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Abstract 

 
Digitalization is the process of implementing digital transmission systems at the level of primary 

networks, switching and control facilities that ensure the transmission and distribution of 

information flows in digital form at the level of secondary networks, which makes production more 

flexible, competitive, and profitable. First point considered here is an introduction of mathematical 

equivalent to the concept of a pixel, used when replacing the original information with its step-by-

step approximation and estimate of its accuracy. Second point is the study of special knots: extreme 

knots or saddle knots on the grid and construction of level lines around them: ellipses or 

hyperbolas. This construction is connected with some meteorological problems and is based on the 

concept of positive definite quadratic form. Third point is an estimation of the average number of 

Poisson flow points in several cells of a square lattice in different problems of earth sciences. It is 

solved by introduction of relative error of the estimate. 

 

Keywords: pixel, step–by–step approximation, positive definite quadratic form, relative 

error. 

  

 

1. Introduction 
 

Currently, the program of digitalization of information is being widely developed. Digitalization in 

a broad sense is the process of implementing digital transmission systems at the level of primary 

networks, switching and control facilities that ensure the transmission and distribution of 

information flows in digital form at the level of secondary networks, which makes production more 

flexible, competitive, and therefore more profitable. This trend allows us to take a fresh look at the 

already established methods in the processing of information and requires an assessment the 

accuracy of information conversion in various aspects and ensure the further development of 

information technology. 

Such a statement of the question leads, among other things, to estimates of accuracy when 

replacing the original information with its digital expression. In turn, the accuracy estimates 

significantly affect the correctness of the actions of technical systems when receiving external 

information, and therefore the reliability of their operation. This requires the need to build 

mathematical equivalents to the concepts used in the process of digitalization. In particular, there is 

a need to take a fresh look at the concept of a pixel used when replacing the original information 

with its step-by-step approximation. As a result, it becomes necessary to study the transition from 

the original signals to the signals specified on a certain lattice. In turn, the reference to the signals 

given on the grid raises new questions for those tasks where such information is used. 

 

40



 
Gurami Tsitsiashvili, Yuriy Kharchenko 
DIGITALIZATION OF INFORMATION SPECIFIED ON THE GRID 

RT&A, No 2 (62) 
Volume 16, June 2021  

 

 

Here, this problem is explored for some meteorology questions. It turns out that in these 

problems of meteorology, an important aspect of the analysis of such information is the study of 

singular points on the grid. A detailed study of special points (extreme points or saddle points) 

allows us to set and to solve the problems of forecasting meteorological systems in a new way. 

These questions are the subject of research in this paper. Special attention is paid here to the 

accuracy of reproducing information from its discrete images and to the possibility of compressing 

information for its further use. For this purpose, it is possible to use such classical mathematical 

constructions as multidimensional Taylor series, positive definite quadratic forms, and etc. 

Last problem is in estimating the mean number of Poisson flow points in some domain 

consisting of few cells in square grid. Its solution is based on a concept of relative error and on 

properties of Poisson distribution. It is connected with earth sciences problems, for example, with 

calculation of a number of rare animals.  

 

2. The mathematical equivalent of the term "pixel" 
 

In computer science, the term "pixel" (Engl. "pixel" is short for pictures element) [1] is the smallest 

logical two-dimensional element of a digital image in raster graphics, or a physical element of the 

matrix of displays that form the image. It is an indivisible object of rectangular (or round) shape, 

characterized by a certain color. 

Signals that transmit sound or time-varying images are currently being digitized to make it 

convenient to transmit them from one point to another. At the same time, to determine and evaluate 

the quality of the transmitted information, it is desirable to construct a mathematical equivalent of 

the concept of "pixel". 

For this purpose, it is natural to use a step-by-step approximation of the functions 

representing the transmitted signals. The quality of such an approximation increases with a decrease 

in the sampling step (in time and/or coordinate). Given the significance of this dependence of the 

approximation quality on the sampling step, it is natural to express this dependence mathematically. 

