying their best to produce an item of high reliability that could stay longer and perform better 

which makes the lifetime of the products very high. Therefore, it is not only a very tedious but also 

a very time consuming hence the costly job for the researcher to predict the exact lifetime of the 

items in terms of hour, days, months or years. The analysis of the life and quality of the product 

must be done before the launch; therefore, they do not have sufficient time to obtain the failure 

lifetime of the selected specimens and analyze on the basis of them. So, to obtain the lifetime in 

quick span of time, the experimenter accelerates the process and obtains the failure time. 

 

Step stress accelerated life test is one of the very important methods to accelerate the process to 

obtain failure times quickly. In this test, first we put the testing units at some stress (higher than 

use or normal stress). At a specific time point we observe the failed units and increase the stress 

level to higher than the previous one, and again we count the failed units and so on.Studies in [7] 

and [5] suggested that the cumulative effect of the applied stresses should be reflected by the life-

mailto:ahmadur.st@gmail.com
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stress model when dealing with data from accelerated tests with time-varying stresses. Based on 

this idea,[7, 8] proposed a cumulative damage (exposure) model which had gained acceptance in 

the reliability engineering field. Later [1] extended the results of [5] to the case where a prescribed 

censoring time is involved. Since then many researchers such as [9, 2, 3, 4, 10] studied SSALT with 

different censoring schemes and distributions. 

 

In this paper we have considered that the lifetimes of the items follow Nadarjah-Haghighi (NH) 

lifetime distribution. In second section model and testing methods have been discussed. Maximum 

likelihood estimation (MLE) technique is used to estimate the parameters and acceleration factor 

and discussed in section 3. In section 4, approximate confidence intervals for the parameters are 

obtained. Section 5 talks about optimality criterion for the stress change time or the optimum time 

at what the stress have been changed or increased. Simulation study has been performed to 

validate the assumptions made in this study and is in section 6. 

 

II. Model and Methods 
 

Nadarajah and Haghighi (2011) proposed that a random variable X is said to follow the NH 

distribution with the probability density function (PDF) is given by 

 

𝑓(𝑥; 𝛼, 𝛽) = 𝛼𝛽(1 + 𝛽𝑥)𝛼−1𝑒𝑥𝑝[1 − (1 + 𝛽𝑥)𝛼]    (1) 

 

Where 𝛽 is scale parameter and 𝛼 is the shape parameter. The corresponding, cumulative 

distribution function (CDF), survival function (SF) and hazard rate function (HRF) are given by 

 

𝐹(𝑥; 𝛼, 𝛽) = 1 − 𝑒𝑥𝑝[1 − (1 + 𝛽𝑥)𝛼]    (2) 

 
𝑆(𝑥) = 𝑒𝑥𝑝[1 − (1 + 𝛽𝑥)𝛼] 

 
ℎ(𝑥) = 𝛼𝛽(1 + 𝛽𝑥)𝛼−1 

 

For 𝛼 = 1, NH distribution is reduced to the exponential distribution. This distribution is an 

alternative to the Weibull, gamma and exponentiated exponential distributions with an attractive 

feature of always having the zero mode. NH distribution has closed form of survival and hazard 

rate functions like Weibull distribution, so it is a good choice for the lifetime data analyst.  

 

Basic assumptions 

1. In this test only two stress levels 𝑆1 and 𝑆2(𝑆1 < 𝑆2) are used. 

2. A random sample of 𝑛 identical products is placed on the test initially under at stress level 

𝑆1 and run until time 𝜏, then the stress is changed to 𝑆2 and the test is continued until all 

products fail. 

3. The lifetimes of the products are i.i.d. according to NH distribution at each level of stress. 

4. The scale parameter 𝛽 is a log-linear function of stress given by 𝑙𝑜𝑔(𝛽𝑖) = 𝑎 + 𝑏𝑆𝑖 ,    𝑖 = 1,2. 

where 𝑎and 𝑏are unknown parameters depending on the nature of the product and the 

test method. 

5. The cumulative exposure model given by equation (3) holds to reflect the effect of the 

applied stresses. For more detail reader may refer to Nelson (1990). 

 

𝐹(𝑥) = {
𝐹1(𝑥),                               0 < 𝑥 < 𝜏

𝐹2 (
𝛽2

𝛽1
𝜏 + 𝑥 − 𝜏) ,         𝜏 ≤ 𝑥 < ∞

      (3) 

 

The PDF of (3) is obtained as 



Mustafa Kamal, Ahmadur Rahman, Saiful Islam Ansari, ShaziaZarrin 

STATISTICAL ANALYSIS AND OPTIMUM SSALT DESIGN FOR NADARAJAH- 

HAGHIGHI DISTRIBUTION 

RT&A, No 4 (59) 
Volume 15, December 2020 

 

48 

 

𝑓(𝑥) = {
𝑓1(𝑥),                               0 < 𝑥 < 𝜏

𝑓2 (
𝛽2

𝛽1
𝜏 + 𝑥 − 𝜏) ,         𝜏 ≤ 𝑥 < ∞

      (4) 

 

Now using equations (1), (2), (3) and (4) he CDF and PDF for the test are given by 

 

𝐹(𝑥) = {
1 − 𝑒𝑥𝑝[1 − (1 + 𝛽1𝑥)

𝛼],                                        0 < 𝑥 < 𝜏

1 − 𝑒𝑥𝑝 [1 − {1 + 𝛽2 (𝑥 − 𝜏 〈1 −
𝛽2

𝛽1
〉)}

𝛼

] ,         𝜏 ≤ 𝑥 < ∞
   (5) 

 

𝑓(𝑥) = {
𝛼𝛽1(1 + 𝛽1𝑥)

𝛼−1𝑒𝑥𝑝[1 − (1 + 𝛽1𝑥)
𝛼],    0 < 𝑥 < 𝜏

𝛼𝛽2 {1 + 𝛽2 (𝑥 − 𝜏 〈1 −
𝛽2

𝛽1
〉)}

𝛼−1

𝑒𝑥𝑝 [1 − {1 + 𝛽2 (𝑥 − 𝜏 〈1 −
𝛽2

𝛽1
〉)}

𝛼

] ,     𝜏 ≤ 𝑥 < ∞
      (6) 

 

 

III. Point Estimates of the Parameters using Maximum Likelihood Method 

 
The ML method is used to determine the parameters that maximize the probability of the sample 

data. This method is considered to be more robust (with some exceptions) and yields estimates 

with good statistical properties. Also, it is an efficient method for quantifying uncertainty through 

confidence bounds. The MLE methods are versatile and are applicable to most of the models and 

to different types of data. However, the methodology for maximum likelihood estimation is 

simple, the implementation is mathematically intense. Since these estimators do not exist in closed 

form, numerical techniques are used to compute them. 

 

For obtaining the MLE of the model parameters, let 𝑥𝑖𝑗 , 𝑗 = 1, 2, 3, …𝑛𝑖 , 𝑖 = 1,2 be the observed 

failure times of a test unit 𝑗under stress level 𝑖, where 𝑛1 denotes the number of units failed at the 

low stress 𝑆1 and 𝑛2denotes the number of units failed at higher stress 𝑆2. 

 

In this paper, the lifetime of the test item is assumed to follow the NH distribution with scale 

parameter 𝛽 and shape parameter 𝛼. Therefore, the likelihood function can be written in the form 

 

𝐿(𝛽1, 𝛽2, 𝛼) = ∏ 𝛼𝛽1(1 + 𝛽1𝑥1𝑗)
𝛼−1

𝑒𝑥𝑝[1 − (1 + 𝛽1𝑥1𝑗)
𝛼
]

𝑛1
𝑗=1 ∏ 𝛼𝛽2 {1 + 𝛽2 (𝑥2𝑗 − 𝜏 〈1 −

𝑛2
𝑗=1

𝛽2

𝛽1
〉)}

𝛼−1

𝑒𝑥𝑝 [1 − {1 + 𝛽2 (𝑥2𝑗 − 𝜏 〈1 −
𝛽2

𝛽1
〉)}

𝛼

]      (7) 

 

The log-likelihood function corresponding to the above equation can be rewritten as 

 

𝑙𝑜𝑔 𝐿 = 𝑛𝑙𝑜𝑔𝛼 + 𝑛1𝑙𝑜𝑔𝛽1 + 𝑛2𝑙𝑜𝑔𝛽2 + (𝛼 − 1)∑ 𝑙𝑜𝑔(1 + 𝛽1𝑥1𝑗)
𝑛1
𝑗=1 + ∑ [1 − (1 + 𝛽1𝑥1𝑗)

𝛼
]

𝑛1
𝑗=1 +

(𝛼 − 1)∑ 𝑙𝑜𝑔 {1 + 𝛽2 (𝑥2𝑗 − 𝜏 〈1 −
𝛽2

𝛽1
〉)}

𝑛2
𝑗=1 + ∑ [1 − {1 + 𝛽2 (𝑥2𝑗 − 𝜏 〈1 −

𝛽2

𝛽1
〉)}

𝛼

]
𝑛2
𝑗=1   (8) 

 

Where, 𝑛1 + 𝑛2 = 𝑛 

 

Now by using the life stress relationship 𝑙𝑜𝑔(𝛽𝑖) = 𝑎 + 𝑏𝑆𝑖 ,   𝑖 = 1, 2 in equation (8), the log-

likelihood function ir deduced to the following equation: 

 

log 𝐿 = 𝑙 = 𝑛 log 𝛼 + 𝑛𝑎 + (𝑛1𝑆1 + 𝑛2𝑆2)𝑏 + (𝛼 − 1)∑ log[1 + 𝑥1𝑗𝑒
𝑎+𝑏𝑆1]

𝑛1

𝑗=1
+∑ [1 −

𝑛1

𝑗=1

(1 + 𝑥1𝑗𝑒
𝑎+𝑏𝑆1)

𝛼
] + (𝛼 − 1)∑ log[1 + {𝑥2𝑗 − 𝜏(1 − 𝑒

𝑏(𝑆2−𝑆1))}𝑒𝑎+𝑏𝑆2]
𝑛2

𝑗=1
+∑ [1 − {1 +

𝑛2

𝑗=1

(𝑥2𝑗 − 𝜏〈1 − 𝑒
𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}

𝛼
]        (9) 
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Differentiating (9) partially w.r.t.𝑎, 𝑏 and 𝛼, we get 

 

𝜕𝑙

𝜕𝑎
= 𝑛 + (𝛼 − 1)∑

𝑥1𝑗ⅇ
𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

𝑛1

𝑗=1

+ 𝛼∑ 𝑥1𝑗𝑒
𝑎+𝑏𝑆1(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−1𝑛1

𝑗=1
+ (𝛼 −

1)∑
{𝑥2𝑗−𝜏(1−ⅇ

𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

𝑛2

𝑗=1

+ 𝛼∑ (𝑥2𝑗 − 𝜏〈1 − 𝑒
𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2{1 + (𝑥2𝑗 − 𝜏〈1 −

𝑛2

𝑗=1

𝑒𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}
𝛼−1

         (10) 

 

𝜕𝑙

𝜕𝑏
= 𝑛1𝑆1 + 𝑛2𝑆2 + (𝛼 − 1)∑

𝑥1𝑗𝑆1ⅇ
𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

𝑛1

𝑗=1

+ 𝛼∑ 𝑥1𝑗𝑆1 𝑒
𝑎+𝑏𝑆1(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−1𝑛1

𝑗=1
+

(𝛼 − 1)∑
𝑆2(𝑥2𝑗−𝜏)ⅇ

𝑎+𝑏𝑆2−𝜏 (2𝑆2−𝑆1)ⅇ
[𝑎−𝑏(2𝑆2−𝑆1)]

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

𝑛2

𝑗=1

+ 𝛼∑ 𝑆2(𝑥2𝑗 − 𝜏)𝑒
𝑎+𝑏𝑆2 − 𝜏 𝑒[𝑎+𝑏(2𝑆2−𝑆1)]{1 +

𝑛2

𝑗=1

(𝑥2𝑗 − 𝜏〈1 − 𝑒
𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}

𝛼−1
       (11) 

 
𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
+∑ log[1 + 𝑥1𝑗ⅇ

𝑎+𝑏𝑆1]
𝑛1

𝑗=1
−∑ (1 + 𝑥1𝑗ⅇ

𝑎+𝑏𝑆1)
𝛼
log(1 + 𝑥1𝑗ⅇ

𝑎+𝑏𝑆1)
𝑛1

𝑗=1
+∑ log[1 +

𝑛2

𝑗=1

{𝑥2𝑗 − 𝜏(1 − ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2] +∑ {1 + (𝑥2𝑗 − 𝜏〈1 − ⅇ

𝑏(𝑆2−𝑆1)〉)ⅇ𝑎+𝑏𝑆2}
𝛼
log{1 + (𝑥2𝑗 −

𝑛2

𝑗=1

𝜏〈1 − ⅇ𝑏(𝑆2−𝑆1)〉)ⅇ𝑎+𝑏𝑆2}         (12) 

 

From (12) the MLE of 𝛼 is given by the following equation: 

 
𝑛

𝛼
+ 𝑛1[log(𝜓1) − 𝜓1

𝛼 log(𝜓1)] + 𝑛2[log(𝜓2) + 𝜓2
𝛼 log(𝜓2)] = 0 

 

𝛼̂ =
𝑛

−𝑛1[log(𝜓1) − 𝜓1
𝛼 log(𝜓1)] − 𝑛2[log(𝜓2) + 𝜓2

𝛼 log(𝜓2)]
 

where, 

𝜓1 = [1 + 𝑥1𝑗ⅇ
𝑎+𝑏𝑆1] 

and 𝜓2 = [1 + {𝑥2𝑗 − 𝜏(1 − ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2] 

 

 

IV. The approximate confidence intervals for the parameters 

 
The observed Fisher-information matrix can be written as follows: 

 

𝐹 = −

[
 
 
 
 
 
 
𝜕2𝑙

𝜕𝑎2
𝜕2𝑙

𝜕𝑎𝜕𝑏

𝜕2𝑙

𝜕𝑎𝜕𝛼
𝜕2𝑙

𝜕𝑏𝜕𝑎

𝜕2𝑙

𝜕𝑏2
𝜕2𝑙

𝜕𝑏𝜕𝛼
𝜕2𝑙

𝜕𝛼𝜕𝑎

𝜕2𝑙

𝜕𝛼𝜕𝑏

𝜕2𝑙

𝜕𝛼2 ]
 
 
 
 
 
 

 

 

for large samples,  the point estimates of the parameters obtained by maximum likelihood method 

follow approximately normal distribution with mean (𝑎, 𝑏, 𝛼) and variance𝐹−1, therefore, 

(𝑎̂, 𝑏̂, 𝛼̂)~𝑁(𝑎, 𝑏, 𝛼), 𝐹−1). Then the two sided 100(1 − 𝛾)% approximate confidence interval for the 

parameter of (𝑎, 𝑏, 𝛼) can be written as 
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𝑎̂ ± 𝑍𝛾/2√𝑣𝑎𝑟( 𝑎̂)  ;  𝑏̂ ± 𝑍𝛾/2√𝑣𝑎𝑟( 𝑏̂)  ;  𝛼̂ ± 𝑍𝛾/2√𝑣𝑎𝑟( 𝛼̂) 

 

Where 𝑍𝛾/2 is the (1 − 𝛾/2)𝑡ℎ quantile of a standard normal distribution and )ˆvar( , √𝑣𝑎𝑟( 𝑎̂) 

and √𝑣𝑎𝑟( 𝑏̂) is obtained by taking the square root of the diagonal elements of 𝐹−1. 

 

The elements of the information matrix 𝐹can be expressed by the following equations: 

 

𝜕2𝑙

𝜕𝑎2
= (𝛼 − 1)∑

𝑥1𝑗ⅇ
𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

2

𝑛1

𝑗=1

+ 𝛼∑ [𝑥1𝑗𝑒
𝑎+𝑏𝑆1(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−1

+ (𝛼 − 1)(𝑥1𝑗𝑒
𝑎+𝑏𝑆1)

2
(1 +

𝑛1

𝑗=1

𝑥1𝑗𝑒
𝑎+𝑏𝑆1)

𝛼−2
] + (𝛼 − 1)∑

{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

2

𝑛2

𝑗=1

+ 𝛼∑ [{(𝑥2𝑗 − 𝜏〈1 −
𝑛2

𝑗=1

𝑒𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}{1 + (𝑥2𝑗 − 𝜏〈1 − 𝑒
𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}

𝛼−1
+ (𝛼 − 1){(𝑥2𝑗 − 𝜏〈1 −

𝑒𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}
2
{1 + (𝑥2𝑗 − 𝜏〈1 − 𝑒

𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2}
𝛼−2

]     (13) 

 

𝜕2𝑙

𝜕𝑏2
= (𝛼 − 1)∑

𝑆1
2𝑥1𝑗ⅇ

𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

2

𝑛1

𝑗=1

+ 𝛼∑ [
(𝑆1

2𝑥1𝑗𝑒
𝑎+𝑏𝑆1)(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−1

+(𝛼 − 1)𝑆1
2(𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
2
(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−2]

𝑛1

𝑗=1

+

(𝛼 − 1)∑
𝑆2
2(𝑥2𝑗−𝜏)ⅇ

𝑎+𝑏𝑆2+𝜏(2𝑆2−𝑆1)
2ⅇ𝑎+𝑏(2𝑆2−𝑆1)+𝜏(𝑥2𝑗−𝜏)(9𝑆2

2+𝑆1
2−6𝑆1𝑆2)ⅇ

𝑎+𝑏(3𝑆2−𝑆1)

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

2
𝑛2
𝑗=1 + 𝛼∑ {([𝑆2

2(𝑥2𝑗 −
𝑛2

𝑗=1

𝜏)𝑒𝑎+𝑏𝑆2 + 𝜏(2𝑆2 − 𝑆1)
2𝑒𝑎+𝑏(2𝑆2−𝑆1)][1 + {𝑥2𝑗 − 𝜏(1 − 𝑒

𝑏(𝑆2−𝑆1))}𝑒𝑎+𝑏𝑆2]
𝛼−1

) + (𝛼 − 1)[{𝑆2(𝑥2𝑗 −

𝜏)𝑒𝑎+𝑏𝑆2} + 𝜏(2𝑆2 − 𝑆1)𝑒
𝑎+𝑏(2𝑆2−𝑆1)]

2
[1 + (𝑥2𝑗 − 𝜏〈1 − 𝑒

𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2]
𝛼−2

}  (14) 

 
𝜕𝑙

𝜕𝛼2
= −

𝑛

𝛼2
−∑ ([1 + 𝑥1𝑗ⅇ

𝑎+𝑏𝑆1][log(1 + 𝑥1𝑗ⅇ
𝑎+𝑏𝑆1)]

2
)

𝑛1

𝑗=1
−∑ ([1 + {𝑥2𝑗 − 𝜏(1 −

𝑛2

𝑗=1

ⅇ𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]
𝛼
[log{1 + (𝑥2𝑗 − 𝜏〈1 − ⅇ

𝑏(𝑆2−𝑆1)〉)ⅇ𝑎+𝑏𝑆2}]
2
)    (15) 

 

𝜕2𝑙

𝜕𝑎𝜕𝑏
=

𝜕2𝑙

𝜕𝑏𝜕𝑎
= (𝛼 − 1)∑

𝑆1𝑥1𝑗ⅇ
𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

2

𝑛1

𝑗=1

+

𝛼∑ [
(𝑆1𝑥1𝑗𝑒

𝑎+𝑏𝑆1)(1 + 𝑥1𝑗𝑒
𝑎+𝑏𝑆1)

𝛼−1

+(𝛼 − 1)𝑆1(𝑥1𝑗𝑒
𝑎+𝑏𝑆1)

2
(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−2]

𝑛1

𝑗=1

+ (𝛼 −

1)∑
[𝑆2(𝑥2𝑗−𝜏)ⅇ

𝑎+𝑏𝑆2+𝜏(2𝑆2−𝑆1)ⅇ
𝑎+𝑏(2𝑆2−𝑆1)]

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

2

𝑛2

𝑗=1

+ 𝛼∑ {([𝑆2(𝑥2𝑗 − 𝜏)𝑒
𝑎+𝑏𝑆2 + 𝜏(2𝑆2 −

𝑛2

𝑗=1

𝑆1)𝑒
𝑎+𝑏(2𝑆2−𝑆1)][1 + {𝑥2𝑗 − 𝜏(1 − 𝑒

𝑏(𝑆2−𝑆1))}𝑒𝑎+𝑏𝑆2]
𝛼−1

) + (𝛼 − 1)[{𝑥2𝑗 − 𝜏(1 −

𝑒𝑏(𝑆2−𝑆1))}𝑒𝑎+𝑏𝑆2][𝑆2(𝑥2𝑗 − 𝜏)𝑒
𝑎+𝑏𝑆2 + 𝜏 (2𝑆2 − 𝑆1)𝑒

𝑎+𝑏(2𝑆2−𝑆1)][1 + (𝑥2𝑗 − 𝜏〈1 −

𝑒𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2]
𝛼−2

}                    (16) 

 

𝜕2𝑙

𝜕𝑎𝜕𝛼
=

𝜕2𝑙

𝜕𝛼𝜕𝑎
=∑

𝑥1𝑗ⅇ
𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

2

𝑛1

𝑗=1

+∑
(𝑥1𝑗𝑒

𝑎+𝑏𝑆1)(1 + 𝑥1𝑗𝑒
𝑎+𝑏𝑆1)

𝛼−1

+[1 + 𝛼 𝑙𝑜𝑔(1 + 𝑥1𝑗𝑒
𝑎+𝑏𝑆1)]

𝑛1

𝑗=1

+

∑
[(𝑥2𝑗−𝜏〈1−ⅇ

𝑏(𝑆2−𝑆1)〉)ⅇ𝑎+𝑏𝑆2]

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

2

𝑛2

𝑗=1

+∑ {([(𝑥2𝑗 − 𝜏〈1 − 𝑒
𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2][1 + {𝑥2𝑗 −

𝑛2

𝑗=1

𝜏(1 − 𝑒𝑏(𝑆2−𝑆1))}𝑒𝑎+𝑏𝑆2]) + [1 + 𝛼 𝑙𝑜𝑔 ((𝑥2𝑗 − 𝜏〈1 − 𝑒
𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2)]}   (17) 
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𝜕2𝑙

𝜕𝑏𝜕𝛼
=

𝜕2𝑙

𝜕𝛼𝜕𝑏
=∑

𝑆1𝑥1𝑗ⅇ
𝑎+𝑏𝑆1

[1+𝑥1𝑗ⅇ
𝑎+𝑏𝑆1]

𝑛1

𝑗=1

+∑ [(𝑆1𝑥1𝑗𝑒
𝑎+𝑏𝑆1)(1 + 𝑥1𝑗𝑒

𝑎+𝑏𝑆1)
𝛼−1

{1 + 𝛼 𝑙𝑜𝑔(1 +
𝑛1

𝑗=1

𝑥1𝑗𝑒
𝑎+𝑏𝑆1)}] +∑

[𝑆2(𝑥2𝑗−𝜏)ⅇ
𝑎+𝑏𝑆2+𝜏(2𝑆2−𝑆1)ⅇ

𝑎+𝑏(2𝑆2−𝑆1)]

[1+{𝑥2𝑗−𝜏(1−ⅇ
𝑏(𝑆2−𝑆1))}ⅇ𝑎+𝑏𝑆2]

𝑛2

𝑗=1

+∑ {[𝑆2(𝑥2𝑗 − 𝜏)𝑒
𝑎+𝑏𝑆2 + 𝜏(2𝑆2 −

𝑛2

𝑗=1

𝑆1)𝑒
𝑎+𝑏(2𝑆2−𝑆1)][1 + {𝑥2𝑗 − 𝜏(1 − 𝑒

𝑏(𝑆2−𝑆1))}𝑒𝑎+𝑏𝑆2]
𝛼−1

+ [1 + 𝛼 𝑙𝑜𝑔(1 + (𝑥2𝑗 − 𝜏〈1 −

𝑒𝑏(𝑆2−𝑆1)〉)𝑒𝑎+𝑏𝑆2)]}         (18) 

 

V. Estimation of Optimal Stress Change Time 

 

I. Asymptotic variance of MLEs of the model parameters 
 

The asymptotic variance of 𝑎̂, 𝑏̂ and 𝛼̂ is given by the diagonal elements of the inverse of Fisher 

information matrix. 

 

II. Generalized asymptotic variance of MLEs of the model parameters 
 

The generalized asymptotic variance of𝑎̂, 𝑏̂ and 𝛼̂ is obtained by the reciprocal of the determinant 

of Fisher information matrix. 

 

i.e.  𝐺ⅇ𝐴𝑠𝑉𝑎𝑟(𝑎̂, 𝑏̂, 𝛼̂) =
1

𝑑ⅇ𝑡(𝐹)
𝑜𝑟

1

|𝐹|
 

 

First, we obtain the optimum value of the stress change time 𝜏 either by minimizing the asymptotic 

or the generalized asymptotic variance. After that we would estimate the values of 𝑎, 𝑏 and 𝛼 by 

using the optimum value of 𝜏 and by maximizing the log likelihood function of the distribution. 

We obtain the optimum value of 𝜏 using the optim() function in R software. This function has 

several methods to minimise and gives the global minima of the objective function. The available 

methods in optim() are Nelder-Mead, BFGS, L-BFGS-B, CG, SANN and Brent.  

 

VI. Simulation Study 

 
Simulation study has been used to examine and validate the assumptions made in the study. The 

study has been performed using R-software/language. Here, in this study, point and confidence 

interval have been estimated along with their root mean square(s) and mean absolute error(s).  

Monte-Carlo simulation technique is used to perform simulation study as per the detailed steps 

presented below: 

 

1. The random samples of sizes 30, 50, 75, 100, 125, 150 and 200 from are generated from NH 

distribution. To generate the random number from NH distribution, CDF inverse 

transformation method is used. 

2. Two stress levels are fixed, 𝑆1and 𝑆2, and their respective values are 2 and 3. 

3. First put all the testing units to stress 𝑆1and run until the optimum stress change time τ=1.2 is 

attained. Then changed the level of stress to next level that is 𝑆2at prefixed stress change time 

τ=1.2 and run the experiment. 

4. For each sample, the acceleration factor and the parameters of the model are estimated in 

SSALT. 

5. The above procedure from step 1-4 is repeated 10,000 times to avoid the randomness. 

6. The Newton–Raphson method was used for solving the nonlinear equations given in ............... 
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7. The RMSEs and MAEs of the estimators for acceleration factor and other parameters for all 

sample sizes are tabulated. 

8. The confidence limit with confidence level γ=0.95 and γ =0.99 of the acceleration factor and 

other two parameters were constructed. 

9. The results are summarized in Tables 1, 2 and 3. Table 1 presents the Estimates, RMSEs and 

MAEs of the estimators. The approximated confidence limits at 95% and 99% for the parameters 

and acceleration factor are presented in Table 2. Optimum value of stress change time is 

tabulated in Table 3. 
 

Table 1:The maximum likelihood estimates of parameters and their RMSEs and MAEs 

N Parameters Estimate RMSE MAE 

30 𝛼̂ 2.5869 0.4424 0.0347 

𝑎̂ 2.2382 0.6177 0.1391 

𝑏̂ -1.1074 0.1915 0.0189 

50 𝛼̂ 2.5064 0.3259 0.0359 

𝑎̂ 2.1863 0.2361 0.1254 

𝑏̂ -1.1509 0.1266 0.0463 

75 𝛼̂ 2.5730 0.3974 0.0292 

𝑎̂ 2.2180 0.4185 0.1469 

𝑏̂ -1.1209 0.1260 0.0190 

100 𝛼̂ 2.5124 0.5276 0.0049 

𝑎̂ 2.2944 0.3612 0.1175 

𝑏̂ -1.1360 0.1033 0.0327 

125 𝛼̂ 2.5038 0.3201 0.0246 

𝑎̂ 2.3044 0.3101 0.1057 

𝑏̂ -1.1459 0.1087 0.0373 

150 𝛼̂ 2.5417 0.2343 0.0167 

𝑎̂ 2.2318 0.2816 0.1415 

𝑏̂ -1.1218 0.0907 0.0198 

200 𝛼̂ 2.5473 0.2141 0.0147 

𝑎̂ 2.3031 0.1052 0.1879 

𝑏̂ -1.1686 0.0572 0.0624 

 

Table 2:Confidence interval of the estimators 

N Confidence level 𝛼̂ 𝑎̂ 𝑏̂ 

LCL UCL LCL UCL LCL UCL 

30 95% 1.8592 3.3145 1.2221 3.2542 -1.4223 -0.7924 

99% 1.5577 3.6160 0.8012 3.6751 -1.5528 -0.6619 

50 95% 1.9703 3.0424 1.7979 2.5746 -1.3591 -0.9426 

99% 1.7482 3.2645 1.6370 2.7355 -1.4454 -0.8563 

75 95% 1.9193 3.2266 1.5296 2.9063 -1.3281 -0.9136 

99% 1.6485 3.4974 1.2444 3.1915 -1.4140 -0.8277 

100 95% 1.9735 3.0512 1.7002 2.8885 -1.3059 -0.9660 

99% 1.7502 3.2745 1.4541 3.1346 -1.3763 -0.8956 

125 95% 1.9772 3.0303 1.7943 2.8144 -1.3246 -0.9671 

99% 1.7591 3.2484 1.5830 3.0258 -1.3987 -0.8930 

150 95% 2.1563 2.9270 1.7686 2.6949 -1.2709 -0.9726 

99% 1.9966 3.0867 1.5767 2.8869 -1.3328 -0.9108 

200 95% 2.1951 2.8994 2.1300 2.4761 -1.2626 -1.0745 

99% 2.0492 3.0453 2.0583 2.5478 -1.3016 -1.0355 

 
Table 3:Result of optimal design of step-stress ALT for different sample sizes 

n nG.A.V. 𝜏̂ 𝜏̂′ 

30 0.006035 1.2 1.25 

50 0.000644 1.2 1.23 

75 0.000401 1.2 1.24 

100 0.000146 1.2 1.21 

125 0.000128 1.2 1.20 

150 0.000036 1.2 1.19 

200 0.000089 1.2 1.21 
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VII. Conclusion 

 
In this paper we have studied NH distribution under step stress model with complete data. First 

the testing units have been placed on test to obtain the failure times of these items and then using 

these data we have analysed the lifetimes of the items on normal stress condition or general use 

conditions. We have calculated MLEs of parameters, their respective RMSEs and MAEs and then 

approximate confidence intervals of these parameters were also derived using the MLEs of these 

parameters. 

The simulation study shows that all our assumptions are true. We see that as the sample sizes 

increases the RMSE and MAE are getting smaller and confidence intervals are also getting 

narrower. Here optimality criteria for changing the stress time are also checked and at that time the 

estimation technique has been used to obtain the numerical value of the parameters. 

Bayesian aspects of this study may be considered as future work or one also may use different 

censoring schemes with classical or Bayesian approach. 
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Abstract 

 
This paper made a survey on age replacement model involving minimal repair, and this was done 

by considering a parallel-series system with two subsystems, which are subsystems A and B, and 

each of the system is formed by three parallel units, therefore, the whole systems consist of six 

units. We constructed age replacement model involving minimal repair that will determine the 

optimal replacement time of the parallel-series system based on two different policies (Policy 1 and 

Policy 2). A numerical example was given to illustrate the characteristics of the age replacement 

models involving minimal repair constructed. From the results obtained, it was observed that 

policy 2 extends the optimal replacement time of a multi-component system, when compared to 

Policy 1. 

 

Keywords: Optimal, Repair, Replacement, Rate, System, Time. 

 

 

I. Introduction 
 

The activities of maintaining military equipment, transportation, and civil structures requires high 

costs, for these reasons, this leaded the development of various maintenance policies that seek the 

optimal decision models for reducing the risk of a catastrophic breakdown of systems. Thus, 

maintenance has effect on system reliability, because it prolonged the life span of the systems. For 

most industrial equipment, maintenance policies are provided to reduce the incidence of system 

frowning to failure.  

 

There is an extensive literature on the age replacement policy, for example, see Barlow and 

Proschan (1965), Elsayed (1996), Nakagawa (2005) and Pham (2003). Sandev and Aven (1999) 

studied the optimal replacement problem of a monotone system comprising n components, where 

the components are ‘‘minimally’’ repaired at failures. Jain et al. (2002) evaluated the expressions for 

expected cost for a system with replacement and minimal, and furthermore discussed the 

maintenance costs of various policies.  Ouali and Yacout (2003) developed an optional replacement 

policy for the maintenance of two non-identical components connected in series configuration, 

where by each component is replaced correctively whenever it fails and preventively only if its age 

reaches or exceeds a preventive replacement age T when the other component fails. Chien and 

Sheu (2006) proposed age replacement policy for an operating system which is subjected to shocks 
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that arrive according to a non-homogeneous Poisson process, and as shocks occur the system has 

two types of failure: type I failure (minor) or type II failure (catastrophic). Chen (2007) constructed 

a cache document replacement policy which content can be tailored to the specific requirements of 

a caching system. Wang et al. (2008) presented a condition-based order-replacement policy for a 

single-unit system, aiming to optimize the condition-based maintenance and the spare order 

management jointly.  Aven and Castro (2008) presented a minimal repair replacement model of a 

one unit system subjected to two types of failures. Yaun and Xu (2011) studies a cold standby 

repairable system with two different components and one repairman who can take multiple 

vacations.  Yusuf and Ali (2012) considered two parallel units in which both units operate 

simultaneously, and the system is subjected to two types of failures. Type I failure is minor and 

occur with the failure of a single component and is checked by minimal repairs, while type II 

failure is catastrophic in which both components failed and the system is replaced.  Xu et al. (2012) 

investigated on replacement scheduling for non-repairable safety-related systems (SRS) with 

multiple components and states, and their aim is to determine the cost-minimizing time for 

replacing SRS while meeting the required safety. Wang et al. (2014) introduced a two-level 

inspection policy model for a single component plant system based on a three-stage failure 

process,  such that the failure process divide the system′s life into three stages: good, minor 

defective and severe defective stages. Zhao et al. (2014) answered the problem which replacement 

is better for continuous and discrete scheduled times. Chang (2014) considered a system which 

suffers one of two types of failure based on a specific random mechanism: type-I (repairable) 

failure is rectified by a minimal repair, and type-II (non-repairable) failure is removed by a 

corrective replacement. Firstly, he considered a modified random and age replacement policy in 

which the system is replaced at a planned time T, at a random working time, or at the first type-II 

failure, whichever occurs first. He further considered a system which work continuously for N jobs 

with random working times.  Malki et al. (2015) investigated on age replacement policies for two-

component parallel system with stochastic dependence. The stochastic dependence considered, is 

model by a one-sided domino effect. Coria et al. (2015) proposed an analytical optimization 

method for preventive maintenance (PM) policy with minimal repair at failure, periodic 

maintenance, and replacement for systems with historical failure time data influenced by a current 

PM policy.  Yusuf et al. (2015) modified the work of Aven and Castro (2008) by introducing 

random working time Y. They constructed a modified random and age replacement model, for 

which the system is replaced at a planned time T, at a random working time Y, or at the first non-

repairable type 2 failure whichever occurs first. Where they assumed that, if there is a component 

which fails and the repairman is on vacation, the failed component will wait for repair until the 

repairman is available.  

 

       The main contributions of this study are to develop age replacement models involving 

minimal repair for parallel-series system, which is subjected to two types of failures, so as to 

addressed (1) the problem of sudden failure of a multi-component system (2) avoid rising 

maintenance cost of a multi-component system, and (3) to provide some characteristics of the age 

replacement model involving minimal repair.  The remainder of this paper is organized as follows: 

Section 2 discussed the methodology of the study. Section 3 discussed the proposed models. 

Section 4 presents the numerical results. Finally, section 5 discussed the conclusion and 

recommendations.  

 

II. Methods 
 

Reliability measures namely reliability function and failure rates are used to obtain the expressions 

of age replacement models based on some model assumptions. A numerical example was given for 

the purpose of investigating the characteristics of the models constructed.  
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Notations used 

• 𝑟𝑖𝑎(𝑡): Type I failure rate of unit 𝐴𝑖 of subsystem A, for 𝑖 = 1, 2, 3.  

• 𝑟𝑖𝑏(𝑡): Type II failure rate of unit 𝐵𝑖 of subsystem B, for 𝑖 = 1, 2, 3.  

• 𝑅𝑖𝑎(𝑡): reliability function of unit 𝐴𝑖 of subsystem A, for 𝑖 = 1, 2, 3. 

• 𝐶𝑖𝑏 : cost of minimal repair of unit 𝐵𝑖 of subsystem B due to Type II failure, for 
𝑖 = 1, 2, 3. 

• 𝐶𝑝 : cost of planned replacement of the system at time T. 

• 𝐶𝑟 : cost of un-planned replacement of the system due to Type I failure. 

• 𝑇∗: Optimal replacement time of the system based on Policy 1. 

• (𝑇∗, 𝜏∗) ∶ Optimal pair replacement time of the system based on Policy 2. 

