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Abstract 
In relation to types and advantages of computer network topologies, in this research work, availability 

and cost analysis of complex computer network is considered to focus on a tree topology network that has 

four subsystems A,B,C and D and all the subsystems are figured in series and parallel configuration, the 

subsystem A and B served as computer servers together with two units each and are working 1-out-of-2: 

G/F policy while C and D subsystems both has three units and are working in 2-out-of-3: G/F scheme, A 

and B attached to subsystems C and D respectively. The system has two types of failure, degraded 

(partial failure) or complete failed states. The system is analyzed using supplementary variables 

techniques and Laplace transform. Copula family and general distribution are employed to restore the 

complete failed and partial failed states respectively. Computed results have been highlighted by the 

means of tables and graphs. 
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I. Introduction 
 

The paramount of computer network is a needed requirement for improving the quality, efficiency 

and performance of telecommunications, manufacturing, industries, and hospital equipment. 

Good computer network system depends on the availability and reliability of the subsystems or 

units. Clients are connected in some predefined protocol called topologies, accordance of need 

passing information state topology configuration, where clients are connected to the main server. 

Among the different types of topology network is tree topology, where one central hub and 

multiple secondary hubs are used, failed of this central hub amount to complete failure of the 

system, but the subsystems remain in operational degraded state. 

 

To improve system reliability and availability, implementation of redundant components are 

required, where some units are working while some remain reserves for immediate action, such 

operational system style is called k-out-of-n: G/F scheme. In this approach k units must work from 

the domain n of the system to operate, failure of more than k units results to complete failure of the 

system. Among many researched from different scholars in computer network topology and 

reliability theory model that includes, Zhang [1] analyzed on computer network reliability analysis 

based on intelligent cloud computing method. Saulius and Genadijus [2] investigated reliability of 

multi-server computer networks. Pradeep and Yogesh [3] studied software reliability growth 

model for three-tier client server system. Xin et al. [4] focused on reliability analysis of network 

service model. Potapov et al [5] studied reliability in the model of an information system with 

client server architecture. Kovalev et al [6] analyzed reliability analysis of distributed computer 

systems with client server. Fong and Hui [7] studied application of middleware in the three tier 

client/server database design methodology. Sumit and Anshul [8] studied on an introduction to 

computer networking. Yunhuai et al [9] investigated opportunity based topology control in 

wireless sensor network. Geon Yoon, Dae Hyun et al [10] focused on ring topology-based 

redundancy ethernet for industrial network. Nurul et al [11] studied the performance study of star 

topology in small internetworks. Ruhimat et al [12] analyzed optimal computer network based on 

graph topology model. Kudeep et al [13] studied tree topology network environment analysis 

under reliability approach, nonlinear. Nupur   et al [14] focused on an approach to investigating 

reliability Indices for tree topology. System performance depends on system configuration and 

repair dynamics. Researchers have adopted different types of failure and repair, a lot of them have 

considered general repair while many adopted copula [15] which is now considered as the wider 

and better performance results compared to the general repair to cite few are Abubakar and Singh 

[16] have examined assessment and performance of industrial system using Gumbel Hougaard 

copula approach. Kabiru et al. [17] have focused on reliabity assessment of complex system with 

two subsystems using joint distribution. Ibrahim et al. [18] have analyzed the performance analysis 

of multi-computer system with three subsystems in series. Muhammad et al [19] studied cost 

benefit analysis of tree different series parallel dynamo configurations . Pratap et al [20] have 

examined on the assessment of complex system with two subsystems and multi types failure and 

repair. Yusuf et al [21] studied performance analysis of multi computer system consisting of active 

parallel homogeneous. 

 

Copula distributions that couples  different types distributions, since it deals with more than one 

repair of the repairable systems, Gumbel Hougaard family distribution is one among different  

types of copula family which consider more than one repairs. The authors in the present research 

study have consider a tree topology system with multi-servers, the system has four subsystems 

named as A, B, C and D, subsystems A and B stands as servers and are working 1-out-of-2: G/F 

policy, respectively, while C and D subsystems both are working in 2-out-of-3: G/F scheme, A and 

B attached to subsystems C and D respectively. The system work in both series and parallel 

configuration, Gumbel Hougaard family copula distribution employed for computation and 
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illustration.  Lastly, [ S1 , S2 , S3, S4 ,S5, S6, S7, S8 , S9  ,S10, S11 , S12 ] represents the states of operation in 

degraded/partial failure while [ S13 , S14, S15, and S16 ] are completely failed states and S0 is at perfect 

operational state. The degraded points have repaired by general repair and completely failed states 

have repaired under Gumbel Hougaard family copula. We invited supplementary variables and 

Laplace transformation to analyze the system. Measures in reliability among availability, 

reliability, and MTTF and cost analysis are all treated by the means of tables and graphs. 

 

II. State Description, Assumption and Notations 
 

Table 1: State Description 

State State Description 

S0 
The state S0 represents a perfect state in which both the subsystems are in good working 

condition. 