Let’s start solving the problem by analysing the stepwise approximation of the function 𝑓(𝑡), 

given on the half–interval [0,1). Let’s assume that this function is continuously differentiable and for 

some positive 𝐹 the equality holds  

 

 sup
0≤𝑡≤1

|𝑓′(𝑡)| = 𝐹. (1) 

 

We divide the semi-interval [0,1) into 𝑛 parts by points 𝑖/𝑛, 𝑖 = 0,1, … , 𝑛 − 1. On the half–interval, 

𝑆𝑖 = [
𝑖

𝑛
,
𝑖+1

𝑛
) we approximate the function 𝑓(𝑡) by constant 𝑓 (

𝑖

𝑛
+

1

2𝑛
), by constructing a stepwise 

approximation in this way 𝑓 ̂(𝑡). Using the decomposition of the function 𝑓(𝑡) into a Taylor series 

with a Lagrange residual term in the neighbourhood of the radius 
1

2𝑛
 of the point 

𝑖

𝑛
+

1

2𝑛
, 𝑖 =

0,1, . . . , 𝑛 − 1, we obtain the following inequality  

 

 sup
0≤𝑡<1

|𝑓(𝑡) − 𝑓 ̂(𝑡)| ≤
𝐹

2𝑛
. (2) 

 

Let us now consider the continuously differentiable function of the 𝑚–dimensional 

argument 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚), (𝑡1, . . . , 𝑡𝑚) ∈ [0,1)𝑚. Suppose that there are such positive numbers 

𝐹1, 𝐹2, . . . , 𝐹𝑚, that the relations are satisfied  

 

 sup
0≤𝑡1,𝑡2,...,𝑡𝑚<1

|
∂𝑓(𝑡1,𝑡2,…,𝑡𝑚)

∂𝑡𝑘
| = 𝐹𝑘, 𝑘 = 1,2, . . . , 𝑚. (3) 
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We divide the direct product [0,1)𝑚 of half–intervals into direct products of half–intervals of the 

form 𝑆𝑖1 × 𝑆𝑖2 ×. . .× 𝑆𝑖𝑚 , 𝑖1, 𝑖2, . . . , 𝑖𝑚 = 0,1. . . , 𝑛 − 1. Let’s construct a stepwise approximation of 

𝑓 ̂(𝑡1, 𝑡2, . . . , 𝑡𝑚) functions 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚), assuming it to be equal  

 

 𝑓 (
𝑖1

𝑛
+

1

2𝑛
,
𝑖2

𝑛
+

1

2𝑛
, . . . ,

𝑖𝑚

𝑛
+

1

2𝑛
) 

 

in a direct product 𝑆𝑖1 × 𝑆𝑖2 ×. . .× 𝑆𝑖𝑚 , 𝑖1, 𝑖2, . . . , 𝑖𝑚 = 0,1, . . . , 𝑛 − 1. 

Using the decomposition of the function 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚) in Taylor 𝑚–dimensional series (see, 

for example, [2]) with a Lagrange-shaped residual term in the set 𝑆𝑖1
× 𝑆𝑖2

×. . .× 𝑆𝑖𝑚
, 𝑖1, 𝑖2, . . . , 𝑖𝑚 =

0,1. . . , 𝑛 − 1 we get the inequality  

 

 sup
0≤𝑡1,𝑡2,...,𝑡𝑚<1

|𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚) − 𝑓 ̂(𝑡1, 𝑡2, . . . , 𝑡𝑚)| ≤
1

2𝑛
∑𝑚

𝑘=1 𝐹𝑘. (4) 

 

Each step in the 𝑓 ̂ approximation of the 𝑓 function can be called a pixel. Moreover, with a 

decrease in the linear pixel size 
1

𝑛
, the accuracy of such an approximation increases in accordance 

with the formula (4). Note that the accuracy estimates of the step approximation depending on the 

linear pixel dimensions are expressed in a uniform metric. 

 

3. Geometric interpretation of meteorological information in square grid nodes 
 

The most important element of the structure of the pressure field at an altitude of 5 km above the 

Far East is a stable and extensive hollow. Its intensity and geographical localization largely 

determine the nature of atmospheric circulation and weather [3], [4]. When studying this hollow, the 

nodes of the square grid on the map are identified, the node in which the pressure field takes the 

minimum value and the pressure level isolines are built. 

However, it is quite difficult to algorithmize and analytically investigate such a construction. 

Therefore, in this paper, an attempt is made to investigate the function given at the lattice nodes in 

a small neighbourhood of the minimum point, assuming that the step of the square lattice is 

sufficiently small. Assuming that the smooth function given at the lattice nodes reaches a minimum 

at the point of the lattice node, one can calculate the coefficients of the Taylor series. 

