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Abstract 

 
In this paper we consider an extension of the linear exponential distribution based on the Harris 

generalization method, which includes some of the life time distribution as sub models. Along with 

the four parameter generalization namely Harris generalized linear exponential distribution, we 

derive some of its properties such as moments, quantiles and moment generating function. A 

compound form expression of the density function is given. For the given model the R´enyi entropy, 

mean residual life and the distribution of order statistics is derived.  The problem of estimation of 

parameters is considered and validated with respect to two real data sets. 
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1 Introduction 
 

Introduction of new parameters to the well established classical distributions may result in more 

flexible new families of distributions. Several extended forms of distributions have been studied by 

many researchers like Azzalini (1985), Marshall and olkin (1997), Ferreira and Steel (2007), Jose et al 

(2010), Krishna et al (2013), Jose and Sivdas (2015) etc. Recently Aly and Benkherouf (2011) 

introduced a method for developing new classes of distributions by adding two new parameters to 

an existing distribution, which includes the baseline distribution as a special case and gives more 

flexible models for various types of data. This method is based on probability generating function 

introduced by Harris (1948). Hence the resulting family of distributions is known as Harris 

Generalized (HG) family of distributions. This family of distributions can be considered as a 

generalization of Marshall Olkin family of distributions introduced by Marshall and olkin (1997). 

Some properties and applications of HG family of distributions are studied by Aly and Benkherouf 

(2011), Batsidis and lemonte (2014) and Cordeiro et al (2015) etc. Aly and Benkherouf (2011) derived 

the general structure of HG family of distributions as follows.  
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The survival function of HG family of distributions is given by  

 𝐺̅(𝑥;   𝜃, 𝑟) = (
𝜃(𝐹(𝑥))

𝑟

1−𝜃̅(𝐹(𝑥))
𝑟)

1

𝑟

, 0 < 𝜃 < ∞, 𝑟 > 0, 𝜃̅ = 1 − 𝜃 (1.1) 

 where 𝐹̅(. ) is the survival function of the baseline distribution. The corresponding density function 

is  

 𝑔(𝑥) =
𝜃
1
𝑟𝑓(𝑥)

(1−𝜃̅(𝐹(𝑥))
𝑟
)
(
𝑟+1
𝑟 )
      ,      𝑥 > 0 (1.2) 

 If r=1 in equations (1.1) and (1.2), reduces to the corresponding survival function and density 

function of Marshall-Olkin family of distributions. The density function of HG family of 

distributions can be expressed as a linear combination of exponentiated family of distributions as 

given in Batsidis and lemonte (2014) and Barreto-Souza et al (2013) as follows.  

For 𝜃 ∈ (0, 1)  

 𝑔(𝑥) = 𝑓(𝑥)∑∞𝑖=0 𝑤𝑖(𝐹̅(𝑥))
𝑟𝑖  (1.3) 

 where 𝑤𝑖 = 𝑤𝑖(𝜃, 𝑟) = 𝜃
1

𝑟𝜃̅𝑖
Γ(𝑟−1+𝑖+1)

Γ(𝑟−1+1)𝑖!
  

For 𝜃 > 1  

 𝑔(𝑥) = 𝑓(𝑥)∑∞𝑖=0 𝑣𝑖(𝐹̅(𝑥))
𝑟𝑖  (1.4) 

 where 𝑣𝑖 = 𝑣𝑖(𝜃, 𝑟) = (−1)𝑖𝜃−1∑∞𝑗=1 (
𝑗
𝑖 ) (

𝜃−1

𝜃
)
𝑗 Γ(𝑟−1+𝑗+1)

Γ(𝑟−1+1)𝑗!
 

From (1.3) and (1.4) it is clear that the HG family of distributions can be expressed as the 

baseline distribution 𝑓(𝑥), multiplied by an infinite power series which differ only for the 

coefficients.  

 The aim of this paper is to study a new univariate family of distribution based on the Harris 

generalization method. The contents are organized as follows. In Section 2 we discuss the Linear 

exponential distribution. In Section 3 we introduce the Harris generalized linear exponential 

distribution. In Section 4 we represent the Harris generalized linear exponential distribution as a 

compound distribution with exponential density. In Section 5 and 6 we evaluate the Entropy and 

Mean residual life. Section 7 gives the distribution of order statistics. Section 8 and 9 discuss the 

maximum likelihood estimation of the parameters and an application to a real data set.  

 

2 Linear Exponential Distribution 
 

The Linear Exponential (LE) distribution is an important distribution that has rich variety of 

applications for modeling life time data. The LE distribution is also known as Linear Failure rate 

distribution. The LE distribution contains Rayleigh and Exponential distribution as special cases and 

they are well known in the literature for a variety of applications.  

 From Lai et al (2006) and Zang et al (2005), the LE distribution models phenomenon with 

increasing failure rate, the accuracy of the statistical procedures depends on the probability model 

or distributions which are considered for the analysis. Recently there has been a renewed interest in 

the study of extended versions of conventional classical distributions. Since the real data is affected 

by various factors, the statistical models derived using the extended form of distribution shows more 

significant applications in reliability, medical science, finance, economics etc. The LE distribution 

has many applications in applied statistics, reliability analysis, medical studies (See Carbone et al 

(1967), Broadbent (1958)). Recently many studies have been done on LE distribution and its 

generalizations by introducing additional parameters (See Mahmoud and Alam (2010), Cordeiro et 

al (2015), Nadarajah et al (2014) etc).  