S1 
 S1,  represents a degraded state with minor partial failure in the subsystem A, due to the 

failure of the first server of the subsystem A. 

S2 
 State S2 represents a degraded state with minor partial failure in the subsystem C, due to 

the failure of the first unit of the subsystem C. 

S3 
 state S3 represents a degraded state with minor partial failure in the subsystem D, due to 

the failure of the first unit of the subsystem D. 

S4 
 S4,  represents a degraded state with minor partial failure in the subsystem B, due to the 

failure of the first server of the subsystem B. 

S5 
 S5,  represents a degraded state with minor failure, due to the failure of the one unit  of  

subsystems C and D. 

S6 
 S6,  represents a degraded state with minor failure, due to the failure of the one unit  of  

subsystems D and server of subsystem A. 

S7 
This state accounts for a degraded  state with major  partial failure, due to the failure of 

first servers of  subsystem A and B. 

S8 
 S8,  represents a degraded state with minor failure, due to the failure of the one unit  of  

subsystem C and a server of subsystem B. 

S9 
This state accounts for a degraded state with major partial failure, due to the failure of 

one units of the subsystem C and D together with a server in subsystem B. 

S10 
S10, reveals a degraded state with major partial failure, due to the failure of one unit of 

the subsystem D and  a server in subsystems A and B. 

S11 
S11, reveals a degraded state with major partial failure, due to the failure of one unit of 

the subsystem C and  a server in subsystems A and B. 

S12 
S12, reveals a degraded state with major partial failure, due to the failure of one unit of 

the subsystems C and D together with  a server in subsystems A and B. 

S13 
The state S13 represent a complete failed state, due to failure of subsystems C and D the 

system is under repair using copula. 

S14 
The state S14 represent a complete failed state, due to failure of servers in subsystems A 

and B the system is under repair using copula. 

S15 
The state S15 represent a complete failed state, due to failure of  subsystems A and D the 

system is under repair using copula. 

S16 
The state S16 represent a complete failed state, due to failure of  subsystems B and C the 

system is under repair using copula distribution. 

 

The state description reveals that, S0 is a state where the system is in a perfect state where both 

subsystems are in good working condition. S1, S2, S3, S4, S5, S6 and S8 are the states where the system 

is in minor partial failure but operational mode. The states S7, S9,S11, and S12 are in major partial 

failure in which the system is working under the critical stage, and further failure in any unit in the 

subsystems might be a cause of complete failure. The statesS13, S14, S15, and S16 are the complete 

failed state of the model. The minor and major failed states will be respire by employing general 

repair, but the complete failed state will be restored using Gumbel- Hougaard family copula 

distribution. 
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Assumption 
 

    The following assumptions are taken throughout the discussion of the model: 

(i) Initially,S0 is the state where all units in the systems are in its perfect good state.  

(ii) The subsystems A and B are working as servers, with two units each, failure of one unit 

tends  the system to a partial failure (degraded) state and its follows general distribution 

for repair and if more than one fails then its leads to complete failed state of the system 

and it restore using copula.  

(iii) Both the subsystems C and D has three units and  at least two units must work, if first or 

second  units failed the system function under degraded state and it repaired by general 

distribution otherwise complete failed state  of the entire system. 

(iv) It is assumed that a repaired system works like a new and no damage appears during 

repair. 

(v) As soon as the failed unit gets repaired, it performs its task normally. 

(vi) All failure rates are constants and follow a negative exponential distribution   

 

Table 2:    Notations 
t : Time variable on time scale. 
s : A variable for Laplace transform for all expressions. 

A / B/C/D: Failure rates of units of subsystems A, B, C and D 

𝜑(𝑥) Repair rates for all unit of subsystems i.e.  A, B, C and D 

0(x), 0(y) : Repair rates for complete failed states. 

𝑃𝑖(𝑥, 𝑡): The probability that the system is in Si state at instant’s’ for i =0 to 12. 

�̅�𝑖(𝑠): Laplace transformation of state transition probability P (t). 

𝐸𝑝(𝑡) Expected profit during the time interval [0, t). 

K1, K2: Revenue and service cost per unit time in the interval [0, t) respectively. 

𝑆𝜑(𝑥) 
Standard  repair distribution function               

 𝑆𝜑(𝑥) = 𝜑(𝑥)𝑒− ∫ 𝜑(𝑥)
∞

0  

𝐿[𝑆𝜑(𝑥)]:   �̅�𝜑(𝑥) = ∫ 𝑒−𝑠𝑥∞

0
𝜑(𝑥)𝑒− ∫ 𝜑(𝑥)

∞

0 𝑑𝑥   is the Laplace transform of  𝑆𝜑(𝑥)
 

𝜇0(𝑥)

= 𝐶𝜃(𝑢1(𝑥), 𝑢2(𝑥)) 

 

 

 

The expression of joint probability (failed state Si to good state S0) according to Gumbel-

Hougaard family copula is given as
1/

1 2( ( ), ( )) exp[ {log ( )} ]C u x u x x x  

 = + , 

where, u1 = (x), and u2 = ex, where  as a parameter,  1≤ ≤ ∞.  
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Figure 1: Transition Diagram 
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III. Formulation and Solution of Mathematical Model 
 