The first-order coefficients are zero, and the second-order coefficients define a positive-

definite quadratic shape, whose level lines are ellipses. Calculations show that the orientation of the 

major and minor axes of such an ellipse and their ratio largely determine the nature of atmospheric 

circulation. But since the second coefficients of the Taylor series are determined by the values of the 

function at the nodes of the square lattice, it is necessary to investigate the algorithm for determining 

them and its accuracy depending on the length of the lattice step. 

Let the thrice continuously differentiable function 𝑓(𝑥, 𝑦) be defined on the rectangle 𝐷 =

{0 ≤ 𝑥 ≤ 𝑁ℎ, 0 ≤ 𝑦 ≤ 𝑀ℎ} and measured in points (𝑖ℎ, 𝑗ℎ), 𝑖 = 0,…𝑁, 𝑗 = 0, … ,𝑀. Everywhere else, 

we assume that the value of the lattice step ℎ is sufficiently small. It is known that at the point (𝑘ℎ, 𝑙ℎ), 

the function 𝑓 reaches the global minimum. Moreover, the point (𝑘ℎ, 𝑙ℎ) is internal in the discrete 

set {(𝑖ℎ, 𝑗ℎ), 𝑖 = 0,…𝑁, 𝑗 = 0,… ,𝑀}, 0 < 𝑘 < 𝑁, 0 < 𝑙 < 𝑀. Imagine the decomposition of the 

function 𝑓(𝑥, 𝑦) into a Taylor series with a Lagrange residual term under the condition |𝑥 − 𝑘ℎ| ≤ ℎ,

|𝑦 − 𝑙ℎ| ≤ ℎ:  

 

 𝑓(𝑥, 𝑦) = 𝑓(𝑘ℎ, 𝑙ℎ) +
1

2
[𝐴(𝑥 − 𝑘ℎ)2 + 𝐵(𝑦 − 𝑙ℎ)2 + 2𝐶(𝑥 − 𝑘ℎ)(𝑦 − 𝑙ℎ)] + 𝑂(ℎ3), 

 
 𝐴 = 𝑓𝑥,𝑥(𝑘ℎ, 𝑙ℎ), 𝐵 = 𝑓𝑦,𝑦(𝑘ℎ, 𝑙ℎ), 𝐶 = 𝑓𝑥,𝑦(𝑘ℎ, 𝑙ℎ). 
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Since the point (𝑘ℎ, 𝑙ℎ) is the point of the global minimum of the function 𝑓(𝑥, 𝑦), then the quadratic 

form 𝐴(𝑥 − 𝑘ℎ)2 + 𝐵(𝑦 − 𝑙ℎ)2 + 2𝐶(𝑥 − 𝑘ℎ)(𝑙ℎ) is positive definite and hence the inequalities are 

satisfied 𝐴 + 𝐵 > 0, 𝐴𝐵 > 𝐶2.  

We construct finite-difference estimates of partial derivatives 𝐴, 𝐵, 𝐶:  

 

 𝑎 =
𝑓((𝑘+1)ℎ,𝑙ℎ)−2𝑓(𝑘ℎ,𝑙ℎ)+𝑓((𝑘−1)ℎ,𝑙ℎ))

ℎ2 = 𝐴 + 𝑂(ℎ), 

 

 𝑏 =
𝑓(𝑘ℎ,(𝑙+1)ℎ)−2𝑓(𝑘ℎ,𝑙ℎ)+𝑓(𝑘ℎ,(𝑙−1)ℎ)

ℎ2 = 𝐵 + 𝑂(ℎ), 

 

 𝑐 =
𝑓((𝑘+1)ℎ,(𝑙+1)ℎ)−𝑓((𝑘+1)ℎ,𝑙ℎ)−𝑓(𝑘ℎ,(𝑙+1)ℎ)+𝑓(𝑘ℎ,𝑙ℎ)

ℎ2 = 𝐶 + 𝑂(ℎ). 

 

Then the function 𝑓 may be approximated by the function 𝑓 ̂ with an accuracy of 𝑂(ℎ3) in variables 

𝑋 =
𝑥−𝑘ℎ

ℎ
, 𝑌 =

𝑦−𝑙ℎ

ℎ
:      

 

 𝑓 ̂(𝑥, 𝑦) = 𝑓(𝑘ℎ, 𝑙ℎ) +
1

2
(𝑎𝑋2 + 𝑏𝑌2 + 2𝑐𝑋𝑌), 𝑎 + 𝑏 > 0, 𝑎𝑏 > 𝑐2 

 

and so the quadratic form 𝑎𝑋2 + 𝑏𝑌2 + 2𝑘𝑥𝑦 is also positive definite. 