 The LE distribution with the parameters 𝛽1 and 𝛽2, (LE(𝛽1, 𝛽2)) has the following 

cumulative distribution function  

 𝐹(𝑥; 𝛽1, 𝛽2) = 1 − exp (−𝛽1𝑥 −
𝛽2

2
𝑥2) (2.1) 
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 If we put 𝛽2=0 in (2.1) we can obtain the exponential distribution with parameter 𝛽1 and if we put 

𝛽1=0 in (2.1) we get the Rayleigh distribution with parameter 𝛽2. 

 

The probability density function (pdf) of LE(𝛽1, 𝛽2) distribution is given by  

 

 𝑓(𝑥; 𝛽1, 𝛽2) = (𝛽1 + 𝛽2𝑥)exp (−𝛽1𝑥 −
𝛽2

2
𝑥2) ,   𝑥 > 0,     𝛽1  , 𝛽2 > 0. 

 

 

3  Harris Generalized Linear Exponential Distribution 
 

By applying the method given in Aly and Benkherouf (2011) Harris Extended Linear exponential 

distribution is introduced by Batsidis and lemonte (2014). Here we call this family of distributions 

as Harris Generalized distribution. By taking LE distribution as the baseline distribution, we get the 

Harris generalized Linear exponential (HGLE) distribution. The application of this family of 

distribution in the context of reliability test plan were studied by JoseandPaul(2018). 

The substitution of the survival function of LE(𝛽1, 𝛽2) distribution in (1.1) gives the HGLE 

distribution with parameters 𝜃, 𝑟, 𝛽1, 𝛽2 and is denoted as HGLE(𝜃, 𝑟, 𝛽1, 𝛽2), 

The survival function of the HGLE distribution is obtained as  

 𝐺̅(𝑥) = (
𝜃exp(−𝑟(𝛽1𝑥+

𝛽2
2
𝑥2))

1−𝜃̅exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

)

1

𝑟

 (3.1) 

 The pdf of HGLE distribution is given by  

 𝑔(𝑥) =
𝜃
1
𝑟(𝛽1+𝛽2𝑥)exp(−(𝛽1𝑥+

𝛽2
2
𝑥2))

(1−𝜃̅exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2)))

1+
1
𝑟

 (3.2) 

 where 𝑥 > 0, 𝜃 > 0, 𝑟 > 0, 𝛽1 > 0, 𝛽2 > 0, 𝜃̅ = 1 − 𝜃.  

The corresponding hazard rate function is given by  

 ℎ(𝑥) =
(𝛽1+𝛽2𝑥)

1−𝜃̅exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

 (3.3) 

 By taking r=1 in (3.2) we get the Marshall-Olkin Linear Exponential distribution (MOLE), and when 

r=1 and 𝜃 = 1, (3.2) reduces to the LE distribution. When 𝛽2=0, (3.2) gives the Harris Extended 

Exponential distribution as given in Pinho et al (2015). In the same way it will reduce to Marshall 

Olkin Exponential distribution and Exponential distribution when r=1 and r=1, 𝜃 = 1 respectively. 

If 𝛽1 = 0 this distribution reduces to the Harris extended form of Rayleigh distribution and it 

includes the Marshall-Olkin generalization of Rayleigh distribution (if r=1), Rayleigh distribution (if 

𝜃 = 1) as its special cases. 

The quantile function of HGLE distribution can be obtained by inverting the cdf given in 

(2.1), and is obtained as  

 𝑥𝑝 =
𝛽1

𝛽2
[√1 +

2𝛽2

𝑟𝛽1
2 log(𝜃̅ + 𝜃(1 − 𝑝)

−𝑟) − 1],   (3.4) 

 where 0 < 𝑝 < 1. 

Some possible shapes of the pdf of HGLE distribution for different values of parameters are 

given in Fig. 1.  

Some possible shapes of the hazard rate function of the distribution for different values of 

parameters are given in Fig. 2 
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Figure  1:  pdf of HGLE Distribution for different values of parameters. 

   

 

     
Figure  2:  Hazard rate function of HGLE Distribution for different values of parameters. 

  

Theorem: 1  The pdf of HGLE distribution can be represented as a linear combination of Linear 

exponential density function as  
 𝑔(𝑥) = ∑∞𝑖=0 𝜂𝑖𝑓(𝛽1∗ ,𝛽2∗)(𝑥) 

where 𝑓(𝛽1∗,𝛽2∗)(𝑥) follows LE distribution with parameters 𝛽1
∗ = (𝑟𝑖 + 1)𝛽1 and  

𝛽2
∗ = (𝑟𝑖 + 1)𝛽2.  

   Proof: Consider the pdf of HGLE distribution given in (3.2), 

For 𝜃 < 1, 

the expression given by (3.2) can be expanded using the negative binomial power series as 

follows,  

𝑔(𝑥) = 𝜃
1
𝑟(𝛽1 + 𝛽2𝑥)exp (−(𝛽1𝑥 +

𝛽2
2
𝑥2))∑

∞

𝑖=0

(
𝑖 + 𝑟−1

    𝑖 ) 𝜃̅𝑖exp (− (𝛽1𝑥 +
𝛽2
2
𝑥2) 𝑟𝑖) 

    = ∑∞𝑖=0
𝜃̅𝑖𝜃

1
𝑟

(𝑟𝑖+1)
(
𝑖 + 𝑟−1

    𝑖 ) ((𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +
𝛽2

2
𝑥2))) 

=∑

∞

𝑖=0

𝜂𝑖𝑓(𝛽1∗ ,𝛽2∗)(𝑥) 
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Here for 𝜃 < 1,   𝜂𝑖 =
𝜃̅𝑖𝜃

1
𝑟

(𝑟𝑖+1)
(
𝑖 + 𝑟−1

    𝑖 )                                         (3.5) 

 and   𝑓(𝛽1∗ ,𝛽2∗)(𝑥) = ((𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +
𝛽2

2
𝑥2))) 

where 𝑓(𝛽1∗,𝛽2∗)(𝑥) follows LE distribution with parameters 𝛽1
∗ = (𝑟𝑖 + 1)𝛽1 and 

 𝛽2
∗ = (𝑟𝑖 + 1)𝛽2. 