By the probability of considerations and continuity arguments, the following sets of difference 

differential equations are associated with the mathematical model: 

(
𝜕

𝜕𝑡
+ 𝜆𝐴 + 𝜆𝐵 + 2𝜆𝐶 + 2𝜆𝐷) 𝑃0(𝑡)

= ∫ 𝛷1(𝑥)𝑃1(𝑥, 𝑡)𝑑𝑥 +
∞

0

∫ 𝛷2(𝑥)𝑃2(𝑥, 𝑡)𝑑𝑥 +
∞

0

∫ 𝛷3𝑃3(𝑥, 𝑡)𝑑𝑥 +
∞

0

∫ 𝛷4(𝑥)𝑃4(𝑥, 𝑡)𝑑𝑥
∞

0

+ ∫ 𝜇0𝑃13(𝑦, 𝑡)𝑑𝑦 +
∞

0

∫ 𝜇0𝑃14(𝑦, 𝑡)𝑑𝑦 +
∞

0

∫ 𝜇0𝑃15(𝑦, 𝑡)𝑑𝑦
∞

0

+ ∫ 𝜇0𝑃16(𝑦, 𝑡)𝑑𝑦
∞

0

                                      (1) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 2𝜆𝐴 + 𝜆𝐵 + 𝛷(𝑥)) 𝑃1(𝑥, 𝑡) = 0                                                                   (2) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐵 + 𝜆𝐶 + 𝜆𝐷 + 𝛷(𝑥)) 𝑃2(𝑥, 𝑡) = 0                                                               (3) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐶 + 2𝜆𝐷 + 𝛷(𝑥)) 𝑃3(𝑥, 𝑡) = 0                                                                  (4) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐴 + 2𝜆𝐵 + 𝛷(𝑥)) 𝑃4(𝑥, 𝑡) = 0                                                                  (5) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐵 + 𝛷(𝑥)) 𝑃5(𝑥, 𝑡) = 0                                                                             (6) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐵 + 𝛷(𝑥)) 𝑃6(𝑥, 𝑡) = 0                                                                             (7) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐶 + 𝜆𝐷 + 𝛷(𝑥)) 𝑃7(𝑥, 𝑡) = 0                                                                     (8) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐴 + 𝜆𝐷 + 𝛷(𝑥)) 𝑃8(𝑥, 𝑡) = 0                                                                     (9) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐴 + 𝛷(𝑥)) 𝑃9(𝑥, 𝑡) = 0                                                                            (10) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐶 + 𝛷(𝑥)) 𝑃10(𝑥, 𝑡) = 0                                                                          (11) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜆𝐷 + 𝛷(𝑥)) 𝑃11(𝑥, 𝑡) = 0                                                                          (12) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 2𝜆𝐷 + 𝛷(𝑥)) 𝑃12(𝑥, 𝑡) = 0                                                                        (13)             

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑃13(𝑦, 𝑡) = 0                                                                                  (14) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑃14(𝑦, 𝑡) = 0                                                                                  (15) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑃14(𝑦, 𝑡) = 0                                                                                  (16) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑃15(𝑦, 𝑡) = 0                                                                                  (17) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑃16(𝑦, 𝑡) = 0                                                                                  (18) 

Boundary conditions 

𝑃1(0, 𝑡) = 𝜆𝐴𝑃0(𝑡)                                                                                                       (19) 

𝑃2(0, 𝑡) = 2𝜆𝐶𝑃0(𝑡)                                                                                                     (20) 

𝑃3(0, 𝑡) = 2𝜆𝐷𝑃0(𝑡)                                                                                                    (21) 

𝑃4(0, 𝑡) = 𝜆𝐵𝑃0(𝑡)                                                                                                       (22) 

𝑃5(0, 𝑡) = 4𝜆𝐶𝜆𝐷𝑃0(𝑡)                                                                                                (23) 

𝑃6(0, 𝑡) = (𝜆𝐴
2 + 𝜆𝐷

2 )𝑃0(𝑡)                                                                                          (24) 

𝑃7(0, 𝑡) = (𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵)𝑃0(𝑡)                                                                                    (25) 

𝑃8(0, 𝑡) = (2𝜆𝐴𝜆𝐶 + 𝜆𝐵
2 )𝑃0(𝑡)                                                                                      (26) 

𝑃9(0, 𝑡) = (𝜆𝐵(2𝜆𝐶𝜆𝐷) + 𝜆𝐴(𝜆𝐵𝜆𝐶 + 𝜆𝐵
2 ))𝑃0(𝑡)                                                          (27) 

𝑃10(0, 𝑡) = (𝜆𝐵(𝜆𝐷
2 + 𝜆𝐴𝜆𝐵𝜆𝐶) + 𝜆𝐷(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵))𝑃0(𝑡)                                          (28) 