 

 

III. Description of the system 
 

A system comprising of two subsystems A and B in series is considered. Subsystem A consist of 

three active parallel units, which are  𝐴1, 𝐴2 and 𝐴3.  While, subsystem B consist of three active 

parallel units, which are  𝐵1, 𝐵2 and 𝐵3.  See figure 1 below. The three units  𝐴1, 𝐴2 and 𝐴3 are 

subjected  to Type I failure. While the three units 𝐵1, 𝐵2 and 𝐵3 are subjected to Type II failure. The 

system will stop working completely, if it least one of the two subsystems (A and B) failed.  

 
 

Figure 1. Reliability block diagram of the system 

 

IV. Age Replacement Models 
 

This section considers some of the fundamental replacement policies involving minimal repair.   

 

Policy 1 

Assumptions for this Policy 1: 

1. Type I failure is un-repairable, while Type II failure is repairable. 

2. Both the two failures are detected instantaneously. 

3. All required resources are available when needed, which means that replacement/minima 

repair. 

4. The system fails due to Type I failure, if all the three units of subsystem A fails due to Type 

I failure.  

5. The system fails due to Type II failure, if all the three units of subsystem B fails due to 

Type II failure.  

6. If the system failed due to Type I failure, the whole system will be replaced completely 

with new one. 
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7. If the system failed due to Type II failure, then the system is minimally repair, and allow 

the system to continue operating from where it stopped. 

8. The system is replaced at a planned replacement time 𝑇(𝑇 > 0) after its installation or 

Type I failure of the system, whichever occurs first.  

 

Based on the assumptions of Policy 1, we have the probability that the system will be replaced at 

planned time T before Type I failure occurs, as  

𝑅(𝑇) = 1 − (1 − 𝑅1(𝑇))(1 − 𝑅2(𝑇))(1 − 𝑅1(𝑇)),                                           (1) 

where  

                                  𝑅𝑖(𝑇) = 𝑒
−∫ 𝑟𝑖𝑎(𝑡)𝑑𝑡

𝑇
0 ,   𝑓𝑜𝑟  𝑖 = 1, 2, 3.                                                    (2) 

The cost of unplanned replacement of the system in one replacement cycle is  

𝐶𝑟(1 − 𝑅(𝑇)).                                                                         (3) 

The cost of planned replacement of the system in one replacement cycle is  

𝐶𝑝𝑅(𝑇).                                                                                (4) 

The cost of minimal repair of unit 𝐵1 of subsystem B in one replacement cycle is  

∫ 𝐶1𝑏𝑟1𝑏(𝑡)𝑑𝑡
𝑇

0
.                                                                          (5) 

The cost of minimal repair of unit 𝐵2 of subsystem B in one replacement cycle is  

∫ 𝐶2𝑏𝑟2𝑏(𝑡)𝑑𝑡
𝑇

0
.                                                                         (6) 

The cost of minimal repair of unit 𝐵3 of subsystem B in one replacement cycle is  

∫ 𝐶3𝑏𝑟3𝑏(𝑡)𝑑𝑡
𝑇

0
.                                                                           (7) 

 Based on this policy 1, we have the total replacement cost rate of the system in one replacement 

cycle as   

𝐶(𝑇) =     
𝐶𝑟(1−𝑅(𝑇))+𝐶𝑝𝑅(𝑇)+∫ 𝐶1𝑏𝑟1𝑏(𝑡)𝑑𝑡+∫ 𝐶2𝑏𝑟2𝑏(𝑡)𝑑𝑡

𝑇
0 +∫ 𝐶3𝑏𝑟3𝑏(𝑡)𝑑𝑡

𝑇
0

𝑇
0

∫ 𝑅(𝑡)𝑑𝑡
𝑇
0

.                          (8)     

Noting that, 𝐶(𝑇) is adopted as the objective function of an optimization problem, and the aim is to 

determine an optimal replacement time 𝑇∗ that minimizes𝐶(𝑇). 

 

Policy 2 

Assumptions for this Policy 2: 

1. Both Type I failure and Type II failure are repairable, where the failure each of the six units 

is rectify by minimal repair. 

2. Both the two failures are detected instantaneously. 

3. All required resources are available when needed, which means that there is no 

waiting time. 

4. The system fails due to Type I failure, if all the three units of subsystem A fails due to Type 

I failure. 

5. The system fails due to Type II failure, if all the three units of subsystem B fails due to 

Type II failure. 

6. If the system fails due to Type II failure, we minimally repair the system, and allow the 

system to continue operating from where it stopped.  

7. On the first Type I failure after a given system age τ, an un-planned replacement of the 

system is carried out. However, if, for given 𝑇, such that, 𝜏 < 𝑇, there is no replacement in 

[𝜏, 𝑇], then at time 𝑇, a planned replacement of the system is carried out. 

8. If the system fails due to Type I failure before a given time τ, we minimally repair the 

system, and allow the system to continue operating from where it stopped.  

 

Based on the assumptions of Policy 2, we have the probability that the system will be replaced at 

planned time T before the first Type I failure of the system after a given time τ occurs, as  

        𝑅(𝑇 − 𝜏) = 1 − (1 − 𝑅1(𝑇 − 𝜏))(1 − 𝑅2(𝑇 − 𝜏))(1 − 𝑅1(𝑇 − 𝜏)),                              (9) 

𝑅𝑖(𝑇 − 𝜏) = 𝑒
−∫ 𝑟𝑖𝑎(𝑡)𝑑𝑡

𝑇−𝜏
0 , 𝑓𝑜𝑟  𝑖 = 1, 2, 3.                                               (10) 
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The cost of unplanned replacement of the system in one replacement cycle is  

𝐶𝑟(1 − 𝑅(𝑇 − 𝜏)).                                                                (11) 

The cost of planned replacement of the system in one replacement cycle is  

𝐶𝑝𝑅(𝑇 − 𝜏).                                                                           (12) 

The cost of minimal repair of unit 𝐴1 of subsystem A before given time 𝜏 in one replacement cycle 

is  

∫ 𝐶1𝑎𝑟1𝑎(𝑡)𝑑𝑡
𝜏

0
.                                                                      (13) 

The cost of minimal repair of unit 𝐴2 of subsystem A before given time 𝜏 in one replacement cycle 

is  

∫ 𝐶2𝑎𝑟2𝑎(𝑡)𝑑𝑡
𝜏

0
.                                                                      (14) 

The cost of minimal repair of unit 𝐴3 of subsystem A before given time 𝜏 in one replacement cycle 

is  

∫ 𝐶3𝑎𝑟3𝑎(𝑡)𝑑𝑡
𝜏

0
.                                                                       (15) 

The cost of minimal repair of unit 𝐵1 of subsystem B before planned time T in one replacement 

cycle is  

∫ 𝐶1𝑏𝑟1𝑏(𝑡)𝑑𝑡
𝑇

0
.                                                                        (16) 

The cost of minimal repair of unit 𝐵2 of subsystem B before planned time T in one replacement 

cycle is  

∫ 𝐶2𝑏𝑟2𝑏(𝑡)𝑑𝑡
𝜏

0
.                                                                       (17) 

The cost of minimal repair of unit 𝐵3 of subsystem B before planned time T in one replacement 

cycle is  

∫ 𝐶3𝑏𝑟3𝑏(𝑡)𝑑𝑡
𝜏

0
.                                                                        (18) 

Based on this policy 2, we have the total replacement cost rate of the system in one replacement 

cycle as   

𝐶(𝑇, 𝜏) =  
  𝐶𝑟(1 − 𝑅(𝑇 − 𝜏)) + 𝐶𝑝𝑅(𝑇 − 𝜏) + ∫ 𝐶1𝑎𝑟1𝑎(𝑡)𝑑𝑡 + ∫ 𝐶2𝑎𝑟2𝑎(𝑡)𝑑𝑡 + ∫ 𝐶3𝑎𝑟3𝑎(𝑡)𝑑𝑡

𝜏

0

𝜏

0

𝜏

0

𝜏 + ∫ 𝑅(𝑡)𝑑𝑡
𝑇−𝜏

0

 

                                           
+∫ 𝐶1𝑏𝑟3𝑏(𝑡)𝑑𝑡

𝑇
0 +∫ 𝐶2𝑏𝑟2𝑏(𝑡)𝑑𝑡+

𝑇
0 ∫ 𝐶3𝑏𝑟3𝑏(𝑡)𝑑𝑡

𝑇
0

𝜏+∫ 𝑅(𝑡)𝑑𝑡
𝑇−𝜏
0

.                                            (19) 

Noting that, 𝐶(𝑇, 𝜏) is adopted as the objective function of an optimization problem, and the aim is 

to determine the optimal pair replacement time ( 𝑇∗, 𝜏∗) that minimizes 𝐶(𝑇, 𝜏). 

 

 

V. Numerical example 
 

Let the rate of Type I failure of the three units of subsystem A follows Weibull distribution: 

 

                               𝑟𝑖𝑎(𝑡) = 𝜆𝑖𝑎 ∝𝑖𝑎 𝑡
∝𝑖𝑎−1, 𝑡 ≥ 0 ,  𝑖 = 1, 2, 3.                                                                 (20) 

where ∝𝑖𝑎> 1. 

 

Again, let the rate of Type II failure of the three units of subsystem B follows Weibull distribution: 

 

                               𝑟𝑖𝑏(𝑡) = 𝜆𝑖𝑏 ∝𝑖𝑏 𝑡
∝𝑖𝑏−1, 𝑡 ≥ 0 ,  𝑖 = 1, 2, 3.                                                                 (21) 

where ∝𝑖𝑏> 1. 

 

 Let the set of parameters and cost of repair/replacement be used throughout this particular 

example: 

 

1. ∝𝑖𝑎= 3, for  i = 1, 2, 3. 
2. 𝜆𝑖𝑎 = 0.008, for  i = 1, 2, 3. 
3. ∝𝑖𝑏= 3.5, for  i = 1, 2, 3. 
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4. 𝜆𝑖𝑏 = 0.00025, for  i = 1, 2, 3. 
5. 𝐶𝑖𝑎 = 7, for  i = 1, 2, 3. 
6. 𝐶𝑖𝑏 = 5, for  i = 1, 2, 3. 
7. 𝐶𝑟 = 75 and  𝐶𝑝 = 50. 

 

By substituting the parameters in equations 20 and 21, we obtained the failure rates as follows 

 

                                            𝑟𝑖𝑎(𝑡) = 0.024𝑡
2,  for   𝑖 = 1, 2, 3,                                                    (22) 

 

and                                   

                    𝑟𝑖𝑏(𝑡) = 0.000875𝑡
2.5, for  𝑖 = 1, 2, 3.                                                       (23) 

 

The tables and the graphs below, are the results obtained by substituting the cost of 

repair/replacement and equations (22) to (23) in the cost rates C(T) and C(T, τ). 

 
Table 1:  Values of 𝐶(𝑇) and C(T, τ) versus planned replacement T 

T 1 2 3 4 5 6 7 8 9 10 

C( T ) 250.01 125.07 84.05 66.86 64.77 74.12 85.53 89.01 90.39 95.90 

 
              Table 2 : Optimal replacement time of the system from C(T) as 𝐶𝑝 decreases. 

𝑪𝒑 50 40 30 20 10 

𝑻∗ 5 4 4 4 3 

 
              Table 3 : Optimal replacement time of the system from C(T) as 𝐶𝑟 increases. 

𝑪𝒓 75 85 95 105 115 

𝑻∗ 5 5 4 4 4 

 
                 Table 4: The values of C(T, τ) versus planned replacement T. 

T Τ C(T, τ) 

1 0.5 83.36 

2 1 41.79 

3 1.5 28.08 

4 2 21.45 

5 2.5 17.85 

6 3 15.94 

7 3.5 15.00 

8 4 14.56 

9 4.5 14.40 

10 5 14.44 

11 5.5 14.64 

12 6 14.93 

13 6.5 15.30 

14 7 15.73 

15 7.5 16.22 

 
   Table 5 : Optimal replacement time of the system from C(T, τ)  as 𝐶𝑝 decreases. 

𝑪𝒑 50 40 30 20 10 

(𝑻∗, 𝝉∗ ) (10, 5) (7, 3.5) (6, 3) (5, 2.5) (4, 2) 

 

   Table 6 : Optimal replacement time of the system from C(T, τ)  as 𝐶𝑟 increases. 
𝑪𝒓 75 85 95 105 115 

(𝑻∗, 𝝉∗ ) (10, 5) (9, 4.5) (7, 3.5) (7, 3.5) (7, 3.5) 
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Some observations from the results obtained are as follows 

 

1. Observe from table 1, we have the optimal replacement time for the system based on Policy 

1 as 5, that is, 𝑇∗ = 5, with minimal cost rate 𝐶(𝑇∗ = 5) = 64.77. See figure 2 below for the 

plot of 𝐶(𝑇) versus T. 

2. Observe from table 2, that the optimal replacement time of the system based on Policy 1, 

sometimes decreases slightly as the cost of planned replacement  (𝐶𝑝 ) decreases. 

3. Observe from table 3, that the optimal replacement time of the system based on Policy 1, 

sometimes decreases slightly as the cost of un-planned replacement  (𝐶𝑟  ) increases. 

4. Observe from table 4, we have the optimal replacement time for the system based on Policy 

2 as (9, 4.5), with minimal cost rate 𝐶(𝑇∗ = 9, 𝜏∗ = 4.5) = 14.40. See figure 3 below for the 

plot of 𝐶(𝑇, 𝜏) versus T. 

5. Observe from table 5, that the optimal replacement time of the system based on Policy 2, 

sometimes decreases slightly as the cost of planned replacement  (𝐶𝑝 ) decreases. 

6. Observe from table 6, that the optimal replacement time of the system based on Policy 2, 

sometimes decreases slightly as the cost of un-planned replacement  (𝐶𝑟  ) increases. 

7. Observe from figure 4, we have, 𝐶(𝑇) < 𝐶(𝑇, 𝜏) . 

8. Observe from tables 2, 3, 5 and 6, that the optimal replacement time obtained from Policy 2 

is higher than that of Policy 1. 

 

VI. Conclusion and recommendations 
 

This paper gives a survey on some important maintenance policies involving minimal repairs and 

replacements of multi-component systems. In this paper, we constructed age replacement models 

with minimal repair for a parallel-series system based on two different policies (Policy 1 and Policy 

2), such that the system contained two subsystems, which are subsystem A and subsystem B. We 

assumed that two subsystems are formed by three units. It was also assumed that subsystem A is 

subjected to Type I failure and subsystem B is subjected to Type II failure. Finally, a numerical 

example was given, to investigate the characteristics of the age replacement models with minimal 

repair constructed for a multi-component system, where from the results, it was also observed that, 

the optimal replacement time obtained from Policy 2 is higher than the optimal replacement time 

obtained from Policy 1. The results obtained would be useful for the practical maintenance of 

multi-component systems.  
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Abstract 

 
Security has become the principal concern in mobile ad-hoc network. Secure communication 

depends on using cryptographic mechanisms. Cryptographic mechanism involves symmetric 

key and asymmetric key approaches. The symmetric key approach is more reliable except the key 

distribution phase. Asymmetric key approach gives robust security, but it results in high 

computational, high communications and high storage overhead. The propose research uses both 

the concepts. The symmetric key approach for reliable data exchange and asymmetric key 

approach for key management and distribution to achieve robust security in constraint based 

mobile ad-hoc network. 

 

Keywords: Key management, Key distribution, Mobile ad-hoc network, 

Security. 

 

 

I. Introduction 
 

In a region where communication area and existing infrastructure is limited and inconvenience, 

mobile ad-hoc network is one of the solutions [1]. A mobile ad-hoc network also known as 

MANET is an assortment of several devices across the temporary network without any assist with 

the centralized administration. In such kind of network all mobile devices works as a host as well 

as a router. In such environment's routing protocol is required because two hosts that wish to 

communicate may not be capable to transmit packet directly [2]. Due to the resource constrains the 

nature of mobile Ad-hoc network key management is very crucial and challenging. Key 

management combines the security concepts like confidentiality, authentication, and key 

confirmation, [3]-[6] generally defines as security goals. To attain robust security, it is important to 

encrypt messages with strongly secure key [7]. The secure exchange of secret key is the major issue 

related to the symmetric cryptography implementation [8]. The asymmetric one is better than the 

symmetric in term of providing robust security [8]. The traditional key management schemes are 

insufficient for mobile Ad-hoc network. To implement ideal key management one can, have to 

know the basic characteristics of mobile Ad-hoc network. As well as also study the requirements of 

key managements. 

 

II. Characteristics of Ad-hoc Network 
 

Following are the core characteristics of mobile Ad-hoc network. 

• Dynamic Topology: Topology means physical arrangements of the node across the 

network. In Ad-hoc network nodes are mobile hence the topology may change frequently. 
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• Bandwidth Limitation: Bandwidth is a transmission capacity of the network. The mobile-

Ad-hoc network offer less bandwidth than traditional network. Due to this reason number 

of messages and packet size is limited. 

• Energy Constrain: All nodes across the mobile Ad-hoc networks are battery operated 

hence they have limited power source. Due to limited power complex algorithms may not 

be possible to implement in an Ad - hoc network. 

• Physical Security: The mobile Ad-hoc network does not have fixed infrastructure; hence 

nodes are being physically compromised by theft. Security is a big issue in mobile Ad-hoc 

network. The cryptographic key is one of the solutions of security issues. It is necessary to 

understand the characteristic of mobile Ad-hoc network before implementing the 

cryptographic key. The proposed work shows the key management in mobile Ad-hoc 

network. 

 

III. Literature Review 
 

Literature review shows that the author has studied various aspects of the key management and 

distribution for mobile ad-hoc networking. 

 

The base concepts of key managements specifically covered secure communication for key 

materials exchange explained by   Menezes et al., 1996 [9]. Based on the knowledge of neighbor 

discovery random key per distribution scheme for secure communication is proposed by 

Eschenauer and Gligor [2002] [10], the scheme is based on the exact location of the node. 

 

Pairwise communication suggests by Pietro et al. [2003] [11]. It is based on random key 

assignments. The concept is later on extended to pseudo random key generation for energy 

efficient key management. Based on four sets of keys Zhu et al. [2003] [12] introduced a LEAP 

security mechanism for neighbor compromised node. Link layer key management encryption 

scheme TinySec proposed by Karlof et al., 2004 [13]. Hu et al., 2004 [14] presents the trusted 

Certificate Authority (CA) for public key cryptography. CA is responsible to revoke key as a key 

will compromised. Authentication is the base for secure communication [13], without robust 

authentication mechanism confidentiality, data integrity, and non-repudiation are hard to define. 

There is diversity of symmetric and asymmetric algorithms available, including DES, AES, IDEA, 

RSA, and EIGamal [9]. These cryptographic algorithms are the security primitives that are widely 

used in wired and wireless networks. They can also be used in MANETs and help to achieve the 

security in its unique network settings [15][16]. Asymmetric Key Cryptography is complex, slow 

and power hungry, and as such not at all suitable for use in ultra-low power environments [17]. 

 

The followings are the basic key management approaches used popularly in mobile Ad-hoc 

network.  Basic Key Management, by Eschenauer and Gligor [2002] [10], Random Key Pre-

distribution, by Chan et al. [2003], [18] Random Key Assignment, by Pietro et al. [2003] [11], 

Establishing Pairwise Keys, by Liu et al. [2003] [19], Pairwise Key Pre-distribution, by Du et al. 

[2003] [19] [20], Deployment Knowledge, by Du et al. [2004] [20], Group Key Management, by 

Eltoweissy et al. [2005], [21] Location-Based Keys, by Zhang et al. [2005] [22]. 

 

IV. Motivation 
 

Although substantial expansions have been made towards the key management and distribution 

in the mobile ad-hoc network, robust security measures remain insufficient. Most of the 

explanation offered in literature addresses the key management and distribution in traditional 

network, but these may not be exactly fitted into the mobile ad-hoc network.  
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Thus, there is a need for a better scheme for key management and distribution in mobile ad-hoc 

network which can provide less computational, less communication and less storage overhead. 

 

V. Security attacks 
 

Compare with traditional network mobile ad-hoc network is more vulnerable to security attacks. 

There are two types of security attacks. One is passive and another is active [2][23][24]. 

• Passive Attack: In passive attack intruder may not have enough knowledge to alter the 

captured data. The attacker only listen the communication without any kind of 

modification. These kinds of captures are the example of eavesdropping. These attacks 

break the confidentiality and are difficult to detect. Utilization of powerful encryption 

methods is one of the solutions of these attacks. 

• Active Attack:  In active attack intruder may have enough knowledge to alter the captured 

data. The attacker listens as well as may alter the communication. These attacks break the 

authentication. Utilization of powerful MAC algorithms or any message digest algorithms 

are one of the solutions of these attacks. 

 

VI. Key Management Requirements 
 

Following are the base requirements for key management. 

• Confidentiality: Confidentiality means key information remains secrete between a source 

node and destination node. No one can know the key information exchange between the 

source and destination node. The various cryptographic algorithms are used to maintain 

confidentiality. 

• Confidentiality: Confidentiality means key information remains secrete between a source 

node and destination node. No one can know the key information exchange between the 

source and destination node. The various cryptographic algorithms are used to maintain 

confidentiality. 

• Authentication: Only the authorized nodes can gain the cryptographic key materials, no 

one else. The various MAC algorithms as well as message digest mechanisms are used to 

maintain authentication. 

• Key-confirmation: Key establishment protocols are responsible to ensure key 

confirmation. Key confirmation ensures that the key materials being exchanged are 

between the authorized nodes. Key confirmation uses the concepts of nonce [25]. 

• Key freshness: It ensures new and unique independent keys are used for different sessions. 

The concepts of new and independent key ensure the forward and backward secrecy. 

• Forward secrecy: It restricts opponent from discovering subsequent keys from a 

compromised contiguous subset of old keys. 

• Backward secrecy: It restricts opponent from discovering preceding keys from a 

compromised contiguous subset of old keys. 

• Key independence: It subsumes the forward and backward secrecy.  Key independence 

ensures that an opponent who knows a proper subset of keys cannot discover any other 

keys.    

• Availability: It ensures that whenever the network expect keying materials it is ready to 

use. 

• Survivability: Survivability is the ability of the key management to remain available even 

in the presence of threats and failures. 

• Scalability: It ensures network to allow numbers of nodes according to the requirements. 

The network can have the ability to add or remove nodes. 

• Resistance: The ability to protect against tolerates attacks. 

• Recovery: Ability to recover the information unavailable due to damage. The self-healing 
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and mutual healing mechanisms are used to implement recovery. 

• Efficiency: Key management schemes should be efficient in communication, computation 

and storage overhead 

 

VII. Key Managements and Distribution 
 

The basic difficulty in mobile ad-hoc network is to maintain secure communication by 

surroundings up secret keys between communicating nodes [1]-[6], [9]-[12]. In general this 

phenomenon is called key distribution [1]-[6], [9]-[12]. One of the popularly used techniques is 

trusted server scheme. The trusted server scheme is depends on a trusted server like karberos 

[Neuman and Tso, 1994] [26]. Since there is no fix trusted infrastructure in mobile ad-hoc network 

trusted server scheme is inappropriate [1]-[6], [9]-[13]. The second approach is based on 

Asymmetric and Symmetric key cryptography [27]. Asymmetric key cryptography is also known 

as public key cryptography. However, due to the resource constraint nature of the mobile ad-hoc 

deices this scheme is not much more fruitful for entire data communication [1]-[6], [9]-[16]. 

Asymmetric key algorithms like Diffe-Hellman [Diffie and Hellman, 1976] and RSA [Rivest et al., 

1978] require high computation resources which is not feasible to transmit large amount of data in 

mobile ad-hoc network. 

 

Nowadays, security is an important issue in almost every network [28]. Cryptography is a 

significant and dominant tool for secure communication. It transmits the cipher text across the 

network. The source node converts plain text into cipher text, the mechanism is known as 

encryption. The destination node converts received cipher text into plain text the mechanism is 

known as decryption. The specific key value is used for encryption and decryption. Symmetric key 

and Asymmetric key algorithms are used to implement the concepts of the encryption and 

decryption. The symmetric key algorithms use the same key for encryption and decryption. 

Asymmetric key algorithms use different key for encryption and decryption. So, there is no need to 

exchange the key value across the network. Hence it maintains the confidentiality. 

 

The proposed scheme suggests that to use symmetric key algorithms for encryption and 

decryption for the data value. The problem of securely transmit key value between source and 

destination node will be resolved by utilizing the asymmetric key cryptography. Hence it 

maintains confidentiality for key exchange. Means key value is only known to intended source and 

destination node only. 

 

VIII. Conclusion 
 

After evaluating large literature, the author suggests to use Symmetric key cryptography for large 

amount of data. While the Asymmetric key cryptography for key exchange. This key is used for 

symmetric cryptography. This kind of implementation gives robust security in constraint based 

ad-hoc network. 
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Abstract 

 
The problem of ready queue mean time estimation in the multiprocessor environment was 

discussed by Shukla et. al. [5] and several others. In recent years, most of the existing and relating 

contributions assume that all processes in the ready queue might have been completed before a 

particular instant of time occur like a sudden failure or interrupt. Due to this, data of time 

consumed by processes remain available. The idea of improvement in this paper is to assume that 

at the instant of occurrence of breakdown, some processes are partially completed and remaining 

is completely processed. Under this situation, the time computation and allocation strategies need 

to be re-designed. Therefore this has been taken into account in this paper with a proposal of a 

modified scheme. It contains arbitrary, Type-A, and Type- B allocations of sample units to the 

processors. Confidence intervals for the sample mean values are calculated and simulated over 

many samples using cumulative probabilities. It was found that Type-A allocation has the lowest 

variance.  

 

Keywords: CPU, Scheduling, Lottery Scheduling, Estimation, Sampling, 

Probability, Allocation, Simulation. 

 

 

I. Introduction 
 

The challenging task of an operating system is CPU scheduling algorithms where various non-

probabilities based traditional schemes are operational. These can simply be handled easily by 

processors while probabilistic scheduling schemes have to face the difficulty of resource 

management, system performance, and low system overhead. Lottery scheduling is one such 

probability-based scheme first introduced by Carl A. Waldspurger [12]. Shukla, Jain, and 

Choudhary [4] have initiated the problem of estimation of ready queue processing time by 

suggesting SL scheduling algorithm in a multiprocessor environment. The contribution contains a 

sample-based estimation of ready queue mean time which likely to be spent while completes 

exhaust of ready queue occurs. It reveals the approach of systematic sampling which has some 

limitations in terms of efficiency of the predicted value. Shukla et. al. [6] extended similar problem 

under the approach of lottery scheduling. Content of contribution stands for randomly selected 

processes from the ready queue for forecasting the sample-based mean time. The limitation of 

lottery scheduling appears due to the reason that processes happen to be of any size may appear in 

any order before multiprocessors. Shukla and Jain [7] extended the ready queue processing time 

estimation approach to the care of probability proportional to size-dependent lottery scheduling 

which provides better prediction than earlier. Following the similar approach, Shukla and Jain [8] 

used factor type estimation method for estimating mean ready queue processing time in setup of 

mailto:john@smith.com
mailto:john@smith.com
mailto:john@smith.com
mailto:john@smith.com
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lottery scheduling under a multiprocessor environment. Shukla and Jain [9] extended approach 

using ratio type estimation method and advocated for better efficiency under constraints. A similar 

approach adopted in Jain and Shukla [10] and Shukla and Jain [11] with additive features. An 

exhaustive review of the problem of ready queue mean time estimation is due to Shukla and More 

[1] and some suggestive contributions are due to Shukla and More [2] [3]. Sampling technique 

concepts and applications are in Cochran [13]. 

 

Shukla D., Jain, and Choudhary [5] discussed GL scheduling which assumes the processes present 

in all processors in the time session (0-T) have been completely processed at instant T and their 

compound predictive estimate of average processing time could be obtained. Such an estimate is 

useful for forecasting the expected time required to vacate the entire ready queue. This helps in 

backup management while sudden failure (or disaster) occurs. But it doesn't cover the case when a 

sudden failure occurs during the processing of these jobs (processes). How estimation will be in a 

situation when the last process is partially processed and kept on hold. This paper takes into 

account this problem and provides a solution 

 

II. GL Scheduling Scheme (due to Shukla, Jain, and Choudhary [5]): 
 

Step 1: Assume multiple processors Q1, Q2, Q3……Qr, each draws random samples of jobs from 

corresponding ready queues. Processes in the ith ready queue are homogeneous concerning 

certain characteristics whereas in the usual waiting queue they are present in any order of 

size measure.   

Step 2: The CPU restricts a session of time duration T. All N ready queue processes are divided 

into r groups each of size containing Ni processes ( ∑ Ni = N). This division is based on size 

measure.  

Step 3: All N processes are allotted token of numbers and each processor draws a random number. 

If the random number of ith processor matches the allotted random number to the jth 

process of the ith group then it is selected for processing (i=1, 2, 3….r, j=1, 2, 3…..Ni).  

Step 4: Let k1 processes received from the first group, k2 processes from the second group, and so 

on, the krth received processes from rth group in a random manner using lottery procedure [ 

∑ ki = k] in a session of fixed time T where k is the total sample size.   

Step 5: At the end of a session, the CPU provides processed time data for k1, k2, k3….kr jobs as (t11, 

t12, t13…... t21, t22, t23…., .ti1, ti2, ti3…) where tij are the time consumed by jth job. 

 

III. Modified Group Lottery Scheduling (MGLS) Scheme 
 

The proposed contribution is an extension of the previous algorithm suggested by Shukla et. al. [5], 

with the idea of improvement to include the processing time of those processes that remained 

partially processed due to sudden system breakdown or occurrence of an interrupt. Following are 

steps of the proposed scheme: 

 

Step 1: Assume r processors Q1, Q2, Q3, Q4….…...Qr, in a system each, receives random samples from 

corresponding linked ready queues. Processes in corresponding ready queues are of 

homogeneous concerning a specific characteristic. If any event wait appears, that process 

moves to a waiting/blocked/suspended queue.  

Step 2: Total N processes assumed present in the system are divided into r groups of ready queues 

with the assumption that ith group (or ready queue) has Ni processes (∑ Ni = N). 

Step 3: All N processes in the system are assigned token of numbers. Processors generate random 

numbers whose matching occurs with token assigned to processes. If ith processor random 

number matches to the token number of jth process then jth assigns to ith processor. 

Step 4:  Using (3), suppose total kr processes selected from rth group of the ready queue in a 
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random manner and assigned to Qrth processor. The total sample size is k =∑ ki where  i 

=1,2,3,.......r,  j = 1,2,3,.........Ni 

Step 5:  Let tij denote time consumed by the jth process assigned to ith processor.  

Step 6:  At instant time T, out of total ki processes present in ith processor, assume ki-1 have 

completely processed but the last one is partially processed with time ti* in all Q1, Q2, Q3 

….Qr. The set of time (t1*, t2*, t3*.......tr*) is the time consumed by partially processed jobs.  

Step 7:  Processes within the processor are divided into two parts. The Part A being sub-group of 

completely processed and part B for unprocessed (ti*) 

Step 8: Overall mean time, 𝑚𝑡̅̅ ̅̅  = 
1

𝑁
 ∑∑ tij,     𝑚𝑡̅̅ ̅̅ 𝑖 = 

1

𝑁𝑖
 ∑ (tij)

𝑁𝑖𝑗=1   (for ith ready queue), Si2= 
1

𝑁𝑖−1
 ∑ (tij

𝑁𝑖𝑗=1  - 

𝑚𝑡̅̅ ̅̅ 𝑖 
)2   (for ith ready queue) and S2 = 

1

𝑁−1
 ∑ ∑ (tij

𝑁𝑖𝑗=1  −  𝑚𝑡̅̅ ̅̅
 
)2𝑟

𝑖=1  under assumption while all 

N completely processed before occurring T but under step (6) it does not happen. 

Note: The steps 5, 6, and 7 are the idea of improvement in this paper over the Shukla et. al. [5]. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Setup of ready queue and multiprocessor environment 

 

IV. Estimation Procedure under Arbitrary Allocation 
 

The Modified Group Lottery Scheduling algorithm (MGLS) provides the estimation of mean time 

likely to consume by the N processes in the ready queue while occurrences of time T. For ith ready 

queue (group), the mean time is spited into: 

 

(a)  𝑡̅i' = (
1

(𝑘𝑖−1)
) ∑ (𝑡ij)

𝑘𝑖−1 𝑗=1   (for processed part A of sample not including unprocessed) 

(b)  𝑡̅
∗ =  1
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 ∑  (𝑡i
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(c) The mean time estimator is    𝑢̅ = [ ∑ wi 𝑡̅i
𝑟
𝑖=1

′+ 𝑡̅
∗
 ] / 2  where wi = 

Ni
N 

   

(d) The mean square of time 𝑡̅i for ith group is Si2 = 
1

(𝑁𝑖−1)
 ∑ (𝑡ij − 𝑡̅i)

2𝑁𝑖𝑗=1  = (
1

(𝑁𝑖−1)
) ∑ (𝑡ij −

𝑁𝑖𝑗=1

𝑚𝑡̅̅ ̅̅ 𝑖)
2 Where 𝑡̅𝑖 = 

1

𝑁𝑖
   ∑ tij

Nij=1  

(e) S2 = 
1

(N−1)
∑ ∑ (tij − t̅ )

Nij=1  r
i=1  where t ̅= 

1

N
   ∑ ∑ (tij

Nij=1
r
i=1 )= 𝑚𝑡̅̅ ̅̅   

(f) Variance of estimator 𝑢̅  is V(u̅)arbit = V [ ∑ wit̅i‘
r
i=1 + t̅

∗
]  = ∑ wi

2 V (t̅i‘)
r
i=1 +  V(t̅

∗
) 

                          = ∑ (
1

(ki−1)
− 

1

Ni
)wi

2 Si
2 r

i=1 + [ (
1

r
− 

1

N
) S2

 
 ]                                                                                       (4.1) 

 

This estimator 𝑢̅ and variance V (u̅) arbit is based on arbitrary allocation of processes to the 

processors. 

 

V.  Types of Allocations: 

 

Type-A Allocation: Based on prior information of processor speed 
 

The choice of ki depends on the speed of processors. A fast processor can randomly pick a larger 

number of jobs from the group of ready queue samples. Let priority known processor speed are S1*, 

S2*, S3*.......Sr* for Q1, Q2, Q3 ….Qr respectively, and  ∑ Si
∗r

i=1 = S
∗ 

 holds.  

Let ki  α Si
∗,   ki = MSi

∗
 ,  ∑ki  = ∑MSi

∗
, k = M S*,   M = (k/s*),  ki  = ( 

k

S
∗ )Si

∗
   (M is any constant)                    

(5.1) Substituting (5.1) in (4.1) one can get    

 V (u̅) I  =  ∑ [ ( 
1

(( 
k

S∗
 )Si

∗
  −1)

− 
1

Ni
)wi

2 Si
2  ]r

i=1 + [ (
1

r
− 

1

N
) S2

 
 ] = ∑  [( 

S
∗

(k Si
∗
 − S

∗
)
− 

1

Ni
)wi

2 Si
2 ]r

i=1 +

                              [ (
1

r
− 

1

N
) S2

 
 ] 

 V (u̅) I = ∑ [ ( 
S
∗
(wi

2 Si
2)

(k Si
∗ − S∗)

 )] − 
1

N
 r

i=1 ∑ wi
 
Si
2r

i=1 + [ (
1

r
− 

1

N
) S2

 
 ]                                                            (5.2)                 

 

 

Type-B Allocation: Based on prior information of variation (Si2 ) in ready queue: 
 

 The Si2 for ith group is defined in section 4.0 as under 

Si2 = ∑
1

(𝑁𝑖−1)

Ni

j=1
   (𝑡ij − 𝑡̅i ) =  (

1

(𝑁𝑖−1)
) ∑ (𝑡ij − 𝑚𝑡̅̅ ̅̅ 𝑖)

𝑁𝑖−𝑗=1
2 

  

Consider ki 𝛼 𝑆𝑖
∗ 

and ki 𝛼 𝑆𝑖 together where Si refers to variability among processes in ith queue 

related to a characteristic (e.g. expected time of process) and assumed known. 

Then, ki α Si
∗ Si, ki= M ∗  Si

∗ Si 
whⅇrⅇ M is constant ∑ki= M ∗ ∑ Si

∗ 
Si,  

 M ∗= k

∑ Si
∗
Si

 and ki= [ 
k

∑Si

∗
Si
 ] Si

∗ Si           (5.3) 

The variance under Type-B allocation could be obtained by substituting (5.3) in expression (4.1) 

V (u̅) II  =  ∑  [(
k Si

∗ 
Si 
− ∑Si

∗
Si 

∑ Si

∗
Si

  
 
)wi

2 Si
2] − [

1

N
 ∑ wiSi

2r
i=1  ]r

i=1 + [ (
1

r
− 

1

N
) S2

 
 ]                                     (5.4) 

 

 

VI. Numerical Illustration: 
 

Consider a small data setup with 30 processes in the ready queue whose expected processing time 

(𝑡ij) are given in table 1. This numerical table 1 is to justify the computations, expressions, results. 
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Table 1: Total Processes Data 

Total Processes Data 

Process CPU 

Time 
Process CPU  

Time 

Process CPU  

Time 

Process CPU  

Time 

Process CPU  

Time 

Process CPU  

Time 

 

Proc1 30 Proc6 60 Proc11 138 Proc16 89 Proc21 143 Proc26 79  

Proc2 20 Proc7 33 Proc12 43 Proc17 123 Proc22 29 Proc27 46  

Proc3 142 Proc8 43 Proc13 109 Proc18 67 Proc23 147 Proc28 59  

Proc4 40 Proc9 101 Proc14 26 Proc19 58 Proc24 94 Proc29 72  

Proc5 59 Proc10 69 Proc11 138 Proc16 89 Proc21 143 Proc26 79  

 

Assume there are three processors Q1, Q2, Q3 (r=3) having known processing speed S1*, S2*, S3* 

respectively. Ready queues are divided into three groups as under as in Table 2, Table 3 and 4. 