For 𝜃 > 1,   let us take 𝜃 = 𝜃1
−1 so that 0 < 𝜃1 < 1. 

On simplification (3.2) reduces to  

 𝑔(𝑥) =
𝜃1(𝛽1+𝛽2𝑥)𝑦

(1−𝜃̅1(1−𝑦
𝑟))

1+
1
𝑟

 

where 𝑦 = exp (−((𝛽1𝑥 +
𝛽2

2
𝑥2))) and 𝜃̅1 = 1 − 𝜃1. Since the denominator lies in the interval (0, 1), 

we can use the negative binomial power series expansion, then we have  

 𝑔(𝑥) = 𝜃1(𝛽1 + 𝛽2𝑥)𝑦 ∑
∞
𝑗=0 𝜃̅1

𝑗
(1 − 𝑦𝑟)𝑗 (

𝑗 + 𝑟−1

    𝑗 ) 

               = 𝜃1(𝛽1 + 𝛽2𝑥)𝑦 ∑
∞
𝑗=0 ∑

𝑗
𝑖=0 (−1)

𝑖(𝜃̅1)
𝑗𝑦𝑟𝑖 (

𝑗 + 𝑟−1

    𝑗 ) (
𝑗
 𝑖 ) 

Interchanging the order of summation and substituting y we get  

 𝑔(𝑥) = ∑∞𝑖=0
𝜃1(−1)

𝑖

(𝑟𝑖+1)
(∑∞𝑗=𝑖 (𝜃̅1)

𝑗 (
𝑗 + 𝑟−1

    𝑗 ) (
𝑗
 𝑖 )) 

                       {(𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +
𝛽2

2
𝑥2))} 

which leads to  

𝑔(𝑥) = ∑∞𝑖=0 𝜂𝑖𝑓(𝛽1∗ ,𝛽2∗)(𝑥) where  

 𝜂𝑖 =
𝜃1(−1)

𝑖

(𝑟𝑖+1)
(∑∞𝑗=𝑖 (𝜃̅1)

𝑗 (
𝑗 + 𝑟−1

    𝑗 ) (
𝑗
 𝑖 ))   (3.6) 

 and  

𝑓(𝛽1∗,𝛽2∗)(𝑥) = ((𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +
𝛽2
2
𝑥2))) 

which is the pdf of LE distribution with parameters 𝛽1
∗ = (𝑟𝑖 + 1)𝛽1 and 𝛽2

∗ = (𝑟𝑖 + 1)𝛽2.             

Theorem: 2  The moment generating function of HGLE distribution, denoted as M(t) is given by 

𝑀(𝑡) = ∑∞𝑖=0 𝜂𝑖𝜔𝑠,𝑟𝑖 and 𝜔𝑠,𝑟𝑖 can be expressed as  

 𝜔𝑠,𝑟𝑖 = ∫
∞

0
exp(𝑡𝑥)(𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +

𝛽2

2
𝑥2)) 𝑑𝑥 

 𝐹𝑜𝑟  𝜃 < 1, 𝜂𝑖 =
𝜃̅𝑖𝜃

1
𝑟

(𝑟𝑖+1)
(
𝑖 + 𝑟−1

   𝑖 )                                                                                                               

For 𝜃 ≥ 1, 𝜂𝑖 =
𝜃1(−1)

𝑖

(𝑟𝑖+1)
∑∞𝑗=0 𝜃̅1

𝑗
(
𝑗 + 𝑟−1

    𝑗 ) (
𝑗
𝑖 ) , 𝑤ℎ𝑒𝑟𝑒  𝜃1 =

1

𝜃
, 0 ≤ 𝜃1 ≤ 1. 

 Proof:  

We have 𝑀(𝑡) = ∫
∞

0
exp(𝑡𝑥)𝑓(𝑥; 𝜃, 𝑟, 𝛽1, 𝛽2)𝑑𝑥  

                                                                                                                                                                                             

= ∫

∞

0

exp(𝑡𝑥)∑

∞

𝑖=0

𝜂𝑖(𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +
𝛽2
2
𝑥2)) 𝑑𝑥     

(by using theorem 1) 

  = ∑

∞

𝑖=0

𝜂𝑖∫

∞

0

(𝑟𝑖 + 1)(𝛽1 + 𝛽2𝑥)exp(−((𝑟𝑖 + 1)𝛽1 − 𝑡)𝑥)exp (−(𝑟𝑖 + 1) (
𝛽2
2
𝑥2)) 𝑑𝑥 
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              consider  

∫

∞

0

(𝑟𝑖 + 1)𝛽1𝑥
2𝑠exp(−((𝑟𝑖 + 1)𝛽1 − 𝑡)𝑥)𝑑𝑥 + ∫

∞

0

(𝑟𝑖 + 1)𝛽2𝑥
2𝑠+1exp(−((𝑟𝑖 + 1)𝛽1 − 𝑡)𝑥) 𝑑𝑥 

=
(𝑟𝑖 + 1)𝛽1Γ(2𝑠 + 1)

((𝑟𝑖 + 1)𝛽1 − 𝑡)
2𝑠+1 +

(𝑟𝑖 + 1)𝛽2Γ(2𝑠 + 2)

((𝑟𝑖 + 1)𝛽1 − 𝑡)
2𝑠+2 ;     𝑡 ≤ 𝛽1                                    

Then  

 𝑀(𝑡) = ∑∞𝑖=0 𝜂𝑖 ∑
∞
𝑠=0

((𝑟𝑖+1)
𝛽2
2
)

𝑠

𝑠!
(−1)𝑠 (

(𝑟𝑖+1)𝛽1Γ(2𝑠+1)

((𝑟𝑖+1)𝛽1−𝑡)
2𝑠+1 +

(𝑟𝑖+1)𝛽2Γ(2𝑠+2)

((𝑟𝑖+1)𝛽1−𝑡)
2𝑠+2) ;   𝑡 ≤ 𝛽1 

where 𝜂𝑖 can be chosen suitably for 𝜃 ≤ 1 and 𝜃 > 1 as given in equation (3.5) and (3.6).           