𝑃11(0, 𝑡) = (𝜆𝐴(𝜆𝐵
2 + 𝜆𝐵𝜆𝐶) + 𝜆𝐶(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵))𝑃0(𝑡)                                               (29)  

𝑃12(0, 𝑡) = [𝜆𝐴𝜆𝐵(2𝜆𝐶𝜆𝐷) + 𝜆𝐴𝜆𝐷(𝜆𝐵𝜆𝐶 + 𝜆𝐵
2 ) + 𝜆𝐶𝜆𝐵(𝜆𝐷

2 + 𝜆𝐴𝜆𝐵𝜆𝐶) 

               +𝜆𝐶𝜆𝐷(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵) + 𝜆𝐷𝜆𝐴(𝜆𝐵𝜆𝐶 + 𝜆𝐵
2 ) + 𝜆𝐷𝜆𝐶(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵)]𝑃0(𝑡)      (30)                                 
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𝑃13(0, 𝑡) = 2𝜆𝐶
2 𝑃0(𝑡)                                                                                                      (31) 

𝑃14(0, 𝑡) = 𝜆𝐴
2𝑃0(𝑡)                                                                                                        (32) 

𝑃15(0, 𝑡) = 𝜆𝐵
2 𝑃0(𝑡)                                                                                                        (33) 

𝑃16(0, 𝑡) = (4𝜆𝐷
2 + 2𝜆𝐷𝑃12(0, 𝑡))𝑃0(𝑡)                                                                         (34) 

 

Solution of the Model 
 

By taking the Laplace transformation of equations (1) to (34) with the help of initial 

condition𝑃0(0) = 1, one may obtain: 

 
(𝑠 + 𝜆𝐴 + 𝜆𝐵 + 2𝜆𝐶 + 2𝜆𝐷)

= 1

+ ∫ 𝛷1(𝑥)𝑃1(𝑥, 𝑠)𝑑𝑥 +
∞

0

∫ 𝛷2(𝑥)𝑃2(𝑥, 𝑠)𝑑𝑥 +
∞

0

∫ 𝛷3(𝑥)𝑃3(𝑥, 𝑠)𝑑𝑥
∞

0

+ ∫ 𝛷4(𝑥)𝑃4(𝑥, 𝑠)𝑑𝑥 +
∞

0

∫ 𝜇0(𝑦)𝑃12(𝑦, 𝑠)𝑑𝑦 +
∞

0

∫ 𝜇0(𝑦)𝑃14(𝑦, 𝑠)𝑑𝑦
∞

0

+ ∫ 𝜇0(𝑦)𝑃15(𝑦, 𝑠)𝑑𝑦 +
∞

0

∫ 𝜇0(𝑦)𝑃16(𝑦, 𝑠)𝑑𝑦
∞

0

                               (35) 

(𝑠 +
𝜕

𝜕𝑥
+ 2𝜆𝐴 + 𝜆𝐵 + 𝛷1(𝑥)) �̅�1(𝑥, 𝑠) = 0                                                                    (36) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐵 + 2𝜆𝐶 + 𝜆𝐷 + 𝛷2(𝑥)) �̅�2(𝑥, 𝑠) = 0                                                          (37) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐶 + 2𝜆𝐷 + 𝛷3(𝑥)) �̅�3(𝑥, 𝑠) = 0                                                                    (38) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐴 + 2𝜆𝐵 + 𝛷4(𝑥)) �̅�4(𝑥, 𝑠) = 0                                                                     (39) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐵 + 𝛷5(𝑥)) �̅�5(𝑥, 𝑠) = 0                                                                               (40) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐵 + 𝛷6(𝑥)) �̅�6(𝑥, 𝑠) = 0                                                                                (41) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐶 + 𝜆𝐷 + 𝛷7(𝑥)) �̅�7(𝑥, 𝑠) = 0                                                                       (42) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐴 + 𝜆𝐷 + 𝛷8(𝑥)) �̅�8(𝑥, 𝑠) = 0                                                                        (43) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐴 + 𝛷9(𝑥)) �̅�9(𝑥, 𝑠) = 0                                                                                 (44) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐶 + 𝛷10(𝑥)) �̅�10(𝑥, 𝑠) = 0                                                                              (45) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜆𝐷 + 𝛷11(𝑥)) �̅�11(𝑥, 𝑠) = 0                                                                              (46) 

(𝑠 +
𝜕

𝜕𝑥
+ 2𝜆𝐷 + 𝛷12(𝑥)) �̅�12(𝑥, 𝑠) = 0                                                                            (47) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜇0(𝑥)) �̅�13(𝑥, 𝑠) = 0                                                                                         (48) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜇0(𝑦)) �̅�14(𝑦, 𝑠) = 0                                                                                         (49) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜇0(𝑦)) �̅�15(𝑦, 𝑠) = 0                                                                                         (50) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜇0(𝑦)) �̅�16(𝑦, 𝑠) = 0                                                                                          (51) 

The Laplace transformations of the boundary conditions are: 

�̅�1(0, 𝑠) = 𝜆𝐴𝑃0
̅̅ ̅(𝑠)                                                                                                              (52) 