 
Table 2: First Group Data (below 50 CPU time) 

Ready Queue Group 1 

Process Proc1 Proc2 Proc4 Proc7 Proc8 Proc12 Proc14 Proc22 Proc27 Proc30   

CPUTime 30 20 40 33 43 43 26 29 46 22   

 

Table 3: Second Group Data (above 50 but below 100 CPU time) 

  Ready Queue Group 2 

Process Proc5 Proc6 Proc10 Proc15 Proc16 Proc18 Proc19 Proc20 Proc24 Proc26 Proc28 Proc29   

CPUTime 59 60 69 74 89 67 58 84 94 79 59 72   

 

Table 4: Third Group Data (above 100 CPU time) 

Ready Queue Group 3 

Process Proc3 Proc9 Proc11 Proc13 Proc17 Proc21 Proc23 Proc25     

CPUTime 112 101 138 109 123 143 147 131     

 

Table 5: Available Speed of the Processor 

Processor's Speeds   

Processors Q1 Q2 Q3 Total available speed   

Speed S1* = 2.5 S2* = 3.0 S3* = 5.5 11.0   

 
Table 6: Parameters of all N Processes in System 

Parameters of all N Processes in System  

 

 

 

Complete N Group 1  

(Table 6.2) 

Group 2  

(Table 6.3) 

Group 3  

(Table 6.4) 

 

Mean time  𝑡̅ = 
1

𝑘
𝑖

∑ 𝑡𝑖𝑗𝑖=1   = 

73.33 
w1  = 

 N1
𝑁 =0.33 w2 = 

 N
2
𝑁
 = 0.4 w3 =

N
3
𝑁
   =0.26 

 

Mean square 

S2 = 1461.8484 

Mean time (𝑚𝑡1
̅̅ ̅̅ ̅̅  ) = 

𝑡̅1 =33.20 
Mean time (𝑚𝑡2

̅̅ ̅̅ ̅̅  )  = 𝑡̅2 =72.0 
Mean time 

(𝑚𝑡3
̅̅ ̅̅ ̅̅  ) =𝑡̅3 =125.50 

 

 

Square of mean time (𝑚𝑡1
̅̅ ̅̅ ̅̅  

)2 = 1102.24 
Square of mean time (𝑚𝑡2

̅̅ ̅̅ ̅̅  )2  = 5184 
Square of mean time (𝑚𝑡3

̅̅ ̅̅ ̅̅  )2  

= 15750.25 

 

 

Total sum of 

square  ∑ t
1j

𝑁
𝑖𝑗=1

2 =11804 

Total sum of square  ∑ t2j
𝑁
𝑖𝑗=1

2 = 

63890 

The total sum of 

square  ∑ t3j
𝑁
𝑖𝑗=1

2 = 128018 

 

 

Mean square S12 = 86. 8444 

and S1 = 9.32  

Mean square S22 = 152. 9090 and S2 

=12.37  

Mean square S32 =  288 

and S3 = 16.97 
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VII. Calculation for Arbitrary Allocation 
 

Table 6 reveals parametric values of all three queues assuming if all N have been processed before 

occurrences of instant breakdown T. Parameters Si2, S2, 𝑡1̅̅̅,  𝑡2̅̅̅ , 𝑡3̅̅̅, and 𝑡̅ have been calculated at the 

entire level. Moving on at the sample level, the arbitrary allocation k1, k2, k3 is adopted for sample 

size k =∑ki  =12. In table 7, sample values k1 = 4, k2 = 4, k3 = 4 considered for total random sample 

size k=12 drawn from N=30. 

 

Variance of estimator 𝑢̅  is V (u̅) arbit = V [ ∑ wit̅i‘
r
i=1 + t̅

∗
]  = ∑ wi

2 V (t̅i‘)
r
i=1 +  V(t̅

∗
) 

                                                        = ∑ (
1

(ki−1)
− 

1

Ni
)wi

2 Si
2 r

i=1 + [ (
1

r
− 

1

N
) S2

 
 ] 

 

Table 7: Variances Calculation under Arbitrary Allocations (Si2 and S2 known) 

 
Variance under Arbitrary Allocation 

k1 =4,  k2= 4,  k3= 4 

V(u̅)
𝑎𝑟𝑏𝑖𝑡= 446.442 

 

Calculation for Type-A and Type-B allocations: 

        Consider following available data for variability and processor speed, both are assumed 

priory known. Table 8 has similar content relating to Si* 

 

Table 8: Prior knowledge of Speed and Variability 

 
Prior knowledge of Speed and Variability 

 
Processors Speed (Si*) Variability (Si) Si*Si 

Processor 1 S1* = 2.5 S1 = 9.3 23.25 

Processor 2 S2* = 3.0 S2 = 12.3 36.9 

Processor 3 S3* = 5.5 S3 = 16.9 92.95 

Total (S*) =11.0  ∑ Si*Si =153.1 

 

Case 1:   For Type-A allocation using (5.1),  ki = ( k /S
∗)Si

∗
, S*= ∑Si*,  k = ∑ ki,  For pre-fixed k = 12, 

its division in three parts is  in  table 9 . 

 

Table 9: Allocation under Type -A 

 

Allocation under Type -A 

k1 = (k/S*)S1* = 2.72 = 3   (from first ready queue) 

k2 = (k/S*)S2* = 3.27 = 3 (from second ready queue) 

k3 = (k/S*)S13 = 6.0 = 6  (from third ready queue) 

Total k = (k1+k2+k3)  k = 12 

 

Case 2:    For Type-B allocation using (5.3),   ki = [ 
k

∑Si
∗
Si
 ] (Si

∗ 
Si 
), and k = 12 is divided in three 

parts as shown in table  10.   
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Table 10:  Allocation under Type- B 

 

Allocation under Type-B 

k1 = [k/(∑Si*Si)] 

S1*S1
 

= 2.20 = 2  (from first ready queue) 

k2 = [k/(∑Si*Si)] 

S2*S2
 

= 1.98 = 2  (from second ready queue) 

k3 = [k/(∑Si*Si)] 

S3*S3
 

= 7.87 = 8  (from third ready queue) 

Total k = (k1+k2+k3)  k = 12 

 

Calculation of Variance under Type-A allocation: 

 

  V (u̅)
I =   ∑ [S

∗
(wi

2Si
2) / (kSi

∗
 
− S

∗
)] − 

1

N
∑wi

 
Si
2 r

i=1 + (
1

r
− 

1

N
) S2   

              =   S*{[w12S12/ (kS1* - S*)] + [w22S22/ (kS2* - S*)] + [w32S32/ (kS3* - S*)]} – 
1

N
 [w1S12 +w2S22 +w3S32] 

+(
1

r
− 

1

N
)  

1

N−1
 [∑ ∑ (tij

Nij=1
r
i=1 − t̅ )] when r = 3                                                                7.1) 

 

Calculation of Variance under Type-B allocation: 

 

V (u̅)
II =  ∑ [(kSi

∗
Si − ∑ Si

∗
Si)/∑ Si

∗
Si] wi

2 Si
2 −

1

N
∑ wiSi

2r
i=1  r

i=1 + [(
1

𝑟
− 

1

𝑁
) 𝑆2]  

               = [(kS1*S1 - ∑S1*S1)/ ∑S1*S1] w12S12 + [(kS2*S2 - ∑S2*S2)/ ∑S2*S2] w22S22 + [(kS3*S3 - ∑S3*S3)/ ∑S3*S3] 

w32S32  −
1

N
 [w1S12 +w2S22 +w3S32] +(

1

r
− 

1

N
)

1

N−1
 [∑ ∑ (tij

Nij=1
r
i=1 − t̅ )] when r = 3               (7.2) 

                         
Table 11: Comparison of Variances under different Allocations 

 

Comparison of Variances under different Allocations 

Variance under Type-A  

Allocation 

Variance under Type-B  

Allocation 

Variance under Arbitrary  

Allocation 

k1 =3,  k2= 3,  k3= 6 k1 =2,  k2= 2,  k3= 8 k1 =4,  k2= 4,  k3= 4 

V(u̅)
I = 442.08 V(u̅)

II = 611.452 V(u̅)
𝑎𝑟𝑏𝑖𝑡= 446.442 

 

Table 8 contains the assumption that three Si2 (i = 1, 2, 3) are priory known (or guessed) and so the 

variance V (u̅)
I 

is lowest under the type-A allocation (while Si2 and S2 known) in comparison to 

Type-B and Arbitrary allocation. 
 

Estimate of Variance : 

         The value Si2 = (
1

(𝑁𝑖−1)
) ∑ (𝑡ij − 𝑡̅𝑖)

𝑁𝑖−𝑗=1
2 suppose not known then they are to be replaced by sample 

value estimates. The sample based estimate of S2 and Si2 are defined like (es) 2 and (esi) 2   with 

expressions are as under: 

 

          (esi) 2 = (
1

(𝑘𝑖−1)
) ∑ (𝑡ij − 𝑡̅𝑖)

𝑘𝑖−1
𝑗=1

       and (es)2 = (
1

[(𝑘−𝑟)−1]
) ∑ ∑ (𝑡ij − 𝑡̅𝑖)

[𝑘−𝑟−1]
𝑗=1

r
i=1

2                                                   (7.3.1) 

 Est[ V(u̅)
arbit]

  = ∑ (
1

(𝑘𝑖−1)
− 

1

𝑁𝑖
)𝑤𝑖

2 (𝑒𝑠𝑖)
2 𝑟

𝑖=1 + [(
1

𝑟
− 

1

𝑁
)
 
(𝑒𝑠)2]                                                    (7.3.2)                                                

Est[ V(u̅)
I]

 = ∑ [S
∗
(wi

2 (ⅇs)2) /( kSi
∗
−S

∗ 
 )] − 

1

N
∑wi

 
(𝑒𝑠𝑖)

2 r
i=1 + (

1

r
− 

1

N
) (ⅇs)2                       (7.3.3)  

Est[V(u̅)
II]

 = [( ∑ [k Si
∗
(ⅇsi) − ∑Si

∗
(ⅇsi))/ ∑Si

∗
(ⅇsi)

 
]wi

2 (𝑒𝑠𝑖)
2 −

1

N
∑ wi(𝑒𝑠𝑖)

2r
i=1  r

i=1 +

                         [(
1

𝑟
− 

1

𝑁
) (𝑒𝑠)2]                                                                                                                    (7.3.4)                                                                                                       

 

Calculations of estimated values are in table 7.6 and 7.7 on the 10 samples. 
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Table 12: Calculations of Sample Mean and Estimate of Variance under Arbitrary Allocation  

(Section 4.0) in 10 samples (when Si2 and S2 unknown) 

(*Partially processed job containing a part of the processing time and unprocessed due time)  

 
Calculations of Sample Mean and Estimate of Variance under Arbitrary Allocation 

Random 

Sample 

No. 

Sampled Selected with Processing 

Time (k=9) 

Processed 

∑ witi̅’ 

 

 

Unprocessed 

(t1*+t2*+t3*)/3 

es2=
 1

(𝑟−1)
 ∑ (𝑡i

∗ −𝑡̅ ∗)𝑟
𝑖=1

2 

Sample 

 Mean 

(𝑢̅) 

V(𝑢̅)arbit 

Group1 

K1=4 

Group2 

K2=4 

 

Group3 

K3=4 

      

 

1.  

30,43,33,30* 

Mean=35.33 

t1*=25 

(es1)2=46.33 

60,84,67,59* 

Mean=70.33 

t2*=39 

(es2)2=152.33 

138,112,109,101*        

Mean=119.6 

t3*=61 

(es3)2=254.33 

70.88 
      41.6 

(es)2=37.66 

 

56.24 
112.478   

2. 

33,46,40,20* 

Mean=39.6 

t1*=15 

(es1)2=50.26 

69,58,59,60* 

Mean=62 

t2*=35 

(es2)2= 37 

109,101,112,143* 

Mean=107.33 

t3*=88S 

(es3)2= 32.33 

65.77 
46 

(es)2 =1423 
55.88 430.07   

3. 

20,46,30,40* 

Mean=32 

t1*=25 

(es1)2=172 

59,72,79,69* 

Mean=70 

t2*=39 

(es2)2=103 

147,138,101,123* 

Mean=128.6 

t3*=56 

(es3)2=594.33 

71.99 
40 

(es)2 =241 
55.99 86.66   

4. 

40,22,26,33* 

Mean=29.33 

t1* =23 

(es1)2=89.33 

74,84,60,58* 

Mean=72.66 

t2*=29 

(es2)2=146.79 

131,109,123,112* 

Mean=121 

t3*=67 

(es3)2=124 

70.20 
39.77 

(es)2 =557 
54.98 176.44   

5. 

43,29,30,20* 

Mean=34 

t1*= 15 

(es1)2 = 61 

79,67,58,60* 

Mean=68 

t2*=35 

(es2)2= 111 

123,143,112,101* 

Mean= 126 

t3*=65 

(es3)2=247 

71.18 
38.33 

(es)2 =634 
54.75 198.63   

6. 

20,22,29,43* 

Mean=23.66 

t1*=28 

(es1)2=22.80 

59,72,84,67* 

Mean=71.66 

t2*=47 

(es2)2=156.33 

101,109,123,131* 

Mean= 111 

t3*=81 

(es3)2=124 

65.33 
52 

(es)2 =721 
58.66 224.36 

7. 

30,29,20,26* 

Mean=26.33 

t1*=19 

(es1)2=30.33 

59,69,72,58* 

Mean=66.66 

t2*=38 

(es2)2=46.33 

101,147,109,112* 

Mean=119 

t3*=66 

(es3)2=604 

66.29 
41 

(es)2=559 
53.64 176.34 

8. 

30,26,33,29* 

Mean=29.66 

t1* =24 

(es1)2= 12.33 

72,58,74,60* 

Mean=68 

t2*=44 

(es2)2=76 

112,131,101,123* 

Mean=114.66 

t3*=68 

(es3)2=230.33 

66.79 
45.33 

(es)2 =486 
56.06 151.44 

9. 

40,29,30,46* 

Mean=33 

t1*=26 

(es1)2=37 

60,58,67,79* 

Mean=61.66 

t2*= 49 

(es2)2=23.57 

109,112,131,101* 

Mean= 117.33 

t3*=79 

(es3)2= 142.33 

66.05 
51.33 

(es)2 =707 
58.69 215.38 

10. 

20,43,40,22* 

Mean=34.33 

t1*=16 

(es1)2=156.5 

79,58,60,59* 

Mean=65.66 

t2*=34 

(es2)2=134.33 

123,101,112,143* 

Mean= 112 

t3*=73 

(es3)2 =121 

66.71 
41 

(es)2 =849 
53.85 265.19 
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Table 13: Estimated values of Variances over 10 samples as per table 6.7 (when Si2 and S2 are unknown) 

 

 Sample Number 1 2 3 4 5 6 7 8 9 10 

Sample Mean (u̅ ) 56.24 55.88 55.99 54.98 54.75 58.66 53.64 56.06 58.69 53.85 

Est[V(u̅)arbit ] 112.478 430.07 86.66 176.44 198.63 224.36 176.34 151.44 215.38 265.19 

Est[V(u̅)
I
] 113.65 431.86 90.26 180.95 201.02 227.11 175.22 151.93 216.11 271.09 

Est[V(u̅)II] 242.29 453.07 333.11 261.55 317.58 308.78 405.65 253.46 273.94 349.22 

 

Calculation of Confidence Interval (CI): 

 

A. The 95% Confidence Interval of the sample mean 𝐮̅ is defined as: 

Probability [(𝐮̅) ± 𝟏. 𝟗𝟔 √𝐯(𝐮̅) ] = 0.95. The interpretation of C.I. is that it is an interval where 

the chance of laying the unknown true value of mean time is 95%. 

B. In another way, the 95% chance is that unknown mean processing time of all N processes 

will lie in the confidence interval. 

C. Table 8, 9, and 10 present the computation of confidence intervals for different types of 

allocations. When Si2, S2 treated unknown.  
 

Table 14: Confidence Interval Calculation under Arbitrary Allocation [using Table 6 and 7] 

 

 Sample Number 1 2 3 4 5 6 7 8 9 10 

Sample Mean (𝐮̅ ) 56.24 55.88 55.99 54.98 54.75 58.66 53.64 56.06 58.69 53.85 

Est.[ V(𝒖̅)arbit] 112.478 430.07 86.66 176.44 198.63 224.36 176.34 151.44 215.38 265.19 

Estimate of Confidence 

Interval for Est[ V(𝐮̅)arbit ] 

(35.45, 

77.02) 

(15.23, 

81.28) 

(37.74, 

74.23) 

(28.94, 

81.01) 

(27.12, 

82.37) 

(29.30, 

88.01) 

(27.61, 

79.66) 

(31.94, 

80.17) 

(29.92, 

87.45) 

(21.93, 

85.76) 

 

Table 15: Confidence Interval Calculation for Type-A Allocation [using Table 9 and 10] 

 

Sample  Number 1 2 3 4 5 6 7 8 9 10 

Sample Mean (𝐮̅ ) 56.24 55.88 55.99 54.98 54.75 58.66 53.64 56.06 58.69 53.85 

Est.V(𝒖̅)I 113.65 431.86 90.26 180.95 201.02 227.11 175.22 151.93 216.11 271.09 

Estimate  of Confidence  

Interval for Est[ V(𝐮̅)I ] 

(35.34, 

77.13) 

(15.14, 

96.61) 

(37.36, 

74.61) 

(28.61, 

81.34) 

(26.96, 

82.53) 

(29.12, 

88.19) 

(27.69, 

79.58) 

(31.90, 

80.21) 

(29.87, 

87.5) 

(21.57, 

86.12) 

                                                 
Table 16: Confidence Interval Calculation for Type-B Allocation [using Table 11 and 12] 

 

 Sample  Number 1 2 3 4 5 6 7 8 9 10 

Sample Mean (𝐮̅ ) 56.24 55.88 55.99 54.98 54.75 58.66 53.64 56.06 58.69 53.85 

Est.[V(𝒖̅)II] 242.29 453.07 333.11 261.55 317.58 308.78 405.65 253.46 273.94 349.22 

Estimate  of Confidence  

Interval for Est[ V(𝐮̅)II] 

(25.73, 

86.74) 

(14.16, 

97.59) 

(20.21, 

91.76) 

(23.28, 

86.67) 

(19.82, 

89.67) 

(24.21, 

93.1) 

(14.16, 

93.11) 

(24.85, 

87.26) 

(26.24, 

91.13) 

(17.22, 

90.47) 
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Fig. 2: Fig. 3: & Fig 4: Graphical Representation of Estimated CI under Arbitrary, Type-A and Type-B 

Allocation over 10 samples  

 

The graphical representation in Fig. 2, 3, 4 shows wide gap between the upper and lower limit. The 

Fig 2 shows the smallest length interval. 

 

8.1 Simulation of Confidence Interval under Arbitrary Allocation: 

8.1.1 Simulation Algorithm: 

Step I:      Draw a random sample of size k. 

Step II:    Compute the lower limit and upper limit of confidence interval (CI) under three 

allocations.  

Step III:  Repeat step I and II for d times (here d =200 considered) 

Step IV: Let fi be the frequency of ith class interval for lower limit (LL) of CI over d=200 samples. 

Calculate    probabilities pi = (fi/d) = (frequency of class interval /Total frequency d). 

Similar is for upper limit (UL) CI. 

Step V:   Compute the Less than Type (LTT) and more than Type (MTT) cumulative 

probabilities overall d samples for lower limit (LL) and upper limit (UL) of confidence 

intervals. 

Step VI: Plot data of step IV on the graph. The perpendicular from point of intersection on the 

x-axis is the simulated value of lower limit and upper limit of a confidence interval for 

unknown parameters required to be estimated. 

 

Table 17: Cumulative Probability-based Simulation for Arbitrary Allocation (over d=200) 

 
The lower limit of Confidence Interval The upper limit of Confidence Interval 

Class  

Interval 

(LL) 

Mid-

value of 

class 

interval 

   Probability 

Pi 

Cumulative  

probabilities 
Class  

Interval 

(UL) 

   Mid-

value of 

class 

interval 

  Probability 

Pi 

Cumulative 

probabilities 

LTT MTT LTT MTT 

10-15 12.5 0.01 0.01 1 70-75 72.5 0.09 0.09 1 

15-20 17.5 0.12 0.13 0.99 75-80 77.5 0.23 0.32 0.91 

20-25 22.5 0.15 0.28 0.87 80-85 82.5 0.42 0.74 0.68 

25-30 27.5 0.43 0.71 0.72 85-90 87.5 0.23 0.97 0.26 

30-35 32.5 0.18 0.89 0.29 90-95 92.5 0.03 1.00 0.03 

35-40 37.5 0.10 0.99 0.01 Total  1.00   

40-45 42.5 0.01 1.00 0      

Total  1.00        
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Fig 5: & Fig 6: Graphical representation for LTT & MTT for Arbitrary Allocation 

 

Table 18: Simulated values of C I under Arbitrary Allocation (using Table 12, Fig 5 & Fig. 6) 

 
Simulated values of Lower Limit of C I Simulated values of Upper Limit of C I 

24.5 79.5 

 

Fig. 5.and Fig. 6 is revealing point of intersection of two curves. The final value is determined 

by perpendicular drawn on the X-axis. The table 18 contains the estimated value, based on 

perpendicular, which is (24.5, 79.5).    

 

Simulation of Confidence Interval under Type-A Allocation: 

 

Table 19 Sample mean and variance calculation for Type-A allocation (over 10 samples) 

 

Sample 

Number 

Sampled Selected with Processing  Time 

(k=9) Processed 

∑ witi̅’ 

Unprocessed 

(t1*+t2*+t3*)/3 

es2=
 𝟏

(𝒓−𝟏)
 ∑ (𝒕𝐢

∗ −𝒕̅ ∗)𝒓
𝒊=𝟏

2  

Sample 

Mean 

(𝒖̅) 

V(𝒖̅)I 

 Group1 

K1=(3) 

Group2 

K2=(3) 

Group3 

K3=(6) 

1. 

30,43,33* 

Mean=36.5 

t1*=25 

(es1)2= 

42.25 

60,84,67* 

Mean=72 

t2*=37 

(es2)2= 144 

138,112,109, 

101,143,123*        

Mean=120.6 

t3*=83 

(es3)2= 279.44 

72.19 
48.33 

(es)2=937.8 
60.26 293.31 

2. 

33,46,40* 

Mean=39.5 

t1*=20 

(es1)2=  

42.25 

69,58,59* 

Mean=63.5 

t2*=34 

(es2)2= 

30.25 

109,101,112, 

143,147,131* 

Mean=122.4 

t3*=81 

(es3)2= 355.04 

70.25 
45 

(es)2= 1021 
57.62 312.19 

3. 

20,46,30* 

Mean=33 

t1*=20 

(es1)2= 169 

59,72,79* 

Mean=65.5 

t2*=49 

(es2)2= 

42.25 

147,138,101, 

123,112,109* 

Mean=124.2 

t3*=59 

(es3)2=279.76 

68.91 
42.66 

(es)2= 274.12 
55.78 94.93 

4. 

40,22,26* 

Mean=31 

t1* =20 

(es1)2=81 

74,84,60* 

Mean=79 

t2*=31 

(es2)2= 25 

131,109,123, 

112,101,143* 

Mean=115.2 

t3*=100 

(es3)2=112.19 

71.78 
50.33 

(es)2=1880.83 
61.05 570.43 

5. 

43,29,30* 

Mean=39 

t1*= 15 

(es1)2 = 176 

79,67,58* 

Mean=73 

t2*=35 

(es2)2= 36 

123,143,112, 

101,109,147* 

Mean=117.6 

t3*=75 

(es3)2=211.04 

72.64 
41.66 

(es)2=934.16 
57.15 292.54 

6. 
20,22,29* 

Mean=21 

59,72,84* 

Mean=65.5 

101,109,123, 

131,143,112* 
64.69 

52 

(es)2=964 
58.34 356.33 

0

0,2

0,4

0,6

0,8

1

1,2

72,5 77,5 82,5 87,5 92,5

0

0,2

0,4

0,6

0,8

1

1,2

72,5 77,5 82,5 87,5 92,5

LTT

MTT



Diwakar Shukla, Sarla More 

MODIFIED GROUP LOTTERY SCHEDULING ALGORITHM FOR READY 

QUEUE MEAN TIME ESTIMATION IN MULTIPROCESSOR ENVIRONMENT 

RT&A, No 4 (59) 
Volume 15, December 2020 

 

80 

t1*=20 

(es1)2= 1 

t2*=54 

(es2)2= 

42.25 

Mean121.4 

t3*=82 

(es3)2=226.24 

7. 

30,29,20* 

Mean=29.5 

t1*=25 

(es1)2= 0.25 

59,69,72* 

Mean=64 

t2*=42 

(es2)2= 25 

101,147,109, 

112,138,123* 

Mean=121.4 

t3*=73 

(es3)2=317.84 

66.89 
46.66 

(es)2=593.26 
56.77 192.63 

8. 

30,26,33* 

Mean=28 

t1* =22 

(es1)2= 4 

72,58,74* 

Mean=65 

t2*=50 

(es2)2= 49 

112,131,101, 

123,109,131* 

Mean=115.2 

t3*=90 

(es3)2=112.16 

65.19 
54 

(es)2=1168 
59.59 353.95 

9. 

40,29,30* 

Mean=34.5 

t1*=21 

(es1)2= 

30.25 

60,58,67* 

Mean=59 

t2*= 47 

(es2)2= 1 

109,112,131, 

123,143,101* 

Mean=123.6 

t3*=79 

(es3)2=155.84 

67.11 
49 

(es)2= 844 
58.05 255.55 

10. 

20,43,40* 

Mean=31.5 

t1*=30 

(es1)2= 

132.25 

79,58,60* 

Mean=68.5 

t2*=35 

(es2)2 = 

110.25 

123,101,112, 

143,147,138* 

Mean=125.2 

t3*=78 

(es3)2 = 311.36 

66.12 
47.66 

(es)2=697.28 
56.89 223.97 

 

Table 20: Confidence Interval for Type-A Allocation (using Table 19) 

 
Confidence Interval for Type-A Allocation 

 Sample Number 1 2 3 4 5 6 7 8 9 10 

Sample Mean (𝐮̅ ) 60.26 57.62 55.78 61.05 57.15 58.34 56.77 59.59 58.05 56.89 

Est.[V(𝒖̅)I ] 293.31 312.19 94.93 570.43 292.54 356.33 192.63 353.95 255.55 223.97 

Estimate of 

confidence interval 

for Est[ V(𝐮̅)I ] 

(26.69, 

93.82) 

(22.98, 

92.25) 

(36.68, 

74.87) 

(14.23, 

106.61) 

(23.62, 

90.67) 

(21.34, 

95.33) 

(29.56, 

83.97) 

(22.71, 

96.46) 

(26.71, 

89.38) 

(27.55, 

86.22) 

 

V
al

u
es

 o
f 

C
 I

 

 
 Sample Number using Table 19 

  

Fig 7: Graphical Representation of Confidence Interval for Type-A Allocation 

 

Table 21: Cumulative Probabilities Simulation for Type-A Allocation (over d=200) 
The lower limit of Confidence Interval The upper limit of Confidence Interval 

Class 

Interval 

(LL) 

Mid-value 

of class 

interval 

Probabilit

y 

Pi 

Cumulative 

probabilities 

Class 

Interval 

(UL) 

Mid-value 

of class 

interval 

Probabi

lity 

Pi 

Cumulative  

Probabilities 

LTT MTT LTT MTT 

10-15 12.5 0.01 0.01 1 70-75 72.5 0.02 0.02 1 

15-20 17.5 0.18 0.19 0.99 75-80 77.5 0.15 0.17 0.98 

20-25 22.5 0.22 0.41 0.81 80-85 82.5 0.17 0.34 0.83 

25-30 27.5 0.32 0.73 0.59 85-90 87.5 0.35 0.69 0.66 

30-35 32.5 0.15 0.88 0.27 90-95 92.5 0.31 1.00 0.31 

35-40 37.5 0.12 1.00 0.12 Total  1.00   

Total  1.0        
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Fig 8: & Fig 9: Graphical representation for Lower limit & Upper limit for Type-A allocation 

  

Table 22: Simulated values of CI under Type-A Allocation (using Table 9, Fig 8 & Fig. 9) 

 
Simulated values of Lower 

Limit of C I 

Simulated values of 

Upper Limit of C I 

23.5 83.5 

Fig. 8 and Fig. 9 are revealing point of intersection of two curves. The final value is determined 

by perpendicular drawn on the X-axis. Table 22 contains the estimated value, based on the 

perpendicular, which is (23.5, 83.5).     

 

Simulation of Confidence Interval for Type-B Allocation: 

Table 23: Sample Mean and Variance Calculation for Type-B Allocation (over 10 samples) 

Random 

sample 

Sampled Selected with Processing  Time 

(k=9) Processed 

∑ 𝐰𝐢𝐭̅𝐢’ 

Unprocessed 

(t1*+t2*+t3*)/3 

es2=
 𝟏

(𝒓−𝟏)
 ∑ (𝒕𝐢

∗
−𝒕̅ ∗)𝒓

𝒊=𝟏
2 

Sample 

Mean 

(𝒖̅) 

V(𝒖̅)II 

 Group1 

K1=(2) 

Group2 

K2=(2) 

Group3 

K3=(8) 

1. 

30,20* 

Mean=30 

t1*=20 

(es1)2=30 

 

59,60* 

Mean=59 

t2*=60 

(es2)2=59 

 

123,101,112,143, 

147,138,109,131* 

Mean=124.71 

t3*=131 

(es3)2=331.48 

65.92 
51.66 

(es)2=1909.36 
58.79 579.42 

2. 

40,33* 

Mean=40 

t1*=33 

(es1)2=40 

 

69,74* 

Mean=69 

t2*=74 

(es2)2=69 

 

123,101,112,143, 

147,138,131,109* 

Mean=127.85 

t3*=109 

(es3)2= 286.27 

74.04 
56.66 

(es)2=1234.46 
65.35 377.46 

3. 

43,20* 

Mean=43 

t1*=20 

(es1)2=43 

 

67,58* 

Mean=67 

t2*=58 

(es2)2=67 

 

123,101,112,143, 

147,109,131,138* 

Mean=123.71 

t3*=138 

(es3)2= 306.23 

73.15 
53.33 

(es)2=2033.86 
63.24 617.62 

4. 

40,29* 

Mean=40 

t1*=29 

(es1)2=40 

 

33,58* 

Mean=33 

t2*=58 

(es2)2=33 

 

123,101,112,143, 

138,109,131,147* 

Mean=122.42 

t3*=147 

(es3)2= 247.95 

58.22 

53.33 

(es)2=2158.86 

 

55.77 652.91 

5. 

46,22* 

Mean=46 

t1*=22 

(es1)2=46 

 

58,59* 

Mean=58 

t2*=59 

(es2)2=58 

 

123,101,112,147, 

138,109,131,143* 

Mean= 123 

t3*=143 

(es3)2= 277.66 

70.36 

51.66 

(es)2=2234.36 

 

61.01 677.44 

6. 

30,40* 

Mean=30 

t1*=40 

(es1)2=30 

 

59,72* 

Mean=59 

t2*=72 

(es2)2=59 

 

101,143,147,138, 

109,131,143,112* 

Mean=130.28 

t3*=112 

(es3)2= 328.90 

67.37 
56.66 

(es)2=759.46 
62.01 234.36 
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7. 

43,26* 

Mean=43 

t1*=26 

(es1)2=43 

 

59,69* 

Mean=59 

t2*=69 

(es2)2=59 

 

112,143,147,138, 

109,131,101,123* 

Mean= 125.85 

t3*=123 

(es3)2= 336.90 

70.51 
60 

(es)2=2575 
65.25 779.92 

8. 

26,30* 

Mean=26 

t1*=30 

(es1)2=26 

 

69,58* 

Mean=69 

t2*=58 

(es2)2=69 

 

123,101,112,143, 

147,138,109,131* 

Mean=124.71 

t3*=131 

(es3)2= 331.48 

68.60 
55 

(es)2=1975 
61.8 601.96 

9. 

22,29* 

Mean=22 

t1*=29 

(es1)2=22 

 

94,59* 

Mean=94 

t2*=59 

(es2)2=94 

 

123,101,112,143, 

147,138, 131,109* 

Mean= 127.85 

t3*=109 

(es3)2=286.27 

78.10 
51.66 

(es)2=1259.36 
64.88 385.75 

10. 

20,33* 

Mean=20 

t1*=33 

(es1)2=20 

 

59,79* 

Mean=59 

t2*=79 

(es2)2=59 

 

123,101,112,143, 

147,109,131,138* 

Mean=123.71 

t3*=138 

(es3)2= 307.47 

62.36 

64 

(es)2=1948 

 

63.18 590.45 

 

Table 24: Confidence Interval for Type-B Allocation (using Table 10.1) 
Confidence Interval for Type-B Allocation 

Random sample 1 2 3 4 5 6 7 8 9 10 

Sample Mean (𝐮̅ )  58.79 65.35 63.24 55.77 61.01 62.01 65.25 61.8 64.88 63.18 

Est.[V(𝒖̅)II] 579.42 377.46 617.62 652.91 677.44 234.36 779.92 601.96 385.75 590.45 

Estimate of 

confidence interval 

for Est.[V(𝐮̅)II ] 

(11.61, 

105.96) 

(27.27, 

103.42) 

(14.53, 

111.94) 

(5.68,105.85 

) 

(9.99, 

112.02) 

(32.00, 

92.01) 

(10.51, 

119.98) 

(13.71, 

110.5) 

(26.38, 

103.37) 

(15.55, 

111.26) 

 

E
st
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 Sample Number using Table 10.1 

 

Fig 10: Graphical Representation for Type-B Allocation 

 

Table 25: Cumulative Probabilities Simulation for Type-B Allocation (over d=200) 

 
The lower limit of the confidence interval The upper limit of the confidence interval 

Class 

Interval 

(LL) 

Mid-value 

of class 

interval  

Probability 

Pi 

Cumulative 

probabilities 

Class 

Interval 

(UL) 

Mid-value 

of class 

interval 

Probability 

Pi 

Cumulative 

probabilities 

LTT MTT LTT MTT 

10-15 12.5 0.04 0.04 1 70-75 72.5 0.01 0.01 1 

10-15 17.5 0.15 0.19 0.96 75-80 77.5 0.12 0.13 0.99 

15-20 22.5 0.17 0.36 0.81 80-85 82.5 0.21 0.34 0.87 

20-25 27.5 0.20 0.56 0.64 85-90 87.5 0.32 0.66 0.66 

25-30 32.5 0.25 0.81 0.44 90-95 92.5 0.34 1.00 0.34 

30-35 37.5 0.19 1.00 0.19 Total  1.00   

Total  1        
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Upper Limit) 

 

Fig 11: & Fig 12: Graphical representation for Lower limit & Upper limit Type-B allocation 

Confidence Interval 

 

Table 26: Simulated values of CI under Type-B Allocation 

 
Simulated values of Lower Limit of C I Simulated values of Upper Limit of C I 

25.5 84.5 

 

Fig. 11 and Fig. 12 are revealing point of intersection of two curves. Final value is determined by 

perpendicular drawn on the X-axis. Table 26 contains the estimated value, based on the 

perpendicular, which is (25.5, 84.5).     

 

11. Results, Discussion and Conclusion: 

The comparative analysis is stated in table 27 

 

Table 27: Comparative Analysis of Variance and Confidence Interval Range 

 

Strategy 
True Value 

of Mean 
Variance of Mean 95% Confidence Interval CI 

Arbitrary allocation 73.33 450.92 [24.5, 79.5] 

Type-A allocation 73.33 442.08 [23.5, 83.5] 

Type-B allocation 73.33 611.452 [25.5, 84.5] 

         

Algorithm MGLS considers a possibility that some processes remain unprocessed while time 

instant T occurs which was not considered in GL scheduling [5]. As a consequence, the processes 

in a sample drawn are divided into two parts A and B. The part A incorporates those who 

processed and part B has partially processed at the breakdown instant T.  

 

Specific assumption herein is that the last process remains unfinished while T appears in every 

processor. Estimation procedure proposed herein is such as from whole population of jobs in 

system, some processes are randomly selected and using the sample estimates mean time and 

variance of the mean time of processed jobs, as well as the variance of partially processed jobs. The 

estimation procedure is categorized for arbitrary allocation of sample units to processors.  

 

Further, content has two special cases Type-A allocation and Type-B allocation. The Type-A 

allocation is based on available prior information of processor speed and Type-B allocation is 

based on available prior information of variability along with processor speed. In all types of 

allocations, attempt has been made to find out which allocation will provide the lowest variance 

(efficient). 

