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Abstract 

 
The article discusses some common mathematical models of counterterrorism and acts of unlawful 

interference with protected objects. The use of methods of queuing theory of Markov and non-

Markov types for modeling the counteraction of security personnel by a malicious group with a 

random number of criminals in a group and different ways of organizing the actions of such 

personnel is proposed.  

 

Keywords: security object, queuing system (QS), nonordinary stream of 
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I. Introduction 
 

Many scientific works are currently devoted to the problem of counter-terrorism and acts 

of illegal interference in the activities of critical infrastructure. 

The classification of counter-terrorism models is reflected in [1], which provides an overview of 

current work on modeling the counter-terrorism system and proposes a classification of terrorism 
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and counter-terrorism models. 

According to this paper the conceptual models include models developed by specialists in 

the subject area, political scientists, psychologists, sociologists. As an example, work is given [2], 

which provides empirical data on the decision-making patterns of members of terrorist 

organizations at different levels: strategic, tactical and operational, as well as at the level of the 

individual terrorist. 

Models of analysis and synthesis are usually mathematical or physical models. In the 

review [3] more such works are characterized. In particular, in [4] the basis for the development of 

classification of terrorist groups using chemical, biological, radiological and nuclear weapons the 

heuristic method of pattern recognition, the method of classification trees and discriminant 

analysis were proposed. With regard to transport safety systems, a number of works are devoted 

to the analysis of devices to increase the probability of detection and reduce the intensity of false 

alarms. In [5], using Bayesian analysis, a method of threat ranking and prioritization of security 

measures for facilities is presented. 

The complexity of real-world security situations requires the universality of the 

mathematical models used. 

These requirements inevitably contradict the commonality and validity of the simulation 

results, so when solving models in the form of hierarchy (usually lower levels of hierarchy 

corresponds to a higher level of detail of the modeled systems description) or a horizontal chain, 

each element of which is approximately the same [6]. 

In [1] the levels of modeling (hierarchy of models) of counteraction to terrorism are 

considered in detail. Theoretical game models of counter-terrorism are presented in [7,8,9]. In [10], 

an approach to creating a mathematical model of the physical protection systems functioning of 

objects as a process of interaction of sets based on the theory of ordinary sets, fuzzy set theory and 

the analysis of hierarchies. 

In [11], a mathematical model of describing the nature of the interaction between the 

components of the "defender - attacker" system as components of the "predator - victim" system is 

proposed. The model is a modified classic model of Lotki-Volterra competition, which allows you 

to assess changes in the level of danger for the object with a change in its security. 

The use of fuzzy cognitive modeling to prevent risk situations in conditions of fuzzy 

source data at critical infrastructure facilities is considered in [12]. It proposes the management 

structure of NPPs in the form of a fuzzy cognitive model, scenarios of risk situations and their 

analysis. 

In [13] the possibilities of application of models of operations research methods for 

planning of protection of objects of critical infrastructure are considered. Adaptation of these 

models includes taking into account the stochastic, informational and behavioral uncertainties of 

terrorists. In this paper, in particular, the generalizations of the tasks of the antagonistic game of 

attack and defense and the optimal distribution of protective resources are considered. 

An example of the use of complex models with parameters measured on different scales is 

the game-theoretic model for security at Los Angeles international airport, on the basis of which 

the automated system "Assistant for randomized route control" (ARMOR) was developed and put 

into operation. [14]. Security is a very important factor in the protection of this facility, given the 

terrorist threat. However, limited resources do not allow security forces to monitor all facilities and 

routes around the clock. Terrorists are able to monitor and select unprotected routes and targets if 

security forces do not use randomized monitoring and patrol tactics. 

 

II. Results and discussion 
 

The authors formulate the basic requirements for ARMOR: 

1. The system must take into account the weight of the protected objects. If an attack on the 

first object leads to economic damage and on the second to human casualties, more weight is given 
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to the second object. Weights are evaluated by experts and expressed on an ordinal scale. 

2. The system must take into account all information about the enemy that is in the security 

service. 