�̅�2(0, 𝑠) = 2𝜆𝐶𝑃0
̅̅ ̅(𝑠)                                                                                                            (53) 

�̅�3(0, 𝑠) = 2𝜆𝐷𝑃0
̅̅ ̅(𝑠)                                                                                                            (54) 

�̅�4(0, 𝑠) = 𝜆𝐵𝑃0
̅̅ ̅(𝑠)                                                                                                              (55) 

�̅�5(0, 𝑠) = 4𝜆𝐶𝜆𝐷𝑃0
̅̅ ̅(𝑠)                                                                                                         (56) 

�̅�6(0, 𝑠) = (𝜆𝐴
2 + 𝜆𝐷

2  )�̅�0(𝑠)                                                                                                              (57) 

�̅�7(0, 𝑠) =   (𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵) �̅�0(𝑠)                                                                                       (58) 

�̅�8(0, 𝑠) = (𝜆𝐵
2 + 2𝜆𝐵𝜆 𝐶)�̅�0(𝑠)                                                                                                  (59) 

�̅�9(0, 𝑠) = (𝜆𝐵(2𝜆𝐶𝜆𝐷) + 𝜆𝐴(𝜆𝐵𝜆𝐶 + 𝜆𝐵
2 ))�̅�0(𝑠)                                                                (60) 

�̅�10(0, 𝑠) = (𝜆𝐵(𝜆𝐷
2 + 𝜆𝐴𝜆𝐵𝜆𝐶) + 𝜆𝐷(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵))�̅�0(𝑠)                                               (61) 

�̅�11(0, 𝑠) = (𝜆𝐴(𝜆𝐵
2 + 𝜆𝐵𝜆𝐶) + 𝜆𝐶(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵)) �̅�0(𝑠)                                                   (62) 
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�̅�12(0, 𝑠) = [𝜆𝐴𝜆𝐵(2𝜆𝐶𝜆𝐷) + 𝜆𝐴𝜆𝐷(𝜆𝐵𝜆𝐶 + 𝜆𝐵
2 ) + 𝜆𝐶𝜆𝐵(𝜆𝐷

2 + 𝜆𝐴𝜆𝐵𝜆𝐶) + 𝜆𝐶𝜆𝐷(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵) +

𝜆𝐷𝜆𝐴(𝜆𝐵𝜆𝐶 + 𝜆𝐵
2 ) + 𝜆𝐷𝜆𝐶(𝜆𝐴𝜆𝐶 + 𝜆𝐴𝜆𝐵)]�̅�0(𝑠)                                                               (63) 

�̅�13(0, 𝑠) = 2𝜆𝐶
2 (𝑠)�̅�0(𝑠)                                                                                                    (64) 

�̅�14(0, 𝑠) = 𝜆𝐴
2(𝑠)�̅�0(𝑠)                                                                                                      (65) 

�̅�15(0, 𝑠) = 𝜆𝐵
2 (𝑠)�̅�0(𝑠)                                                                                                      (66) 

�̅�16(0, 𝑠) = (2𝜆𝐷
2 + 2𝜆𝐷𝑃12(0, 𝑡))�̅�0(𝑠)                                                                            (67) 

Now solving equations (35) to (51) with the help of equations (52) to (67), yields, 

�̅�0(𝑠) =
1

𝑀(𝑠)
                                                                                                                         (68) 

�̅�1(𝑠) =
1

𝑀(𝑠)
{

𝜆𝐴

𝑆+2𝜆𝐴+𝜆𝐵+𝛷(𝑥)
}                   (69) 

�̅�2(𝑠) =
1

𝑀(𝑠)
{

2𝜆𝐶

𝑆+𝜆𝐵+2𝜆𝐶+𝜆𝐷+𝛷(𝑥)
}                 (70) 

�̅�3(𝑠) =
1

𝑀(𝑠)
{

2𝜆𝐷

𝑆+2𝜆𝐷+𝜆𝐶+𝛷(𝑥)
}                  (71) 

�̅�4(𝑠) =
1

𝑀(𝑠)
{

𝜆𝐵

𝑆+2𝜆𝐵+𝜆𝐴+𝛷(𝑥)
}                   

(72) 

�̅�5(𝑠) =
1

𝑀(𝑠)
{

4𝜆𝐶𝜆𝐷

𝑆+𝜆𝐵+𝛷(𝑥)
}                   (73) 

�̅�6(𝑠) =
1

𝑀(𝑠)
{

(𝜆𝐴
2 +𝜆𝐷

2 )

𝑆+𝜆𝐵+𝛷(𝑥)
}                   (74) 

�̅�7(𝑠) =
1

𝑀(𝑠)
{

(𝜆𝐴𝜆𝐶+𝜆𝐴𝜆𝐵)

𝑆+𝜆𝐴+𝛷(𝑥)
}                  (75) 

�̅�8(𝑠) =
1

𝑀(𝑠)
{

(2𝜆𝐵
2 +𝜆𝐵𝜆 𝐶)

𝑆+𝜆𝐷+𝛷(𝑥)
}                  (76) 