 

For the sake of convenience and simplicity, 30 processes present in system have been considered 

where groups of ready queues are formed. In particular, three groups Group 1, Group 2, and 
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Group 3 are formed having some processes according to pre-determined CPU time. Table 5 shows 

the pre-defined speed of processors.  For the arbitrary allocation of sampled processes, the sample 

mean and variance are calculated with the setup shown in table 12 and subsequently in table 19 

and table 23. For the special cases, the processor speed and variability of processors is considered. 

The variance of the Type-A and Type-B allocation is calculated and compared. This can be seen in 

Table 4. Table 5 which reveal the comparison between them relating to variance of allocations.  

 

The simulation procedure is proposed and the confidence intervals Prob.[(u̅ ) ± 1.96√V(u̅)] are 

calculated and represented in graphical form. Over a large number of samples, the confidence 

interval of Type-A and Type-B allocation are calculated and displayed in graphical representation. 

For obtaining a single-valued result, it has been introduced the calculation of cumulative 

probabilities and the LTT and MTT probabilities of lower and upper limits of the confidence 

interval are measured. Observing all the calculated data and the final table, one can conclude that 

the Type-A allocation is an efficient scheme to find out the predictive estimate and it is the best one 

among all who tested.  

 

It was found that estimation of mean times lies within the length of the confidence interval. The 

improvement suggests over [5] is fruitful and provides better results.  The sample-based procedure 

of estimation of the mean time is more efficient under the Type-A allocation scheme. Such 

estimates are useful when the system fails suddenly and the system manager needs time 

estimation for processing the remaining jobs in the queue. This approach helps in the immediate 

arrangement of resources while disaster management required.  

 

References 

 
[1] More S, and, Shukla D. (2020) Some new methods for ready queue processing time 

estimation problem in a multiprocessor environment. Social networking and computational 

intelligence, Lecture notes in networks and systems, Springer, Singapore, and Available at 

doi.org/10.1007/978-981-15-2071-6_54, 100: 661-670 

[2]  More, Sarla and, Shukla, Diwakar, Analysis, and Extension of Methods in Ready Queue 

Processing Time Estimation in Multiprocessor Environment. Proceedings of International 

Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), 

Amity University Rajasthan, Jaipur-India, Available at SSRN: https://ssrn.com/ abstract = 

3356312 or https:// dx.doi.org/ 10.2139/ SSRN 3356312, February 26-28, 2019. 

 [3]  More, Sarla and Shukla, Diwakar "A Review on Ready Queue processing time estimation 

problem and methodologies used in multiprocessor environment". International Journal of 

computer science and engineering, Available at https://doi.org/10.26438/ijcse/v6i5.11511155, 

Vol.6, Issue 5, pp. 1186-1191, 2018 

[4]    Shukla D., Jain Anjali, and Choudhary Amita, "Estimation of Ready Queue Processing Time 

under SL Scheduling Scheme in Multiprocessors Environment", International Journal of 

Computer Science and Security, ISSN: 1985-1553, volume 4, Issue 1, 2010. 

[5]  Shukla D., Jain Anjali and Choudhary Amita, "Estimation of ready queue processing time 

under usual group lottery scheduling (GLS) in multiprocessor environment", International 

Journal of Computer Applications, Vol.8, No.14, 2010. 

[6]   Shukla D., Jain Anjali and Choudhary Amita, "Prediction of Ready Queue Processing Time 

in Multiprocessor Environment using Lottery Scheduling (ULS)", International Journal of 

Computer Internet and Management, Vol.18, No.3, pp 58-65, 2010. 

[7]  Shukla D., and Jain Anjali, "Analysis of Ready Queue Processing Time under PPS-LS and 

SRS-LS Scheme in Multiprocessing Environment", GESJ: Computer Science and 

Telecommunications, vol. 33, No.1, 2012. 

[8]  Shukla D., and Jain Anjali, "Estimation of Ready Queue Processing Time using Efficient 

https://ssrn.com/%20abstract%20=%203356312
https://ssrn.com/%20abstract%20=%203356312
https://doi.org/10.26438/ijcse/v6i5.11511155


Diwakar Shukla, Sarla More 

MODIFIED GROUP LOTTERY SCHEDULING ALGORITHM FOR READY 

QUEUE MEAN TIME ESTIMATION IN MULTIPROCESSOR ENVIRONMENT 

RT&A, No 4 (59) 
Volume 15, December 2020 

 

85 

Factor Type Estimator (E-F-T) in Multiprocessor Environment", International Journal of 

Computer Applications. Vol. 48, No.16, 2012. 

[9]   Shukla D. and Jain Anjali, "Ready Queue Mean Time Estimation in Lottery Scheduling using 

Auxiliary Variables in Multiprocessor Environment", International Journal of Computer 

Applications, Vol. 55, No.13, 2012. 

[10]  Jain Anjali and Shukla Diwakar, "Estimation of Ready Queue Processing Time using Factor 

Type (F-T) Estimator in Multiprocessor Environment", COMPUSOFT, An international 

journal of advanced computer technology, Vol. 2, Issue 8, 2013. 

[11]   Shukla D., Jain Anjali and Verma Kapil, "Estimation of Ready Queue Processing Time using 

Transformed Factor-Type (T-F-T) Estimator in Multiprocessor Environment", International 

Journal of Computer Applications (0975 – 8887), Volume 79, No 16, 2013. 

[12]  Carl. A. Waldspurger and E William Weihl, "Lottery Scheduling: Flexible Proportional Share 

Resource Management", The 1994 Operating Systems Design and Implementation 

conference (OSDI '94), Monterey, California, 1994. 

[13]  Cochran, W.G, "Sampling Technique", Wiley Eastern Publication, New Delhi, 2005. 

 

 

Received: August 27, 2020 

Accepted: November 15, 2020 

 

 

https://www.usenix.org/legacy/publications/library/proceedings/osdi/full_papers/waldspurger.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi/full_papers/waldspurger.pdf


Yung-Fu Cheng 

EM ALGORITHM FOR ESTIMATING THE BURR XII PARAMETERS IN 

PARTIALLY ACCELERATED LIFE TESTS 

RT&A, No 4 (59) 
Volume 15, December 2020 

 

86 

 

EM Algorithm for Estimating the Burr XII Parameters in 

Partially Accelerated Life Tests 
 

Yung-Fu Cheng 
• 

Research Center for Testing and Assessment 

National Academy for Educational Research, Taiwan 

yfjeng@gmail.com 

 

 

Abstract 

 
In this paper, I present maximum likelihood estimation via the expectation-maximization 

algorithm to estimate the Burr XII parameters and acceleration factor in step-stress partially 

accelerated life tests under multiple censored data. In addition, the asymptotic variance and 

covariance matrix of the estimators are derived by using the complete and missing information 

matrices, and confidence intervals of the parameters are obtained. The simulation results show 

that the maximum likelihood estimation via the expectation-maximization algorithm performs 

well in most cases in terms of the absolute relative bias, the root mean square error, and the 

coverage rate. Furthermore, a numerical example is also given to demonstrate the performance of 

the proposed method. 

 

Keywords: partially accelerated life test, acceleration factor, Burr XII distribution,  

maximum likelihood estimation, EM algorithm 

 

 

I. Introduction 
 

Generally, life testing of products under normal conditions usually requires a long period of time. 

Long-term testing will increase the test cost and will take a lot of time. Accelerated life test (ALT) is 

one of the solutions that can avoid above problems. ALT has been successfully applied to obtain 

information about product life quickly and economically under more severe operating conditions. 

Stress conditions, such as, cycling rate, load, voltage, pressure, vibration, and temperature are the 

most common methods in practice. The acceleration factor in ALT is usually assumed to be a 

known value. On the contrary, the acceleration factor in partial accelerated life testing (PALT) is 

usually assumed as an unknown value. Constant stress, step stress and progressive stress are three 

major stress types of PALT. Progressive stress is a more complicated PALT approach among these 

major stress types. In a constant-stress test, test units are run at some unchanged constant level of 

stress. In a step-stress test, the level of stress can be changed at a specified time, and this kind of 

test method is called step-stress partially accelerated life test (SS-PALT).  

 

The Burr XII distribution is widely applied in reliability engineering because of its many 

advantages. Rodriguez (1977) showed that the area in the (
1 2,   ) plane corresponding to the 

Burr XII distribution is wide and it covers various well-known distributions. Zimmer et al. (1998) 

presented the statistical and probabilistic properties of the Burr XII distribution, and described its 

connection with other distributions used in reliability analysis. The Burr XII distribution has been 

applied in reliability analysis widely. Wingo (1993) formatted the MLE to fit the Burr XII 

distribution through the use of multiple censored data. Ali Mousa (1995) estimated the parameters 

of the Burr XII distribution with Type II censored data for an ALT model by using the Bayes 
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method. Wang et al. (1996) presented the MLE for obtaining point and interval estimates of the 

Burr XII parameters. Watkins (1999) developed an algorithm for calculating the MLE of the three-

parameter Burr XII distribution. As to the parameter estimation of the Burr XII distribution in SS-

PALT, Abd-Elfattah et al. (2008) investigated the maximum likelihood method for the parameters 

of the Burr XII distribution in SS-PALT under type I censored data. Abdel-Ghaly et al. (2008) 

considered the estimation problem of the Burr-XII distribution in SS-PALT using censored data. 

Abdel-Hamid (2009) estimated the parameters of the Burr XII distribution with progressive Type II 

censoring for a CS-PALT model by using the MLE method. Cheng and Wang (2012) compared 

the performance of the maximum likelihood estimates of the Burr XII parameters for CS-

PALT. So, it has been shown that the Burr XII distribution is a flexible model and is 

recommended for modeling in the reliability analysis and ALTs. 

 

The MLE via the Newton-Raphson algorithm is very sensitive to its initial parameter estimation 

value. Other options can be adopted to avoid the above problem, for example, the expectation-

maximization (EM) algorithm. EM algorithm is an iterative algorithm approach applied in a 

variety of incomplete data problems (Dempster et al., 1977). EM algorithm can be used in data sets 

with missing values, censored and grouped observations, or models with truncated distributions. 

EM algorithm involves two steps, the E-step and the M-step. In the E-step, the expected 

values of the complete data sufficient statistics are computed. In the M-step, parameter 

estimates that maximize the complete data likelihood are solved by using the conditional 

expected value that computed in the E-step. Both steps of the iterations are repeated until the 

parameter estimates converge. The development and application of EM algorithms are getting 

more and more mature. Louis (1982) derived a procedure for extracting the observed information 

matrix when EM algorithm is used to find maximum likelihood estimates in incomplete data 

problems. In reliability analysis, EM algorithm has been commonly used. Ng et al. (2002) 

presented the MLE via EM algorithm to estimate the lognormal and the Weibull parameters 

with progressively type II censored data. Acusta et al. (2002) proposed an estimator of the 

probability density function when the data is randomly censored, obtained through an EM 

algorithm, for solving a maximum likelihood problem. Balakrishnan and Kim (2004) used EM 

algorithm to find the maximum likelihood estimates under type II right censored samples from a 

bivariate normal distribution. Park (2005) presented the MLE via EM algorithm to estimate the 

exponential and lognormal parameters with complex data including: fully-observed, 

censored, and partially-masked. Cheng and Wang (2012) presented the performance of the 

maximum likelihood estimates of the Burr XII parameters for CS-PALT by using EM 

algorithm.  

 

In this paper, I present the performance of the maximum likelihood estimates via EM algorithm for 

the Burr XII parameters in SS-PALT under multiple censored data in terms of the absolute relative 

bias, the root mean square error, and the coverage rate. The asymptotic variance and covariance 

matrix of the estimators are also derived. Then, the confidence intervals of the parameters can be 

obtained. In addition, an illustrative example is used to demonstrate the proposed method. 

 

II. Model in step-stress PALT under multiple censored data 
 

The probability density function and cumulative distribution function of the two-parameter Burr 

XII distribution are given by  

 

( )
( )

1

1
; , , 0, 0, 0

1

c

k
c

kct
f t c k t c k

t

−

+
=   

+

                               (1) 
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( )
( )

1
; , 1 , 0, 0, 0

1
k

c
F t c k t c k

t
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+
                          (2) 

where the parameters c and k are the shape parameters of the distribution. 

 

In SS-PALT, the test unit is first run at normal condition and if the unit does not fail or be censored 

before the specified time,  , the test is switched to a stress condition for testing until the unit fails 

or be censored. Then, the total lifetime X of the unit in SS-PALT is given by 

 

( )1

,

,

T T
X

T T



   −


= 

+ − 
                                                         (3) 

where T is the lifetime of an unit at normal condition,   is the stress change time and   is the 

acceleration factor ( 1  ). I assume that the lifetime of the test unit follows a two-parameter Burr 

XII distribution. Therefore, the CDF and PDF of total lifetime X of an item are given by 
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where c > 0, k > 0, β > 1, and 
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Suppose that there are 
1 fn  failures and 1cn  units with censoring at normal condition. Also, 

I assume that there are  
2 fn  failures and 2cn  units with censoring at stress condition. Let 

( ), 1,i f
 , ( ), 1,i c

  , ( ), 2,i f
 , ( ), 2,i c

  be indicator functions, which (1, f) of the indicator function 

denotes that the sample unit fails before the stress change time,  , and (1, c) denotes that 

the unit is censored before the time,  . Also, (2, f ) denotes that the unit fails after the time, 

 . (2, c) denotes that the unit is censored after the time,  . Furthermore, the equations are 

obtained as follows. 
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( ) 1, 1,
1

n

fi f
i

n
=

=  , 
( ) 1, 1,

1

n

ci c
i

n
=

=  , 
( ) 2, 2,

1

n

fi f
i

n
=

=  , 
( ) 2, 2,

1

n

ci c
i

n
=

= , 
1 1 1f cn n n= + , and 

2 2 2f cn n n= +

. 

 

III. Complete-data likelihood function via EM algorithm 

 

Let ( )1 , ,
T

T T

n=y y y  denote the observed data where ( ),
T

i i id =y
 
and i  = 0 (censored) or 1 

(failure). As seen in the observations, ix  is censored or uncensored at id  (i = 1,…,n). Then, the 

probability density function of the Burr XII distribution, given i ix d  is calculated as follows: 

Let ( ) i ia x  = + −   ( ) i iA X  = + −   ( ) i iD d  = + −  

 

( )
( )

( )
( )

1

1

1

1

1 , ,
1( )

( )
1 ( )

1 , ,
1

c
k

c i
i i i ik

c

i
i

i i i c
ki c i

i i i ik
c

i

x
kc d x d d

xf x
f x x d

F d a
D kc x d d

a



 

−

+

−

+


+  

+
 = = 

−  +  


+


 (6) 

 

the complete data likelihood function of the Burr XII distribution can be expressed as 

 

( ) ( ) ( ) ( ) ( ) ( ), 1, , 1, , 2, , 2,

1 1

, , ; , , ( ) ( ) ( ) ( )i f i c i f i c

n n

c c i i i i i

i i

L c k f x c k f x f x f x f x
   

 
= =

= =    (7) 

 

the complete data log-likelihood function of the Burr XII distribution is then expressed as 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

2

, 1, , 1,
1 1

, 1, , 1,
1 1

, 2, , 2,
1 1

, 2,

log , , log ; , ,

log log log

1 log 1 log 1

1 log 1 log 1

1 log 1 log 1

1 log

n

c c i

i

n n
c

i ii f i f
i i

n n
c

i ii c i c
i i

n n
c

i ii f i f
i i

ii c

L c k f x c k

n k n c n

c x k x

c x k x

c a k a

c a

 



 

 

 



=

= =

= =

= =

=      

= + +

+ − − + +

+ − − + +

+ − − + +

+ −



 

 

 

( ) ( ) ( ), 2,
1 1

1 log 1
n n

c

ii c
i i

k a
= =

− + + 

    (8) 

 

then, the Q-function

 

of

 

the Burr XII distribution is obtained as
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

, 1, , 1,
1 1

, 1, , 1,
1 1

, 2, , 2,
1 1

, 2,

log , , | log log log

1 log 1 log 1

1 log 1 log 1

1 log 1 log 1

1 log

c

n n
c

i ii f i f
i i

n n
c

i i i i i ii c i c
i i

n n
c

i ii f i f
i i

i c

E L c k n k n c n

c d k d

c E X X d k E X X d

c D k D

c E A

 

 

 

 



= =

= =

= =

= + +  

+ − − + +

 + −    − + +    

+ − − + +

+ −

 

 

 

y

( ) ( ) ( ) ( ), 2,
1 1

1 log 1
n n

c

i i i i i ii c
i i

X d k E A X d
= =

    − + +     

 (9) 

 

For the E-step, ( )( );
m

Q ψ ψ  can be calculated, where ψ  denotes the set of parameters, c, k and β 

and ( )m
ψ  denotes the set of estimates, ( )m

c , ( )m
k  and ( )m

 , in m-th iteration. 

 

( )( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

2

, 1, , 1,
1 1

, 1, , 1,
1 1

, 2, , 2,
1 1

; log , , |

log log log

1 log 1 log 1

1 log 1 log 1

1 log 1 log 1

m

m m

cm

n n
c

i ii f i f
i i

n n
c

i i i i i ii c i c
i i

n n
c

i ii f i f
i i

Q E L c k

n k n c n

c d k d

c E X X d k E X X d

c D k D

c





 

 

 

= =

= =

= =

=   

= + +

+ − − + +

 + −    − + +    

+ − − + +

+ −

 

 

 

ψ

ψ ψ

ψ ψ y

( ) ( ) ( )
( ) ( ) ( ) ( )

( ), 2, , 2,
1 1

1 log 1 log 1
m m

n n
c

i i i i i ii c i c
i i

E A X d k E A X d 
= =

    − + +     ψ ψ

    

(10) 

 

For the M-step, ( )1m+
ψ  is the specific value of ψ  that maximizes ( )( );

m
Q ψ ψ ; that is, 

( ) ( )( ) ( )( )1
; ;

m m m
Q Q

+
ψ ψ ψ ψ . The E and M steps repeatedly iterative compute until the 

estimates of parameters converge to the default value. The above term in equation (10), 

𝐸𝛙(𝑚)[𝑙𝑜𝑔(𝑋𝑖) |𝑋𝑖 > 𝑑𝑖], can be directly solved by using Monte Carlo method. However the other 

terms,
( )

( )log 1 |
m

c

i i iE X X d + 
 ψ

, 𝐸𝛙(𝑚)[𝑙𝑜𝑔(𝐴𝑖) |𝑋𝑖 > 𝑑𝑖] and 𝐸𝛙(𝑚)[𝑙𝑜𝑔(1 + 𝐴𝑖
𝑐) |𝑋𝑖 > 𝑑𝑖]   can 

not be directly solved using Monte Carlo method because the unknown parameter, c and β, exists 

within the terms, 𝑙𝑜𝑔(1 + 𝑋𝑖
𝑐), 𝑙𝑜𝑔(𝐴𝑖) and 𝑙𝑜𝑔(1 + 𝐴𝑖

𝑐), where 𝐴𝑖 = 𝜏 + 𝛽(𝑋𝑖 − 𝜏). To decompose 

these terms, Taylor series expansion can be applied to decompose these terms, 𝑙𝑜𝑔(1 + 𝑋𝑖
𝑐), 𝑙𝑜𝑔(𝐴𝑖) 

and 𝑙𝑜𝑔(1 + 𝐴𝑖
𝑐), and then Monte Carlo method can be applied to compute the integral.  

 

For the Burr XII distribution, the variance-covariance matrix of parameters c, k and β is obtained as 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

2

2 2 2

2

2

log log log

ˆ ˆˆ ˆ ˆ, ,

log log logˆ ˆ ˆ ˆˆ, , 1

ˆ ˆ ˆ ˆˆ, , log

L L L
E E E

c c k cVar c Cov c k Cov c

L L L
Cov c k Var k Cov k E E E

c k k k

Cov c Cov k Var L
E E

c






  



       
     

          
 

         = −                  
 

     
 
  

1

2 2

2

log logL L
E

k  

−

 
 
 
 
 
 
 

    
          

      (11) 

 

where E symbolizes expectation and L denotes log-likelihood function. The observed information 

(𝐼𝑜𝑏𝑠) can be used to construct the variance-covariance matrix and confidence intervals for c, k and 

β. Complete (𝐼𝑐𝑜𝑚𝑝) and missing (𝐼𝑚𝑖𝑠𝑠) information can be used to calculate the rate of convergence 

of EM algorithm. Louis (1982) showed that the observed information presents the difference 

between complete information and missing information within the framework of EM algorithm. 

The equation is expressed as 𝐼𝑜𝑏𝑠 obsI =
compI -𝐼𝑚𝑖𝑠𝑠.  𝐼𝑐𝑜𝑚𝑝 

and 𝐼𝑚𝑖𝑠𝑠 are obtained in Appendix. 

Therefore, the variance-covariance matrix of parameters c, k and β can be obtained by inverting the 

observed information matrix and is given by 

 

[

𝑉𝑎𝑟(𝑐̂) 𝐶𝑜𝑣(𝑐̂, 𝑘̂) 𝐶𝑜𝑣(𝑐̂, 𝛽̂)

𝐶𝑜𝑣(𝑐̂, 𝑘̂) 𝑉𝑎𝑟(𝑘̂) 𝐶𝑜𝑣(𝑘̂, 𝛽̂)

𝐶𝑜𝑣(𝑐̂, 𝛽̂) 𝐶𝑜𝑣(𝑘̂, 𝛽̂) 𝑉𝑎𝑟(𝛽̂)

] = [𝐼𝑐𝑜𝑚𝑝(𝑐, 𝑘, 𝛽; 𝐲) − 𝐼𝑚𝑖𝑠𝑠(𝑐, 𝑘, 𝛽; 𝐲)]
−1

           

(12) 

 

Thus, an approximate (1- )100% confidence intervals for c, k and β are obtained as 

 

( )
2

ˆ ˆc z var c  , ( )
2

ˆ ˆk z var k and ( )
2

ˆ ˆz var 
                                     

(13) 

where 
2

z  is a standard normal variate. 

 

IV. Observed-data likelihood function via BFGS algorithm 

 
The MLE based on observed-data likelihood function of the Burr XII distribution with multiple 

censored data in a SS-PALT is given by 

 

( ) ( ) ( ) ( );1, ;1, ;2, ;2,

1

1 1
n

i f i c i f i c

i

L f x F x f x F x
=

   = − −   
.

                                      (14) 

 

The log-likelihood function is obtained as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 ;1, ;1, ;1,

1 1 1

2 2 2 ;2, ;2, ;2,

1 1 1

log log log 1 log 1 log 1 log 1

log log log 1 log 1 log 1 log 1 ,

n n n
c c

f f i f i f i c

i i i

n n n
c c

f f f i f i c i c

i i i

L n c n k c x k x k x

n n c n k c a k a k a

= = =

= = =

= + + − − + + − +

+ + + + − − + + − +

  

  

 (15)

 

 

where ( );2, ;2,i f i fa x  = + −  and ( );2, ;2,i c i ca x  = + −
.
 

 

The estimates of c, k, and β are obtained by setting the first partial derivatives of the log-likelihood 
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to zero with respect to c, k , and β, respectively. The simultaneous equations are given as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1

1 ;1, ;1, ;1, ;1,

1 1

1 1

;1, ;1, 2 ;2,;1,

1 1

1 1

;2, ;2, ;2, ;2,;2, ;2,

1 1

log / log 1 log 1

log log1

1 log log 0,1 1

n n
c c

f i f i f i f i f

i i

n n
c c

i c i c f i fi c

i i

n n
c cc c

i f i f i c i ci f i c

i i

L c n c x k x x x

k x x n c ax

k a a k a aa a

−
−

= =

− −

= =

− −

= =

  = + − + +

− + ++

− + − =+ +

 

 

 

 (16) 

( ) ( )

( ) ( )

1

1 ;1, ;1,

1 1

1

2 ;2, ;2,

1 1

log log 1 log 1

log 1 log 1 0,

n n
c c

f i f i c

i i

n n
c c

f i f i c

i i

L k n k x x

n k a a

−

= =

−

= =

  = − + − +

+ − + − + =

 

   (17)

 

( ) ( ) ( ) ( )( )

( )( )

1
1 1 1

;2,2 ;2, ;2, ;2,

1 1

11

;2, ;2, ;2,

1

log 1 1 1

0.1

n n
c c

i ff i f i i f i f

i i

n
c c

i c i c i c

i

xL n c a k ca x a

k ca x a

  



−
− − −

= =

−−

=

−  = + − − + − +

− − =+

 

   (18)

 

 

BFGS algorithm is then applied for solving these simultaneous equations to obtain the estimated 

values of c ,

 

k , and β. The initial estimates of the parameters are chosen using pseudo complete 

estimates which the samples are completely treated as failures. The asymptotic variance-

covariance matrix of c, k , and β is established as 

 

( ) ( ) ( )
1

1 2ˆ ; log T

obsVar I L
−

−  = = −   ψ ψ x ψ ψψ ,                                   (19) 

 

where ψ  denotes the set of c, k, and β. Thus, the approximate (1- )100% confidence intervals for 

c, k, and β are obtained as 

 

( )
2

ˆ ˆc z var c , ( )
2

ˆ ˆk z var k
 
and ( )

2
ˆ ˆz var  ,

                         
(20) 

 

where 2z  is the 100(1 / 2)−  percentile of the standard normal distribution. 

 

V. Simulation study 

 
The method in Wang, Cheng and Lu (2012) was used for generating multiple censored samples. 

Censored samples were randomly generated from the Burr XII distribution with specified values 

of c, k and β. The simulation included the following conditions: sample sizes n = 100, 200; the stress 

change time, τ = 0.5, 1.5; censoring level CL = 0.2. Here we considered (c, k, β) = (1, 0.5, 1.25), (1, 0.5, 

2), (1, 1, 1.25), (1, 1, 2), (2, 0.5, 1.25), (2, 0.5, 2),(2, 1, 1.25), (2, 1, 2), (2, 2, 1.25) and (2, 2, 2) as true 

parameter values. For each data set, 1000 replications are simulated. To assess the performance of 

the MLE via EM algorithm, I consider three major measures including the absolute relative bias 

(ARB), the root mean squared error (RMSE) , and the coverage rate (CR).  

 

They are defined as follows: 
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1) ( )1
1
ˆˆARB( ) N
ii c cc N c−

 = −= , ( )1
1

ˆ ˆARB( ) N
i ik N kk k

−
 == −  and 

( )1
1

ˆ ˆARB( ) N
iiN  

−
 == − , 

2) 
1 2

1
ˆ ˆ( ) ( )N

iiRMSE c N c c−
 == − , 

1 2
1

ˆ ˆ( ) ( )N
iiRMSE k N k k−

 == −  and 

1 2
1

ˆ ˆ( ) ( )N
iiRMSE N  −

 == − , 

3) The coverage rate at the 95% confidence intervals for c, k and β is based on N simulations, 

where 
1

1
ˆN
iic N c−

 ==  , 
1

1
ˆN
iik N k−

 == , 
1

1
ˆN
iiN −

 == , and N = 1,000. 

 

The simulation results for the multiple censored with CL=0.2 for sample sizes 100 and 200 are 

presented in Tables 1-2. The following conclusions were observed. 

 

1) For the sample size of 100 in Table 1, EM algorithm provides lower levels of ARB and RMSE 

for parameters c, k, and β than BFGS algorithm does in most scenarios. EM algorithm 

estimates perform better than BFGS algorithm does, the proportion accounting for 68.3% (41 

cases/60 cases) for ARB and 71.7% (43 cases/60 cases) for RMSE. This indicates that EM 

algorithm performs better than BFGS algorithm does in this simulation study. 

2) For the sample size of 100 in Table 1, the 95% C.I. is calculated for parameters c, k, and β. In 

most scenarios, EM algorithm provides higher levels of CR for parameters c, k, and β than 

BFGS algorithm does. EM algorithm estimates perform better than BFGS algorithm does, the 

proportion accounting for 100% (60 cases/60 cases). The average values of CR are 95.6% for 

EM algorithm and 72.0% for BFGS algorithm. This indicates that EM algorithm performs 

better than BFGS algorithm does in this simulation study. 

3) For the sample size of 200 in Table 2, the results are similar with those for the sample size of 

100. EM algorithm estimates perform better than BFGS algorithm does, the proportion 

accounting for 58.3% (35 cases/60 cases) for ARB and 65.0% (39 cases/60 cases) for RMSE. EM 

algorithm estimates perform better than BFGS algorithm does, the proportion accounting for 

73.3% (44 cases/60 cases) for CR. The average values of CR are 93.9% for EM algorithm and 

88.6% for BFGS algorithm. 

4) With the sample size of complete data increasing from 100 to 200, EM algorithm and BFGS 

algorithm estimates for parameters c, k, and β are more accurate and have fewer errors, and 

lower ARB and RMSE. 

 
Table 1: ARB, RMSE and CR of the estimates with n = 100. 

k c β τ Parameters 

BFGS algorithm EM algorithm 

ARB RMSE 
CR 

(%) 
ARB RMSE 

CR 

(%) 

    k 0.1480 0.1728 62.4 0.1461 0.1677 90.7 

1 0.5 1.25 0.5 c 0.1084 0.0692 89.2 0.1010 0.0652 99.7 

    β 0.3148 0.4633 44.9 0.2644 0.4025 87.7 

    k 0.1479 0.1717 63.0 0.1347 0.1601 91.4 

1 0.5 2 0.5 c 0.1036 0.0661 90.6 0.1015 0.0652 99.2 

    β 0.2947 0.6911 49.2 0.2544 0.6264 89.2 

    k 0.1288 0.1505 74.4 0.1265 0.1487 97.4 

1 1 1.25 0.5 c 0.1046 0.1384 90.2 0.1021 0.1349 99.5 

    β 0.2272 0.3456 64.7 0.2045 0.3117 95.8 

    k 0.1296 0.1543 72.1 0.1150 0.1407 98.3 

1 1 2 0.5 c 0.0981 0.1280 90.9 0.1028 0.1315 99.7 

    β 0.2235 0.5401 67.1 0.2299 0.5481 94.2 

    k 0.1431 0.3294 64.2 0.1505 0.3404 92.0 

2 0.5 1.25 0.5 c 0.0871 0.0558 93.4 0.0831 0.0523 99.6 

    β 0.2383 0.3631 59.0 0.2080 0.3209 96.3 

    k 0.1369 0.3176 67.4 0.1217 0.2849 95.3 
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2 0.5 2 0.5 c 0.0856 0.0549 93.7 0.0903 0.0578 99.3 

    β 0.2435 0.5978 57.7 0.2433 0.5905 94.5 

    k 0.1423 0.3341 65.8 0.1340 0.3145 96.9 

2 1 1.25 0.5 c 0.0921 0.1204 90.6 0.0879 0.1130 99.8 

    β 0.2343 0.3538 64.9 0.2020 0.3101 98.3 

    k 0.1425 0.3354 64.6 0.1128 0.2747 98.1 

2 1 2 0.5 c 0.0963 0.1259 88.0 0.1069 0.1385 99.2 

    β 0.2459 0.5962 64.0 0.2257 0.5507 94.6 

    k 0.1827 0.4300 55.7 0.1325 0.3338 98.2 

2 2 1.25 0.5 c 0.0849 0.2105 92.2 0.1016 0.2526 99.8 

    β 0.2377 0.4180 79.7 0.1904 0.3279 99.4 

    k 0.1807 0.4256 54.8 0.1610 0.4157 99.6 

2 2 2 0.5 c 0.0805 0.2029 94.2 0.1295 0.3319 99.6 

    β 0.2329 0.6224 77.9 0.2243 0.5268 95.3 

    k 0.1605 0.0935 60.0 0.1508 0.0891 91.4 

0.5 1 1.25 1.5 c 0.1313 0.1734 82.5 0.1339 0.1712 98.1 

    β 0.2792 0.4255 55.4 0.2310 0.3533 91.5 

    k 0.1573 0.0927 62.9 0.1461 0.0874 91.9 

0.5 1 2 1.5 c 0.1227 0.1635 85.9 0.1234 0.1628 99.0 

    β 0.2592 0.6214 59.5 0.2373 0.5795 91.2 

    k 0.1226 0.0731 77.3 0.1672 0.0981 90.4 

0.5 2 1.25 1.5 c 0.0987 0.2407 89.2 0.1331 0.3307 99.5 

    β 0.2117 0.3364 74.0 0.2007 0.3091 97.9 

    k 0.1217 0.0723 78.3 0.1489 0.0896 92.6 

0.5 2 2 1.5 c 0.0948 0.2315 90.1 0.1333 0.3554 99.5 

    β 0.2045 0.5196 75.5 0.2186 0.5354 95.1 

    k 0.1592 0.1822 56.1 0.1542 0.1767 87.5 

1 0.5 1.25 1.5 c 0.1066 0.0682 89.9 0.1047 0.0674 98.9 

    β 0.3348 0.5185 42.8 0.2703 0.4126 88.3 

    k 0.1481 0.1713 62.5 0.1411 0.1641 90.3 

1 0.5 2 1.5 c 0.1019 0.0650 91.4 0.1069 0.0675 99.1 

    β 0.3152 0.7462 43.4 0.2740 0.6668 88.9 

    k 0.1511 0.1756 58.7 0.1517 0.1774 89.0 

1 1 1.25 1.5 c 0.0927 0.1221 92.7 0.0927 0.1242 99.0 

    β 0.2241 0.3389 65.0 0.2157 0.3251 96.6 

    k 0.1499 0.1738 61.3 0.1370 0.1601 92.4 

1 1 2 1.5 c 0.0971 0.1256 91.6 0.1046 0.1330 99.5 

    β 0.2300 0.5519 61.8 0.2238 0.5417 94.7 

    k 0.1721 0.1883 52.9 0.1706 0.1876 89.0 

1 2 1.25 1.5 c 0.0879 0.2233 91.4 0.0852 0.2125 99.1 

    β 0.2461 0.4011 69.6 0.2206 0.3670 99.1 

    k 0.1700 0.1872 52.4 0.1534 0.1738 89.8 

1 2 2 1.5 c 0.0882 0.2284 92.9 0.0894 0.2292 99.1 

    β 0.2402 0.6245 66.4 0.2250 0.6059 98.5 

 
Table 2: ARB, RMSE and CR of the estimates with n = 200. 

k c β τ Parameters 

BFGS algorithm EM algorithm 

ARB RMSE 
CR 

(%) 
ARB RMSE 

CR 

(%) 

    k 0.1508 0.1660 78.2  0.1473  0.1616  81.2  

1 0.5 1.25 0.5 c 0.0711 0.0455 99.2  0.0743  0.0478  98.8  

    β 0.2466 0.3757 85.2  0.1990  0.3043  93.0  

    k 0.1484 0.1650 76.4  0.1334  0.1496  85.9  

1 0.5 2 0.5 c 0.0693 0.0444 99.0  0.0760  0.0479  99.2  

    β 0.2342 0.5641 85.8  0.2042  0.5030  92.1  

    k 0.1408 0.1581 100.0  0.1352  0.1515  89.0  

1 1 1.25 0.5 c 0.0753 0.0971 98.6  0.0759  0.0974  99.1  

    β 0.1647 0.2510 97.9  0.1561  0.2368  98.2  

    k 0.1369 0.1563 99.2  0.1206  0.1410  91.7  

1 1 2 0.5 c 0.0716 0.0922 99.0  0.0799  0.1033  99.1  

    β 0.1650 0.4029 98.6  0.1721  0.4149  95.9  

    k 0.1426 0.3155 66.7  0.1351  0.2970  81.8  
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2 0.5 1.25 0.5 c 0.0630 0.0396 97.9  0.0612  0.0379  99.0  

    β 0.1960 0.2975 74.1  0.1781  0.2736  97.2  

    k 0.1441 0.3176 63.5  0.1220  0.2738  88.4  

2 0.5 2 0.5 c 0.0612 0.0394 97.9  0.0707  0.0445  98.8  

    β 0.1968 0.4826 74.4  0.2002  0.4909  94.5  

    k 0.1448 0.3255 70.4  0.1244  0.2817  91.8  

2 1 1.25 0.5 c 0.0640 0.0830 97.2  0.0641  0.0817  99.4  

    β 0.1880 0.2884 89.4  0.1548  0.2302  99.3  

    k 0.1445 0.3240 72.2  0.1029  0.2425  97.4  

2 1 2 0.5 c 0.0650 0.0827 97.8  0.0761  0.0958  98.3  

    β 0.1819 0.4532 91.1  0.1733  0.4092  96.5  

    k 0.1556 0.3650 97.0  0.1130  0.2798  97.6  

2 2 1.25 0.5 c 0.0637 0.1588 99.9  0.0790  0.1994  99.2  

    β 0.1594 0.2723 99.4  0.1446  0.2255  99.3  

    k 0.1534 0.3619 96.9  0.1172  0.2882  99.3  

2 2 2 0.5 c 0.0651 0.1621 99.7  0.1089  0.2649  98.6  

    β 0.1632 0.4386 99.6  0.1880  0.4362  96.8  

    k 0.1656 0.0921 84.4  0.1525  0.0857  82.7  

0.5 1 1.25 1.5 c 0.0931 0.1204 98.9  0.0908  0.1147  98.5  

    β 0.2053 0.3156 94.9  0.1715  0.2636  94.0  

    k 0.1599 0.0896 82.9  0.1475  0.0842  85.5  

0.5 1 2 1.5 c 0.0845 0.1135 98.6  0.0966  0.1262  99.3  

    β 0.2012 0.4938 94.0  0.1805  0.4461  92.5  

    k 0.1351 0.0761 90.2  0.1570  0.0884  83.5  

0.5 2 1.25 1.5 c 0.0704 0.1716 99.2  0.0823  0.2116  99.6  

    β 0.1619 0.2558 95.6  0.1430  0.2146  98.2  

    k 0.1337 0.0752 92.4  0.1446  0.0827  87.1  

0.5 2 2 1.5 c 0.0698 0.1717 99.2  0.0892  0.2341  99.2  

    β 0.1427 0.3658 94.2  0.1450  0.3584  96.6  

    k 0.1569 0.1722 66.2  0.1466  0.1617  75.5  

1 0.5 1.25 1.5 c 0.0695 0.0449 98.5  0.0719  0.0448  99.5  

    β 0.2454 0.3697 71.9  0.1939  0.3028  95.6  

    k 0.1616 0.1754 61.3  0.1431  0.1575  83.0  

1 0.5 2 1.5 c 0.0686 0.0438 99.0  0.0752  0.0475  99.0  

    β 0.2301 0.5617 74.0  0.1996  0.4927  92.8  

    k 0.1542 0.1683 67.5  0.1509  0.1663  75.6  

1 1 1.25 1.5 c 0.0677 0.0871 98.6  0.0688  0.0875  99.1  

    β 0.1779 0.2689 83.7  0.1609  0.2451  98.2  

    k 0.1545 0.1697 66.5  0.1367  0.1544  80.2  

1 1 2 1.5 c 0.0666 0.0842 99.1  0.0752  0.0935  99.6  

    β 0.1714 0.4153 85.4  0.1796  0.4242  97.3  

    k 0.1436 0.1596 73.3  0.1347  0.1509  80.4  

1 2 1.25 1.5 c 0.0603 0.1521 99.6  0.0616  0.1566  99.8  

    β 0.1864 0.2935 85.0  0.1612  0.2483  98.4  

    k 0.1395 0.1547 75.4  0.1225  0.1384  88.5  

1 2 2 1.5 c 0.0641 0.1601 98.6  0.0706  0.1787  99.5  

    β 0.1742 0.4363 86.2  0.1722  0.4117  97.5  

 

VI. Illustrative example 
 

To illustrate the proposed MLEs via EM algorithm for the Burr XII distribution in SS-PALT, one 

data set from a light-emitting diode (LED) life test was used. The life test data with 1,000 hours of 

unit are as follows: 

 

0.02*, 0.03*, 0.08*, 0.11*, 0.13*, 0.14*, 0.15*, 0.19*, 0.21*, 0.25*, 0.25*, 0.27, 0.28*, 0.31, 0.33, 0.35, 0.37*, 

0.42, 0.43*, 0.44*, 0.46, 0.46, 0.49, 0.51, 0.51, 0.55*, 0.56, 0.58, 0.58*, 0.59, 0.59*, 0.6, 0.71, 0.71*, 0.73, 

0.73, 0.73, 0.78, 0.79*, 0.81, 0.84, 0.87, 0.89, 0.9, 0.92, 0.92, 0.95, 1.01, 1.02, 1.06, 1.07, 1.08, 1.24, 1.24*, 

1.25, 1.26, 1.31, 1.5*, 1.51*, 1.52*, 1.53*, 1.54, 1.55*, 1.56, 1.57*, 1.64, 1.64*, 1.65*, 1.67, 1.69, 1.7*, 1.83, 

1.91, 2.03, 2.1*, 2.36, 2.78, 4.67 
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There are 78 samples with stress change time, τ = 1.5 and censoring level CL = 0.4. The samples of 

failure and censoring in the two phases of SS-PALT, respectively, are 36 failures in phase 1, 21 

censoring in phase 1, 11 failures in phase 2 and 10 censoring in phase 2. The symbol “*” denotes 

multiple censored values. The histogram of the samples is illustrated in Figure 1 and the plot of the 

probability density function is illustrated in Figure 2. The initial estimates for the parameters were 

chosen by using pseudo complete estimates. Here, the pseudo complete estimates are computed 

from the samples which are completely treated as failures. Using the MLE with EM algorithm, the 

estimates are converged to 2.538 for c, 0.776 for k and 1.795 for β. The information matrices based 

on EM algorithm are obtained as 

 

17.1297 25.1871 3.9065

25.1871 129.4696 10.3786

3.9065 10.3786 3.5688

compI

 
 =
 
  

 

6.0889 14.6162 1.6656

14.6162 51.4559 4.4966

1.6656 4.4966 1.4097

missI

 
 =
 
  

 

11.0408 10.5709 2.2409

10.5709 78.0137 5.8820

2.2409 5.8820 2.1591

obs comp missI I I

 
 = − =
 
  

 

 

Then, the asymptotic variance-covariance matrix based on EM algorithm can be obtained as 

 

1

0.1191 0.0086 0.1003

0.0086 0.0168 0.0367

0.1003 0.0367 0.6673

obsI
−

− − 
 = − −
 
− −  

 

 

Then, the 95% confidence intervals, (1.862, 3.214) for c, (0.521, 1.031) for k and (0.194, 3.396) for β 

are obtained. The rates of convergence of c, k and β computed by ( ) ( ) ( )ˆ ˆ ˆ/miss compJ I I=ψ ψ ψ  are 

0.355 for c, 0.397 for k and 0.395 for β, respectively. 