 

Theorem: 3   

If X has 𝐻𝐺𝐿𝐸(𝑟, 𝛽1, 𝛽2, 𝜃) distribution. The the 𝑘𝑡ℎ moment of X denoted by 𝜇𝑘 is given by,  

 𝜇𝑘 = ∑
∞
𝑖=0 ∑

∞
𝑠=0 𝜃

1

𝑟𝜃̅𝑖 (
1 + 𝑟−1

    𝑖 )
(−(𝑟𝑖+1)

𝛽2
2
)
𝑠

𝑠!
(

𝛽1Γ(𝑘+2𝑠+1)

((𝑟𝑖+1)𝛽1)
(𝑘+2𝑠+1) +

𝛽2Γ(𝑘+2𝑠+2)

((𝑟𝑖+1)𝛽1)
(𝑘+2𝑠+2)) 

   Proof:  

We have, 

𝜇𝑘 = ∫
∞

0
𝑥𝑘

𝜃
1
𝑟(𝛽1+𝛽2𝑥)exp(−(𝛽1+

𝛽2
2
𝑥2))

(1−𝜃̅exp(−𝑟(𝛽1+
𝛽2
2
𝑥2)))

1+
1
𝑟

𝑑𝑥      ∫
∞

0
𝑥𝑘𝑔(𝑥)𝑑𝑥                  

 = ∫
∞

0
𝑥𝑘𝜃

1

𝑟(𝛽1 + 𝛽2𝑥)∑
∞
𝑖=0 (

1 + 𝑟−1

    𝑖 ) 𝜃̅𝑖exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +
𝛽2

2
𝑥2)) 𝑑𝑥 

Interchanging the integration and summation we get  

 = ∑∞𝑖=0 (
1 + 𝑟−1

    𝑖 ) 𝜃
1

𝑟𝜃̅𝑖 ∫
∞

0
𝑥𝑘(𝛽1 + 𝛽2𝑥)exp (−(𝑟𝑖 + 1) (𝛽1𝑥 +

𝛽2

2
𝑥2)) 𝑑𝑥  

 

= ∑∞𝑖=0 (
1 + 𝑟−1

    𝑖 ) 𝜃
1

𝑟𝜃̅𝑖 ∑∞𝑠=0
(−(𝑟𝑖+1)

𝛽2
2
)
𝑠

𝑠!
  (∫

∞

0
𝛽1𝑥

𝑘+2𝑠exp(−(𝑟𝑖 + 1)(𝛽1𝑥))𝑑𝑥 +

                       ∫
∞

0
𝛽2𝑥

𝑘+2𝑠+1exp(−(𝑟𝑖 + 1)(𝛽1𝑥))𝑑𝑥)      

   

 = ∑∞𝑖=0 ∑
∞
𝑠=0 𝜃

1

𝑟𝜃̅𝑖 (
1 + 𝑟−1

    𝑖 )
(−(𝑟𝑖+1)

𝛽2
2
)
𝑠

𝑠!
(

𝛽1Γ(𝑘+2𝑠+1)

((𝑟𝑖+1)𝛽1)
(𝑘+2𝑠+1) +

𝛽2Γ(𝑘+2𝑠+2)

((𝑟𝑖+1)𝛽1)
(𝑘+2𝑠+2)) 

This completes the proof of the theorem.   

            

4 Compounding 
 

Ghitany et al (2005), Ghitany and Kotz (2007) and Krishna et al (2013) expressed Marshall Olkin 

extended forms of distributions Marshall and olkin (1997) as compound distributions with 

exponential as mixing density. This gives a new parametric family of distributions in terms of 

existing ones.  

 Let 𝐹̅(𝑥/𝛼), 𝑥 ∈ ℜ, 𝛼 ∈ ℜ, be the conditional survival function of a continuous random 

variable X given . Let  follows a distribution with probability density function 𝑚(𝛼). A distribution 

with survival function  

 𝐹̅(𝑥) = ∫
∞

−∞
𝐹̅(𝑥/𝛼)𝑚(𝛼) 𝑑𝛼, 𝑥 ∈ ℜ 

is called a compound distribution with mixing density 𝑚(𝛼).  

 The following theorem shows that under suitable conditions the HGLE distribution can be 

obtained as a compound distribution.  

Theorem: 4 Let X be a continuous random variable with conditional pdf given by 𝐹̅(𝑥/𝛼) =
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𝑒𝑥𝑝 ((𝑒𝑥𝑝 (−𝑟 (𝛽1𝑥 +
𝛽2

2
𝑥2)))

−1

− 1)𝛼,         𝑥, 𝑟, 𝛽1, 𝛽2, 𝛼 > 0. 

Let 𝛼 follows an exponential distribution with with pdf given by 𝑚(𝛼) = 𝜃𝑒−𝜃𝛼, 𝜃, 𝛼 > 0. 

Then the proportional failure rate model of the compound distribution of X becomes the HGLE (r, 

𝜃, 𝛽1, 𝛽2) distribution.  