�̅�9(𝑠) =
1

𝑀(𝑠)
{

(𝜆𝐵(2𝜆𝐶𝜆𝐷)+𝜆𝐷(𝜆𝐵𝜆𝐶+𝜆𝐵
2 ))

𝑆+𝜆𝐴+𝛷(𝑥)
}                (77) 

�̅�10(𝑠) =
1

𝑀(𝑠)
{

(𝜆𝐵(𝜆𝐷
2 +𝜆𝐴𝜆𝐵𝜆𝐶)+𝜆𝐷(𝜆𝐴𝜆𝐶+𝜆𝐴𝜆𝐵))

𝑆+𝜆𝐶+𝛷(𝑥)
}               (78) 

�̅�11(𝑠) =
1

𝑀(𝑠)
{

(𝜆𝐴(𝜆𝐵
2 +𝜆𝐵𝜆𝐶)+𝜆𝐶(𝜆𝐴𝜆𝐶+𝜆𝐴𝜆𝐵)) 

𝑆+𝜆𝐷+𝛷(𝑥)
}                             (79) 

�̅�12(𝑠)
1

𝑀(𝑠)
{

[𝜆𝐴𝜆𝐵(2𝜆𝐶𝜆𝐷)+𝜆𝐴𝜆𝐷(𝜆𝐵𝜆𝐶+𝜆𝐵
2 )+𝜆𝐶𝜆𝐵(𝜆𝐷

2 +𝜆𝐴𝜆𝐵𝜆𝐶)

+𝜆𝐶𝜆𝐷(𝜆𝐴𝜆𝐶+𝜆𝐴𝜆𝐵)+𝜆𝐷𝜆𝐴(𝜆𝐵𝜆𝐶+𝜆𝐵
2 )+𝜆𝐷𝜆𝐶(𝜆𝐴𝜆𝐶+𝜆𝐴𝜆𝐵)]

𝑆+2𝜆𝐷+𝛷(𝑥)
}                        (80) 

The Laplace transformations of the state transition probabilities that the system is in operational 

mode. i.e. perfect and partially failed state (𝑆0, 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7, 𝑆8, 𝑆9, 𝑆10, 𝑆11, 𝑆12) at any time 

are as follows: 

 

�̅�𝑢𝑝(𝑠) = �̅�0(𝑠) + �̅�1(𝑠) + �̅�2(𝑠) + �̅�3(𝑠) + �̅�4(𝑠)+�̅�5(𝑠) + �̅�6(𝑠) + �̅�7(𝑠) + �̅�8(𝑠) + �̅�9(𝑠) + �̅�10(𝑠) +

�̅�11(𝑠) + �̅�12(𝑠)                                                                                                      (81) 

�̅�𝑑𝑜𝑤𝑛(𝑠) = 1 − �̅�𝑢𝑝(𝑠)                                                                                                         (82) 

Where,                                                                                          

( ) ( )
( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )( ) ( )

( )

22 2 2
12 00 0 0

0 0 0 0

2 2

2 2 2 2
2 2

2 0,2 2 2

CA D B

A B B D D C A B

A B C D

D DC B A

s x s x s x s x
M s s

P t yy y y

s y s y s y s y

  

           
   

       

   

  
+ + +  + + + + + + + + + + + +

  
= + + + + −  +  + + + +
  + + + +                   

(83) 

The �̅�𝑢𝑝(𝑠) and �̅�𝑑𝑎𝑤𝑛(𝑠) are the system  Laplace transform of the state probabilities in operative 
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and failed state. Then, 

( ) ( ) ( ) ( )
12

0

  1dawn upup i

i

P s P s and P s P s
=

= = −

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )

( )

222 2

2 2 2

2 2
1

2 2 2 2

24

2

CA D B

A B B D D C A B

B C D D B C BC D A C A B B A CA D

B B A D D

up

B D A D A C A B A B B C C A C A

C

s x s x s x s x

s x s x s x s x s x
P t

s x

  

           

               

         

               

 

+ + + +
+ + + + + + + + + + + +

+ ++ +
+ + + + +

+ + + + + + + + + +
=

+ + + + + +
+

+ +

( )

( )

( ) ( ) ( ) ( ) ( )
( )

2 2 2 22 2

B

D

A B C D A D B C B C B D A C D A C A B A D B C B

C

s x

s x



 

                       

 

 
 
 
 
 
 
 
 
 

+ + 
 

+ + + + + + + +
 
 + +        (84) 

 

IV. Analytical Study of the Model  
 

I. Availability Analysis 

By Setting    1/
0

1/

1/exp[ {log ( )} ]

exp[ {log ( )} ]
( ) ( )

exp[ {log ( )} ]x x

x x
S s S s

s x x
  

  

   



+

+
= =

+ +
, ( ) ,

S

S

S

S s
s






=

+
 

The expression of availability is obtained by taking the inverse Laplace transform of equation (84) 

together with the values of failure rates, λA=0.01, λB=0.02, λC=0.03, λD=0.04, at 
( ) 1x x = = =