 

 
Figure 1: Histogram of the samples 

 
Figure 2: Probability density plot 
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VII. Conclusion 

 
The lifetime of products under normal conditions usually requires a long period of time, which 

makes the test costly. Accelerated life test is used to obtain information about the lifetime of 

products quickly and economically under more severe operation conditions. In this paper, I 

present maximum likelihood estimation via EM algorithm to estimate the Burr XII parameters and 

acceleration factor in SS-PALT under multiple censored data. Simulation results show that the 

MLE via EM algorithm perform well in most cases in terms of the absolute relative bias, the root 

mean square, and the coverage rate. The simulation results and a real data analysis show the MLE 

via EM algorithm is a better alternative for estimating the Burr XII parameter in SS-PALT with 

multiple censored data. 

 

Appendix: 

 
The second partials of the complete data log-likelihood function for calculating elements of the 

complete information matrix are calculated. Then, the expected values of the second partials of the 

complete data log-likelihood function are obtained as 
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The expected values of the second partials of the complete data log-likelihood function can also be 

computed by using Monte Carlo integral. Then, the complete information becomes 
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Now, the missing information matrix by using the likelihood function of X given Y can be derived 

and is given as follows 
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Then, the log-likelihood function of X given Y is expressed as 
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The second partials of the log-likelihood functions for calculating elements of missing information 

matrix can be calculated. The expected values of the second partials of the log-likelihood function 

of X given Y are calculated as 
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The expected values of the second partials of the log-likelihood functions can also be computed by 

using Monte Carlo integral. Thus, the missing information matrix can be computed from equations 

(22-26) and is expressed as following: 
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Abstract 
 

This paper studies an 𝑀/𝑀/1 queueing system with second optional service, correlated reneging 

and working vacations. All arriving customers require the first essential service whereas only a 

portion of them require a second optional service. The matrix geometric method is used to 

compute the stationary probability distribution of the system size. Further, various system 

performance measures are obtained and a cost optimization problem is considered using bat 

algorithm (BA). A variety of numerical illustrations are summarized in tables and graphs to 

provide an insight into the performance characteristics of the studied model.  

 

Keywords: first essential service, second optional service, single working 

vacation, multiple working vacations, correlated reneging 

 

I. Introduction 
 

Vacation queues have been one of the intensive research topics for long time. There has been a 

considerable attention paid to the queueing models with server vacations, see Doshi [4]. During 

the vacation period, the server can be utilized for ancillary work, for example, in web services, file 

transfer services, manufacturing systems, etc. Such queueing model was first introduced by Servi 

and Finn [17] in an 𝑀/𝑀/1 queueing system with working vacations and applied those results to 

analyze the performance of gate way router in communication networks. Later, Selvaraju and 

Goswami [16] have considered a single server impatient customers Markovian queueing system 

with single working vacation (SWV) and multiple working vacations (MWV). Rajadurai et al. [14] 

gave an analysis of a single server feedback retrial queueing system with subject to server 

breakdown and repair under MWV policy using probability generating function technique. 

As for optional service, Madan [10] first investigated an 𝑀/𝐺/1 queueing system with 

second optional service (SOS), in which some of the customers may require a SOS immediately 

after completion of the first essential service (FES). Using matrix geometric method, Jain and 

Chauhan [5] was able to approximate working vacation (WV) queueing system with SOS and 

unreliable server. Batch arrival bulk service queue with unreliable server, SOS and two different 

types of vacations has been investigated by Ayyappan and Supraja [2]. Manoharan and Sasi [11] 

discussed an 𝑀/𝐺/1 queueing system with SOS and second optional vacation. A retrial queueing 

system with SOS under Erlang services has been investigated by Sekar et al. [15] using matrix 

geometric method. 

mailto:*vijaya_iit2003@yahoo.co.in
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Naturally, server vacations increase the waiting time of the customers. Due to longer wait 

in the queue, some customers may get discouraged and may decide to leave the queue without 

receiving the service (reneging). Such type of situations occur in real life like customers waiting in 

call centers, hospital emergency rooms, web services, programs waiting to be processed on a 

computer, etc. Queueing models with reneging have been investigated by many authors like 

Ancker and Gafarian [1], Baruah et al. [3], etc. The transient and steady-state behavior of the 

𝑀/𝑀/1 queue having customers’ impatience with threshold has been discussed in Sharma et al. 

[18]. Mohan [12] introduced the concept of correlation in gambler’s ruin problem. In Kim and Kim 

[7] , waiting time distribution of an 𝑀/𝑀/1 queue was investigated where the inter arrival time 

between the  𝑛𝑡ℎ and (𝑛 + 1)𝑡ℎ customers and the service time of the 𝑛𝑡ℎ customer are correlated 

random variables with Downton’s bivariate exponential distribution. A catastrophic queueing 

model with correlated input for the cell traffic generated by new broadband services has been 

studied by Jain and Kumar [6]. Kumar [8] studied a catastrophic-cum-restorative queueing 

problem with correlated input and impatient customer. There is another concept of correlated 

reneging wherein a customer’s reneging at any time instant depends solely on the previous time 

instants’ reneging or non-reneging. Transient numerical analysis of a single server queueing model 

with correlated reneging, balking and feedback has been carried out by Kumar and Soodan [9]. 

Existing literature shows frequent research topics related with WVs and SOS. However, a 

research gap observes no previous work on SOS, WVs in a queue with correlated reneging. As 

these topics are important in the real life situations, we consider an infinite capacity single server 

queueing system with SOS, WVs and correlated reneging. We have used matrix geometric method 

to obtain the steady state system length distributions. Some performance measures have been 

discussed. We employ the recently developed bat algorithm which was introduced by Yang [19] to 

achieve the optimal values of decision parameters and the expected cost. Particular cases of the 

model have been given. Later, a variety of numerical illustrations have been presented through 

tables and graphs. 

The remainder of the model is structured as follows: Model description and practical 

justification of the model are presented in Section 2. In Section 3, the mathematical formulation of 

the model is given. Matrix geometric solution is given in Section 4. Section 5 is devoted to some 

performance measures, cost model and special cases of the model. Numerical investigations are 

given in the form of tables and graphs in Section 6. Finally, Section 7 concludes our paper.  

 

II. Model Description 
 
      Consider a single server queueing system with SOS, WVs and correlated reneging. The model 

under consideration is schematically represented in Figure 1. 

The queueing model is based on the following assumptions.    

1. Customers arrive according to a Poisson process with rate 𝜆.   

2. The FES is provided to all customers. Immediately after completion of FES, a 

customer may demand SOS with probability 𝑟 or he may leave the system with the 

complementary probability (1 − 𝑟). The service times of both FES and SOS are 

exponentially distributed with parameters 𝜇
1
 and 𝜇

2
, respectively.   

3. At the end of a service, if there is no customer in the system, the server begins a 

WV of random length which is exponentially distributed with parameter 𝜃. 

During WV, service is provided according to a Poisson distribution with 

parameter 𝜂. In SWV, when the server returns from WV period and finds no 

customer in the system, it does not take another WV but remains idle until the 

next arrival. But MWV policy requires the server to keep taking vacations until it 

finds at least one customer waiting in the system at a vacation completion instant. 

When the server returns from its vacation and finds at least one customer in the 
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system, it switches its service rate from 𝜂 to 𝜇
1
 and a busy period starts; otherwise, 

it immediately leaves for another WV.   

4. During WV, customers become impatient and they may renege from the queue. 

The reneging of customers can take place only at the transition marks 𝑡0, 𝑡1, 𝑡2,... 

where 𝐾𝑚 = 𝑡𝑚 − 𝑡𝑚−1, 𝑚 = 1,2,3, .., are random variables with 𝑃[𝐾𝑚 ≤ 𝑥] = 1 −

𝑒𝑥𝑝(−𝛼𝑥); 𝛼 > 0,𝑚 = 1,2,3, . .. 𝑖. 𝑒., the distribution of inter-transition marks is 

negative exponential with parameter 𝛼. The average reneging rate of a customer is 

given by 𝛼𝑛 = 𝑛𝛼, 𝑛 ≥ 1.   

5. The reneging at two consecutive transition marks is governed by the following 

transition probability matrix: 

                                  To       𝑡𝑟 
                                           0     1         

                From 𝑡𝑟−1  
0

1
‖
𝑞
00

𝑞
01

𝑞
10

𝑞
11
‖ 

 where 𝑞
00

+𝑞
01
= 1 and 𝑞

10
+ 𝑞

11
= 1. 

Here, 0 refers to no reneging and 1 refers to the occurrence of reneging. 

Thus, the reneging at two consecutive transition marks is correlated.  

 

 
Figure 1: General structure of the model. 

 

2.1 Practical Justification of the Model 

 
 The above discussed model has real time applications in electronic commerce (also known 

as E-commerce) which is a process of buying and selling of products, making money transfers and 

transferring data over an electronic medium. The whole E-commerce process can be divided into 

three main components, viz. receiving orders, processing order information and shipping. Cross-

selling is a sales technique to increase sales by suggesting additional items to customers. When the 

sales are at their lowest, E-commerce merchant carries out the tasks like contacting suppliers and 

important clients, managing accounts up to date, etc. The speed of a service process will take a hit 

during this time and the customers may cancel the orders as they anticipate longer wait. If an order 

is canceled (not canceled) at any time instant, then there is a chance that an order may or may not 

be canceled at next time instant. Here, orders, selling of products, cross-selling, maintaining 

accounts, canceling of orders at time instants can be represented by the arrivals, FES, SOS, WV, 

correlated reneging, respectively in basic queueing situations.  
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III. Mathematical Formulation of the Model 
 
    At time 𝑡, let 𝑁(𝑡) be the number of customers in the queue, 𝐽(𝑡) be the state of the server, which 

is defined as 

𝐽(𝑡)= {

0, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑜𝑛 𝑊𝑉,

1, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑖𝑑𝑙𝑒 𝑜𝑟 𝑏𝑢𝑠𝑦 (𝑆𝑊𝑉)&

    𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑏𝑢𝑠𝑦(𝑀𝑊𝑉)

 

and 𝑆(𝑡) be the state of the customer which is given as 

𝑆(𝑡)={
0, 𝑛𝑜  𝑟𝑒𝑛𝑒𝑔𝑖𝑛𝑔,

1, 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒  𝑜𝑓  𝑟𝑒𝑛𝑒𝑔𝑖𝑛𝑔.
 

The process {𝐿(𝑡), 𝐽(𝑡), 𝑆(𝑡), 𝑡 ≥ 0} defines a continuous-time Markov process with state 

space 𝜒 ={(𝑛, 𝑗, 𝑠): 𝑛 ≥ 0, 𝑗 = 0,1, 𝑠 = 0,1}. For mathematical formulation purpose, we define the 

following steady-state probabilities: 

𝐸0,0,0(𝐸0,0,1) = Probability that the queue is empty, the server is idle, server is on WV, and a 

customer has not reneged (reneged) at the previous transition mark. 

𝐸0,1,0(𝐸0,1,1) = Probability that the queue is empty, the server is idle, server is in busy state, and a 

customer has not reneged (reneged) at the previous transition mark.  

𝑃𝑛,0,0(𝑃𝑛,0,1) = Probability of 𝑛 customers in the queue, the server is not idle, server is on WV, and a 

customer has not reneged (reneged) at the previous transition mark. 

𝑃𝑛,1,0(𝑃𝑛,1,1) = Probability of 𝑛 customers in the queue, the server is not idle, server is rendering 

FES, and a customer has not reneged (reneged) at the previous transition mark. 

𝑄
𝑛,1,0

(𝑄
𝑛,1,1

) = Probability of 𝑛 customers in the queue, the server is not idle, server is rendering 

SOS, and a customer has not reneged (reneged) at the previous transition mark. 

 

Steady-state equations: 

  

 (𝜆 + 𝜔𝜃)𝐸0,0,0 = 𝜂𝑃0,0,0 + (1 − 𝑟)𝜇1𝑃0,1,0 + 𝜇2𝑄0,1,0, (1) 

 (𝜆 + 𝜔𝜃)𝐸0,0,1 = 𝜂𝑃0,0,1 + (1 − 𝑟)𝜇1𝑃0,1,1 + 𝜇2𝑄0,1,1, (2) 

 (𝜆 + 𝜃 + 𝜂)𝑃0,0,0 = 𝜂𝑃1,0,0 + 𝜆𝐸0,0,0, (3) 

 (𝜆 + 𝜃 + 𝜂)𝑃0,0,1 = 𝜂𝑃1,0,1 + 𝜆𝐸0,0,1 + 𝛼[𝑞11𝑃1,0,1 + 𝑞01𝑃1,0,0], (4) 
 (𝜆 + 𝜃 + 𝜂 + 𝑛𝛼)𝑃𝑛,0,0 = 𝜆𝑃𝑛−1,0,0 + 𝜂𝑃𝑛+1,0,0 + 

 𝑛𝛼[𝑞00𝑃𝑛,0,0 + 𝑞10𝑃𝑛,0,1], 𝑛 ≥ 1, (5) 
 (𝜆 + 𝜃 + 𝜂 + 𝑛𝛼)𝑃𝑛,0,1 = 𝜆𝑃𝑛−1,0,1 + 𝜂𝑃𝑛+1,0,1 + 

 (𝑛 + 1)𝛼[𝑞01𝑃𝑛+1,0,0 + 𝑞11𝑃𝑛+1,0,1], 𝑛 ≥ 1, (6) 

 𝜆𝐸0,1,0 = 𝜔𝜃𝐸0,0,0, (7) 

 𝜆𝐸0,1,1 = 𝜔𝜃𝐸0,0,1, (8) 
 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃0,1,0 = 𝜃𝑃0,0,0 + (1 − 𝑟)𝜇1𝑃1,1,0 + 

 𝜇
2
𝑄
1,1,0

+ 𝜔𝜆𝐸0,1,0, (9) 

 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃0,1,1 = 𝜃𝑃0,0,1 + (1 − 𝑟)𝜇1𝑃1,1,1 + 

 𝜇
2
𝑄
1,1,1

+ 𝜔𝜆𝐸0,1,1, (10) 

 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃𝑛,1,0 = 𝜆𝑃𝑛−1,1,0 + (1 − 𝑟)𝜇1𝑃𝑛+1,1,0 + 

 𝜇
2
𝑄
𝑛+1,1,0

+ 𝜃𝑃𝑛,0,0, 𝑛 ≥ 1, (11) 

 (𝜆 + 𝑟𝜇1 + (1 − 𝑟)𝜇1)𝑃𝑛,1,1 = 𝜆𝑃𝑛−1,1,1 + (1 − 𝑟)𝜇1𝑃𝑛+1,1,1 + 

 𝜇
2
𝑄
𝑛+1,1,1

+ 𝜃𝑃𝑛,0,1, 𝑛 ≥ 1, (12) 

 (𝜆 + 𝜇2)𝑄0,1,0 = 𝑟𝜇1𝑃0,1,0, (13) 

 (𝜆 + 𝜇2)𝑄𝑛,1,0 = 𝑟𝜇1𝑃𝑛,1,0 + 𝜆𝑄𝑛−1,1,0, 𝑛 ≥ 1, (14) 

 (𝜆 + 𝜇2)𝑄0,1,1 = 𝑟𝜇1𝑃0,1,1 (15) 

 (𝜆 + 𝜇2)𝑄𝑛,1,1 = 𝑟𝜇1𝑃𝑛,1,1 + 𝜆𝑄𝑛−1,1,1, 𝑛 ≥ 1. (16) 

           

Here, 𝜔 = 1 or 0 correspond to the steady-state equations for SWV or MWV.  
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IV. Matrix Geometric Solution 
 
          Matrix geometric method is used for the analysis of quasi-birth-death (QBD) process with 

continuous time Markov chains whose transition rate matrices have a repetitive block structure. 

The method was developed by Neuts [13]. The transition rate matrix 𝑄 of the Markov chain 

corresponding to the coefficients of equations (1) to (16) has the block tridiagonal form given by: 

𝐐 =

(

 
 
 
 
 
 
 

𝐀0 𝐂0
𝐁1 𝐀1 𝐂1

𝐁2 𝐀2 𝐂1
𝐁3 𝐀3 𝐂1

⋮ ⋮ ⋮
⋮ ⋮ ⋮

𝐁𝑁−1 𝐀𝑁−1 𝐂1
𝐁𝑁 𝐀𝑁 𝐂1

⋮ ⋮ ⋮ )

 
 
 
 
 
 
 

 

 

The transition rate matrix 𝑄 of the QBD process has the sub-matrices given as: 

𝐀0=

{
 
 

 
 
(

−(𝜆 + 𝜃) 0 𝜃 0

0 −(𝜆 + 𝜃) 0 𝜃

0 0 −𝜆 0

0 0 0 −𝜆

) (𝑓𝑜𝑟 𝑆𝑊𝑉),

(
−𝜆 0

0 −𝜆
) (𝑓𝑜𝑟 𝑀𝑊𝑉),

, 

𝐂0=

{
 
 

 
 
(

𝜆 0 0 0 0 0

0 𝜆 0 0 0 0

0 0 𝜆 0 0 0

0 0 0 𝜆 0 0

) (𝑓𝑜𝑟 𝑆𝑊𝑉),

(
𝜆 0 0 0 0 0

0 𝜆 0 0 0 0
) (𝑓𝑜𝑟 𝑀𝑊𝑉),

 

𝐂1 =

(

  
 

𝜆 0 0 0 0 0

0 𝜆 0 0 0 0

0 0 𝜆 0 0 0

0 0 0 𝜆 0 0

0 0 0 0 𝜆 0

0 0 0 0 0 𝜆)

  
 
, 𝐴1 =

(

 
 
 

𝛿1 0 𝜃 0 0 0

0 𝛿1 0 𝜃 0 0

0 0 𝛿3 0 𝑟𝜇
1

0

0 0 0 𝛿3 0 𝑟𝜇
1

0 0 0 0 𝛿4 0

0 0 0 0 0 𝛿4 )

 
 
 
, 

𝐁1=

{
 
 
 
 
 
 

 
 
 
 
 
 

(

 
 
 
 

𝜂 0 0 0

0 𝜂 0 0

(1 − 𝑟)𝜇
1

0 0 0

0 (1 − 𝑟)𝜇
1

0 0

𝜇
2

0 0 0

0 𝜇
2

0 0)

 
 
 
 

(𝑓𝑜𝑟 𝑆𝑊𝑉),

(

 
 
 
 

𝜂 0

0 𝜂

(1 − 𝑟)𝜇
1

0

0 (1 − 𝑟)𝜇
1

𝜇
2

0

0 𝜇
2 )

 
 
 
 

(𝑓𝑜𝑟 𝑀𝑊𝑉),
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𝐁𝑖 =

(

 
 
 
 

𝜂 (𝑖 − 1)𝛼𝑞
01

0 0 0 0

0 𝜂 + (𝑖 − 1)𝛼𝑞
11

0 0 0 0

0 0 (1 − 𝑟)𝜇
1

0 0 0

0 0 0 (1 − 𝑟)𝜇
1

0 0

0 0 𝜇
2

0 0 0

0 0 0 𝜇
2

0 0)

 
 
 
 

, 2 ≤ 𝑖 ≤ 𝑁 − 1, 

𝐁𝑖 =

(

 
 
 
 

𝜂 (𝑁 − 1)𝛼𝑞
01

0 0 0 0

0 𝜂 + (𝑁 − 1)𝛼𝑞
11

0 0 0 0

0 0 (1 − 𝑟)𝜇
1

0 0 0

0 0 0 (1 − 𝑟)𝜇
1

0 0

0 0 𝜇
2

0 0 0

0 0 0 𝜇
2

0 0)

 
 
 
 

, 𝑖 ≥ 𝑁, 

𝐀𝑖 =

(

 
 
 
 

𝛿2 + (𝑖 − 1)𝛼𝑞00 0 𝜃 0 0 0

(𝑖 − 1)𝛼𝑞
10

𝛿2 0 𝜃 0 0

0 0 𝛿3 0 𝑟𝜇
1

0

0 0 0 𝛿3 0 𝑟𝜇
1

0 0 0 0 𝛿4 0

0 0 0 0 0 𝛿4 )

 
 
 
 

, 2 ≤ 𝑖 ≤ 𝑁 − 1, 

𝐀𝑖 =

(

 
 
 
 

𝛿5 + (𝑁 − 1)𝛼𝑞00 0 𝜃 0 0 0

(𝑁 − 1)𝛼𝑞
10

𝛿2 0 𝜃 0 0

0 0 𝛿3 0 𝑟𝜇
1

0

0 0 0 𝛿3 0 𝑟𝜇
1

0 0 0 0 𝛿4 0

0 0 0 0 0 𝛿4 )

 
 
 
 

, 𝑖 ≥ 𝑁. 

where 𝛿1 = −(𝜆 + 𝜃 + 𝜂),𝛿2 = −(𝜆 + 𝜃 + 𝜂 + (𝑖 − 1)𝛼),  𝛿3 = −(𝜆 + 𝜇
1
),  𝛿4 = −(𝜆 + 𝜇2) and 𝛿5 =

−(𝜆 + 𝜃 + 𝜂 + (𝑁 − 1)𝛼). 

Let 𝐏 be the corresponding steady state probability vector of Q. By partitioning the vector 

𝐏 as 𝐏 = {𝐏0, 𝐏1, 𝐏2, … } where 

𝐏0=[𝐸0,0,0, 𝐸0,0,1, 𝐸0,1,0, 𝐸0,1,1], (for SWV) and 𝐏0=[𝐸0,0,0, 𝐸0,0,1], (for MWV), 

𝐏𝑖+1=[𝑃𝑖,0,0, 𝑃𝑖,0,1, 𝑃𝑖,1,0, 𝑃𝑖,1,1, 𝑄𝑖,1,0, 𝑄𝑖,1,1], 𝑖 ≥ 0. 

According to Neuts [13] , the system is stable and the steady state probability vector exists 

if and only if 𝐘𝐂1𝐞6 < 𝐘𝐁𝑁𝐞6 where 𝐘 is an invariant probability of the matrix 𝐌=𝐀𝑁 + 𝐁𝑁 + 𝐂1. 

𝐞𝑛 denotes a column vector with size 𝑛, and all elements equal to 1. 𝐘 satisfies the equations 𝐘𝐌 =

0 and 𝐘𝐞6 = 1.  

Apparently, when the stability condition is satisfied, the sub-vectors of 𝐏, corresponding to 

different levels satisfy  

 𝐏𝑛 = 𝐏𝑁𝐑
𝑛−𝑁, 𝑛 ≥ 𝑁, (17) 

 where the matrix 𝑅 is the minimal non-negative solution of the matrix quadratic equation  

 𝐂1 + 𝐑𝐀𝑁 + 𝐑
2𝐁𝑁 = 𝟎, (18) 

 which can be obtained by using the following iterative procedure. 

 

 Computational algorithm for R: 

Step 1: Set 𝑘 = 1. 

Step 2: Set 𝐔 = 𝐀𝑁 and calculate 𝐆 = (𝐈 − 𝐔)−1𝐁𝑁. 

Step 3: Increment 𝑘 by 1. 

Step 4: Replace 𝐔 = 𝐀𝑁 + 𝐂1𝐆   and    𝐆 = (𝐈 − 𝐔)−1𝐁𝑁.  

Step 5: Repeat Steps 3 and 4 until ∥ 𝐞𝑛 − 𝐆𝐞𝑛 ∥∞< 𝜖, where 𝜖 is a stopping tolerance. 

Step 6: Calculate 𝐑 = 𝐂1(𝐈 − 𝐔)
−1. 

From the equation 𝐏𝐐 = 𝟎, the governing system of difference equations can be given as  

 𝐏0𝐀0 + 𝐏1𝐁1 = 𝟎, (19) 
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 𝐏0𝐂0 + 𝐏1𝐀1 + 𝐏2𝐁2 = 𝟎, (20) 

 𝐏𝑛−1𝐂1 + 𝐏𝐧𝐀𝑛 + 𝐏𝑛+1𝐁𝑛+1 = 𝟎, 2 ≤ 𝑛 ≤ 𝑁 − 1, (21) 

 𝐏𝑛−1𝐂1 + 𝐏𝑛𝐀𝑁 + 𝐏𝑛+1𝐁𝑁 = 𝟎, 𝑛 ≥ 𝑁, (22) 

 and the normalizing condition  

 ∑∞𝑛=0 𝐏𝑛𝐞𝑛 = 1. (23) 

 From equations (19) to (22), after some mathematical manipulations, we get  

 𝐏𝑛−1 = 𝐏𝑛𝛟𝑛
, 1 ≤ 𝑛 ≤ 𝑁, (24) 

 𝐏𝑁[𝛟𝑁
𝐂1 + 𝐀𝑁 + 𝐑𝐁𝑁] = 𝟎. (25) 

 where  

𝛟
1
= −𝐁1(𝐀0

−1), 𝛟
2
= −𝐁2[𝛟1

𝐂0 + 𝐀1]
−1, 𝛟

𝑛
= −𝐁𝐧(𝐀𝐧−𝟏 + 𝛟𝐧−𝟏

𝐂𝟏)
−𝟏, 3 ≤ 𝑛 ≤ 𝑁. 

 solving equations (23) and (24), we get  

 𝐏𝑁[∑
𝑁
𝑗=1 ∏

𝑚
𝑖=𝑁 𝛟𝑖

+ (𝐈 − 𝐑)−1]𝐞𝑛 = 1. (26) 

Solving equations (25) and (26), we obtain 𝐏𝑁. We use equations (17) and (24) to get 𝐏𝑛 for 𝑛 ≥ 0.  

 

V.  Performance Measures 
 
• Expected number of customers in the queue, when the server is busy in FES and SOS, 

respectively are  
 𝐸[𝑄𝐹] = ∑∞𝑛=1 𝑛𝑃𝑛,1,0 +∑

∞
𝑛=1 𝑛𝑃𝑛,1,1; 𝐸[𝑄𝑆] = ∑

∞
𝑛=1 𝑛𝑄𝑛,1,0 + ∑

∞
𝑛=1 𝑛𝑄𝑛,1,1. 

• Expected number in the queue, when the server is in WV is given as  
 𝐸[𝑄𝑊𝑉] = ∑

∞
𝑛=1 𝑛𝑃𝑛,0,0 + ∑

∞
𝑛=1 𝑛𝑃𝑛,0,1. 

• Expected number of customers in the system is  
 𝐸[𝐿] = ∑∞𝑛=0 (𝑛 + 1)[𝑃𝑛,1,0 + 𝑃𝑛,1,1] + ∑

∞
𝑛=0 (𝑛 + 1)[𝑃𝑛,0,0 + 𝑃𝑛,0,1] + ∑

∞
𝑛=0 (𝑛 + 1)[𝑄𝑛,1,0 + 𝑄𝑛,1,1]. 

• Expected reneging rate of the customer is  
 𝐸[𝑅𝐶] = ∑∞𝑛=1 𝑛𝛼𝑃𝑛,0,0 +∑

∞
𝑛=1 𝑛𝛼𝑃𝑛,0,1. 

• Expected number of customers served is  
 𝐸𝐶𝑆 = ∑∞𝑛=0 𝜂(𝑃𝑛,0,0 + 𝑃𝑛,0,1) + ∑

∞
𝑛=0 𝜇1(𝑃𝑛,1,0 + 𝑃𝑛,1,1) + ∑

∞
𝑛=0 𝑟𝜇2(𝑄𝑛,1,0 + 𝑄𝑛,1,1). 

 

• Probability that the server is on WV is  

 𝑃𝑊𝑉 = ∑
∞
𝑛=0 𝑃𝑛,0,0 + ∑

∞
𝑛=0 𝑃𝑛,0,1. 

• Probability that the server is idle is  

 𝑃0 = 𝐸0,0,0 + 𝐸0,0,1 + 𝐸0,1,0 + 𝐸0,1,1(𝑓𝑜𝑟 𝑆𝑊𝑉); 𝑃0 = 𝐸0,0,0 + 𝐸0,0,1(𝑓𝑜𝑟 𝑀𝑊𝑉) 

 

• Probability that the server is busy with FES and SOS is  
 𝑃𝐵𝐹 = ∑∞𝑛=0 𝑃𝑛,1,0 + ∑

∞
𝑛=0 𝑃𝑛,1,1; 𝑃𝐵𝑆 = ∑

∞
𝑛=0 𝑄𝑛,1,0 + ∑

∞
𝑛=0 𝑄𝑛,1,1. 

 

  

5.1   Special Cases of the Model 
 
Case 1: Taking particular values of the parameters as 𝛼 = 0, 𝑟 = 0, 𝜇

2
= 0 and 𝜔 = 0, our model 

reduces to 𝑀/𝑀/1 queueing model with MWV and results match with Servi and Finn [17]. 

Case 2: The present model reduces to an 𝑀/𝑀/1 queueing model with SWV and MWV by taking 

values of the parameters as 𝛼 = 0, 𝑟 = 0 and 𝜇
2
= 0. Results match with Selvaraju and Goswami 

[16] (by taking 𝛼 = 0 in their paper).  

 

5.2   Cost Model 
 

 This section develops a cost model in order to carry out an economic analysis of the 

queueing system under consideration. We formulate an expected cost function per unit time, 

where the service rate in FES (𝜇
1
) and that in SOS (𝜇

2
) are decision variables. 
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Let us define 

𝑐1 ≡ Cost per unit time when the customer waits for the service, 

𝑐2 ≡ Cost per unit time when the server is on WV, 

𝑐3 ≡ Cost per unit time when the customer reneges, 

𝑐4 ≡ Cost per unit time when the server is busy with SOS. 

Using the above cost parameters, the following cost optimization problem is designed as  

  
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜏𝑐[𝜇1, 𝜇2] = 𝑐1𝜇1𝐸[𝐿] + 𝑐2𝜂𝑃𝑊𝑉 + 𝑐3𝐸[𝑅𝐶] + 𝑐4𝜇2. 

 

Let 𝑅𝑒𝑣 be the revenue earned by providing service to a customer, 𝜏𝑟 be the total expected revenue 

per unit time of the system and 𝜏𝑝 be the total expected profit per unit time of the system. Thus,            

                     𝜏𝑟 = 𝑅𝑒𝑣 × 𝐸𝐶𝑆, 𝜏𝑝 = 𝜏𝑟 − 𝜏𝑐. 

 

5.3   Bat Algorithm 
 

 Bat algorithm is an innovative technique proving to give better solution than many 

popular traditional and heuristic algorithms for solving complex engineering problems. The bat 

algorithm is a meta-heuristic algorithm for global optimization. It was inspired by the echolocation 

behavior of micro bats, with varying pulse rates of emission and loudness. The bat algorithm was 

developed by Yang in 2010. 

The bat algorithm works with the following three idealized rules  

1. All bats use the echolocation to detect the distance from a food source and also have the 

knowledge to distinguish between foods/victims and background barriers.  

2. Bats fly randomly in the surroundings with velocity 𝐕𝐢 at position 𝐱𝐢 with a frequency 𝑓
𝑚𝑖𝑛

, 

varying wavelength 𝑊 and loudness 𝐿0 in search for prey. They can automatically regulate 

the frequency(or wavelength) of their emitted pulses and change the rate of pulse emission 

(𝑝) correspondingly in the range between 0 and 1, depending on the proximity of their 

target.  

3. Though the loudness can vary in a variety of ways, we consider that the loudness varies 

from a large (positive) 𝐿0 to a minimum constant value 𝐿𝑚𝑖𝑛.   

In addition to these assumptions, for simplicity, the frequency 𝑓 is taken in a range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] 

corresponds to a range of wavelengths [𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥]. We can either use wave lengths or 

frequencies for implementation, we use 𝑓
𝑚𝑖𝑛

= 0 and 𝑓
𝑚𝑎𝑥

 depending on the domain size of the 

problem of interest. Therefore, with the help of the mentioned assumptions, the updated 

equations for frequency 𝑓
𝑖
, position 𝐱𝐢 and velocity 𝐕𝐢 are as follows  

 𝑓
𝑖
= 𝑓

𝑚𝑖𝑛
+ (𝑓

𝑚𝑎𝑥
− 𝑓

𝑚𝑖𝑛
)𝛝, 

 𝐕𝐢
𝐭+𝟏 = 𝐕𝐢

𝐭 + (𝐱𝑖
𝑡 − 𝐱∗)𝑓

𝑖
, 

 𝐱𝑖
𝑡+1 = 𝐱𝑖

𝑡 + 𝐕𝐢
𝐭+𝟏. 

 where   

    • 𝛝 ∈ [0,1] is a uniformly distributed random vector.  