3. The system should not offer a strict service schedule, taking into account additional 

information, the security service may make adjustments to this schedule. In [15] presented is a 

description of tests for ARMOR testing, which has been in operation since 2007. Such tests include: 

- analysis on the basis of game theory (type of test Mathematic): with known matrices of 

winnings, the gain of the attacker and the probability of refusal to attempt an offense is calculated; 

- resource allocation (test type - Mathematic): game theory helps to find the expected gain 

of the attacker in different security strategies; 

- cost of protection (type of test - Mathematic): game theory helps to find the expected gain 

of the parties at change of security technologies (due to introduction of new technical means of 

protection, new technology of check of passengers and luggage); 

- simulation of the attack (test type - Simulation): the use of additional simulation models; 

- conducting exercises using "educational" criminals; 

- Expert assessment (type of test - Qualitative): security specialists are able to assess many 

factors for their further consideration in the model as their parameters. 

Since 2009, ARMOR has been used to plan air patrol services with the task of optimal 

distribution of 3000-4000 patrols on 29000 daily flights. 

Thus, a wide range of mathematical models are used to model the physical security 

systems of objects. 

In our opinion, in order to determine the effectiveness of the actions of the unit of 

protection of critical infrastructure, it is advisable to use the mathematical tools of the queuing 

theory. 

Consider an object guarded by a security unit of n people as a queuing system. Groups of 

intruders with an intensity of λ try to enter the object in order to endanger its safe operation. In 

general, the number of a group of attackers can be random, in other words, with a probability of 

as, the group can consist of s attackers. 

That is, the n-channel queuing system (QS) receives a stream of λ [groups / units of time] 

of group demands with a random number of demands in the group. 

Such QS have found their application in mathematical models of information technology, 

which is reflected in the works [16-18]. 

One of the features of the QS under consideration is that the time t̅int of intruders on the 

object is limited, it is a random variable that is subject to the exponential law with the parameter 

η =
1

t̅int
. 

The parameter η is the intensity of demands leaving the QS service channel due to the 

restriction of their stay in the system. 

The parameter μ characterizes the system of counteraction μ =
1

t̅ca
 [malefactor / unit of 

time], where t̅ca is the average time of the guard's use of counteraction means to the malefactor. 

Counteraction to intruders by the security unit can be organized in different ways, which 

determines the type of queuing system. The first group of QS includes: 

 

1. M / M / n / m type QS with restriction (η ≠ 0), without mutual assistance (h = n, g = 1), 

non-ordinary demands and a random number of demands in the group. Here, h is a value equal to 

the ratio of the total number of n guards (service channels) to the number of g guards, which are 

combined into a group to counter one attacker, ie n = n / g. 

2.  M / M / n / m type QS with restriction (η ≠ 0), full mutual assistance (h = 1; g = n), non-

ordinary demands and random number of demands in the group. 

3. M / M / n / m type QS with restriction (η ≠ 0), with partial mutual assistance (h = n / g), 

non-ordinary demands and a random number of demands in the group. 

The second group includes QSs of the non-Markov type, which simulate the conditions 
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when the forces and means of protection are not on the site, for example, when it is necessary to 

concentrate additional forces and means. That is, the counteraction process consists of two phases 

lasting respectively t̅1 - concentration time and t̅gr - time of counteraction means application, 

where t1̅  has an exponential distribution with the parameter μ1 =
1

t̅1
 [guard / unit time], and t̅2  - 

with parameter μ2 =
1

t̅gr
 [malefactor / unit time]. 

 

That is, the total resistance time has a generalized Erlang distribution with parameters μ1 

and μ2. 

Such QS have limitations η ≠ 0, can be with different characteristics of mutual assistance, 

there is a queuing system with heterogeneous demands and a random number of demands in the 

group. 

Some aspects of mathematical models of these QS are considered in [19-22]. 

 Consider in more detail the QS of the first group. 

1.1 M / M / n / m type QS with restriction (η ≠ 0), without mutual assistance (h = n, g = 1), 

non-ordinary applications and random number of applications in the group. 