   Proof: For all 𝑥 > 0, 𝛽1, 𝛽2, 𝜃 > 0, the unconditional survival function of x is given by  

 𝐹̅(𝑥) = ∫
∞

0
𝐹̅(𝑥/𝛼)𝑚(𝛼)𝑑𝛼                                                                                                         

              = 𝛼 ∫
∞

0
exp ((exp (−𝑟 (𝛽1𝑥 +

𝛽2

2
𝑥2)))

−1

− 1)𝛼  exp(−𝛼𝜃)  𝑑𝛼 

 𝐹̅(𝑥) =
𝛼

exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

−1

−𝛼̅

                                                                                         

 𝐹̅(𝑥) =
𝛼exp(−𝑟(𝛽1𝑥+

𝛽2
2
𝑥2))

1−𝛼̅exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

 

Let us take the proportional failure rate model of 𝐹̅(𝑥), Then  

                      𝐺̅(𝑥) = 𝐹̅(𝑥)
1

𝑟                                                                                      

 𝐺̅(𝑥) = (
𝛼exp(−𝑟(𝛽1𝑥+

𝛽2
2
𝑥2))

1−𝛼̅exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

)

1

𝑟

 

which is the survival function of a random variable with HGLE distribution with parameter 

(𝑟, 𝜃, 𝛽1, 𝛽2).     

 

5 Renyi Entropy 
 

Numerous measures of entropy are discussed and studied by many researchers and these Entropy 

measures has been used in various situations of science and technology especially in 

communications engineering and information technology. The entropy of a random variable X with 

density function 𝑔(𝑥) is a measure of uncertainty. The Rényi entropy is defined by  

 𝐼𝑔(𝛿) = (1 − 𝛿)
−1log ∫

∞

−∞
𝑔𝛿(𝑥)𝑑𝑥 

where  𝛿 > 0  and 𝛿 ≠ 1    

 𝐼𝑔(𝛿) = (1 − 𝛿)
−1log

(

 
 
 
∑∞𝑘=0 ∑

∞
𝑠=0 ∑

𝛿
𝑖=0 𝜃

𝛿

𝑟(1 − 𝜃)𝑘
Γ𝛿(1+

1

𝑟
)+𝑘

Γ𝛿(1+
1

𝑟
)𝑘!
(
𝛿
𝑖
) 𝛽1

𝑖𝛽2
𝛿−𝑖

      (−1)𝑠
((𝛿+𝑟𝑘)

𝛽2
2
)

𝑠

𝑠!

Γ(𝛿+2𝑠−𝑖+1)

((𝛿+𝑟𝑘)𝛽1)
(𝛿+2𝑠−𝑖+1)

)

 
 
 

 

Table 1 displays the Renyi entropy for HGLE distribution at 𝛿 = 2.0, 2.5, 3.0, 𝛽1 = 0.5, 𝛽2 = 0.9, 𝑟 =

1.2 and for different choices of 𝜃 > 1.  

 

𝜃 𝐼𝑔(𝛿) 𝛿 = 2.0 𝐼𝑔(𝛿) 𝛿 = 2.5 𝐼𝑔(𝛿) 𝛿 = 3.0 

1.5  0.8290  0.7549 0.7336 

2.0  0.8530 0.8003  0.7783 

2.5  0.8661 0.8228  0.7995 

3.0  0.8731 0.8342  0.8094 

3.5  0.8765 0.8396  0.8134 

4.0  0.8777 0.8415  0.8141 

 

Table  1: Renyi Entropy of HGLE Distribution at 𝛿 = 2.0, 2.5, 3.0, 𝑟 = 1.2, 𝛽1 = 0.5, 𝛽2 = 0.9 
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6 Mean Residual Life 
 

The expected additional life time given that a component has survived until time 𝑡 is called mean 

residual life (MRL). The importance of MRL function in reliability and survival analysis is that it 

describes the aging process. Also MRL function uniquely determines its distribution function.  

 The MRL of a random variable 𝑋 representing life of a component is given as follows.  

 𝑀𝑅(𝑡) =
1

𝐺̅(𝑡)
∫
∞

𝑡
𝐺̅(𝑥)𝑑𝑥,   𝑡 > 0 

The MRL function of a lifetime random variable 𝑋 with HGLE distribution is given by  

 𝑀𝑅(𝑡) = (
1−𝜃̅exp(−𝑟(𝛽1𝑥+

𝛽2
2
𝑡2))

𝜃exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑡2))

)

1

𝑟

∫
∞

𝑡
(

𝜃exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

1−𝜃̅exp(−𝑟(𝛽1𝑥+
𝛽2
2
𝑥2))

)

1

𝑟

𝑑𝑥 

Table 2 displays MRL function for HGLE distribution at point t=0.2, 0.5, 0.9, 

 𝑟 = 1.2, 𝛽1 = 0.5, 𝛽2 = 0.9 and for different choices of parameter 𝜃.  

 

𝜃 MRL,t=0.2 MRL,t=0.5 MRL,t=0.9 

1.0 0.8087 0.6906  0.5735 

1.5  0.9191 0.7676  0.6143 

2.0  1.0034 0.8302  0.6502 

2.5  1.0716 0.8829  0.6823 

3.0  1.1288 0.9284  0.7114 

3.5  1.1781 0.9685  0.7379 

 

Table  2:  Mean residual life of HGLE Distribution at 𝑟 = 1.2, 𝛽1 = 0.5, 𝛽2 = 0.9 

 

7 Order Statistics 
 

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample taken from HGLE distribution and 𝑋1:𝑛, 𝑋2:𝑛 , . . . , 𝑋𝑛:𝑛 be the 

corresponding order statistics. We derive the pdf of 𝑖𝑡ℎ order statistics 𝑋𝑖:𝑛 which is denoted as 