    • 𝑓
𝑖
 is the frequency that 𝑖𝑡ℎ bat emits and 𝑓

𝑚𝑖𝑛
, 𝑓

𝑚𝑎𝑥
 are the lower and upper bounds of 

frequencies, respectively.  

    • 𝑉𝑖
𝑡 is the velocity of 𝑖𝑡ℎ bat after t generations.  

    • 𝑥𝑖
𝑡 is the position of 𝑖𝑡ℎ bat after t generations.  

    • 𝑥∗ is the current best position (solution) of the fitness function among all the bats.  

 After selecting a solution among the current best solutions, for the local search we use the 

random walk for each bat. Hence, the new position updating formula is generated locally and is 

expressed as  

 𝐱𝑛𝑒𝑤 = 𝐱𝑜𝑙𝑑 + 𝜖1𝐿
(𝑡) 

where 𝜖1 ∈ [−1,1] is a random number and 𝐿(𝑡) =< 𝐿𝑖
𝑡 > is the average loudness of all the bats at 



P. Vijaya Laxmi, E. Girija Bhavani and Rakesh Kumar 

CORRELATED RENEGING IN AN OPTIONAL SERVICE MARKOVIAN 

QUEUE WITH WORKING VACATIONS 

RT&A, No 4 (59) 
Volume 15, December 2020 

 

110 

time instant 𝑡. Now to control the step size, the new position updating formula is rewritten as  

 𝐱𝑛𝑒𝑤 = 𝐱𝑜𝑙𝑑 + 𝜍𝜖𝑡𝐿
(𝑡) 

where, the value of 𝜖𝑡 is taken from the Gaussian normal distribution N(0,1), and 𝜍 is a scaling 

factor having standard value 0.001.  

 

VI.   Numerical Investigations 
 
This section is devoted to study numerically the performance measures and cost profit aspects 

associated with the model using Mathematica software. The parameters of the model are assumed 

to be 𝜆 = 0.8, 𝜇
1
= 3.5, 𝜇

2
= 3.0, 𝜂 = 2.5, 𝜃 = 0.5, 𝛼 = 0.7, 𝑟 = 0.6, 𝑞

00
= 0.6, 𝑞

11
= 0.5. For the 

economic analysis of the system, we fix the different costs as 𝑐1 = 5, 𝑐2 = 4, 𝑐3 = 3, and 𝑐4 = 2, for 

bat algorithm, we assume 𝑓
𝑚𝑖𝑛

= 0, 𝑓
𝑚𝑎𝑥

= 2, 𝐿 = 0.5, 𝑝 = 0.5, lower and upper bounds of 𝜇
1
 and 

𝜇
2
 are taken as [1.5, 4.5] and [1.0, 4.0], respectively. 

             

 

 
 

Figure  2: Effect of 𝛼 on 𝐸[𝐿] for different 𝑟. 

 

Table 1: Effect of 𝑟 on performance measures. 

 

      SWV   MWV 

  Cases  𝐸[𝐿] 𝑃0 𝐸[𝐿] 𝑃0 

 
𝑟 = 0 

 

Correlated 

reneging 

 0.30435  0.75028  0.30917   0.73764 

No reneging  0.37128  0.72819  0.41401   0.70354 

 
𝑟 = 0.3 

Correlated 

reneging 

 0.38191  0.70939  0.34312   0.72109 

No reneging  0.45345  0.68633  0.46087   0.68318 

 
𝑟 = 0.6 

Correlated 

reneging 

 0.47796  0.66375  0.38789   0.70126 

No reneging  0.55452  0.63993  0.52144   0.65913 
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Table 2: Effect of 𝑟 and 𝜇1 on performance measures. 

 

   SWV MWV 

 Cases  𝐸[𝐿] 𝑃0 𝐸[𝐿] 𝑃0 

 
𝑟 = 0 

𝜇
1
= 3.6 

𝜇
1
= 3.8 

𝜇
1
= 4.0 

0.29911 

0.29826 

0.29757 

0.75334 

0.75892 

0.76387 

0.30689 

0.30288 

0.29944 

0.73883 

0.74099 

0.74289 

 
𝑟 = 0.3 

𝜇
1
= 3.6 

𝜇
1
= 3.8 

𝜇
1
= 4.0 

0.35797 

0.35550 

0.35341 

0.71279 

0.71900 

0.72449 

0.34001 

0.33453 

0.32985 

0.72252 

0.72508 

0.72734 

 
𝑟 = 0.6 

𝜇
1
= 3.6 

𝜇
1
= 3.8 

𝜇
1
= 4.0 

0.43122 

0.42638 

0.42227 

0.66757 

0.67451 

0.68065 

0.38355 

0.37591 

0.36941 

0.70298 

0.70607 

0.70878 

 
 

Table 3: Effect of 𝑞11 and 𝑞00 on 𝜏𝑐, 𝜏𝑟 and 𝜏𝑝. 

 

              SWV      MWV 

      𝜏𝑐     𝜏𝑟 𝜏𝑝 𝜏𝑐 𝜏𝑟 𝜏𝑝 

𝑞
11
= 0.2 

𝑞
11
= 0.4 

𝑞
11
= 0.6 

15.7559 

15.6551 

15.5365 

41.3303 

41.1014 

40.8314 

25.5743 

25.4463 

25.2950 

15.1813 

15.0058 

14.7985 

37.6903 

37.2814 

36.7970 

22.5090 

22.2756 

21.9986 

𝑞
00
= 0.3 

𝑞
00
= 0.5 

𝑞
00
= 0.7 

15.4533 

15.5335 

15.6963 

40.6499 

40.8292 

41.1860 

25.1966 

25.2957 

25.4897 

14.6526 

14.7933 

15.0775 

36.4701 

36.7929 

37.4326 

21.8175 

21.9997 

22.3551 

 
 

Table 4: Effect of 𝜆, 𝑞
11

 and 𝑟 on optimum cost. 

 

 

 

 

 

  

 𝜇
1
∗  𝜇

2
∗  𝜏𝑐

∗ 

𝜆 = 0.6 
𝜆 = 0.8 
𝜆 = 1.0 

2.2495 

2.5264 

2.9319 

1.6517 

2.1841 

2.6845 

9.8199 

13.2489 

17.2492 

𝑞
11
= 0.4 

𝑞
11
= 0.6 

𝑞
11
= 0.8 

2.5313 

2.5176 

2.4924 

2.2132 

2.2015 

2.1524 

13.6841 

13.5692 

13.4325 

𝑟 = 0.2 
𝑟 = 0.4 
𝑟 = 0.6 

1.8532 

2.4609 

2.7886 

1.3842 

1.9185 

2.4301 

10.7163 

11.9251 

12.1792 
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Figure 3: Effect of 𝜇1 on 𝐸[𝐿]. 

 

 

 

 
 

Figure 4: Effect of 𝑞
11

 on 𝐸[𝐿]. 
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Figure 5: Effect of 𝜂 on 𝐸[𝐿] and 𝑃0 for different values of 𝜃. 

 

 

 

 
Figure 6: Effect of 𝜆 on 𝜏𝑐 and 𝜏𝑟. 
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Figure 7: Effect of 𝜇
1
 and 𝜇

2
 on 𝜏𝑐. 

 

The effect of reneging rate (𝛼) on average system length (𝐸[𝐿]) is shown in Figure 2. It is clear that 

as 𝛼 increases, 𝐸[𝐿] decreases for both the models. In absence of SOS (𝑟 = 0) , we see an interesting 

behavior; for 𝛼 < 1 system length in SWV is smaller, for 𝛼 > 1 system length in MWV is smaller 

and at 𝛼 = 1 they coincide. In presence of an optional service, obviously MWV gives smaller 

system size because of the predominant effect of reneging. 

In Tables 1 and 2, for fixed 𝜇
1
, as SOS probability (𝑟) increases, the average system length 

(𝐸[𝐿]) increases and idle probability 𝑃0 decreases. Further, for fixed 𝑟, as 𝜇
1
 increases a completely 

opposite trend is observed. 

Table 3 illustrates the impact of reneging (non-reneging) probabilities of customers at both 

transition marks 𝑞
11

 (𝑞
00

) on total expected cost (𝜏𝑐), total expected revenue (𝜏𝑟) and total expected 

profit (𝜏𝑝) for both the models. As expected, an increase in 𝑞
11

, decrease 𝜏𝑐, 𝜏𝑟 and 𝜏𝑝. This is 

because of the significant number of lost customers. On the other hand, opposite trend is observed 

for 𝑞
00

. Therefore, it reveals the fact that 𝑞
00

 has positive effect on the economy of the system as it 

enforces the customers to be held in the system. 

In table 4, using bat algorithm, the effect of 𝜆, 𝑞
11

 and 𝑟 on optimal service rates (𝜇1
∗ and 

𝜇
2
∗) and minimum expected cost (𝜏𝑐

∗) is shown for MWV model. We observe that 

▪ when arrival rate (𝜆) increases,𝜇
1
∗ , 𝜇

2
∗  and 𝜏𝑐

∗ increase as expected in the view of stability 

of the system.   

▪ most importantly, increase in reneging probability (𝑞11), substantially reduce the 

optimal service rates and minimum cost due to lost customers.  

▪ as 𝑟 increases,𝜇
1
∗ , 𝜇

2
∗  and 𝜏𝑐

∗ increase. This agrees with our intuition.  

In Figure 3, we show the effect of 𝜇
1
 on the system lengths for the model with SWV, MWV and no 

vacation. The graphs show the larger system lengths in the absence of vacation. This is explained 

by the fact that reneging occurs only during WV. When there is no WV, customers are remain in 

the system till they get served. 

Figure 4 depicts that an increase in 𝑞
11

, decreases the system length (𝐸[𝐿]), which is 

obviously true. Through Figure 5 we demonstrate the effect of the service rate in WV period (𝜂) on 

𝐸[𝐿] and 𝑃0 for different values of vacation rate (𝜃) in SWV model. It is quite obvious that for a 
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fixed 𝜃, increase in 𝜂, decreases 𝐸[𝐿] and increases 𝑃0. Moreover, upon increasing of 𝜃, reverse 

trend is observed. 

The impact of arrival rate 𝜆 on 𝜏𝑐 and 𝜏𝑟 for MWV policy is shown in Figure 6. We observe 

that, 𝜏𝑐 and 𝜏𝑟 increase with the increasing of 𝜆. This is quite reasonable, the bigger the arrival rate, 

the greater the total expected cost and the total expected revenue. In Figure 7, we portray the three-

dimensional surface plot generated through the joint variation of decision parameters 𝜇
1
 and 𝜇

2
 for 

MWV model. It prompts the convex nature of 𝜏𝑐 with respect to 𝜇
1
 and 𝜇

2
. As per the restriction of 

the system resources, the analyst can design parameters for the optimal service cost. 

 

VII.   Conclusion 
 
In this paper, we have carried out an analysis of infinite buffer single server queueing system with 

SOS and correlated reneging under single and multiple working vacation policies. Using matrix 

geometric method, we derived the steady-state probabilities of the system. Some performance 

measures are developed. A cost model was established, and bat algorithm is applied to determine 

the optimal values of service rates in FES and SOS with the aim of minimizing the expected cost 

per unit time. The effects of various parameters on the system performance measures were 

explored by numerical experiments. Our study shows that 

▪ increasing the service rates reduces the average system length.  

▪ increase of the non-reneging probability of the customer at both transition marks, 

increases the expected system length and it shows the positive effect on the economy of 

the system as it increases the revenue.   

▪ MWV model has lower system lengths for higher reneging rates due to the departures 

of customers by the way of reneging. 

According to the analysis of expected system length by numerical examples, we find that our 

model represents some practical problems reasonably. The obtained results have potential 

applications in modeling computer and telecommunication systems, computer networks, 

manufacturing, and so on. So, the service companies may design the reasonable WV rate, service 

rates and correlated reneging rates to enable the companies to operate more flexibly and 

efficiently. To make the system modeling more closer to real world problems, we extend our 

model to consider general service times and server breakdowns.   
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Abstract 

 
The paper deals with cost benefit analysis of a threeidentical unit cold and warm standby system 

model. Each unit has two modes- normal (N) and total failure (F). The warm standby unit 

becomes operative instantaneously upon the failure of an operative unit, whereas cold standby 

unit needs activation to become operative or to be warm standby. A single repairman is always 

available to repair a failed unit. The activation of a cold standby unit is made by the operator 

itself. The distributions of time to failure, time to repair and activation time are taken as 

independent random variables of discrete nature having geometric distributions with different 

parameters. 

 

Keywords: Regenerative point, reliability, MTSF, availability, geometric distribution, 

Markov-Chain. 

 

I. Introduction 
 

Two-unit cold standby redundant system models have been analyzed widely in the literature of 

reliability by various authors including [1,3,5,8]. In these system models the authors have assumed 

that the standby unit starts operation instantaneously with the help of a switching device when the 

operative unit fails. In real life, the situations arise in many times when the standby unit does not 

work instantaneously and take a significant time to be operative and this time may be called 

activation time of cold standby unit. Gupta et al. [6] analyzed a two-unit standby system model 

assuming that the cold standby unit goes for activation before starting its operation on line. During 

the activation time of cold standby unit the system remains down and no output is obtained by the 

system till the activation is completed and standby unit starts working. To avoid the situation of 

down time of the system due to activation, the warm standby redundancies have been considered 

in the literature of reliability as a warm standby unit becomes operative instantaneously without 

any activation. But the drawback of the warm standby unit is that it can fail during its standby 

state. So, one is to prefer a warm standby over the cold standby when during the down period of 

the system due to activation of cold standby there is a great unbearable loss. 

 Some authors including [4,7,9,10] analyzed the two-unit warm standby redundant system 

models using different concepts. All the above system models have been analyzed by considering 

continuous distributions of all the random variables involved.        

 The purpose of the present paper is to consider both types of standbys warm and cold 

simultaneously in a single system i.e. a three unit redundant system. As soon as the operating unit 

fails, the warm standby unit becomes operative instantaneously whereas the cold standby unit 

needs activation before coming into operation or warm standby unit. The warm standby unit may 

also fail while it is in standby position whereas the cold standby unit can’t fail during its standby 

mailto:shbhmgupta22@gmail.com
mailto:pc25jan@gmail.com
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state. This system model is based on discrete parametric Markov-Chain. Gupta and Varshney [2] 

introduced the concept of discrete parametric Markov-Chain in analyzing the system models in the 

field of reliability modeling. The following economic related measures of system effectiveness are 

obtained by using regenerative point technique- 

i) Transition probabilities and mean sojourn times in various states. 

ii) Reliability and mean time to system failure. 

iii) Point-wise and steady-state availability of the system during time (0, t-1). 

iv) Expected busy period of repairman during time (0, t-1). 

v) Net expected profit incurred by the system during a finite and steady-state are obtained. 

 

II. Model Description and Assumptions 
 

1. The system consists of three identical units.Initially one unit is operative and rests two are kept 

in spare as cold and warm standbys. 

2. Each unit has two modes- Normal (N) and Total failure (F). 

3. Upon failure of an operating unit, the warm standby unit becomes operative instantaneously 

whereas the cold standby unit requires activation time before coming into operation/warm 

standby.  

4. A switching device is used to start the activation of cold standby unit and to put a warm 

standby into operation which is always perfect and instantaneous. 

5. A single repairman is always available with the system to repair a failed unit and a repaired 

unit becomes either operative, warm standby or cold standby as per the situations. 

6. The activation action of a cold standby unit is carried out by the operator itself and there is no 

need for a separate human being at the system for this purpose.  After completion of 

activation unit becomes operative or warm standby as the requirement. 

7. The time to failure, time to activation and repair time follow geometric distributions with 

different parameters. 

 

III. Notations and States of the System 

a) Notations :  
xpq  : p.m.f. of failure time of a unit; p q 1+ = . 

xrs  : p.m.f. of repair time byrepairman of failed unit and r s 1+ = . 
xcd  : p.m.f. of time to activate of a cold standby unitrespectively; c d 1+ = . 

( ) ( )ij ijq ,Q  : p.m.f. and C.d.f. of one step or direct transition time from state iS to
jS . 

 ijp  : steady state transition probability from state iS to
jS . 

( )ij ijp Q=   

( )iZ t  : probability that the system sojourn in state iS up to epoch (t-1).  

i  : mean sojourn time in state iS . 

, h  : symbol and dummy variable used in geometric transform e. g. 

( ) ( ) ( )t

ij ij ij

t 0

GT q t q h h q t




=

  = =    

b) Symbols for the States of the System:  

 0 ws csN / N / N : unit in normal mode and operative/warm standby/cold standby. 

 caN
 : the cold standby unit in normal mode and under activation. 

 r wrF / F  : unit in total failure (F) mode and under repair/waits for repair. 

The transition diagram of the system model is shown in fig. 1. 
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Figure 1 
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0S

 

'pp

 

'pp

 
pc
 

 
 

With the help of above symbols the possible states of the system are: 

 

o ws

0

cs

N , N
S

N

 
  
 

, 
o r

1

ca

N ,F
S

N

 
  
 

, o cs

2

ca

N , N
S

N

 
  
 

, 
o r

3

ws

N ,F
S

N

 
  
 

  

 
w r

4

ca

F ,F
S

N

 
  
 

, 
r cs

5

ca

F , N
S

N

 
  
 

, 
w r

6

o

F ,F
S

N

 
  
 

, 
w r

7

w

F ,F
S

F

 
  
 

  

The states 0S , 1S , 2S , 3S , 6S  are up states; 4S , 5S  are down states and 7S  is failed state. 

 

IV.  Transition Probabilities 
 

Let ( )ijQ t be the probability that the system transits from state iS to 
jS  during time interval (0, t) 

i.e., if 
ijT is the transition time from state iS to 

jS  then 

( )ij ijQ t P T t =    

By using simple probabilistic arguments we have, 

( )
( )

( )
( )

( )
' '

t 1
'

01 '

pq p q
Q t 1 qq

1 qq

++
 = −
  −

, ( )
( )

( )
( )

'
t 1

'

04 '

pp
Q t 1 qq

1 qq

+ = −
  −

 

( ) ( )
t 1

10

rcq
Q t 1 sdq

1 sdq

+ = −
 −

, ( ) ( )
t 1

11

prd
Q t 1 qds

1 qds

+ = −
 −

 

( ) ( )
t 1

12

rdq
Q t 1 sdq

1 sdq

+ = −
 −

 ( )
( )

( )
t 1

13

c rp qs
Q t 1 dqs

1 dqs

++
 = −
 −

 

( ) ( )
t 1

14

pds
Q t 1 qds

1 qds

+ = −
 −

, ( ) ( )
t 1

16

pcs
Q t 1 qds

1 qds

+ = −
 −

 

( ) ( )
t 1

20

cq
Q t 1 qd

1 qd

+ = −
 −

, ( ) ( )
t 1

21

cp
Q t 1 dq

1 dq

+ = −
 −
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( ) ( )
t 1

25

pd
Q t 1 qd

1 qd

+ = −
 −

, ( ) ( )
'

t 1
'

30 '

rqq
Q t 1 sqq

1 sqq

+ = −
  −

 

( )
( )

( )
' '

t 1
'

33 '

r pq p q
Q t 1 sqq

1 sqq

++
 = −
  −

, ( )
( )

( )
' '

t 1
'

36 '

s pq p q
Q t 1 sqq

1 sqq

++
 = −
  −

 

( ) ( )
'

t 1
'

37 '

spp
Q t 1 sqq

1 sqq

+ = −
  −

, ( ) ( )
t 1

41

rd
Q t 1 ds

1 ds

+ = −
 −

 

( ) ( )
t 1

43

cr
Q t 1 ds

1 ds

+ = −
 −

, ( ) ( )
t 1

46

cs
Q t 1 ds

1 ds

+ = −
 −

  

( ) ( )
t 1

50

cr
Q t 1 ds

1 ds

+ = −
 −

, ( ) ( )
t 1

51

cs
Q t 1 ds

1 ds

+ = −
 −

 

( ) ( )
t 1

52

rd
Q t 1 ds

1 ds

+ = −
 −

, ( ) ( )
t 1

63

qr
Q t 1 qs

1 qs

+ = −
 −

 

( ) ( )
t 1

66

pr
Q t 1 qs

1 qs

+ = −
 −

, ( ) ( )
t 1

67

ps
Q t 1 qs

1 qs

+ = −
 −

  

( ) t 1

76Q t 1 s += −   (1-26) 

The steady state transition probabilities from state 
iS to 

jS  can be obtained from (1-26) by taking

t → , as follows: 

( )
( )

' '

01 '

pq p q
p

1 qq

+
=

−
, 

( )

'

04 '

pp
p

1 qq
=

−
, 10

rcq
p

1 sdq
=

−
, 11

rdp
p

1 sdq
=

−
 

12

rdq
p

1 sdq
=

−
, 

( )
13

c rp sq
p

1 sdq

+
=

−
, 14

sdp
p

1 sdq
=

−
, 16

scp
p

1 sdq
=

−
 

20

cq
p

1 dq
=

−
, 21

cp
p

1 dq
=

−
, 25

pd
p

1 qd
=

−
, 

'

30 '

rqq
p

1 sqq
=

−
 

( )' '

33 '

r pq p q
p

1 sqq

+
=

−
, 

( )' '

36 '

s pq p q
p

1 sqq

+
=

−
, 

'

37 '

spp
p

1 sqq
=

−
, 41

rd
p

1 sd
=

−
 

43

rc
p

1 sd
=

−
, 46

sc
p

1 sd
=

−
, 50

rc
p

1 sd
=

−
, 51

sc
p

1 sd
=

−
 

52

rd
p

1 sd
=

−
, 63

rq
p

1 sq
=

−
, 66

pr
p

1 sq
=

−
, 67

sp
p

1 sq
=

−
 

t 1

76p 1 s += −  

We observe that the following relations hold- 

 76p 1= , 
01 04p p 1+ = , 

10 11 12 13 14 16p p p p p p 1+ + + + + =    

 20 21 25p p p 1+ + = , 
30 33 36 37p p p p 1+ + + = , 

41 43 46p p p 1+ + =    

50 51 52p p p 1+ + =  63 66 67p p p 1+ + =   (26-34) 

 

V.  Mean SojournTimes 
 

Let iT be the sojourn time in state iS (i=0-7) then i  mean sojourn time in state iS  is given by 

 i

t 1

P T t


=

 =   

In particular, 
'

0 '

qq

1 qq
 =

−
, 1

sdq

1 sdq
 =

−
, 2

cq

1 dq
 =

−
, 

'

3 '

sqq

1 sqq
 =

−
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4

ds

1 ds
 =

−
, 5

ds

1 ds
 =

−
, 6

qs

1 qs
 =

−
, 7

s

r
 =  (35-42) 

 

VI. Methodology for Developing Equations 
 

In order to obtain various interesting measures of system effectiveness we developed the 

recurrence relations for reliability, availability and busy period of repairman as follows- 

 

a) Reliability of the system-  
 

Here we define ( )iR t  as the probability that the system does not fail up to epochs 0, 1, 2,.., (t-1) 

when it is initially started from up state iS . To determine it, we regard the failed states
7S as 

absorbing state. Now, the expression for ( )iR t ; i=0, 1, 2, 3, 4,5,6; we have the following set of 

convolution equations. 

 

( ) ( ) ( ) ( ) ( ) ( )
t 1 t 1

t
'

0 01 1 04 4

u 0 u 0

R t qq q u R t 1 u q u R t 1 u
− −

= =

= + − − + − −   

( ) ( ) ( ) ( ) ( )0 01 1 04 4Z t q t 1 R t 1 q t 1 R t 1= + − © − + − © −  

Similarly, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −
 

  
( ) ( ) ( ) ( ) ( ) ( )13 3 14 4 16 6q t 1 R t 1 q t 1 R t 1 q t 1 R t 1+ − © − + − © − + − © −   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 25 5R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 30 0 33 3 36 6R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 41 1 43 3 46 6R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5 5 50 0 51 1 52 2R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −
 

( ) ( ) ( ) ( ) ( ) ( )6 6 63 3 66 6R t Z t q t 1 R t 1 q t 1 R t 1= + − © − + − © −   (43-49) 

Where,  

( ) ( )
t

1Z t sdq= , ( ) ( )
t

2Z t qd= ,  ( ) ( )
t

'
3Z t sqq= , ( ) ( )

t

4Z t sd=  

( ) ( )
t

5Z t sd= , ( ) ( )
t

6Z t sq=
 

 

 

b) Availability of the System- 
 

Let ( )iA t be the probability that the system is up at epoch (t-1), when it initially started from state

iS . Then, by using simple probabilistic arguments, as in case of reliability the following recurrence 

relations can be easily developed for ( )iA t ; i=0 to 7. 

 
( ) ( ) ( ) ( ) ( ) ( )0 0 01 1 04 4A t Z t q t 1 A t 1 q t 1 A t 1= + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )13 3 14 4 16 6 17 7q t 1 A t 1 q t 1 A t 1 q t 1 A t 1 q t 1 A t 1+ − © − + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 25 5A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 30 0 33 3 36 6A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −
 

   ( ) ( )37 7q t 1 A t 1+ − © −  
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( ) ( ) ( ) ( ) ( ) ( ) ( )4 41 1 43 3 46 6A t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )5 50 0 51 1 52 2A t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= − © − + − © − + − © −   

( ) ( ) ( ) ( ) ( ) ( ) ( )6 6 63 3 66 6 67 7A t Z (t) q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −
 

( ) ( ) ( )7 76 6A t q t 1 A t 1= − © −
 

(50-57)
 

Where, The values of ( )iZ t ; i=0 to 3 are same as given in section 6(a). ( ) t t

6Z t q s=  

 

c) Busy Period of Repairman 
 

Let ( )iB t be the probability that the repairman is busy in the repairof a failed unit at epoch t-1, 

when it initially started from state iS . Then, by using simple probabilistic arguments, as in case of 

reliability the following recurrence relations can be easily developed for ( )iB t ; i=0 to 7. 

 

( ) ( ) ( ) ( ) ( )0 01 1 04 4B t q t 1 B t 1 q t 1 B t 1= − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2 13 3B t Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © − + − © −

  
( ) ( ) ( ) ( ) ( ) ( )14 4 16 6 17 7q t 1 B t 1 q t 1 B t 1 q t 1 B t 1+ − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 0 21 1 25 5B t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 30 0 33 3 36 6B t Z (t) q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −  

    ( ) ( )I

37 7q t 1 B t 1+ − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 41 1 43 3 46 6B t Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )5 5 50 0 51 1 52 2B t Z (t) q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( )6 6 63 3 66 6 67 7B t Z (t) q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −  

( ) ( ) ( )7 7 76 6B t Z (t) q t 1 B t 1= + − © −
 

    (58-65) 

Where, ( ) t

7Z t s= . 

 

VII. Analysis of Reliability and MTSF 
 

Taking geometric transform of (43-46) and simplifying the resulting set of algebraic equations for 

( )0R h  we get  

( )
( )

( )
1

0
1

N h
R h

D h

 =  (66) 

Where, 

 

( ) * 2 * 2 2 * * 3 * * * * 2 * *

1 11 25 52 33 36 63 12 21 33 12 25 51 33 36 63N h [(1 hq )(1 h q q )(1 hq h q q ) h q q (1 hq ) h q q q (1 hq h q q )    = − − − − − − − − −
  

 
* * * * 2 * * * 2 * 3 * 3 *

14 33 41 46 14 36 46 13 36 14 25 52 36 41 63hq (1 hq )(hq hq ) h q q (1 hq ) h q q h q q q (h q q q    + − + + − + +  

 * 3 * * * 2 * 2 * * *

46 33 16 25 52 33 0 01 25 52 33 36 63 04hq (1 hq )) h q q q (1 q )]Z [hq (1 h q q )(1 hq h q q ) hq     − − − − + − − − −  

 
2 * 2 * * 2 2 * * 2

33 25 52 1 01 12 33 36 63 04 12 51 63 51 33 2(1 hq )(1 h q q )]Z [h q q (1 hq h q q ) h q q {h q q hq (1 hq )}]Z          − − + − − − + −  

 
* * * 2 * * 3 * * * 2 * * 2 *

01 13 14 43 46 63 14 25 52 43 46 63 16 25 52[hq {hq hq (hq h q q ) h q q q (hq h q q )} hq (1 h q q )   + − − − − + −  
 * * * 2 * * 2 * * * * * 2 *

04 63 11 25 52 12 21 63 33 41 63 14 25 52 3hq (hq (1 hq )(1 h q q ) hq (h q q (1 hq ) hq q (hq h q q )]Z   − − − − + − + +  

 
2 * * 2 * 2 * * 2 * * 2 *

01 14 25 52 36 63 25 52 33 14 33 25 52 4[h q q (1 h q q ){h q q (1 h q q ) (1 q )} hq (1 hq )(1 h q q )]Z     + − − + − + − −  

 3 * * 2 * * 2 * 2 2 2 * *

01 12 25 33 36 63 5 01 36 25 52 13 14 43 36 63[h q q q (1 hq h q q )]Z [h q q (1 h q q )(hq h q q ) h q q ]        + − − + − + −  
3 * * 2 * * 2 *

01 12 25 33 14 46 16 01 33 16 14 46h q q q (1 hq )(h q q hq ) hq (1 hq )(hq h q q )      − − + + − +      
( ) * 2 * 2 2 * * 3 * * * * 2 * *

1 11 25 52 33 36 63 12 21 33 12 25 51 33 36 63D h [(1 hq )(1 h q q )(1 hq h q q ) h q q (1 hq ) h q q q (1 hq h q q )    = − − − − − − − − −  

  * * * * 2 * * * 2 * 3 * 3 *

14 33 41 46 14 36 46 13 36 14 25 52 36 41 63hq (1 hq )(hq hq ) h q q (1 hq ) h q q h q q q (h q q q    + − + + − + +  
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* 3 * * * * 2 * * * 2 *

46 33 16 25 52 33 10 01 25 52 33 36 63 04hq (1 hq )) h q q q (1 q )] hq [hq (1 h q q )(1 hq q q ) h q    − − − − − − − − −  

  2 * * 2 * * 2 2 * * 2

33 25 52 20 01 12 33 36 63 04 12 51 63 51 33(1 hq )(1 h q q )] q [h q q (1 hq h q q ) h q q {h q q hq (1 hq )}]        − − − − − − + −  

  
* * * * 2 * * 3 * * * 2 * * 2 *

30 01 13 14 43 46 63 14 25 52 43 46 63 16 25 52q [hq {hq hq (hq h q q ) h q q q (hq h q q )} hq (1 h q q )   − − − − − + −  

  
* * * 2 * * 2 * * 2 * * * 2 *

04 63 11 25 52 12 21 63 33 41 63 14 25 52hq (hq (1 hq )(1 h q q ) hq (h q q (1 hq ) h q q (hq h q q )]  − − − − + − + +  

  3 * * 2 * *

50 01 12 25 33 36 63q [h q q q (1 hq h q q )]  − − −    

 

Collecting the coefficient of th  from expression (66), we can get the reliability of the system ( )0R t . 

The MTSF is given by- 

 

( ) ( )
( )

( )
1t

h 1 1t 1

N 1
E T lim h R t 1

D 1



→
=

= = −   (67) 

( )1 11 25 52 33 36 63 12 21 33 12 25 51 33 36 63N 1 [(1 p )(1 p p )(1 p p p ) p p (1 p ) p p p (1 p p p )= − − − − − − − − −  

  
14 33 41 46 14 36 46 13 36 14 25 52 36 41 63p (1 p )(p p ) p p (1 p ) p p p p p {p p p+ − + + − + +  

  46 61 33 16 25 52 33 0 01 25 52 33 36 63 04p p (1 p )} p p p (1 p )] [p (1 p p )(1 p p p ) p− − − −  + − − − −  

  
33 25 52 1 01 12 33 36 63 04 12 51 63 51 33 2(1 p )(1 p p )] [p p (1 p p p ) p p {p p p (1 p )}]− −  + − − − + −   

  01 13 14 43 46 63 14 25 52 43 46 63 16 25 52[p {p p (p p p ) p p p (p p p )} p (1 p p )+ − − − − + −  

  
04 63 11 25 52 12 21 63 33 12 41 63 14 25 52 3p {p (1 p )(1 p p ) p p p (1 p ) p p p (p p p )}]− − − − + − + +   

  
01 14 25 52 36 63 25 52 33 14 33 25 52 4[p p ((1 p p )(p p (1 p p ) (1 p )) p (1 p )(1 p p )]+ − − + − + − −   

  
01 12 25 33 36 63 5 01 36 25 52 13 14 43 36 63[p p p (1 p p p )] [p p (1 p p )(p p p ) p p ]+ − −  + − + −      

  
12 21 14 41 25 51 6p p p p (1 p p )}]− − +   

( )1 11 25 52 33 36 63 12 21 33 12 25 51 33 36 63D 1 [(1 p )(1 p p )(1 p p p ) p p (1 p ) p p p (1 p p p )= − − − − − − − − −  

  
14 33 41 46 14 36 46 13 36 14 25 52 36 41 63p (1 p )(p p ) p p (1 p ) p p p p p {p p p+ − + + − + +  

  
46 33 16 25 52 33 10 01 25 52 33 36 63 04p (1 p )} p p p (1 p )] p [p (1 p p )(1 p p p ) p− − − − − − − − −  

  
33 25 52 20 01 12 33 36 63 04 12 51 63 51 33(1 p )(1 p p )] p [p p (1 p p p ) p p {p p p (1 p )}]− − − − − − + −  

  
30 01 13 14 43 46 63 14 25 52 43 46 63 16 25 52p [p {p p (p p p ) p p p (p p p )} p (1 p p )− − − − − + −  

  
04 63 11 25 52 12 21 63 33 41 63 14 25 52p (p (1 p )(1 p p ) p (p p (1 p ) p p (p p p )]− − − − + − + +  

  
50 01 12 25 33 36 63p [p p p (1 p p p )]− − −  

 

VIII. Availability Analysis 
 

On taking geometric transform of (50-57) and simplifying the resulting equations for we get, 

( )
( )

( )
2

0

2

N h
A h

D h

 =      (68) 

Where, 

( )

0 01 04

1 11 12 13 14 16

2 21 25

3 33 36 37

2

41 43 46

51 52

6 63 66 67

76

Z hq 0 0 hq 0 0 0

Z 1 hq hq hq hq 0 hq 0

Z hq 1 0 0 hq 0 0

Z 0 0 hq 0 0 hq hq
N h

0 hq 0 hq 1 0 hq 0

0 hq hq 0 0 1 0 0

Z 0 0 hq 0 0 1 hq hq

0 0 0 0 0 0 hq 1

 

    

 

  

  

 

  



− −

− − − − −

− −

− − −
=

− − −

− −

− − −

−
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and 

( )

01 04 06

10 11 12 13 14 16

20 21 25

30 33 36 37

2

41 43 46

50 51 52

63 66 67

76

1 hq 0 0 hq 0 hq 0

hq 1 hq hq hq hq 0 hq 0

hq hq 1 0 0 hq 0 0

hq 0 0 1 hq 0 0 hq hq
D h

0 hq 0 hq 1 0 hq 0

hq hq hq 0 0 1 0 0

0 0 0 hq 0 0 1 hq hq

0 0 0 0 0 0 hq

  

     

  

   

  

  

  



− − −

− − − − − −

− − −

− − − −
=

− − −

− − −

− − −

− 1

  

The steady state availabilities of the system due to operation of unit - 

 

( ) ( )
( )

( )
2

0 0
t h 1

2

N h
A lim A t lim 1 h

D h→ →
= = −  

But ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get  

( )

( )
2

0

2

N 1
A

D 1
= −


   (69)  

Where, 

( )2 0 0 1 1 2 2 3 3 6 6N 1 u u u u u=  +  +  +  +   

and 

( ) ( ) ( )2 0 0 1 1 12 2 14 4 3 3 5 5 6 6 76 7D 1 u u p p u u u p = −  +  +  +  +  +  +  +     

Where, 

( )i iu U 0=  and ( )iU h ; i=0, 1,…, 7 are the minors of the elements of first column of ( )2D h . 

Now the expected uptime of the system due to operative unit upto epoch (t-1) are given by 

( ) ( )
t 1

up 0

x 0

t A x
−

=

 =  

So that 

( )
( )

( )
0

up

A h
h

1 h



 =
−

  (70) 

 

IX. Busy Period Analysisof Repairman 
 

On taking geometric transforms of (58-65) and simplifying the resulting equations,we get 

( )
( )

( )
4

0

2

N h
B h

D h

 =    (71) 

Where, 

( ) ( ) ( )3 1 1 12 2 14 4 3 3 5 5 6 6 76 7N h h U Z q Z q Z U Z U Z U Z q Z             = + + + + + +
 

 

and ( )2D h is same as in availability analysis. 