Kolmogorov differential equations for the probabilities of states of these QS are: 

 
dP0(t)

dt
= −λP0(t) + (μ + η)P1(t); 

dP0(t)

dt
= −(λ + μ + η)P1(t) + λa1P0(t) + 2(μ + η)P2(t); 

        (1) 

dP2(t)

dt
= −(λ + 2μ + 2η)P2(t) + λ ∑ sas

2

s=1

P2−s(t) + 3(μ + η)P2(t); 

……………………………………………………………………………. 

dPk(t)

dt
= −(λ + kμ + kη)Pk(t) + λ ∑ sas

k

s=1

 Pk−s(k + 1)(μ + η)Pk+1(t); 

          At 1≤ k < n 

……………………………………………………………………………. 

dPk(t)

dt
= −(λ + nμ + kη)Pk(t) + λ ∑ sas

n

s=1

 P(t)n−s(t) + [nμ + (k + 1)η]Pk+1(t); 

At k ≥ n. 

For stationary conditions the system of linear equations will be: 
 0 = −λP0 + (μ + η)P1; 
 0 = −(λ + μ + η)P1 + λa1P0 + 2(μ + η)P2; 

        ………………………………………………… 

0 = −(λ + kμ) + kη)Pk + λ ∑ sas

k

s=1

 Pk−s + (k + 1)(μ + η)Pk+1                                                                       (2) 

At 1≤ k < n; 

……………………………………………………………………………. 

0 = −(λ + nμ) + kη)Pk + λ ∑ sas

k

s=1

 Pk−s + [nμ+)k + 1)η]Pk+1 

At k ≥ n 

 

 

Normalizing condition 

∑ Pk = 1

∞

k=0

. 
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 1.2. M / M / n / m type QS with restriction (η ≠ 0), full interaction (h = 1, g = n), non-

ordinary demands and random number of demands in the group. 

 The peculiarities of this QMS functioning, and hence the organization of counteraction is: 

- the first demand is served by all service channels with intensity μ = nμ + η; 

- the next demand is served by part of the service channels, others continue to service the previous 

demand, if it was not completed; 

- after the completion of the service of any demand, the group of channels that has been vacated is 

connected to the service of demands that are in the system; 

- in the Markov (Poisson) QS, the characteristics of the service do not depend on the distribution of 

channels between demands, only it would be uniform and all channels would participate in the 

service simultaneously [20]; 

- if there are already n applications in the system, then (n + 1) application stands in the queue. 

The system of differential equations of states probabilities has the form: 
dP0(t)

dt
= −λP0(t) + μ∗P1(t); 

dP1(t)

dt
= −(λ + μ∗)P1(t) + λa1P0(t) + 2μ∗P2(t); 

dP2(t)

dt
= −(λ + 2μ∗)P2(t) + λ ∑ sas

2

s=1

P2−s(t) + 3μ∗P3(t);                                                                                      (3) 

…………………………………………………………………………… 

dPk(t)

dt
= −(λ + kμ∗)Pk(t) + λ ∑ sas

k

s=1

Pk−s(t) + (k + 1)μ∗Pk+1(t);    

При 1 ≤ k < n; 

…………………………………………………………………………… 

dPk(t)

dt
= −(λ + nμ∗ + kη)Pk(t) + λ ∑ sas

n

s=1

Pn−s(t) + [nμ∗ + (k + 1)η]Pk+1(t);    

At k ≥ n. 

 

1.3. M / M / n / m type QS with restriction (η ≠ 0), partial interaction (h = n / g), 

extraordinary applications and random number of applications in the group. 

The system of differential equations of probabilities of states of the system will be as 

follows: 
dP0(t)

dt
= −λP0(t) + μg

∗ P1(t); 

μg
∗ = gμ + η; 

dP1(t)

dt
= −(λ + μg

∗ )P1(t) + λa1P0(t) + 2μg
∗ P2(t); 

dP2(t)

dt
= −(λ + 2μg

∗ )P2(t) + λ ∑ sas

2

s=1

P2−s(t) + 3μg
∗ P3(t); 

…………………………..……………………………………………………… 

dPi(t)

dt
= −(λ + iμg

∗ )Pi(t) + λ ∑ sas

i

s=1

Pi−s(t) + (i + 1)μg
∗ Pi+1(t);                                                                   (4)   