𝑔𝑖:𝑛(𝑥), and express it as a linear combination of HGLE density function. We have the general 

formula for the pdf of the 𝑖𝑡ℎ order statistics as follows  

 𝑔𝑖:𝑛(𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝑔(𝑥)(𝐺̅(𝑥))

𝑛−𝑖
(1 − 𝐺̅(𝑥))

𝑖−1
 

By using Binomial expansion, we get  

 𝑔𝑖:𝑛(𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝑔(𝑥)∑𝑖−1𝑗=0 (−1)

𝑗 (
𝑖 − 1
    𝑗 ) (𝐺̅(𝑥))

𝑛+𝑗−𝑖
 

On simplification 𝑔𝑖:𝑛(𝑥) reduces to  

 𝑔𝑖:𝑛(𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
∑𝑖−1𝑗=0 (

𝑖 − 1
   𝑗 )

(−1)𝑗

(𝑛+𝑗−𝑖+1)
𝜃
(
𝑛+𝑗−𝑖+1

𝑟
) 

 
                         (𝑛 + 𝑗 − 𝑖 + 1)(𝛽1 + 𝛽2𝑥)

exp(−(𝑛+𝑗−𝑖+1)(𝛽1𝑥+
𝛽2
2
𝑥2)𝑟)

(1−𝜃exp(−(𝛽1𝑥+
𝛽2
2
𝑥2)𝑟))

1+
(𝑛+𝑗−𝑖+1)

𝑟
 

                    =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
∑𝑖−1𝑗=0 (

𝑖 − 1
   𝑗 )

(−1)𝑗

(𝑛+𝑗−𝑖+1)
𝑔𝑛,𝑗,𝑖(𝑥) 

where 𝑔𝑛,𝑗,𝑖(𝑥) is the density function of HGLE distribution with parameters 𝑟(𝑛 + 𝑗 − 𝑖 + 1)−1, 𝜃, 

(𝑛 + 𝑗 − 𝑖 + 1)𝛽1, (𝑛 + 𝑗 − 𝑖 + 1)𝛽2. 

The 𝑘𝑡ℎ moment of 𝑖𝑡ℎ order statistic of HGLE distribution can be derived by using Theorem 

3 as the distribution of order statistics can be expressed as the linear combination of HGLE density 

function. Consider the asymptotic distribution of the first order statistic 𝑋1:𝑛 and 𝑛𝑡ℎ order statistic 

𝑋𝑛:𝑛. y using the asymptotic results for 𝑋1:𝑛 and 𝑋𝑛:𝑛 (Arnold et al (1992), Kotz and Nadarajah (2001)), 
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we can find the limiting distribution of extreme order statistics. We have  

 l𝑖𝑚
n→∞

𝑃(𝑋1:𝑛 ≤ 𝑎𝑛
∗ + 𝑏𝑛

∗𝑡) = 1 − exp(−𝑡−𝛼),   𝑡 > 0, 𝛼 > 0, (7.1) 

 of Weibull type, where 𝑎𝑛
∗  = 𝐺−1(0) and 𝑏𝑛

∗ = 𝐺−1 (
1

𝑛
) − 𝐺−1(0) if and only if 𝐺−1(0) is finite and, for 

all 𝑡 > 0 and 𝑐 > 0,  

 l𝑖𝑚
∈→0+

𝐺(𝐺−1(0)+∈𝑡)

𝐺(𝐺−1(0)+∈)
= 𝑡𝛼 . (7.2) 

 For the maximal order statistics 𝑋𝑛:𝑛, we have  

 lim
𝑛→∞

𝑃(𝑋𝑛:𝑛 ≤ 𝑎𝑛 + 𝑏𝑛𝑡) = exp(−𝑒
−𝑡) ,   − ∞ < 𝑡 < ∞ (7.3) 

 of extreme value type, where 𝑎𝑛 = 𝐺
−1 (1 −

1

𝑛
) and 𝑏𝑛 =

1

𝑛𝑔(𝑎𝑛)
 if  

 lim
𝑥→∞

𝑑

𝑑𝑥
(
1

ℎ(𝑥)
) = 0. (7.4) 

 The selection of the norming constants 𝑎𝑛 and 𝑏𝑛 are not unique but depend on G. In general we 

use the result given in (Arnold et al (1992)) and the same used in (Ghitany and Kotz (2007)). The 

following theorem gives the limiting distributions of the smallest and largest order statistics from 

the HGLE distribution.  

Theorem: 5  

Let 𝑋1:𝑛 and 𝑋𝑛:𝑛 be, respectively, the smallest and largest order statistics from 𝐻𝐺𝐿𝐸(𝜃, 𝑟, 𝛽1, 𝛽2) 

distribution. Then  

(𝑖). lim
𝑛→∞

𝑃{𝑋1:𝑛 ≤ 𝑏𝑛
∗𝑡} = 1 − exp(−𝑡), 𝑡 > 0, where 𝑏𝑛

∗ = 𝐺−1 (
1

𝑛
) and 𝐺−1(. ) is given by (3.4). 

(𝑖𝑖). lim
𝑛→∞

𝑃{𝑋𝑛:𝑛 ≤ 𝑎𝑛 + 𝑏𝑛𝑡} = exp(−𝑒
−𝑡), −∞ < 𝑡 < ∞, where 𝑎𝑛 = 𝐺

−1 (1 −
1

𝑛
), 𝑏𝑛 =

1

𝑛𝑔(𝑎𝑛)
, 

and 𝑔(. ) and 𝐺−1(. ), respectively are given by (3.2) and (3.4).  