In the long run the respective probabilities that the repairman is busy in the repair of a failed unit 

are given by- 

( ) ( )
( )

( )
3

0 o
t h 1

2

N h
B lim B t lim 1 h

D h→ →
= = −  

But ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get  

( )

( )
3

0

2

N 1
B

D 1
= −


   (72) 
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Where, 

( ) ( ) ( )3 1 1 12 2 14 4 3 3 5 5 6 6 76 7N 1 u p p u u u p =  +  +  +  +  +  + 
 

 

and ( )2D 1  is same as in availability analysis. 

Now the expected busy period of the repairman in repair of a failed unit up to epoch (t-1) are 

respectively given by-  

( ) ( )
t 1

b 0

x 0

t B x
−

=

 = ,  (73) 

 

 

X. Profit Function Analysis 
 

We are now in the position to obtain the net expected profit incurred up to epoch (t-1) by 

considering the characteristics obtained in earlier section. Let us consider, 

 

0K =  revenue per-unit time by the system due to operative unit. 

1K =  cost per-unit time when repairman is busy in repair of failed unit. 

Then, the net expected profit incurred up to epoch (t-1) is given by 

( ) ( ) ( )0 up 1 bP t K t K t=  −    (74) 

The expected profit per unit time in steady state is given by-  

( )
( ) ( )

2

t h 1

P t
P lim lim 1 h P h

t



→ →
= = −  

( )
( )

( )
( )

( )

( )
2 20 0

0 1
h 1 h 1

A h B h
K lim 1 h K lim 1 h

1 h 1 h

 

→ →
= − − −

− −
 

0 0 1 0K A K B= −    (75)  

 

 

XI. Graphical Representation 
 

The curves for MTSF and profit function have been drown for different values of failure 

parameters. Fig. 2 depicts the variation in MTSF with respect to failure rate ( )p  for different values 

of repair rate ( )r  of a unit and activation rate ( )c  when values of other parameters are kept fixed 

as 'p 0.99=  and 'q 0.01= . From the curves we conclude that expected life of the system decrease 

with increase in p . Further, increases as the values of r  and c  increases. 

 

Similarly, Fig. 3 reveals the variations in profit (P) with respect to p  for varying values of r  

and c , when other parameters are kept fixed as 'p 0.99= , 'q 0.01= , 0K 50= , and 1K 450= . 

From the figure it is clearly observed from the smooth curves, that the system is profitable if the 

value of parameter p  is smaller than 0.062, 0.102 and 0.112 respectively for r 0.1= , 0.15 and 0.2 for 

fixed value of c 0.95= . From dotted curves, we conclude that system is profitable only if value of 

parameter p  is smaller than 0.052, 0.078 and 0.118 respectively for r 0.1= , 0.15 and 0.2 for fixed 

value of c 0.94= . 
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Behavior of MTSF with respect to p , r  and c  

 
 

 

 

Behavior of Profit (P) with respect to p , r  and c
 

 
 

 

XII. Conclusions 

 
1. It is indicated in fig.2 that we can easily obtain the upper limit of “p” to achieve at least a 

particular value of MTSF. As an illustration to get at least MTSF 150 unit, the failure rate “p” 

must be less than 0.025, 0.031 and 0.037 respectively for repair rate r = 0.1, 0.15 and 0.2 when 

activation rate is kept fixed as c = 0.94. Similarly, when c = 0.95 is kept fixed as “p” must be less 

than 0.253, 0.034 and 0.040 corresponding to r = 0.1, 0.15 and 0.20. 

2.  In fig. 3 it is reveled from the dotted curves that the system is profitable only if failure rate “p” 

is greater than 0.052, 0.078 and 0.118 respectively for r = 0.1, 0.15 and 0.2 for fixed value of c = 

0
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0.94. From smooth curves, we conclude that system is profitable only if value of parameter “p” 

is greater than 0.062, 0.102 and 0.112 respectively for r = 0.1, 0.15 and 0.2 for fixed value of c = 

0.95. 
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Abstract 
 

In this paper, a finite capacity two heterogeneous servers’ queuing system with retention of 

reneging customers is studied. The explicit transient probabilities of system size are obtained using 

matrix method. Further, the time-dependent mean and variance are presented. Finally, a numerical 

example is provided to show the behavior of the system.  

 

Keywords: Retention of reneging customers, Heterogeneous servers, matrix method, 

Transient solution 

  

 

1  Introduction 
 

Queuing theory emerges as proficient instrument in solving the difficulties of clogging in 

telecommunication systems, computer-communication systems, service systems and traffic 

systems. Most of the work done in multi-server queuing, researchers have assumed equal service 

rate for all the servers. This assumption is validated only in mechanically or electronically 

controlled systems. But, when the servers are human they will perform with different rates as per 

their abilities. For example, counters of a library where different library assistants work on 

different rates can be accurately demonstrated using heterogeneous multi-server queuing systems. 

Kumar et al. [14] state that it is quite difficult to obtain the analytical results for queuing systems 

multi-heterogeneous servers. Morse [20] was the first to incorporate the idea of heterogeneity in 

service. Gumbel [11] derived the expressions for steady-state system size probabilities and the 

expected queue length for non-homogeneous multiple server queuing model. Saaty [21] obtained 

time-independent probabilities for heterogeneous server queuing system. He extended the Morse’s 

model with two different service rates. The same model with two types of queue disciplines was 

studied by Krishnamoorthy [13]. Godini [10] considered a heterogeneous server 𝑀/𝑀/𝑆 queuing 

system. Singh [29] analyzed three heterogeneous servers’ 𝑀/𝑀/3 queue where the first server is 

faster than other two and second server is faster than third server. He also obtained steady-state 

results and compared them with the existing three server homogeneous system. Cooper [5] 

studied 𝑀/𝑀/𝑆 queuing system with different service rates. He also obtained the steady-state to 

analyze the performance measures like number of customers in the system and server utilization. 

Queuing system with two types of processors was studied by Trivedi [32] to get the steady-state 
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results. Sharma and Dass [23] did the busy period analysis of 𝑀/𝑀/2/𝑁 queuing system with 

heterogeneous servers and also acquired the expression for customers’ number in the system and 

density function. For the same model Sharma and Dass [24] achieved the steady-state results for 

number of customers using Laplace transform and matrix method. Dharmaraja [6] obtained the 

transient solutions for the model already studied by Trivedi’s [32]. 

In our daily life, a customer may not be allowed to be served at time instance that he joins 

the queue, and he has to wait some time duration until his service process is started. During 

waiting time period, he may become impatient when the waiting time is higher than his expected 

service time duration and may leave the system before getting service. Telephone switchboard 

customers, perishable goods, inventory systems, and hospital emergency rooms’ handling of 

critical patients are the most prominent examples for above mentioned situations. Taking an 

example of a call centre where a customer who is told to hold on for some time to contact customer 

care officer may renege if he becomes impatient before his connection with customer care officer is 

established if his waiting time more than his patience level. This behavior can be observed in train 

ticket booking also. A customer in queue may renege after waiting for some time. Both balking and 

reneging influence the performance of the queuing system. Thus, many researchers have shown 

their keen interest in these two concepts. Singh [28] has analyzed an 𝑀/𝑀/2 queuing system with 

heterogeneity and balking, and furthermore, the results with corresponding two-server 

homogeneous system are compared. About-El-Ata [1] also studied an 𝑀/𝑀/2 queuing system with 

balking and heterogeneity. Al-seedy [4] attempted to obtain the transient solutions for system size 

probabilities of an 𝑀/𝑀/2 queue with balking, heterogeneous servers, and an additional server is 

set up for longer queues. El-Paoumy [7] has analyzed a finite capacity queuing system what has 

batch arrival, balking, reneging and two heterogeneous servers. Yue and Yue [34] have studied a 

two heterogeneous servers queuing system with balking, single vacation, and under Bernoulli 

schedules. A two heterogeneous servers queuing system was discussed by Yue et al. [33] by 

adding the feature of balking. They implemented the condition that first server is reliable and 

second server is subject to breakdown by extending the model of Singh [28]. Matrix-geometric 

method was used to derive the steady-state results for the system size probabilities. Furthermore, 

they have presented the performance measures such as the mean system size, and the average 

balking rate. El-Sherbiny [9] has studied a finite capacity two heterogeneous server queuing 

system with two general different balk functions to derive the steady-state results, and he 

probability generating function technique along with hypergeometric function. Kumar and 

Sharma [16] obtained the steady-state probabilities of number of customers in the system and some 

performance measures for an 𝑀/𝑀/2/𝑁 queue with discouraged arrivals, two-heterogeneous 

servers, reneging and retention of reneged customers. This was an extending of Kumar and 

Sharma [17] model. Impatient behavior on a two heterogeneous servers queuing system was 

studied by Ammar [2] to obtain the transient and steady-state results along with some 

performance measures. a two heterogeneous servers 𝑀/𝑀/2/𝑁 queue subject to reverse balking 

and reneging has been studied by Som and Kumar [30], and they presented the steady-state 

expressions and some performance measures for that model. Kumar and Sharma [18] have 

recently obtained the transient and steady-state system size probabilities for a heterogeneous 

servers’ 𝑀/𝑀/2 queuing system with retention of reneged customers. Furthermore, they have 

presented mean and variance as the performance measures and numerical illustrations also are 

provided. 

Even though researchers usually consider infinite capacity queuing systems, it may not 

appear in real life situations. For example, an e-mail server system has to limit its waiting line for 

mails considering available limit of memory. It never becomes infinite and should be limited to 

some finite capacity. The transient solution of a finite capacity 𝑀/𝑀/1 queue was obtained by 

Takacs [?] by making use of a technique involving eigenvectors and eigenvalues. Sharma and 

Gupta [25] have used Chebyshev polynomials to analyze an 𝑀/𝑀/1/𝑁 queuing system in transient 
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state. Sharma and Maheswar [27] have applied the matrix geometric method to derive the time 

dependent results for 𝑀/𝑀/1/𝑁 queue. A finite capacity correlated two server Markovian queuing 

system was analyzed by Sharma and Maheswar [22] by using matrix method. Ammar et al. [3] 

obtained the transient solutions for an 𝑀/𝑀/1/𝑁 queuing system with discouraged arrivals and 

reneging by using computable matrix technique. Yue and yue [35] derived the steady state 

expressions for a finite capacity multi-server queuing system with simultaneous balking, reneging, 

and synchronous vacations of servers. An 𝑀/𝑀/𝑐/𝑁 queuing system with balking and retention of 

reneged customers was analyzed by Kumar [15] and he used probability generating function 

technique to derive steady-state solutions with some performance measures for that model. 

Sharma [22] obtained the transient solution for two-heterogeneous servers’ queuing system in 

general form by making use of computable matrix technique. A finite capacity two heterogeneous 

servers queuing system with general balk function, reneging was studied by El-Paoumy and 

Nabwey [8] to obtain the steady-state expressions.Recently, Isguder and Kocer [12] have studied 

finite capacity queueing system with recurrent input and two heterogeneous servers and they 

derived the steady-state expressions for system size. 

The applicability of this model can be seen in communication and computer systems. 

Messages arrive to communication device as data packets are transferred through one of the 

communication channels which are working with different rates. The model we are considering 

has two heterogeneous processors and one of them is faster. If the data packets takes too much 

time to transmit, then the sender may recall the message sent. This is known as reneging in 

queuing theory. Customer retention strategies can be applied to reduce the dropping of the 

packets. Capacity of memory of both processors are limited to finite value. Therefore, this system 

has to limit their waiting room capacity for some finite number of messages. 

The application as discussed above motivates us to analyze the behavior of a finite 

capacity two-heterogeneous servers’ queuing system with retention of reneging customers. From 

the literature servey, it has been noticed that transient solution of the queuing model considered in 

this paper has not been obtained by using matrix method. Hence, we study and 𝑀/𝑀/2/𝑁 queuing 

system with two-heterogeneous servers and retention of reneging customers, and obtained its 

transient solution by employing matrix method. 

Rest of the paper has been arranged as follows; In section 3, the model is described. Section 

4 provides the transient solution. In section 5, time-dependent mean and variance are presented. 

Section 6 deals numerical illustrations. Finally, the paper is concluded in section 7. 

 

2  Model Description 
  

A finite capacity two-heterogeneous queueing system with impatient customers is 

considered. Arrivals occur to the system in accordance with Poisson process with rate 𝜆. The 

system has two severs and they have different exponentially distributed service rates 𝜇1 (server-1) 

and 𝜇2 (server-2) such that 𝜇1 < 𝜇2. In this model, we consider modified queue discipline i.e. an 

arriving customer goes to the server-1 if there is no customers in the system. Otherwise, it joins the 

server who is free. After joining the queue, the arrivals activates an individual timer, exponentially 

distributed with parameter 𝜉. If the customer’s service has not been started before the customer’s 

timer expires, he abandons the system with probability 𝑝 or may remain in the queue for his 

service with probability 𝑞(= 1 − 𝑝). The reneging rate when there are 𝑛 customers in the queue is 

given by (𝑛 − 2)𝜉𝑝. The number of customers in the system is limited to 𝑁. It is assumed that inter-

arrival times, service times are mutually independent and the service discipline is First-In, First-

Out(FIFO). 

Let {𝑋(𝑡), 𝑡 ≥ 0} denotes the number of customers in the system at time 𝑡, and 𝑃𝑛(𝑡), 𝑛 =

0,1,2,3,4, . . . . , 𝑁 be the time-dependent probabilities for the number of customers at time 𝑡. Initially, 

it is assumed that there are 𝑖 customers in the queuing system. 
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Then, the set of forward Kolmogorov differential difference equations governing the 

process are given by  

 𝑃0
′(𝑡) = −𝜆𝑃0(𝑡) + 𝜇1𝑃1(𝑡) (1) 

 𝑃1
′(𝑡) = 𝜆𝑃0(𝑡) − (𝜆 + 𝜇1)𝑃1(𝑡) + (𝜇1 + 𝜇2)𝑃2(𝑡) (2) 

 𝑃2
′(𝑡) = 𝜆𝑃1(𝑡) − (𝜆 + 𝜇1 + 𝜇2)𝑃2(𝑡) + (𝜇1 + 𝜇2 + 𝜉𝑝)𝑃3(𝑡) (3) 

 𝑃𝑛
′(𝑡) = 𝜆𝑃𝑛−1(𝑡) − (𝜆 + 𝜇1 + 𝜇2 + (𝑛 − 2)𝜉𝑝)𝑃𝑛(𝑡) 

 +(𝜇1 + 𝜇2 + (𝑛 − 1)𝜉𝑝)𝑃𝑛+1(𝑡); 𝑛 = 3,4,5. . . . , 𝑁 − 1 (4) 

 𝑃𝑁
′ (𝑡) = 𝜆𝑃𝑁−1(𝑡) − (𝜇1 + 𝜇2 + (𝑁 − 2)𝜉𝑝)𝑃𝑁(𝑡) (5) 

 

 

3  Transient solutions 
 

In this section, the transient solution of the above described model is derived by 

employing matrix method. 

 

4.1  Evaluation of 𝑷𝒏(𝒕) 

 Taking Laplace transform of the equations (1)-(5), we have  

 𝐴𝑃(𝑠) = 𝑃(0) (6) 

 Where 𝐴 is a tridiagonal matrix of order (𝑁 + 1) × (𝑁 + 1), and 𝑃(𝑠) and 𝑃(0) are column vectors 

of order 𝑁 + 1. Matrix 𝐴 is given by 

 

 

(

 
 
 
 
 

0.75   

  𝑠  +   𝜆    −𝜇1    ..    ..    ..    ..    0
−𝜆    𝑠  +   𝜆  + 𝜇1    −(𝜇1 + 𝜇2)    ..    ..    ..    0
0    −𝜆    𝑠  +   𝜆  + 𝜇1   + 𝜇2    −(𝜇1 + 𝜇2   +   𝜉  𝑝)    ..    ..    0
..    ..    ..    ..    ..    ..    . .
..    ..    ..    ..    ..    ..    . .
0    ..    ..    ..    ..    𝑠  +   𝜆  + 𝜇1   + 𝜇2   +   (𝑁 − 3)𝜉  𝑝    −[𝜇1 + 𝜇2   +   (𝑁 − 2)𝜉  𝑝]

0    ..    ..    ..    ..    −  𝜆    −[𝜇1 + 𝜇2   +   (𝑁 − 2)𝜉  𝑝]

   

)

 
 
 
 
 

 

and  

 𝑃(𝑠) = [𝑃̂0(𝑠), 𝑃̂1(𝑠), . . . . . . . , 𝑃̂𝑁(𝑠)]
𝑇
, 

 𝑃(0) = [𝑃0(0), 𝑃1(0), . . . . . . . , 𝑃𝑁(0)]
𝑇 , 

 where 𝑃̂𝑛(𝑠) is the Laplace transform of 𝑃𝑛(𝑡). 

The matrix 𝐴 can be transformed into the symmetric tridiagonal form by the diagonal 

matrix  
 𝑀 = 𝑑𝑔[𝑑0, 𝑑1, 𝑑2, . . . . . . . , 𝑑𝑁] 

 with  
 𝑑0 = 1 

 𝑑𝑛 = ∏
𝑛
𝑘=1 √

𝜇1+(1−𝛿1𝑘)𝜇2+(𝑛−2+𝛿1𝑘)𝜉𝑝

𝜆
, 1 ≤ 𝑛 ≤ 𝑁 

 

Using the diagonal matrix 𝑀, a symmetric tridiagonal matrix, 𝑠𝐼 + 𝐵 = 𝑀𝐴𝑀−1, is 

obtained. Diagonal entries of this matrix are same as in matrix 𝐴 and off diagonal entries in the 𝑛th 

row are represented by  

−√𝜆(𝜇1 + (1 − 𝛿1𝑛)𝜇2 + (𝑛 − 2 + 𝛿1𝑛)𝜉𝑝) and −√𝜆(𝜇1 + 𝜇2 + (𝑛 − 1)𝜉𝑝) respectively. This 

matrix and matrix A have same eigenvalues. 

where matrix 𝐵 is given by  
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(

 
 
 
 
 
 
 

0.68   

  𝜆    −√𝜆  𝜇1    0    ..    ..    ..    0  

−√𝜆  𝜇1    𝜆  + 𝜇1    −√𝜆  (𝜇1   +   𝜇2  )    ..    ..    ..    ..  

0    −√𝜆  (𝜇1   +   𝜇2  )    𝜆  + 𝜇1   + 𝜇2    −√𝜆  (𝜇1   +   𝜇2   +   𝜉  𝑝)    ..    ..    ..  
..    ..    . .   ..    ..    ..    ..  
..    ..    . .   ..    ..    ..    ..  

..    ..    ..    . .   ..    𝑠  +   𝜆  + 𝜇1   + 𝜇2   +   (𝑁 − 3)𝜉  𝑝    −√𝜆  (𝜇1   +   𝜇2   +   (𝑁 − 2)𝜉  𝑝)  

0    ..    ..    ..    ..    −√𝜆  (𝜇1   +  𝜇2   +   (𝑁 − 2)𝜉  𝑝)    −[𝜇1 + 𝜇2   +  (𝑁 − 2)𝜉  𝑝  ]

   

)

 
 
 
 
 
 
 

 

 

Two matrices 𝐴𝑛(𝑠) and 𝐵𝑛(𝑠) are defined with the determinants 𝑇𝑛(𝑠) and 𝑈𝑛(𝑠). They represent 

the bottom right and top left (𝑛 × 𝑛) square matrices of the matrix 𝑠𝐼 + 𝐵 respectively. The 

determinants 𝑇𝑛(𝑠) and 𝑈𝑛(𝑠) satisfy the following difference equations, 

 
 𝑇𝑛(𝑠) = [𝑠 + 𝜆 + 𝜇1 + (1 − 𝛿𝑁𝑛)𝜇2 + (𝑁 − 𝑛 − 1 + 𝛿𝑁𝑛)𝜉𝑝]𝑇𝑛−1(𝑠) 
 −[𝜆(𝜇1 + 𝜇2 + (𝑁 − 𝑛)𝜉𝑝)]𝑇𝑛−2(𝑠) 
 𝑈𝑛(𝑠) = [𝑠 + 𝜆 + 𝜇1 + (1 − 𝛿2𝑛)𝜇2 + (𝑛 − 3 + 𝛿2𝑛)𝜉𝑝]𝑈𝑛−1(𝑠) 
 −[𝜆(𝜇1 + (1 − 𝛿2𝑛)𝜇2 + (𝑛 − 3 + 𝛿2𝑛)𝜉𝑝)]𝑈𝑛−2(𝑠) 

 with the initial conditions  
 𝑇0(𝑠) = 1 = 𝑈0(𝑠) 

  
 𝑇1(𝑠) = 𝑠 + 𝜆 + 𝜇1 + 𝜇2 + (𝑁 − 2)𝜉𝑝 
 𝑈1(𝑠) = 𝑠 + 𝜆 

 Using the Lemma (1) and (2) of Lewis [19], we are able to derive the following results  

 (𝑠𝐼 + 𝐵)−1 =
𝐶

|𝑠𝐼+𝐵|
, 𝐶 = (𝐶𝑖𝑗(𝑠)), 

  

 𝐶𝑖𝑗(𝑠) = √∏
𝑖
𝑟=𝑗+1 𝜆[𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝]𝑈𝑗(𝑠)𝑇𝑁−𝑖(𝑠), 𝑖 > 𝑗 

 = 𝑈𝑖(𝑠)𝑇𝑁−𝑗(𝑠), 𝑖 = 𝑗 

 = √∏
𝑗
𝑟=𝑖+1 𝜆[𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝]𝑈𝑖(𝑠)𝑇𝑁−𝑗(𝑠), 𝑖 < 𝑗 

 and  
 |𝐴| = |𝑠𝐼 + 𝐵| = 𝑇𝑁(𝑠) = 𝑈𝑁(𝑠) 

 The equation (6) is rearranged as follows,  
 𝑃(𝑠) = 𝐴−1𝑃(0) 
 = 𝑀−1(𝑠𝐼 + 𝐵)−1𝑀𝑃(0) 

  

 𝑃𝑛(𝑠) =
∑𝑁𝑗=0𝑑𝑛

−1𝐶𝑛𝑗(𝑠)𝑑𝑗𝑃𝑗(0)

|𝑠𝐼+𝐵|
 

 =
𝑑𝑛
−1𝑑𝑖𝐶𝑛𝑖(𝑠)

|𝑠𝐼+𝐵|
 

 where  

 𝑑𝑛
−1𝑑𝑖 = ∏

𝑖
𝑘=𝑛+1 √

𝜇1+(1−𝛿1𝑘𝑟)𝜇2+(𝑘−2+𝛿1𝑘)𝜉𝑝

𝜆
, 𝑖 > 𝑛 

 = 1, 𝑖 = 𝑛, 

 =
1

∏𝑛𝑘=𝑖+1√
𝜇1+(1−𝛿1𝑘)𝜇2+(𝑘−2+𝛿1𝑘)𝜉𝑝

𝜆

, 𝑛 > 𝑖 

 

Then, we can derive the following expression for 𝑃𝑛(𝑠),  

 𝑃̂𝑛(𝑠) = ∏
𝑖
𝑟=𝑛+1 [𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝]

𝑈𝑛(𝑠)𝑇𝑁−𝑖(𝑠)

|𝑠𝐼+𝐵|
, 𝑛 < 𝑖 

 =
𝑈𝑛(𝑠)𝑇𝑁−𝑛(𝑠)

|𝑠𝐼+𝐵|
, 𝑛 = 𝑖 

 = 𝜆𝑛−𝑖
𝑈𝑛(𝑠)𝑇𝑁−𝑖(𝑠)

|𝑠𝐼+𝐵|
, 𝑛 > 𝑖, 0 ≤ 𝑖, 𝑛 ≤ 𝑁 (7) 

 Since symmetric tridiagonal matrix 𝐵 is a diagonally dominant matrix, eigenvalues of its are real, 

positive and distinct.  

Let 𝛼𝑚(𝑚 = 0,1,2, . . . , 𝑁) be an eigenvalue of matrix 𝐵, and 𝛼0 = 0, Then obviously, we 

have  
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 |𝑠𝐼 + 𝐵| = 𝑠∏𝑁
𝑚=1 (𝑠 + 𝛼𝑚) (8) 

 Substituting the equation (8) in (??), and making use of partial fraction decomposition, we derive  

 𝑃̂𝑛(𝑠) = ∏
𝑖
𝑟=𝑛+1 [𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝] (

𝜋𝑛

𝑠
+∑𝑁𝑘=1

𝐴𝑛𝑘

𝑠+𝛼𝑘
), 

 0 ≤ 𝑛 < 𝑖 

 =
𝜋𝑛

𝑠
+ ∑𝑁𝑘=1

𝐵𝑛𝑘

𝑠+𝛼𝑘
, 𝑛 = 𝑖 

 = 𝜆𝑛−𝑖 (
𝜋𝑛

𝑠
+ ∑𝑁𝑘=1

𝐵𝑛𝑘

𝑠+𝛼𝑘
) , 𝑖 < 𝑛 ≤ 𝑁 (9) 

 where  

 𝜋𝑛 =
𝑈𝑛(0)𝑇𝑁−𝑖(0)

∏𝑁𝑗=1𝛼𝑗
, 0 ≤ 𝑛 ≤ 𝑖 

 =
𝑈𝑖(0)𝑇𝑁−𝑛(0)

∏𝑁𝑗=1𝛼𝑗
, 𝑖 ≤ 𝑛 ≤ 𝑁 

 𝐴𝑛𝑘 =
𝑈𝑛(−𝛼𝑘)𝑇𝑁−𝑖(−𝛼𝑘)

(−𝛼𝑘)∏
𝑁
𝑗=1,𝑗≠𝑘 (𝛼𝑗−𝛼𝑘)

 

 𝐵𝑛𝑘 =
𝑈𝑖(−𝛼𝑘)𝑇𝑁−𝑛(−𝛼𝑘)

(−𝛼𝑘)∏
𝑁
𝑗=1,𝑗≠𝑘 (𝛼𝑗−𝛼𝑘)

 

 The inversion of the equation (??) yields  

 𝑃𝑛(𝑡) = ∏
𝑖
𝑟=𝑛+1 [𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝](𝜋𝑛 +∑

𝑁
𝑘=1 𝐴𝑛𝑘𝑒

−𝛼𝑘𝑡), 
 0 ≤ 𝑛 < 𝑖 
 = 𝜋𝑖 + ∑

𝑁
𝑘=1 𝐵𝑖𝑘𝑒

−𝛼𝑘𝑡 , 𝑛 = 𝑖 
 = 𝜆𝑛−𝑖(𝜋𝑛 +∑

𝑁
𝑘=1 𝐵𝑛𝑘𝑒

−𝛼𝑘𝑡), 𝑖 < 𝑛 ≤ 𝑁 

 

 

   
 

Figure  1: Variation in transient probabilities with time 
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Figure  2: Variation in transient probabilities with time 

 

 

 
 

Figure  3: Comparison of expected system size [𝐸(𝑋(𝑡))] against time (𝑡) 

for varying arrival rate (𝜆) 
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5  Time dependent mean and variance 
 

 In this section, time dependent expected value and variance of the system size distribution are 

derived.  

 

5.1  Mean 

 Let 𝑋(𝑡) denotes the number of jobs in the system at time 𝑡. The average number of jobs in 

the system at time 𝑡 is given by  

 𝐸(𝑋(𝑡)) = ∑𝑁𝑗=1 𝑗𝑃𝑛(𝑡) 

 = ∑𝑖𝑗=1 𝑗𝑃𝑗(𝑡) + 𝑛𝑃𝑛(𝑡) + ∑
𝑁
𝑗=𝑛+1 𝑗𝑃𝑗(𝑡) 

 = ∑𝑖𝑗=1 𝑗 ∏
𝑖
𝑟=𝑗+1 [𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝] 

 × (𝜋𝑗 + ∑
𝑁
𝑘=1 𝐴𝑗𝑘𝑒

−𝛼𝑘𝑡) 

 +𝑛𝜋𝑛 + ∑
𝑁
𝑘=1 𝐵𝑛𝑘𝑒

−𝛼𝑘𝑡 
 +∑𝑁𝑗=𝑛+1 𝑗𝜆

𝑗−𝑖(𝜋𝑗 + ∑
𝑁
𝑘=1 𝐵𝑗𝑘𝑒

−𝛼𝑘𝑡) 

 

 

5.2  Variance 

 Let 𝑋(𝑡) denotes the number of jobs in the system at time 𝑡. The variance of jobs in the 

system at time 𝑡 is given by  

 𝑉𝑎𝑟(𝑋(𝑡)) = ∑𝑁𝑗=1 𝑗
2𝑃𝑛(𝑡) − [𝐸(𝑋(𝑡))]

2 

 = ∑𝑖𝑗=1 𝑗
2𝑃𝑗(𝑡) + 𝑛

2𝑃𝑛(𝑡) + ∑
𝑁
𝑗=𝑛+1 𝑗

2𝑃𝑗(𝑡) − [𝐸(𝑋(𝑡))]
2 

 = ∑𝑖𝑗=1 𝑗
2∏𝑖

𝑟=𝑗+1 [𝜇1 + (1 − 𝛿1𝑟)𝜇2 + (𝑟 − 2 + 𝛿1𝑟)𝜉𝑝] 

 × (𝜋𝑗 + ∑
𝑁
𝑘=1 𝐴𝑗𝑘𝑒

−𝛼𝑘𝑡) 

 +𝑛2𝜋𝑛 +∑
𝑁
𝑘=1 𝐵𝑛𝑘𝑒

−𝛼𝑘𝑡 
 +∑𝑁𝑗=𝑛+1 𝑗

2𝜆𝑗−𝑖(𝜋𝑗 +∑
𝑁
𝑘=1 𝐵𝑗𝑘𝑒

−𝛼𝑘𝑡) − [𝐸(𝑋(𝑡))]2 

 

 

6  Numerical illustrations 
 

The numerical examples which illustrate the functioning of concerned model in transient state are 

presented in this section. 

Figures 1 and 2 presents the behaviour of the probabilities 𝑃𝑛(𝑡) against time 𝑡 for varying 

values of 𝑛 with parameters 𝜆 = 1.8, 𝜇1 = 1.5, 𝜇2 = 2, 𝜉 = 0.1, 𝑝 = 0.4 and initial value 𝑖 = 1. It can 

be noticed that all the probabilities tend to settle at steady-state when time progresses. 

Figure 3 is plotted to describe the comparison of the expected system sizes 𝐸(𝑋(𝑡)) with 

same parameter values and three types of arrivals. Here, if 𝜆 < 𝜇1 + 𝜇2, it can be seen that expected 

system size of the queue reaches its steady state with time 𝑡. But, for other two cases, it rapidly 

increases expected number of customers in the system when time progresses. 

 

7  Conclusion 
 

A finite capacity two-heterogeneous servers’ queuing system with retention of reneging customers 

is studied. The matrix method is used to derive the transient solution. Additionally, mean and 

variance of the system size are presented as the performance measures. Finally, numerical analysis 

is added to express the behaviour of system size probabilities and expected system size against 

time 
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Abstract 
 

This paper deals with the sensitivity analysis of three configurations arranged in series-parallel. 

Configuration I consist of six units in which four are on operation while two are on standby. 

Configuration II consist of seven units with three of the units are on standby while the remaining 

four are on operation. Configuration III comprises of two subsystems C and D with three unit in 

each subsystem with a unit on standby. Units in each configuration provide 25MW. Both the 

failure and repair time are assumed exponentially distributed. System of first order linear 

differential difference equations is obtained using the transition diagram. Explicit expressions of 

the system availability, Mean Time To Failure (MTTF), busy period due to partial failure, busy 

period due to complete failure and profit were derived. Furthermore results of sensitivity of the 

system availability, MTTF and profit were determined. The obtained results were analyzed and 

compared, configuration I was found to be the optimal configuration. 

 

Keywords: Sensitivity, Reliability, Dynamo, Availability, Configurations, Series 

- Parallel. 
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I. Introduction 
 

Every manufacturer expects the performance of his/her engines with full efficiency within the 

designed limits. However, in real life users have the tendency to operate the system beyond even 

their control limits and such situations are termed as abnormal condition. In the system design, 

redundancy is found in almost all types of systems that plays an important role for improvement 

of reliability and availability of the system. Sometimes, it is difficult to keep a high cost identical 

unit in standby situation; therefore, a duplicate unit may be kept as spare for use in emergency and 

to provide services to the customers for a considerable period. Each unit can perform same kind of 

functions, but their degree of reliability and desirability may differ from unit to unit, Kumar et al. 

(2020). High system reliability and availability of electrical system plays a vital role towards 

industrial growth as the profit is directly dependent on production volume which depends upon 

system performance. Due to their prevalence in domestic, manufacturing, and industrial systems, 

many researchers have   studied reliability and availability problem of different electrical systems.  

 

A great number of models have been introduced to describe the behaviour and performance of 

electrical system that is subject to failure. For this reason, many researchers have studied reliability 

problem of different electrical systems.Redundancy technique is widely used to improve system 

reliability. However, in the real world situation, many systems are load-sharing, such as electric 

generators sharing an electrical load in a power plant, cables in a suspension bridge, and valves or 

pumps in a hydraulic system, Chunbo et al. (2015). To cite few, Chauhan and Malik (2017) focused 

on the evaluation of reliability and MTSF of a parallel system with Weibull failure laws. Abdul 

Kareem and Singh (2019) worked on cost assessment of complex repairable system consisting two 

subsystems in series configuration using Gumbel Hougaard family copula. Rajesh et al. (2018) have 

studied the reliability and availability for a three unit gas turbine power generating system with 

seasonal effect and FCFS repair pattern. Dalip et al. (2014) have also studied reliability and 

economic analysis of a power generating system comprising one gas and one gas steam turbine 

with random inspection. However, situations may be there, where the two units may be dissimilar 

but the nature of the work done by them is the same. Such a situation was discussed by Singh and 

Taneja (2013) and (2014) for a gas turbine power plant. However, they did not consider the 

parameter ‘Temperature’ which also affects the working/function and efficiency of a gas turbine 

system. One such situation was discussed by Rajesh et al. (2018) where effects of temperature on 

production of a system comprising one gas turbine and one steam turbine have been taken into 

account. Such a system necessarily goes to down mode on failure of gas turbine irrespective of 

operability of steam turbine, as steam turbine cannot work without working of gas turbine. 

However, this problem can be overcome to some extent if number of gas turbine is increased, i.e., 

redundancy is introduced. Yusuf (2016) presented an article on reliability evaluation of parallel 

system with two types of preventive maintenance. Ram M. and Kumar (2015) discussed on 

performability/performance analysis of a system under 1-out-of -2: G scheme with perfect 

reworking, Wang et al. (2003) have studied cost benefit analysis of series systems with warm 

standby components, Tseng et al. (2013) studied comparative analysis of three systems with 

imperfect coverage and standby switching failures and Wang and Chin (2006) also discussed on 

cost benefit analysis of series systems with cold standby components and a repairable service 

station. In their research paper Wang and Chin (2006) considered three configurations as follows:  

 

The first configuration is a serial system of one primary 30 MW component with one cold standby 

30MW component. The second configuration is a serial system of two primary 15MW components 

and one cold standby 15MW component. The last configuration is a serial system of three primary 

10MW components with two interchangeable cold standby 10MW components. Each standby unit 
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can replace either one of the failed components and the total of 30MW is expected in all the three 

configurations. Lastly, Wang and Kuo (2018) have studied cost benefit analysis of three systems 

with imperfect coverage and standby switching failures. In the paper, data center require a 30MW 

power electricity, and they assumed that the electricity generation capacity of generators is 

available in units of 30MW, 15MW, and 10MW. To provide reliable and stable power supply, there 

are standby generators, and all the active and standby generators are continuously monitored by a 

fault detecting device to identify if they fail. They also assumed that standby generators are 

allowed to fail while inactive before they are put into full operation. Goyal et al. (2017) published a 

research work on Sensitivity analysis of a three unit series system under k-out of-n redundancy. 

Considering reliability, as one of the performance measure, the authors have designed a complex 

system which consists of three subsystems, namely, A, B and C in series configuration. The 

subsystem A consists of n numbers of units which are arranged in parallel configuration, 

subsystem B consists of two sub-subsystems X and Y align parallel to one another, where X is a 

type of 1-out-of-n. Failure and repair rates are assumed to follow the general distribution. 

 

In this research work, some relevant literature related to reliability analysis and performance 

evaluation of dynamo system configurations were reviewed which mostly focused on the cost 

benefit analysis of the system. Relevant literature that has to do with system modeling and how 

the model would be applied to solved practical system and improved efficiency as studied by 

many scholars were reviewed. This research paper further enhanced the work of the previous 

researchers. 100MW was considered as the total output and the three configurations have uniform 

of 25MW in all the units of the configurations. Furthermore, some practical applications are also 

addressed. 