At 0 < i < h 

…………………………………………………………………………… 

dPh(t)

dt
= −(λ + nμg

∗ )Ph(t) + λ ∑ sas

h

s=1

Ph−s(t) + (nμ + (h + 1)η)Ph+1(t);    

………………………………………………………………………………………. 

dPh+1(t)

dt
= −(λ + hμg

∗ + η)Ph+1(t) + λ ∑ sas

h+1

s=1

P(h+1)−s(t) + (hμg
∗ + 2η)Ph+2(t) 
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………..………………………………………………………………………………. 

dPj(t)

dt
= −(λ + hμg

∗ (j − h)η)Pj(t) + λ ∑ sas

j

s=1

Pj−s(t) + (hμg
∗ + (j − h + 1)η)Pj+1(t) 

 

At h < j < n 

………..………………………………………………………………………………. 

dPk(t)

dt
= −(λ + nμg

∗ )Pn(t) + λ ∑ sas

k

s=1

Pn−s(t) + (nμg
∗ + η)Pn+1(t) 

At k ≥ n. 

The probability of intruders entering the object due to the fact that the guards do not have 

time to counter intruders can be calculated from the formula: 

                                      Pint =
η ∑ kPk

∞
k=1

λ ∑ kak
∞
k=1

                                                   (5) 

The probability that the intruders will be neutralized will be: 

Pneut = 1 − Рint.                                                (6) 

We will consider the QS of the second type on the example of the queuing system M / E2 / 

n / m with restriction (η ≠ 0), without mutual assistance, with non-ordinary demands and a 

random number of demands in the group. 

The system of differential equations of probabilities of states of these QS has the form: 
dP00(t)

dt
= −λP00(t) + μ2

∗ P21(t); 

dP11(t)

dt
= −(λ + μ1

∗)P11(t) + λa1P00(t) + 2μ2
∗ P22(t); 

  
dP21(t)

dt
= −(λ + μ2

∗ )P21(t) + μ1
∗ P11(t); 

dP12(t)

dt
= −(λ + 2μ1

∗)P12(t) + λa1P11(t) + 2λa2P00(t) + 3μ2
∗ P23(t) + λP21(t); 

dP22(t)

dt
= −(λ + 2μ2

∗ )P22(t) + 2μ1
∗P12(t);                                                                                                                (7) 

………..………………………………..………………………………………… 

 

dP1k(t)

dt
= −(λ + kμ1

∗)P1k(t) + λ ∑ sasP1(k−s)

k

s=1

(t) + 

+[(k + 1)μ2
∗ + η]P2(k+1)(t) + λP2(k−1)(t) 

dP2k(t)

dt
= −(λ + kμ2

∗ )P2k(t) + kμ1
∗P1k(t); 

At k = n 

        ..………..……………………………………………………………..… 

dP1k(t)

dt
= −(λ + ημ1

∗ + kη)P1k(t) + λ ∑ sasP1(k−s)(t) +

k

s=1

λP2(k−1)(t) + 

+(ημ2
∗ + kη)P2(k+1) 

 
dP2k(t)

dt
= −(λ + nμ2

∗ + kη)P2k(t) + (nμ1
∗ + kη)P1k(t) 

At k > n 

 The mathematical model of SMO M / E2 / n / m is considered in detail in [22]. 

The queuing system, which consists of QS of the first and second types, simulates a 

multi-stage counteraction to groups of attackers. 

The probabilities of penetration and neutralization of attackers can be calculated from the 

formulas (5) and (6). A multistage counteraction QS structure is shown in Fig.1. 
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Figure 1: Multistage counteraction QS 

 

The following equations will take place in stationary mode: 

λ1= λ01; λ2= λ02; 

λ2 = λ01(1- Рneut) = λ(1- Рneut1)= λРint1;                                                                                (8) 

λ01 = λ01(1- Рneut1)∙Рint2
−1 = λРint1∙Рint2

−1 ; 

λ2 = λ02(1- Рneut2)=λ(1- Рneut1) (1- Рneut2)∙ Рneut2
−1 = λРint1∙ λРint2 ∙Рneut2

−1  

 

Conditions of QS stationary work: 

ω1 =
λ

n1(μ1 + η1)
< 1; 

(9) 

ω2 =
λРint1

n2(μ2 + η2)
< 1; 

 

Total mathematical expectation of the demand staying in the QS:  

t̅ = (t̅QS1 + t̅QS2)Рint2
−1 . 

