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Abstract 

 

In this paper, increasing convex (concave) Total Time on Test (TTT) transform of a lifetime 

random variable is considered.  In order to identify the failure rate model of functions of random 

variables, the TTT of transformed data can be used. Some properties of the transforms are 

derived. Some examples are given. 
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I. Introduction 
 

The concept of the Total Time on Test (TTT) plots was first defined by Barlow and Campo 

(1975).   The plots provide information about the identification of failure rate model. Incomplete 

type 2 censored data can be analysed using TTT transform. Aarset (1985) derived the exact 

distribution of TTT under the null hypothesis of exponentiality. Gupta and Michalek (1985) 

developed an explicit method to determine the reliability function by the TTT transform. Vera and 

Lynch (2005) introduced higher-order TTT transforms by applying definition of TTT recursively to 

the transformed distributions. Nair et. al (2008) studied the properties of TTT transform of order n  

and examined their applications in reliability analysis. Nair and Sankaran (2013) listed some 

known characterizations of common aging notions in terms of the total time on test transform 

(TTT) function. Franco-Pereira and Shaked (2013) derived two characterizations of the decreasing 

percentile residual life of order (DPRL( )) aging notion in terms of the TTT function, and in 

terms of the observed TTT when X  is observed. TTT statistic provide the central value of type 2 

data. In order to get the dispersion values, we need the distributions of transformed variables. 

The problem of identification of failure rate behavior of increasing convex (concave) 

transformation of random variable based on distributional properties of the variable is an 

unexplored one. 

In this paper, we consider increasing convex (concave) Total Time on Test (ICXTTT 

(ICVTTT)) transform of a lifetime random variable. In section II, we provided TTT transform of 

increasing convex (concave) transformation of the random variable. Some general results about the 

ageing patterns are given in section III. In section IV, illustrative example is given. 
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II. Increasing Convex (Concave) TTT transform 

 
In this section, we define ICXTTT (ICVTTT)  transform. Given a sample of size n  from the 

non-negative random variable (r.v.) X  with distribution F, let nk XXXX  21  be 

the order statistics corresponding to the sample. Total time test to the thr  failure from distribution 

F  is, 
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The empirical distribution function defined in terms of the order statistics is 
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uniformly in  1,0t . Barlow and Campo (1975) defined TTT transform of F  as 
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Let ( )xg  be an increasing convex (concave) function. Let ( )xG  be the distribution function of 

( ).xg  Total observed values of transformed variables ( )Xg  under type 2 censored scheme is 
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We define TTT of ( )xg  as 
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 (the inverse of ( )− gH F

1
) is a distribution with support on  ,0 , 

( ) ( ) ( )( )
( )( )

.11
1

0

1
1


−

=−=−
Fg

F duuFgH   

It is easy to verify that the scaled TTT transform 
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FH  (the inverse of ( )21−

FH ) is a distribution with support on  ,0 . 
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Figure 1: TTT plot (top) and ICXTTT plot (bottom) for the Exponential Simulated data with parameter .2=  

 

In this Figure 1, it shows that the TTT-plot of Exponential data set indicates constant 

failure rate, but ICXTTT-plot for Exponential data set indicates that transformed data follows the 

bathtub shape failure rate pattern. It is clear that, square of exponential random variable follows 

some decreasing failure rate model. 

 

III. Ageing Properties 

We prove some general results about the ageing patterns of function ( )Xg using 
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which is based on the failure rate function ( )xr of X . 
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Proposition 1. G is IFR 
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Proposition 2. Let X  has distribution F  and ( )XgY =  has distribution ( )yG .G is IFRA 
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    Now make the change of variables ( )xFt =  and ( )tFx 1−=
 and finally we have 
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IV. Increasing Convex (Concave) TTT transform order 
 

Let X  and Y  be two non-negative random variables with distributions F  and H  respectively. 

Clearly YX ttt  if and only if 
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A sufficient condition for the order ttt  is the usual stochastic order: 

YXYX tttst   

where YX st  means that ( ) ( ) RxxHxF  ,  (see, Shaked and Shanthikumar (2007)). 

 

Let X  and Y  be two random variables such that ( )( ) ( )( )nn YTgXTg   for all convex functions

RRg →:  and all samples of size n . Then X is smaller than Y  in some stochastic sense, since

( )( )nXTg
n

1

 
is average of total observed convex (concave) transformed time of a test. 

Let X  and Y  be two non-negative random variables with absolutely continuous 

distribution functions F  and H  respectively. If 

( ) ( ) ( ) ( )  1,0,11  −− ttgHtgH HF  

where g  is an increasing convex function, then X is smaller than Y  in increasing convex TTT 

order (denoted as YX icxttt ). 

Now we prove the relationship of ICXTTT (ICVTTT) transform orders to stochastic orders. 

 

Theorem 1.    Let X and Y be two non-negative random variables having absolutely continuous 

distribution functions F  and G  respectively. Then .YXYX icxtttst   

Proof.  Let g  be the convex (concave) function RRg →: . Since, 
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V. Examples 

Usually the TTT plot is drawn by plotting 
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ri ,,2,1 =  and .,,2,1 nr =  A TTT curve may be concave (convex) if corresponding 

distribution is IFR (DFR) distribution. A concave (convex) and then convex (concave) shape for 

TTT curve occurs, if the distribution is a bathtub (upside down bathtub) failure rate model. Finally, 

a TTT curve is straight line if the distribution is exponential. 

Then the ICXTTT plot is drawn by plotting
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where ri ,,2,1 =  and .,,2,1 nr =  

The scaled TTT-transform, which is independent of scale, is defined for values of t  with 

10  t and hence the transformed values are in  1,0 .   Figure 2 and 3 shows scaled TTT-

transforms and scaled ICXTTT-transforms of Aarset bathtub shaped failure rate data and Weibul 

simulated data. 

 

  
 

Figure 2.TTT plot (top) and ICXTTT plot (bottom) for the Aarset data. 

 

In Figure 2, it shows that the data are known to have a bathtub-shaped failure rate as depicted in 

TTT plot and ICXTTT-plot. 
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Figure 3.TTT plot (top) and ICXTTT plot (bottom) for the Weibull Simulated data with 

 parameter 5.0,5.1=  and 1=  respectively. 

 

In Figure 3, it shows that the TTT-plot of ( )1,5.1 == W  data set indicate   IFR distribution, 

since it is concave, but ICXTTT-plot for ( )1,5.1 == W  data set indicate an inverse bathtub 

shaped failure rate pattern for the failure rate. The TTT-plot of ( )1,5.0 == W  shows ( )tF  has  

DFR, since the plot is convex (see Barlow and Campo, 1975) and ICXTTT-plot based on a 

( )1,5.0 == W  is   convex, which indicate a DFR distribution for the transformed data. 

 

VI. Conclusion 
This paper considered increasing convex (concave) TTT transform. Identification of the failure rate 

model of functions of random variables is discussed. Some properties of the transforms are derived 

with examples.   
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