   Proof: 

 (𝑖). For HGLE distribution 𝐺−1(0) = 0 which is finite and by using L Hospitals rule  

 lim
∈→0+

𝐺(𝐺−1(0)+∈𝑡)

𝐺(𝐹−1(0)+∈)
= 𝑡 lim

∈→0+

𝑔(∈𝑡)

𝑔(𝑡)
= 𝑡. 

From (7.2) we have 𝛼=1 and the asymptotic distribution of 𝑋1:𝑛 is of Weibull type, where  

 𝑏𝑛
∗ = 𝐺−1 (

1

𝑛
) =

𝛽1

𝛽2
[√1 +

2𝛽2

𝑟𝛽1
2 log (𝜃̅ + 𝜃 (1 −

1

𝑛
)
−𝑟

) − 1] 

Hence (𝑖) follows from (7.1) and (7.2). 

(𝑖𝑖). For HGLE distribution, by using Von Mises sufficient condition for the weak 

convergence and the properties given in ([?]), we get,   

 
lim

𝑥→𝐺−1(1)

𝑑

𝑑𝑥
(
1

ℎ(𝑥)
)
= lim
𝑥→∞

(

  
 
𝑟(1 − 𝜃)exp (−𝑟 (𝛽1𝑥 +

𝛽2

2
𝑥2))

−
(1−(1−𝜃)exp(−𝑟(𝛽1𝑥+

𝛽2
2
𝑥2))𝛽2)

(𝛽1+𝛽2𝑥)
2

)

  
 
= 0 

 where 𝑎𝑛 = 𝐺
−1(1 − 𝑛−1), 𝐺−1(. ) given in (3.4) and 𝑏𝑛 =

1

𝑛𝑔(𝑎𝑛)
, where 𝑏𝑛 can be obtained by using 

𝑎𝑛 and (3.2). Hence, statement (𝑖𝑖) follows from (7.3) and (7.4).  

 

8 Estimation 
 

In this section we consider maximum likelihood estimation for a given sample 𝑋1, 𝑋2, . . . , 𝑋𝑛. Then 

the log likelihood function is given by 

 

log 𝐿 =
𝑛

𝑟
log𝜃 + ∑𝑛𝑖=0 log(𝛽1 + 𝛽2𝑥𝑖) − ∑

𝑛
𝑖=0 (𝛽1𝑥𝑖 +

𝛽2

2
𝑥𝑖
2)

                      − (1 +
1

𝑟
)∑𝑛𝑖=0 log (1 − 𝜃

−

exp (−𝑟 (𝛽1𝑥𝑖 +
𝛽2

2
𝑥𝑖
2))) 

The maximum likelihood estimates can be obtained by solving the equations  

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝑟
= 0,

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1
= 0,

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2
= 0,

𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
= 0. These equations are non-linear and can be solved 

iteratively using nlm program in R software.  
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9 Data Analysis 
 

Example 1 

 

Consider the data set which gives the survival times for 121 breast cancer patients treated over the 

period 1929-1938 (Boag (1984), Lawless (2003)). We compare the HGLE distribution with two other 

distributions LE distribution with cdf given in (2.1) and MOLE distribution. The survival function 

of MOLE distribution can be derived by setting r=1 in (3.1). For the given data set, we estimate the 

unknown parameter of each distribution by the maximum likelihood method, with these obtained 

estimates we obtain the values of Kolmogrov Smirnov (K-S) statistics and p value. From the values 

given in Table 3, we observe that HGLE distribution is a competitive distribution compared with 

other two distributions. 

  

Model Parameters Estimates Log likelihood K-S Statistics p value 

LE β1 0.0155 579.72 0.0826 0.3816 

 β2 0.000186    

MOLE β1 0.0029963    

 β2 0.0000612 579.456 0.0563 0.8354 

 θ 2.360    

HGLE r 3.800    

 β1 0.0199 578.780 0.0542 0.8698 

 β2 0.000135    

 θ 2.099    

 

Table  3:  Fitting for the LE, MOLE and HGLE Distribution   

 

Example 2 

 

Consider the data set given in Chhikara and Folks (1989) and Lawless (2003), the data on repair times 

(in hours) for 46 failures of an airbone communications receiver and here we compare the HGLE 

distribution with MOLE distribution. Table 4 gives the MLE’s of the fitted models to the current data 

with the K-S statistics and p- value. From the given table we can conclude that the HGlE distribution 

better fits the given data than the MOLE distribution.  

 

Model Parameters Estimates Log likelihood K-S Statistics p value 

MOLE β1 0.00535    

 β2 0.00324 103.5308 0.0955 0.785 

 θ 0.0163    

HGLE r 2.1513    

 β1 0.000401 102.176 0.0676 0.9827 

 β2 0.00721    

 θ 0.00687    

 

Table  4: Fitting for the MOLE and HGLE Distribution  
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Figure 3: P P Plot for LE distribution, MOLE distribution and HGLE    

 

 
 

Figure 4: P P Plot for MOLE distribution and HGLE distribution 

 

 

10 Conclusion 
 

In this paper we have shown a generalization of LE distribution namely HGLE distribution. We 

have studied some of the statistical properties of the distribution such as probability density 

function, hazard rate function, moment generating function, distribution of order statistics, 

asymptotic distribution of extreme order statistics, Renyi entropy etc. The method of maximum 

likelihood estimation is also derived and also described two cases of real data application to show 

how HGLE distribution performs better than its baseline distributions. 

 

  



Albin Paul, K.K. Jose 

HGLE DISTRIBUTION AND ITS APPLICATIONS 

RT&A, No 1 (61) 
Volume 16, March 2021 

 

187 

References  
 
[1]  Aly and Benkherouf (2011) Aly and Benkherouf. L., A new family of distribution based on probability 

generating functions, Sankhya B-Applied and Interdisciplinary Statistics, 73(1), 70-80, (2011). 