 

II.Notation, Assumption and Description of Three Configurations 
 

Notations 
 𝜆 ∶ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 
 𝜇 ∶ 𝑅𝑒𝑝𝑎𝑖𝑟 𝑟𝑎𝑡𝑒 
Avi; i = 1,2,3 Availability of system 

MTTFi; i = 1,2,3  Mean time to failure 

Q(t) = Probability row vector 

Assumptions 

1. Systems have redundant standby units 

2. Repair is immediate 

3. Switching from standby level to operation stage is perfect 

 

Description of the three configurations 

 

Configuration I consists of six units each of the unit has 25MW arranged in series-parallel. Out of 

the six units four are on operational stage while two are on standby. The failure of A1 or A6 causes 

the complete failure of the system. Configuration II has seven sub-components/ units with 25MW 

each arranged in series–parallel, three of the units are on standby while the remaining four are on 

operation stages, the failure of the system is said to have occur if B2 and A1 or A2 fails. 

Configuration III comprises of two subsystems C and D with three units in each subsystem and 

out three units there is one standby with 25MW in each unit. Out of the six units in total four are 

on operation while two are on standby. The system will collapse if C1 and C2 or C5 and C6 fail. The 

parameter λ represents the failure rate in all the three configurations. Whenever active unit fails, it 

will immediately be replaced by a standby and the failed unit is taken for repair which is 

represented by µ. 
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Figure 1: Block diagram of Configuration I 

 
Figure 2: Block diagram of Configuration II 

 

 
Figure 3: Block diagram of Configuration III 
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III. Models Formulation 
 

Availability and Meantime to Failure of Configuration I 

According to Wang et al. (2006), let Q (t) be the probability that at time t there are n components 

working in the system. Then the initial conditions for this problem are stated as follows: 

 
𝑄(0) = [𝑄0(0), 𝑄1(0), 𝑄2(0),… , 𝑄16(0)] = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

 

The following differential equations are obtained: 

 
𝑄0 
𝐼 (𝑡) =  −4𝜆𝑄0(𝑡) +  𝜇𝑄1(𝑡) +  𝜇𝑄2(𝑡) +  𝜇𝑄7(𝑡) + 𝜇𝑄8(𝑡)  

𝑄1 
𝐼 (𝑡) =  −(4𝜆 + 𝜇 )𝑄1(𝑡) +  𝜆𝑄0(𝑡) +  𝜇𝑄3(𝑡) +  𝜇𝑄4(𝑡) + 𝜇𝑄9(𝑡) + 𝜇𝑄10(𝑡)  

𝑄2 
𝐼 (𝑡) =  −(4𝜆 + 𝜇 )𝑄2(𝑡) +  𝜆𝑄0(𝑡) +  𝜇𝑄5(𝑡) +  𝜇𝑄6(𝑡) + 𝜇𝑄11(𝑡) + 𝜇𝑄12(𝑡)  

𝑄3 
𝐼 (𝑡) =  −(𝜆 + 𝜇 )𝑄3(𝑡) +  𝜆𝑄1(𝑡) +  𝜇𝑄13(𝑡)  

𝑄4 
𝐼 (𝑡) =  −(𝜆 + 𝜇 )𝑄4(𝑡) +  𝜆𝑄1(𝑡) +  𝜇𝑄14(𝑡)  

𝑄5 
𝐼 (𝑡) =  −(𝜆 + 𝜇 )𝑄5(𝑡) +  𝜆𝑄2(𝑡) +  𝜇𝑄15(𝑡)  

𝑄6 
𝐼 (𝑡) =  −(𝜆 + 𝜇 )𝑄6(𝑡) +  𝜆𝑄2(𝑡) +  𝜇𝑄16(𝑡)  

𝑄7 
𝐼 (𝑡) =  −𝜇𝑄7(𝑡) +  𝜆𝑄0(𝑡)  

𝑄8 
𝐼 (𝑡) =  −𝜇𝑄8(𝑡) +  𝜆𝑄0(𝑡)  

𝑄9 
𝐼 (𝑡) =  −𝜇𝑄9(𝑡) +  𝜆𝑄1(𝑡)  

𝑄10 
𝐼 (𝑡) =  −𝜇𝑄10(𝑡) +  𝜆𝑄1(𝑡)  

𝑄11 
𝐼 (𝑡) =  −𝜇𝑄11(𝑡) +  𝜆𝑄2(𝑡)  

𝑄12 
𝐼 (𝑡) =  −𝜇𝑄12(𝑡) +  𝜆𝑄2(𝑡)  

𝑄13 
𝐼 (𝑡) =  −𝜇𝑄13(𝑡) +  𝜆𝑄3(𝑡)  

𝑄14 
𝐼 (𝑡) =  −𝜇𝑄14(𝑡) +  𝜆𝑄4(𝑡)  

𝑄15 
𝐼 (𝑡) =  −𝜇𝑄15(𝑡) +  𝜆𝑄5(𝑡)  

𝑄16 
𝐼 (𝑡) =  −𝜇𝑄16(𝑡) +  𝜆𝑄6(𝑡)                                                                                             (1) 

 

The differential equations in (1) above can be written in the matrix form as 

 

𝑄𝐼(𝑡) =  𝑇1𝑄(𝑡)                                                                                                                       (2) 

 

where    

T1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−4𝜆
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0
0
0

𝜇
−𝑦1
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0

𝜇
0
−𝑦1
0
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0

0
𝜇
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0
0

0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0

0
0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0

0
0
𝜇
0
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆

 

𝜇
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0
0

 

𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0

 

0
𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0

 

0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0

 

0
0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0

 

0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0

 

0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0

 

0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0

 

0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0

 

0
0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

y1 = (4λ + µ)   and   y2 = (λ + µ) 
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Equation (2) above can be written in the matrix form as: 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑄0
𝐼(𝑡)

𝑄1
𝐼(𝑡)

𝑄2
𝐼(𝑡)

𝑄3
𝐼(𝑡)

𝑄4
𝐼(𝑡)

𝑄5
𝐼(𝑡)

𝑄6
𝐼(𝑡)

𝑄7
𝐼(𝑡)

𝑄8
𝐼(𝑡)

𝑄9
𝐼(𝑡)

𝑄10
𝐼 (𝑡)

𝑄11
𝐼 (𝑡)

𝑄12
𝐼 (𝑡)

𝑄13
𝐼 (𝑡)

𝑄14
𝐼 (𝑡)

𝑄15
𝐼 (𝑡)

𝑄16
𝐼 (𝑡)

 

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−4𝜆
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0
0
0

𝜇
−𝑦1
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0

𝜇
0
−𝑦1
0
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0

0
𝜇
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0
0

0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0

0
0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0

0
0
𝜇
0
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆

 

𝜇
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0
0

 

𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0

 

0
𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0

 

0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0

 

0
0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0

 

0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0

 

0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0

 

0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0

 

0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0

 

0
0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

In the steady state all the derivative equal to zero, thus from equation (2) above, T1Q(ꚙ) = 0  is 

obtained.  

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−4𝜆
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0
0
0

𝜇
−𝑦1
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0

𝜇
0
−𝑦1
0
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0

0
𝜇
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0
0

0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0

0
0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0

0
0
𝜇
0
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆

 

𝜇
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0
0

 

𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0

 

0
𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0

 

0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0

 

0
0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0

 

0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0

 

0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0

 

0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0

 

0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0

 

0
0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑄0(∞)
𝑄1(∞)
𝑄2(∞)
𝑄3(∞)
𝑄4(∞)
𝑄5(∞)
𝑄6(∞)
𝑄7(∞)
𝑄8(∞)
𝑄9(∞)
𝑄10(∞)
𝑄11(∞)
𝑄12(∞)
𝑄13(∞)
𝑄14(∞)
𝑄15(∞)
𝑄16(∞)

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (3) 

 

Using the normalizing condition 

 

∑ 𝑄𝑖(∞) =  1
16
𝑖=0           (4) 

 

Following Wang et al (2006) Equation (4) is substituted in the last row of (3) to obtain 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

−4𝜆
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
0
0
1

𝜇
−𝑦1
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
0
0
1

𝜇
0
−𝑦1
0
0
𝜆
𝜆
0
0
0
0
𝜆
𝜆
0
0
0
1

0
𝜇
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
0
1

0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
0
1

0
0
𝜇
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
𝜆
1

0
0
𝜇
0
0
0
−𝑦2
0
0
0
0
0
0
0
0
0
1

 

𝜇
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
0
1

 

𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
0
1

 

0
𝜇
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
0
1

 

0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
0
1

 

0
0
𝜇
0
0
0
0
0
0
0
0
−𝜇
0
0
0
0
1

 

0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
0
1

 

0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
0
1

 

0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
0
1

 

0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
−𝜇
1

 

0
0
0
0
0
0
𝜇
0
0
0
0
0
0
0
0
0
1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑄0(∞)
𝑄1(∞)
𝑄2(∞)
𝑄3(∞)
𝑄4(∞)
𝑄5(∞)
𝑄6(∞)
𝑄7(∞)
𝑄8(∞)
𝑄9(∞)
𝑄10(∞)
𝑄11(∞)
𝑄12(∞)
𝑄13(∞)
𝑄14(∞)
𝑄15(∞)
𝑄16(∞)

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (5) 

 

System of linear differential equations given in equation (5) above was solved using MATLAB 

package to obtain the explicit solution of  𝑄0(∞), 𝑄1(∞),𝑄2(∞) ,…, 𝑄16(∞) 

AV1(∞) =  𝑄0(∞) + 𝑄1(∞) + 𝑄2(∞) + 𝑄3(∞) + 𝑄4(∞) + 𝑄5(∞) + 𝑄6(∞) = 
𝜇3 +  2𝜆𝜇2 + 4𝜆2𝜇

4𝜆3+ 8𝜆2+4𝜆𝜇2+ 𝜇3
  

 

Now to evaluate the MTTF1, the rows and column of the absorbing (failure) state were deleted and 

the new matrix M1 was transposed as given in the equation (6) below, Wang et al. (2006): 

 

E[TQ(0) → Q(absorbing)] = Q(0) (-𝑀1
−1)[1,1,1,1,1,1,1]T      (6) 

Where, 

 

𝑀1 =

(

 
 
 
 

−4𝜆
𝜇
𝜇
0
0
0
0

 

  

𝜆
−𝑦1
0
𝜇
𝜇
0
0

  

𝜆
0
−𝑦1
0
0
𝜇
𝜇

  

0
𝜆
0
−𝑦2
0
0
0

  

0
𝜆
0
0
−𝑦2
0
0

  

0
0
𝜆
0
0
−𝑦2
0

  

0
0
𝜆
0
0
0
−𝑦2)

 
 
 
 

 .  

 

From equation (6) we have:  

E[TQ(0) → Q(absorbing)] = MTTF1 = 
(𝜆 + 𝜇 )+ 2𝜆

8𝜆2+5𝜆𝜇 + 𝜇2
 + 

4𝜆2 +  3𝜆𝜇 + 𝜇2

2𝜆(8𝜆2+5𝜆𝜇 + 𝜇2)
   

 

Availability and Meantime to Failure of Configuration II 

To further investigate the availability of configuration II,  𝑄𝑖 (𝑡), 𝑖 = 0,1,2,3, … ,10 were defined to be 

the probabilities that the system at time t ≥ 0 is in state Si . Let Q(t) be the probability row vector at 

time  t ≥ 0. The initial condition for this problem is  

𝑄(0) = [𝑄0(0), 𝑄1(0), 𝑄2(0),… , 𝑄10(0)] = [1,0,0,0,0,0,0,0,0,0,0] .  

Then the following differential equations are obtained: 

 
𝑑𝑄0

𝑑𝑡
(𝑡) =  −8𝜆𝑄0(𝑡) +  𝜇𝑄1(𝑡) +  𝜇𝑄2(𝑡)  

𝑑𝑄1

𝑑𝑡
(𝑡) =  −(8𝜆 + 𝜇 )𝑄1(𝑡) +  4𝜆𝑄0(𝑡) +  𝜇𝑄3(𝑡) +  𝜇𝑄4(𝑡)  

𝑑𝑄2

𝑑𝑡
(𝑡) =  −(8𝜆 + 𝜇 )𝑄2(𝑡) +  4𝜆𝑄0(𝑡) +  𝜇𝑄5(𝑡) +  𝜇𝑄6(𝑡)  

𝑑𝑄3

𝑑𝑡
(𝑡) =  −(8𝜆 + 𝜇)𝑄3(𝑡) +  4𝜆𝑄1(𝑡) +  𝜇𝑄7(𝑡) + 𝜇𝑄8(𝑡) 
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𝑑𝑄4

𝑑𝑡
(𝑡) =  −(8𝜆 + 𝜇 )𝑄4(𝑡) +  4𝜆𝑄1(𝑡) +  𝜇𝑄9(𝑡)  +  𝜇𝑄10(𝑡)  

𝑑𝑄5

𝑑𝑡
(𝑡) =  −𝜇𝑄5(𝑡) +  4𝜆𝑄2(𝑡)  

𝑑𝑄6

𝑑𝑡
(𝑡) =  −𝜇𝑄6(𝑡) +  4𝜆𝑃2(𝑡)  

𝑑𝑄7

𝑑𝑡
(𝑡) =  −𝜇𝑄7(𝑡) +  4𝜆𝑄3(𝑡)  

𝑑𝑄8

𝑑𝑡
(𝑡) =  −𝜇𝑄8(𝑡) +  4𝜆𝑄3(𝑡)  

𝑑𝑄9

𝑑𝑡
(𝑡) =  −𝜇𝑄9(𝑡) +  4𝜆𝑄4(𝑡)  

𝑑𝑄10

𝑑𝑡
(𝑡) =  −𝜇𝑄10(𝑡) +  4𝜆𝑄4(𝑡)                                                                                                          (7) 

 

With initial conditions 𝑄(0) = [𝑄0(0), 𝑄1(0), 𝑄2(0),… , 𝑄10(0)] = [1,0,0,0,0,0,0,0,0,0,0]. Equation (7) 

could be written in the form of matrix as given in equation (8) below:  

 

𝑄𝐼(𝑡) =  𝑇2𝑄(𝑡)                    (8)  

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑑𝑄0
𝑑𝑡

(𝑡)

𝑑𝑄1
𝑑𝑡

(𝑡)

𝑑𝑄2
𝑑𝑡

(𝑡)

𝑑𝑄3
𝑑𝑡

(𝑡)

𝑑𝑄4
𝑑𝑡

(𝑡)

𝑑𝑄5
𝑑𝑡

(𝑡)

𝑑𝑄6
𝑑𝑡

(𝑡)

𝑑𝑄7
𝑑𝑡

(𝑡)

𝑑𝑄8
𝑑𝑡

(𝑡)

𝑑𝑄9
𝑑𝑡

(𝑡)

𝑑𝑄10
𝑑𝑡

(𝑡)

  

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 

(

 
 
 
 
 
 
 
 

−8𝜆
4𝜆
4𝜆
0
0
0
0
0
0
0
0

 

  

𝜇
−𝑦3
0
4𝜆
4𝜆
0
0
0
0
0
0

  

𝜇
0
−𝑦3
0
0
4𝜆
4𝜆
0
0
0
0

  

0
𝜇
0
−𝑦3
0
0
0
4𝜆
4𝜆
0
0

  

0
𝜇
0
0
−𝑦3
0
0
0
0
4𝜆
4𝜆

  

0
0
𝜇
0
0
−𝜇
0
0
0
0
0

  

0
0
𝜇
0
0
0
−𝜇
0
0
0
0

  

0
0
0
𝜇
0
0
0
−𝜇
0
0
0

  

0
0
0
𝜇
0
0
0
0
−𝜇
0
0

  

0
0
0
0
𝜇
0
0
0
0
−𝜇
0

  

0
0
0
0
𝜇
0
0
0
0
0
−𝜇)

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝑄0(𝑡)

𝑄1(𝑡)

𝑄2(𝑡)

𝑄3(𝑡)

𝑄4(𝑡)

𝑄5(𝑡)

𝑄6(𝑡)

𝑄7(𝑡)

𝑄8(𝑡)

𝑄9(𝑡)

𝑄10(𝑡)

 

)

 
 
 
 
 
 
 
 
 

 

 

Where, y3 = (8λ + µ)    

 

To calculate the state probabilities, all derivatives of state are equal to zero. This will enable us to 

compute steady state availability by equating the left hand side of  equation (8) to zero. Now we 

have 

 

𝑇2𝑄(∞) =   0                          (9) 

 

Thus, equation (9) above could be written in matrix form as: 
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(

 
 
 
 
 
 
 
 

−8𝜆
4𝜆
4𝜆
0
0
0
0
0
0
0
0

 

  

𝜇
−𝑦3
0
4𝜆
4𝜆
0
0
0
0
0
0

  

𝜇
0
−𝑦3
0
0
4𝜆
4𝜆
0
0
0
0

  

0
𝜇
0
−𝑦3
0
0
0
4𝜆
4𝜆
0
0

  

0
𝜇
0
0
−𝑦3
0
0
0
0
4𝜆
4𝜆

  

0
0
𝜇
0
0
−𝜇
0
0
0
0
0

  

0
0
𝜇
0
0
0
−𝜇
0
0
0
0

  

0
0
0
𝜇
0
0
0
−𝜇
0
0
0

  

0
0
0
𝜇
0
0
0
0
−𝜇
0
0

  

0
0
0
0
𝜇
0
0
0
0
−𝜇
0

  

0
0
0
0
𝜇
0
0
0
0
0
−𝜇)

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

𝑄0(𝑡)

𝑄1(𝑡)

𝑄2(𝑡)

𝑄3(𝑡)

𝑄4(𝑡)

𝑄5(𝑡)

𝑄6(𝑡)

𝑄7(𝑡)

𝑄8(𝑡)

𝑄9(𝑡)

𝑄10(𝑡)

 

)

 
 
 
 
 
 
 
 
 

= 

(

 
 
 
 
 
 
 
 

0
0
0
0
0
0
0
0
0
0
0

 

)

 
 
 
 
 
 
 
 

  

 

Using the normalizing condition below, it follows that 

 

∑ 𝑄𝑖(∞) =  1
10
𝑖=0              (10) 

 

Solving equation (10) above to obtain the explicit solution of  𝑄0(∞), 𝑄1(∞), 𝑄2(∞), …, 𝑄10(∞), the 

explicit equation for steady state availability is therefore obtained as follows: 

 

AV2(∞) = 𝑄0(∞) + 𝑄1(∞) + 𝑄2(∞) + 𝑄3(∞) + 𝑄4(∞) = 
𝜇3 +  8𝜆𝜇2 + 32𝜆2𝜇

256𝜆3+ 64𝜆2+8𝜆𝜇2+ 𝜇3
                      (11) 

 

Now to evaluate the MTTF for configuration II, following Wang and Kuo (2000) and Wang et al. 

(2006), the MTTF of the system could be obtained by deleting the rows and column of the 

absorbing (failure) state and transposing the new matrix M2. The expected time to reach an 

absorbing state is given in equation (12) below:  

 

E[TQ(0) → Q(absorbing)] = Q(0) (-𝑀2
−1)[1,1,1,1,1]T                    (12) 

Where 

 

𝑀2 =

(

 
 

−8𝜆
𝜇
𝜇
0
0

 

  

4𝜆
−𝑦3
0
𝜇
𝜇

 

  

4𝜆
0
−𝑦3
0
0

 

  

0
4𝜆
0
−𝑦3
0

 

  

0
4𝜆
0
0
−𝑦3

 

)

 
 
   

 

Now for the second system, the explicit expression/equation of MTTF2 is given by equation (13) 

below: 

E[TQ(0) → Q(absorbing)] = MTTF2 = 
8𝜆+ 𝜇

128𝜆2+16𝜆𝜇 + 𝜇2
 + 

128𝜆2 +  24𝜆𝜇+2𝜇2

8(128𝜆3+16𝜆2𝜇 +𝜆 𝜇2)
  + 

512𝜆3 +  128𝜆2𝜇 +16𝜆𝜇2+ 𝜇3

32𝜆(128𝜆3+16𝜆2𝜇 +𝜆 𝜇2)
  

                                                                (13) 

 

Availability and Meantime to Failure of Configuration III 

For the analysis of availability case of configuration III, 𝑄𝑖 (𝑡), 𝑖 = 0,1,2,3, … ,7 are defined to be the 

probability that the system at time t ≥ 0 is in the state Si. Let Q(t) also be the probability row vector 

at time t ≥ 0. The initial condition for this problem is:  

𝑄(0) = [𝑄0(0), 𝑄1(0), 𝑄2(0),… , 𝑄7(0)] = [1,0,0,0,0,0,0,0].  
𝑑𝑄0

𝑑𝑡
(𝑡) =  −8𝜆𝑄0(𝑡) +  𝜇𝑄1(𝑡) +  𝜇𝑄2(𝑡)  

𝑑𝑄1

𝑑𝑡
(𝑡) =  −(8𝜆 + 𝜇 )𝑄1(𝑡) +  4𝜆𝑄0(𝑡) +  𝜇𝑄3(𝑡) +  𝜇𝑄4(𝑡)  

𝑑𝑄2

𝑑𝑡
(𝑡) =  −(8𝜆 + 𝜇 )𝑄2(𝑡) +  4𝜆𝑄0(𝑡) +  𝜇𝑄3(𝑡) +  𝜇𝑄5(𝑡)  

𝑑𝑄3

𝑑𝑡
(𝑡) =  −(8𝜆 + 2𝜇 )𝑄3(𝑡) +  4𝜆𝑄1(𝑡)  + 4𝜆𝑄2(𝑡) +  𝜇𝑄6(𝑡) + 𝜇𝑄7(𝑡)  
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𝑑𝑄4

𝑑𝑡
(𝑡) =  −𝜇𝑄4(𝑡) +  4𝜆𝑄1(𝑡)  

𝑑𝑄5

𝑑𝑡
(𝑡) =  −𝜇𝑄5(𝑡) +  4𝜆𝑄2(𝑡)  

𝑑𝑄6

𝑑𝑡
(𝑡) =  −𝜇𝑄6(𝑡) +  4𝜆𝑄3(𝑡)  

𝑑𝑄7

𝑑𝑡
(𝑡) =  −𝜇𝑄7(𝑡) +  4𝜆𝑄3(𝑡)                                                                                                     (14) 

 

Equation (14) is rewritten in the matrix form as presented in equation (15) below:  

 

𝑄𝐼(𝑡) =  𝑇3𝑄(𝑡)                            (15)     

     

Where,              

T3 =

[
 
 
 
 
 
 
 
−8𝜆
4𝜆
4𝜆
0
0
0
0
0

  

𝜇
−𝑦3
0
4𝜆
4𝜆
0
0
0

  

𝜇
0
−𝑦3
4𝜆
0
4𝜆
0
0

  

0
𝜇
𝜇
−𝑦4
0
0
4𝜆
4𝜆

 

 

0
𝜇
0
0
−𝜇
0
0
0

  

0
0
𝜇
0
0
−𝜇
0
0

  

0
0
0
𝜇
0
0
−𝜇
0

  

0
0
0
𝜇
0
0
0
−𝜇

 

]
 
 
 
 
 
 
 

   

 

Where y4 = (8λ + 2µ) 

 

Initial conditions are considered as given in the following equation:   𝑄(0) =

[𝑄0(0), 𝑄1(0), 𝑄2(0), … , 𝑄7(0)] = [1,0,0,0,0,0,0,0].  

 

To obtain the steady state probabilities, right hand side of (15) is equated to zero such that 

 

𝑇3𝑄(∞) =   0            (16) 

 

Thus, (16) can be written in matrix form as follows: 

 

(

 
 
 
 
 

−8𝜆
4𝜆
4𝜆
0
0
0
0
0

  

𝜇
−𝑦3
0
4𝜆
4𝜆
0
0
0

  

𝜇
0
−𝑦3
4𝜆
0
4𝜆
0
0

  

0
𝜇
𝜇
−𝑦4
0
0
4𝜆
4𝜆

 

 

0
𝜇
0
0
−𝜇
0
0
0

  

0
0
𝜇
0
0
−𝜇
0
0

  

0
0
0
𝜇
0
0
−𝜇
0

  

0
0
0
𝜇
0
0
0
−𝜇)

 
 
 
 
 

(

 
 
 
 
 
 

𝑄0(∞)
𝑄1(∞)
𝑄2(∞)
𝑄3(∞)
𝑄4(∞)
𝑄5(∞)
𝑄6(∞)
𝑄7(∞)

 

)

 
 
 
 
 
 

= 

(

 
 
 
 
 

0
0
0
0
0
0
0
0

 

)

 
 
 
 
 

  

 

Solving (16) using normalizing condition 

 

  ∑ 𝑄𝑖(∞) =  1
7
𝑖=0                               (17) 

 

𝑄0(∞), 𝑄1(∞),𝑄2(∞), 𝑄3(∞), 𝑄4(∞),𝑄5(∞), 𝑄6(∞), 𝑄7(∞) are obtained. Therefore, the explicit 

expression/equation of AV3(ꚙ) is given by 

 

AV3(∞) = 𝑄0(∞) + 𝑄1(∞) + 𝑄2(∞) + 𝑄3(∞)  = 
𝜇3 +  8𝜆𝜇2 + 16𝜆2𝜇

128𝜆3+ 48𝜆2+8𝜆𝜇2+ 𝜇3
                                         (18) 

 

To compute MTTF for configuration III, follow similar argument used in configurations I and II. 

The rows and column of the absorbing states of the matrix T3 are therefore deleted and take the 



M. I. G. Suranga Sampath, R. Kumar, Bhavneet Singh Soodan, J. Liu, S. Sharma 

A MATRIX METHOD FOR TRANSIENT SOLUTION OF AN M/M/2/N 

QUEUING SYSTEM WITH HETEROGENEOUS SERVERS AND RETENTION OF 

RENEGING CUSTOMERS 

RT&A, No 4 (59) 
Volume 15, December 2020 

 

148 

transpose to obtain a new matrix M3  

E[TQ(0) → Q(absorbing)] = Q(0) (-𝑀3
−1)[1,1,1,1]T                    (19) 

Where, 𝑀3 = (

−8𝜆
𝜇
𝜇
0

  

4𝜆
−𝑦3
0
𝜇

  

4𝜆
0
−𝑦3
𝜇

  

0
4𝜆
4𝜆
−𝑦4

) 

 

The explicit expression/equation of MTTF3 is therefore obtained as follows: 

 E[TQ(0) → Q(absorbing)] = MTTF3 = 
1

2(8𝜆+ 𝜇)
 + 

 4𝜆+ 𝜇 

4(8𝜆2+ +𝜆𝜇)
 + 

 32𝜆2 +8𝜆𝜇+ 𝜇2

32𝜆(8𝜆2 +𝜆 𝜇)
 (20) 

 

IV. Discussion 
 

Sensitivity Analysis of Three Configurations 

 

In this section, numerical comparisons for the result of sensitivity analysis for all the developed 

models were presented. Computer software, MATLAB is used to compute the three configurations 

in terms of their sensitivity analysis. From the results of system one it has been observed that 

configuration I is far better than all the remaining configurations as we can observed in table 1 

through 2 below. It can be see that availability of configuration I is compared with that of 

configuration II and configuration III in terms of failure rate λ and repair rate µ. Furthermore, 

virtually all the configurations were compared with configuration I in terms of their MTTF with 

effect of failure rate λ and repair rate µ that is table 5 to table 6 below. It is also observed that 

configuration I retain its optimality. 

 

Similarly, configuration I was compared with all the remaining configurations and turn to be the 

best in terms of Profit and table 3 to table 4 below clearly justify that the configuration I is the 

optimal. However, in the sensitivity results obtained from table 1 through table 6 with the help of 

Bar chat ( i.e. Figure 1 – 18 ) below, availability versus failure and repair rate, Profit versus failure 

and repair rates and MTTF versus failure and repair, it can be justified that configuration I was the 

best because as one can observed from all tables below. Despite the fact that failure increases in 

table 1 for instance configuration I has the maximum availability and similarly with repair it shows 

more increasing trends which is far better than the remaining configurations and this bridge the 

practical gap that remains untouched. 

 

Table 1: Variation of Availability with respect to µ for the three Configurations for different values 

of  λ 

 

µ 

λ = 0.1 λ = 0.5 λ = 0.9 

Configuration Configuration Configuration  

I II III I II III I II III 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1111     0.4316     0.1383     0.1507     0.1668 0.0278     0.0285     0.1042     0.0154     0.0157     

0.2222 0.5664     0.2710     0.3017     0.2681     0.0555     0.0581     0.1804     0.0309     0.0317     

0.3333 0.6473     0.3907     0.4331     0.3377     0.0833     0.0886     0.2389     0.0463     0.0481     

0.4444 0.7030     0.4935     0.5398     0.3899     0.1109     0.1196     0.2856     0.0617     0.0649     

0.5556 0.7439     0.5788     0.6239     0.4316     0.1383     0.1507     0.3240     0.0771     0.0818     

0.6667 0.7750 0.6483     0.6897     0.4663     0.1656     0.1818     0.3566     0.0925     0.0989     

0.7778 0.7995     0.7044     0.7411     0.4961     0.1925     0.2126     0.3847     0.1078     0.1161     

0.8889 0.8193     0.7497     0.7817     0.5222     0.2191     0.2430     0.4094     0.1231     0.1334     

1.0000 0.8356 0.7864 0.8140 0.5455 0.2453 0.2727     0.4316 0.1383 0.1507 
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Figure 1: Availability against µ for λ= 0.1 

 

 
 

Figure 2: Availability against µ for λ = 0.5 

 

 
 

Figure 3: Availability against µ for λ = 0.9 
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Table 2: Variation of Availability with respect to λ for the three Configurations for different values 

of µ 

 

λ 

µ = 0.3 µ = 0.6 µ = 0.9 

Configuration Configuration Configuration III 

I II III I II III I II III 

0.0000 1.0000     1.0000     1.0000 1.0000     1.0000     1.0000     1.0000     1.0000     1.0000     

0.1111     0.6053     0.3244     0.3611 0.7388     0.5679     0.6133     0.8057     0.7186     0.7539     

0.2222 0.4686     0.1676     0.1841     0.6053     0.3244     0.3611     0.6853     0.4591     0.5047     

0.3333 0.3922     0.1122     0.1211     0.5246     0.2217     0.2460     0.6053     0.3244     0.3611     

0.4444 0.3399     0.0843     0.0898     0.4686     0.1676     0.1841     0.5479     0.2482     0.2760     

0.5556 0.3008     0.0675     0.0712     0.4262     0.1345     0.1464     0.5040     0.2003     0.2215     

0.6667 0.2701     0.0562     0.0589     0.3922     0.1122     0.1211     0.4686     0.1676     0.1841     

0.7778 0.2452     0.0482     0.0502     0.3639     0.0963     0.1032     0.4392     0.1440     0.1572     

0.8889 0.2247     0.0422     0.0437     0.3399     0.0843     0.0898     0.4141     0.1262     0.1369     

1.0000 0.2073 0.0375 0.0388 0.3191 0.0749 0.0794 0.3922 0.1122 0.1211 

 

 
 

Figure 4: Availability against λ for µ = 0.3 

 

 
 

Figure 5: Availability against λ for µ = 0.6 
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Figure 6: Availability against λ for µ = 0.9 

 

Table 3: Variation of Profit* 610  with respect to µ for the three Configurations for different values 

of λ 

 

µ 

λ = 0.1   λ = 0.5 λ = 0.9 

Configuration Configuration Configuration  

I II III I II III I II III 

0.1111     2.1574 0.6912     0.7532     0.8337     0.1384     0.1420     0.7785 0.7671     0.5205 

0.2222 2.8318     1.3545     1.5082     1.3399     0.2773     0.2903     1.582 1.5387     0.9016 

0.3333 3.2362     1.9534     2.1650     1.6879     0.4158     0.4426     2.403 2.3100     1.1941 

0.4444 3.5149     2.4673     2.6986     1.9491     0.5539     0.5974     3.2382 3.0808     1.4275 

0.5556 3.7191     2.8939     3.1193     2.1574     0.6912     0.7532     4.0849 3.8506     1.6198 

0.6667 3.8749     3.2413     3.4480     2.3310     0.8274     0.9087     4.9401 4.6192     1.7825 

0.7778 3.9976     3.5220     3.7053     2.4799     0.9621     1.0628     5.8013 5.3860     1.9231 

0.8889 4.0964     3.7484     3.9082     2.6106     1.0951     1.2146     6.666 6.1505     2.0469 

1.0000 4.1778 3.9316 4.0696 2.7270 1.2260 1.3632 7.5319 6.9121 2.1574 

 

 
 

Figure 7: Profit against µ for λ = 0.1 
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Figure 8: Profit against µ for λ = 0.5 

 

 
 

Figure 9: Profit against µ for λ = 0.9 

 

Table 4: Variation of Profit* 610  with respect to λ for the three Configurations for different values 

of µ 

 

λ 

µ = 0.3 µ = 0.6 µ = 0.9 

Configuration Configuration Configuration  

I II III I II III I II III 

0.1111     3.0264     1.6216     1.8054     3.6939     2.8392     3.0664     4.0284 3.5927     3.7691     

0.2222 2.3429     0.8376     0.9203     3.0264     1.6216     1.8054     3.4264     2.2950     2.5230     

0.3333 1.9605     0.5608     0.6052     2.6228     1.1083     1.2296     3.0264     1.6216     1.8054     

0.4444 1.6990     0.4210     0.4484     2.3429 0.8376     0.9203     2.7393     1.2406     1.3798     

0.5556 1.5035     0.3369     0.3554     2.1306     0.6720     0.7314     2.5195     1.0009     1.1071     

0.6667 1.3501     0.2807     0.2940     1.9605     0.5608     0.6052     2.3429     0.8376     0.9203     

0.7778 1.2259     0.2406     0.2506     1.8193     0.4810     0.5154     2.1958     0.7195     0.7855     

0.8889 1.1229     0.2105     0.2183     1.6990     0.4210     0.4484     2.0701     0.6304     0.6840     

1.0000 1.0361 0.1870 0.1933 1.5949 0.3743 0.3966 1.9605 0.5608 0.6052 
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Figure 10: Profit against λ for µ = 0.3 

 

 
 

Figure 11: Profit against λ for µ = 0.6 

 

 
 

Figure 12: Profit against λ for µ = 0.9 
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Table 5: Variation of MTTF with respect to µ for the three Configurations for different values of λ 

 

µ 

λ = 0.1 λ = 0.5 λ = 0.9 

Configuration Configuration Configuration  

I II III I II III I II III 

0.1111     5.6761     3.3914     3.3960     1.2183     0.6355     0.6355     0.6843     0.3504     0.3505     

0.2222 5.4158     3.6692     3.6836     1.1919     0.6460     0.6462     0.6751     0.3537     0.3537     

0.3333 5.2795     3.9574     3.9828     1.1698     0.6567     0.6571     0.6668     0.3569     0.3570     

0.4444 5.2001     4.2544     4.2907     1.1511     0.6674     0.6681     0.6593     0.3602     0.3603     

0.5556 5.1501     4.5590     4.6050     1.1352 0.6783     0.6792     0.6524     0.3635     0.3637     

0.6667 5.1166     4.8700     4.9242     1.1216     0.6892     0.6905     0.6462     0.3668     0.3671     

0.7778 5.0931     5.1862     5.2475     1.1099     0.7002     0.7019     0.6406     0.3701     0.3705     

0.8889 5.0761     5.5069     5.5738     1.0998     0.7114     0.7134     0.6354     0.3735     0.3739     

1.0000 5.0633 5.8312 5.9028 1.0909 0.7226 0.7250 0.6307 0.3768 0.3773 

 

 
 

Figure 13: Profit against µ for λ = 0.1 

 

 
 

Figure 14: Profit against µ for λ = 0.5 
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Figure 15: Profit against µ for λ = 0.9 

 

Table 6: Variation of MTTF with respect to λ for the three Configurations for different values of µ 

 

λ 

µ= 0.3 µ= 0.6 µ= 0.9 

Configuration Configuration Configuration  

I II III I II III I II III 

0.1111     4.8126     3.4128     3.4299     4.6403     4.0644     4.1046     4.5789     4.7509     4.8076     

0.2222 2.5215     1.5526     1.5555     2.4063     1.7064     1.7150     2.3508     1.8666     1.8813     

0.3333 1.7254     1.0020     1.0029     1.6482     1.0687     1.0718     1.6042     1.1376     1.1433     

0.4444 1.3152     0.7392     0.7396     1.2608     0.7763     0.7777     1.2262     0.8143     0.8171     

0.5556 1.0638     0.5855     0.5858     1.0236     0.6091     0.6099     0.9961     0.6331     0.6347     

0.6667 0.8935     0.4847     0.4849     0.8627     0.5010     0.5015     0.8405     0.5175     0.5185     

0.7778 0.7704     0.4135     0.4136     0.7461     0.4254     0.4257     0.7279     0.4375     0.4381     

0.8889 0.6773     0.3605     0.3606     0.6576     0.3696     0.3698     0.6424     0.3788     0.3793     

1.0000 0.6043 0.3196 0.3196 0.5880 0.3267 0.3269 0.5751 0.3340 0.3343 

 

 
 

Figure 16: Profit against λ for µ= 0.3 
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Figure 17: Profit against λ for µ= 0.6 

 

 
 

Figure 18: Profit against λ for µ= 0. 

 

Conclusion 
 

In this paper, three different series - parallel dynamo configurations were constructed with 

standby in each of the configuration and a repairable service station to study the sensitivity 

analysis of the three configurations under probability. The explicit expressions/equations for 

MTTF and Availability for the three configurations were developed and performed a sensitivity 

analysis base on the numerical values fixed. It was found out that the optimal configuration using 

the sensitivity analysis by fixing both λ and µ is configuration I. 
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