We reduce this quadratic form to a diagonal form (see, for example, [5]), for which we 

construct its matrix 𝐴 = (
𝑎 𝑐
𝑐 𝑏

) and write out the characteristic equation (𝑎 − 𝜆)(𝑏 − 𝜆) − 𝑐2 = 0. 

The roots of this equation are  

 

 𝜆± =
𝑎+𝑏

2
± √

(𝑎+𝑏)2

4
− 𝑎𝑏 + 𝑐2 > 0, 

 

the eigenvalues of the matrix 𝐴, and its orthonormal eigenvectors 𝑛⃗ ± satisfy the linear equations 

𝐴𝑛⃗ ± = 𝜆±𝑛⃗ ±. 

Let’s move to the coordinate system (𝑢+, 𝑢−) with an orthonormal basis 𝑛⃗ +𝑛⃗ −. In this 

coordinate system, the quadratic form is 𝑎𝑋2 + 𝑏𝑌2 + 2𝑥𝑦 is represented by the sum of squares 

𝜆+𝑢+
2 + 𝜆−𝑢−

2 . The level lines of this square shape are ellipses of the form 𝜆+𝑢+
2 + 𝜆−𝑢−

2 = 𝑐𝑜𝑛𝑠𝑡 > 0. 

Denote 𝑘 = √
𝜆+

𝜆−
 , then to construct the specified ellipses, the circles given by the equation 𝑢+

2 + 𝑢−
2 =

𝑐𝑜𝑛𝑠𝑡 should be compressed along the 𝑢+ axis by 𝑘 times. The coefficient 𝑘 may be interpreted as 

the ratio of the major and minor axes of an ellipse whose level lines are defined by a quadratic shape 
𝑎𝑋2 + 𝑏𝑌2 + 2𝑐𝑋𝑌. 

It is interesting to note that if 𝑓𝑥 = 𝑓𝑦 = 0 and the condition 𝑎𝑏 < 𝑐2, is satisfied, then it is not 

difficult to establish that 𝜆+ > 0, 𝜆− < 0 and hence the quadratic form 𝑎𝑋2 + 𝑏𝑌2 + 2𝑐𝑋𝑌 in the 

variables 𝑢+, 𝑢− has the form 𝜆+𝑢+
2 + 𝜆−𝑢−

2  and is an alternating sign, and its level lines are 

hyperbolas.  

 

4.  Error in estimating the mean number of Poisson flow points 
 

Specialists in the field of earth sciences have the task of estimating the error of the mean number of 

Poisson flow points from observations in different cells of a square grid. Let the study area be 

divided into 𝑚 cells, and the number of points in them in the area 𝑘 is 𝑛𝑘 , 𝑘 = 1,… ,𝑚. It is natural 

to assume that the random variables 𝑛1, … , 𝑛𝑚 are independent and have Poisson distributions with 

the parameters 𝜆1, … , 𝜆𝑚 . Using the properties of the Poisson distribution, it is easy to establish that 

the random sum 𝑁 = ∑𝑚
𝑘=1 𝑛𝑘 has a Poisson distribution with the parameter Λ = ∑𝑚

𝑘=1 𝜆𝑘 and 

consequently 𝐸(𝑁) = Λ, 𝑉𝑎𝑟(𝑁) = Λ. 
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Using the known properties of the mathematical expectation and the variance of the Poisson 

distribution, we proceed to estimate the relative error. To do this, consider the random variable 
𝑁

𝐸(𝑁)
=

𝑁

Λ
. Variance of this random variable 𝑉𝑎𝑟 (

𝑁

Λ
) =

1

Λ
 and so the relative error of such an estimate 

satisfies the relation √𝑉𝑎𝑟 (
𝑁

Λ
) =

1

√Λ
. Therefore, the relative error decreases with the growth of Λ. 

This result does not depend on the nonuniformity of the distribution density of the Poisson 

flow of points, and therefore does not depend on the parameters 𝜆1, … , 𝜆𝑚 . It can be considered by 

choosing the efficiency indicator of a complex system like a relative error. This result is based on the 

well-known models of Poisson point flows in the theory of random sets, which are used in the earth 

sciences [6]. 
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