 [2]  Arnold et al (1992) Arnold, B.C., Balakrishnan, N., and Nagaraja, H.N., A first course in order statistics. 

New York: Wiley, (1992).  

[3]  Azzalini (1985) Azzalini, A., A class of distributions which includes the normal ones, Scandinavian Journal 

of Statistics, 12, 171-178, (1985).  

[4]  Barreto-Souza et al 2013 Barreto-Souza, W., Lemonte, A.J. and Cordeiro, G.M., General results for the 

Marshall-Olkin’s family of distributions, Annals of the Brazilian Academy of Sciences, 85, 3-21, (2013).  

[5]  Batsidis and lemonte (2014) Batsidis, A. and Lemonte, A.J., On the Harris extended family of distributions, 

Statistics, A Journal of Theoretical and Applied Statistics, 49, 1400-1421, (2014).  

[6]  Boag (1984) Boag, J. W., Maximum likelihood estimates of the proportion of patients cured by Cancer 

therapy, Journal of Royal Statistical Society B, 11, 15-53, (1984).  

[7]  Broadbent (1958) Broadbent, S., Simple mortality rates, Journal of Applied Statistics, 7,  86, (1958).  

[8]  Carbone et al (1967) Carbone, P., Kellerthouse, L. and Gehan, E., Plasmacytic Myeloma: A Study of the 

relationship of survival to various clinical manifestations and anomalous protein type in112 patients, 

American Journal of medicine, 42   937-948, (1967).  

[9]  Embrechts et al (2013) Embrechts P., Kl𝑢̈ppelberg, C., and Mikosch T. Modelling Extremal Events for 

Insurance and Finance, Springer, (2013).  

[10]  Chhikara and Folks (1989) Chhikara, R. S. and Folks, J. L., The Inverse Gaussian Distribution; Theory, 

Methodology and Applications, Marcel Dekker, New York, (1989).  

[11]  Cordeiro et al (2015)Cordeiro, G. M., Ortega, E. M. M., and Lemonte, A. J., The Poisson generalized linear 

failure rate model. Communications in Statistics-Theory and Methods, 44(10), 2037-2058, (2015).  

[12]  Ferreira and Steel (2007) Ferreira, J.T.A.S. and Steel, M.F.J., A new class of skewed multivariate 

distributions with applications to regression analysis, Statistica Sinica, 17, 505-529, (2007).  

[13]  Ghitany et al (2005) Ghitany, M.E., AL-Hussaini, E.K. and Al-Jarallah, R.A., Marshall-Olkin extended 

Weibull distribution and its application to censored data.  Journal of Applied Statistics, 32, 1025-1034, (2005).  

[14]  Ghitany and Kotz (2007) Ghitany, M.E. and Kotz, S., Reliability properties of Extended linear failure rate 

distributions. Probability in the Engineering and Informational Sciences, 21, 441-450, (2007).  

[15]  Harris (1948) Harris, T.E., Branching processes . The Annals of Mathematical Statistics, 19(4), 474-494, (1948).  

[16]  Jose et al (2010) Jose, K.K., Naik, S.R. and Ristic, M.M., Marshall- Olkin 𝑞- Weibull distribution and max-

min process, Statistical papers, 51, 837-851, (2010).  

[17]  JoseandPaul(2018), Jose, K.K. and Paul, A., Reliability Test Plans for Percentiles Based on the Harris 

Generalized Linear Exponential Distribution, Stochastics and Quality Control, 33(1), 61-70, (2018).  

[18]  Jose and Sivdas (2015) Jose, K. K. and Sivadas, R., Marshall-Olkin Exponentiated Generalized Fréchet 

Distribution and Its Applications, Journal of Probability and Statistical Science, 13 (2), 167-178, (2015).  

[19]  Kotz and Nadarajah (2001) Kotz, S. and Nadarajah, S., Extreme Value Theory, Theory and Applications. 

Singapore: World Scientific, (2001).  

[20]  Krishna et al (2013) Krishna, E., Jose, K. K., Alice, T. and Ristic, M.M., Marshall−Olkin Fréchet distribution, 

Communications in Statistics - Theory and Methods, 42, 4091-4107, (2013). 

 [21]  Lai et al (2006) Lai, Diew, C. and Xie, M., Bathtub Shaped Failure Rate life Distributions, Stochastic ageing 

and dependence for reliability. Springer, New York, (2006).  

[22]  Lawless (2003) Lawless, Statistical Models and Methods for Lifetime Data, Second Edition, John Wiley & 

Sons Inc., NewYork, (2003).  

[23]  Marshall and olkin (1997) Marshall, A. and Olkin, I., A new method for adding a parameter to a family of 

distributions with applications to the exponential and Weibull families, Biometrika, 84, 641-652, (1997).  

[24]  Mahmoud and Alam (2010) Mahmoud, M.A.W. and Alam, F.M.A., The generalized linear exponential 

distribution, Statistics and Probability Letters, 80   1005-1014, (2010).  

[25]  Nadarajah et al (2014) Nadarajah, S., Shahsanaei, F., and Rezaei, S., A new four-parameter lifetime 

distribution. Journal of Statistical Computation and Simulation, 84 2, 248-263, (2014).  

[26]  Pinho et al (2015) Pinho, L.G.B., Cordeiro, G.M. and Nobre, J.S., The Harris extended exponential 

distribution, Communications in Statistics- Theory and Methods, 44 (16), 3486-3502, (2015).  

[27]  Zang et al (2005) Zhang, T., Xie, M., Tang, L.C., and Ng, S.H., Reliability and modeling of systems 

integrated with firmware and hard ware, International Journal of Reliability, Quality and safety Engineering, 

12(3), 227-239, (2005).  

 