 

and 
( ) ( )0 0 2.781x y = =

 

( )

1.030000000 1.080000000 2.721478824

1.210427182 1.111354496 1.076073851

0.000007268385466 0.000001279136863 0.001158951568

0.009672831318 0.0008133658410 0.0001409557370

0.0001619227

t t t

t t t

up

e e e

e e e
P t

− − −

− − −

− − +

− + +
=

− 1.052980075 0.005985571315 1.020000000

1.010000000 1.040000000

...(85)
838 1.012125757 0.001673078923

0.0004724824273 0.00034152440368

t t t

t t

e e e

e

− − −

− −

 
 
 
 

+ − 
 − − 

 

 

Through variation of time t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.., units, we get different values of Pup(t) with the 

help of expression (85) as shown in Table 1 and figure 2. 

 

Table 3:  Variation of Availability with respect to time (t) 

 

 
 

Figure 2: Variation of Availability with respect to time (t) 

Time(t) Availability

0 1

1 0.999

2 0.998

3 0.993

4 0.988

5 0.982

6 0.976

7 0.97

8 0.964

9 0.95

0.999
0.993

0.976

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10

Availability
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II. Reliability Analysis 

 

Taking all repair rates to zero with the same value of  failure  and repair rates in equation (85), i.e 

( )x and ( )0 x  and λA=0.01, λB=0.02, λC=0.03, λD=0.04, and then taking inverse Laplace 

transform, we obtained the expression of reliability  as: 

( )

0.05000000000 0.1200000000 0.1500000000

0.01000000000 0.03000000000 0.08000000000

0.0400

0.2000000000 1.500000000 0.8000000000

0.01133333333 0.000287428571 0.0001421800000

0.0203500000

t t t

t t t

e e e

e e e
R t

e

− − −

− − −

−

− +

+ + +
=

+ 0000000 0.1000000000 0.02000000000

0.07000000000

...(86)
2.951145391 0.05007500000

0.06666666667

t t t

t

e e

e

− −

−

 
 
 
 

+ + 
 + 

 

For different values of time t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.., units of time, we get different values of 

Reliability as shown in Table 2. and Figure. 3. 

 

Table 4: Variation of reliability with respect to time (t) 

 

Time(t) Reliability

0 1

1 0.984

2 0.96

3 0.932

4 0.899

5 0.864

6 0.827

7 0.789

8 0.751

9 0.712

0.984 

0.932 

0.864 

0.751 

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Reliability  

 
 

Figure 3: Variation of reliability with respect to time (t) 

 
III. Mean Time To Failure (MTTF) Analysis: 

 

We obtained the expression for MTTF by taking all repairs zero in equation (85), and set the limit 

of s tends to zero: 

( )

( ) ( )222 2

0

2 2

2 2 2 2

24

1
. . . . lim ( )

2 2

2 2 2 22 2

CA D B

A B B D D C A B

B C D D B C BC D A C A B B A CA D

B B A D D

up
s

CA D B

A B B D D C A BA B C D

M T T F P s

s s ss

  

       

               

    

  

          

→

+ + +
+ + + +

+ ++ +
+ + + + +

= =
  

+ + +  + + + + + + ++ + + + −  
  
  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2 2

2

2 2

B D A D A C A B A B B C C A C A B

C D

A B C D A D B C B C B D A C D A C A B A D B C B

C

                

 

                       



 
 
 
 
 
  
 

+ + + + + + 
+

 
 
 + + + + + + + +
 
  

         

 

Setting λA=0.01, λB=0.02, λC=0.03, λD= 0.04,  and varying λA, λB, λC and λD respectively  as, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,  in (85), we get the variation of M.T.T.F. with respect to failure rates as 

shown in  Table.3 and corresponding Figure.4. 
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Table 5: Variation of MTTF with respect to failure rate 

 

MTTF MTTF MTTF MTTF

λ1 λ2 λ3 λ4

0.1 38.26 48.74 59.2 104.82

0.2 33.02 34.45 48.26 122.02

0.3 30.94 29.17 43.61 132.97

0.4 29.81 27.18 41.03 141.13

0.5 29.11 26.75 39.38 148.3

0.6 28.63 27.19 38.24 154.82

0.7 28.27 28.16 37.4 160.94

0.8 28.01 29.48 36.75 166.81

0.9 27.79 31.05 36.25 172.49

Failure 

Rate

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Mttf

MTTF λ1 MTTF λ2

MTTF λ3 MTTF λ4

 
 

Figure 4: Variation of MTTF with respect to failure rate 

 

IV. Sensitivity analysis of (MTTF): 

 

The computation of sensitivity  MTTF is studied through the partial differentiation of MTTF with 

respect to the failure rates of  the system, by introducing  the set of  parametric  variation of the 

failure rates  λA=0.01,  λB=0.02, λC=0.03,  and  λD=0.04 from the  resulting expression, we calculated 

the MTTF sensitivity as shown in Table 4 and the corresponding  value in Figure.5 

 

 

Table 6: Sensitivity of MTTF as a function of failure rates 

 