Consider an example. 

An object guarded by a three-person security unit (n = 3) is attacked by a group of 

intruders with a rate of λ = 1 [group / unit time]. Each group with a probability of as can have a 

different number of attackers. The distribution law of the number of malefactors in the group is 

uniform, i.e. with a probability of 0.2 in the group there can be 1,2,3,4 or 5 malefactors: а1 = а2 = а3 

= а4 = а5 = 0.2. The time spent by intruders on the object t̅int is a limited random variable that is 

subject to the exponential law with the parameter η =
1

t̅int
. 

Intensity of counteraction by guards is μ =
1

t̅gr
 [malefactors neutralized by guard / unit of 

time]. 

It is necessary to determine the probability of neutralizing intruders/ malefactors by 

protecting the object at different ratios λ: μ: η. 

Figure 2 shows the object protection QS for the example under consideration. 
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Figure 3: Object protection QS for the example under consideration 
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Kolmogorov's differential equations for the probabilities of the states of these QS will be: 

1

0 1

dP (t)
P (t) P (t)

dt

= − +
; 

1

1 1 0 2

dP (t)
( )P (t) a P (t) 2 P (t)

dt

 = − + + + 
; 

2

2 1 1 2 0 3

dP (t)
( 2 2 )P (t) a P (t) 2 a P (t) 3 P (t)

dt

= − + +  + +  + 
;                                                   (10) 

3

3 1 2 2 1 3 1 3 0 4

dP (t)
( 3 3 )P (t) a P (t) 2 a P (t) 3 a P (t) 3 a P (t) (3 4 )P (t)

dt
= − + +  + +  +  +  + + 

 

4

4 1 3 2 2 3 1 4 0 5

dP (t)
( 3 4 )P (t) a P (t) 2 a P (t) 3 a P (t) 4 a P (t) (3 5 )P (t)

dt
= − + +  + +  +  +  + + 

 

5

5 1 4 2 3 3 2 4 1 5 0 6

dP (t)
( 3 5 )P a P (t) 2 a P (t) 3 a P (t) 4 a P (t) 5 a P (t) (3 6 )P (t)

dt
= − + +  + +  +  +  +  + + 

 

Normalizing condition ∑ = 1;6
k=0 μ* = μ+η. 

For stationary operating conditions of these QS, the linear equations have the form

0 1
0 P (t) P= − +

; 

1 1 0 2
0 ( )P a P 2 P = −  + +  + 

; 

2 1 1 2 0 3
0 ( 2 )P a P 2 a P 3 P = −  +  +  +  + 

;                                                                                          

(11) 

3 1 2 2 1 3 1 3 0 4
0 ( 3 )P a P 2 a P 3 a P 3 a P (3 )P = −  +  +  +  +  +  +  +

; 

4 1 3 2 2 3 1 4 0 5
0 ( 3 )P a P 2 a P 3 a P 4 a P (3 2 )P = −  +  + + +  +  +  +  + 

; 

5 1 4 2 3 3 2 4 1 5 0 6
0 ( 3 2 )P a P 2 a P 3 a P 4 a P 5 a P (3 3 )P = −  +  +  + +  +  +  +  +  + 

.  

 The Pntr probability was determined from formulas (5,6). Figure 3 shows the graph of 

the dependence of the Pntr probability at different values of μ and η. 

 

 
 

Figure 3: Probability of attackers’ neutralization against the counteraction intensity 
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From Figure 3 it is seen that with increasing the counteraction intensity, the value of the Pntr 

probability increases even with a decrease in the time spent by intruders on the protected object. 
 

 

III. Conclusion 
 

The use of models of protection of critical infrastructure from unauthorized interference 

acts will determine the rational ratios of the quantitative composition of security units, the 

intensity of countermeasures and concentration of additional security forces against the 

intensity of penetration of malicious groups with a random number of attackers, ensuring 

an acceptable probability of detection, prevention and neutralization of such groups. 
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