0.1 -225 -242.6 -332.6 -599.7

0.2 -115.9 -82.62 -157.7 -384.8

0.3 -78.69 -32.95 -100.8 -278.4

0.4 -59.68 -11.24 -73.32 -213.8

0.5 -48.11 0.177 -57.36 -170.4

0.6 -40.31 6.914 -46.99 -139.2

0.7 -34.69 11.222 -39.74 -115.7

0.8 -30.45 14.144 -34.41 -97.44

0.9 -27.14 16.219 -30.31 -82.78
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( )Mttf
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Figure 5: Sensitivity of MTTF as a function of failure rates   

 

V. Cost Analysis 

 

The expected profit over the time interval [0, t), can be calculate by the folloewing relation

1 2

0

( ) ( )
t

p up
E t K P t dt K t= − . If the service facility of the system is always available, where k1 is 

revenue generated and k2 service cost per unit time. For the same set of the parameter of failure 

and repair rates in (84), we obtained the expression of cost benefit analysis. 

 

( )

1.030000000 1.080000000 2.721478824

1.210427182 1.111354496 1.076073851t

0.000007056684918e 0.0000001184385984 0.0004258536050

0.007991254213 0.0007318689436 0.0001309907651

0.0001537757

t t t

t t

p

e e

e e
E t

− − −

− − −

− + −

+ + +
=

+ 1.052980075t 0.005985571315 1.020000000t

1.010000000t 1.040000000t

(86)
339 169.094266083 0.001640273454

0.0004678043835 0.0003283884969

te e e

e e

− − −

− −

 
 
 
 

− + 
 + + 
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By fixing the revenue K1= 1 and taking the values K2= 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 respectively 

together with the variation of t =0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Units of time, we obtained the results for 

expected profit as shown in Table 5 and Figure.6 

 

Table 7:  Expected Profit in [0,t) t=0,1 ,2, 3,  4…9 

Time 

(t)

EP(t): 

K2=0.6

EP(t): 

K2=0.5

EP(t): 

K2=0.4

EP(t): 

K2=0.3

EP(t): 

K2=0.2

EP(t): 

K2=0.1

0 0 0 0 0 0 0

1 0.401 0.501 0.601 0.701 0.801 0.901

2 0.802 1.002 1.202 1.402 1.602 1.802

3 1.198 1.498 1.798 2.098 2.398 2.698

4 1.589 1.989 2.389 2.789 3.189 3.589

5 1.974 2.474 2.974 3.474 3.974 4.474

6 2.353 2.953 3.553 4.153 4.753 5.353

7 2.727 3.427 4.127 4.827 5.527 6.227

8 3.095 3.895 4.695 5.495 6.295 7.095

9 3.457 4.357 5.257 6.157 7.057 7.957

0

2

4

6

8

10

0 2 4 6 8 10

Expected profit

EP(t): K2=0.6 EP(t): K2=0.5 EP(t): K2=0.4

EP(t): K2=0.3 EP(t): K2=0.2 EP(t): K2=0.1

 
 

Figure 6: Expected Profit in [0,t) t=0,1 ,2, 3,  4…9 

 

V. Discussion 
 

The performance of the system under the assessment of reliability measures for different values of 

failure and repair rates. Table.1 and figure 2 shows the information of availability of the complex 

tree topology with respect to the variation in time when the failure rates are fixed at different values 

particularly, λA=0.01, λB=0.02, λC=0.03 and λD=0.04. The availability of the system decreases slowly, as 

the probability of failure increases, after sufficient long interval of time the system availability will 

tend to zero. However, one can simply predict the future behavior of the complex system at any 

stage for any given set of parametric values. 

 

Table.2 and figure.3 analyzed the reliability of the system when the repair rate  setup to zero. The 

figure shown clearly that the reliability of the system is decreasing faster compare to availability, 

which evidently proved that when the repairs provided the performance of the system is quite better.  

Table.3 and figure.4 assess the information of mean time to failure of the system (MTTF) with 

respect to variation of failure rates. The value change of MTTF is directly propotional to the system 
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reliability. The computations MTTF for different values of failure rates, λA, λB, λC, and λD from the 

figure the variation in MTTF corresponding to failure rates λD is high compared to other failure 

which indicates that the system will not be affected with higher variations in values λD. The MTTF 

due to λA, λB, and λC will influence the operation of the system. 

 

Table.4 and figure.5 shows the variation of sensitivity MTTF with respect to the values of 

parameters. which obtained from partial derivative of MTTF with respect to the corresponding 

failure rate, the variation of sensitivity MTTF corresponding to failure rates λD is lower compared 

to other failure rates. 

Table.5 and figure.6 provide the information on how the profit has been generated, by fixing 

revenue cost per unit time K1= 1, and varies the service costs K2 = 0.6, 05. 0.4, 0.3, 0.2 and 0.1, if we 

examine critically from Figure.6 we can reveals that the expected profit increases for low service 

cost. Which finally shows the Networking system of tree topology system is reliable. 
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