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Abstract

A review of the Smith’s regeneration idea development is proposed. As a generalization of this idea the
main definitions and results of decomposable semi-regenerative processes are reminded. Their applications
for investigation of various queueing and reliability systems are considered.
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1. Introduction, Motivation, and Abbreviations

The main idea of this paper is to give a review of the Smith’s regeneration notion development.
Definition and main results of decomposable semi-regenerative processes (DSRPr) will be under our
attention. Applications of these processes to investigation of some real-world queueing and
reliability systems makes up an essential part of the paper.

As a generalization of classical independence the regeneration idea has been proposed by
W. Smith in 1955. The regenerative approach allows not only to calculate the regenerative process
(RPr) state time-dependent probabilities (t.d.p.’s) in terms of its state probabilities at the separate
regeneration period (RP), but also to prove its stationary regime existence and find the steady state
probabilities (s.s.p.’s).

However, if the process behavior in the separate regeneration period is enough complex
and its distribution can not be analytically represented, the more detailed investigation of the
process could be obtained with the help of semi-regenerative processes (SRPr’s), which joins the
regeneration approach with the Markov type dependency. The next step in the generalization of
the regeneration idea consists in finding some new regeneration points of time into regeneration
period and construction of so called embedded regenerative process (ERPr). This idea can be
developed for construction of decomposable semi-regenerative processes (DSRPr’s).

These ideas have been applied for investigation of several stochastic systems such as: priority
queueing systems (QS’s), one-server QS with recurrent input and service processes, polling
systems, complex hierarchical systems, etc. In this paper we remind the results of some of these
investigations. Recently the ERPr has been used for investigation of a double-redundant system
with general distributions of its component life- and repair times and of a k-out-of-n system.
These models also will be in our focus.

Along the paper the following general notations are used:
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• P{·}, E[·] — symbols of probability and expectation, symbols Pi{·}, Ei[·] are used for
conditional probability and expectation, given initial state of the process is i;

• the vectors are marked with arrows and are understood as column vectors, and transposition
of vectors and matrices is indicated by a prime;

• the representatives of any sequence of independent identically distributed random variables
Ai (i = 1, 2, . . . ) are denoted by appropriate letter without indexes A and their common
cumulative distribution functions (c.d.f.’s) are denoted by the same letter with an argument
A(x) = P{A ≤ x};

• The moment generating functions (MGF’s) of r.v.’s (the Laplace-Stiltjes transforms (LST’s) of their
c.d.f.’s) are denoted by appropriate small letters with tilde ã(s) = E

[
e−sA] = ∫ ∞

0 e−sx A(dx).

The paper is organized as follows. In the next section the main ideas of the regenerative
approach and its developments will be reminded. All other sections are devoted to applications
of above methods to investigations of the real world systems which have been considered early
and recently that have been proposed without proofs. The paper ends with Conclusion where
some further possible investigations are pointed out.

In the paper the following abbreviations are used.

• RPr — regenerative process,

• SRPr — semi-regenerative process,

• ERPr — embedded semi-regenerative process,

• DSRPr — decomposable semi-regenerative process,

• RT — regeneration time,

• SRT — semi-regeneration time,

• ERT — embedded regeneration time,

• RP —regeneration period,

• SRP —semi-regeneration period,

• ESRP — embedded semi-regeneration period,

• RS — regeneration state,

• SRS — semi-regeneration state,

• ESRS — embedded semi-regeneration state,

• SMM — semi-Markov matrix,

• ESMM — embedded semi-Markov matrix,

• RF — regeneration function,

• ERF — embedded regeneration function,

• MRM — Markov renewal matrix,

• EMRM — embedded Markov renewal matrix,

• ERK — embedded renewal kernel,

• QS — queueing system,
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• NoC — number of calls,

• PP — poling process,

• IP — idle period,

• BP — busy period,

• MGF — moment generating ff-unction

• LT — Laplace transform,

• LST — Laplace-Stiltjes transform,

• i.i.d. — independent identically distributed,

• r.v. —random variable,

• c.d.f. — cumulative distribution function,

• t.d.p. — time-dependent probability,

• s.s.p. — steady state probability

2. On regenerative approach

Here the main results of regenerative and semi-regenerative processes are reminded. The so-called
decomposable semi-regenerative processes are also under our attention. We omit very known
strong definitions and represent the main results, which will be used in the paper.

2.1. Regenerative process

As a generalization of classical independence the regeneration idea has been proposed by W. Smith
in 1955 [1]. Consider a stochastic process X = {X(t) : t ≥ 0} with filtration FX

t . The process X
is called the regenerative one if there exist a sequence of points of time, regeneration times (RT) Sn,
in which the process forgets its past,

P{X(Sn + t) ∈ Γ |FX
Sn
} = P{X(Sn + t) ∈ Γ} = P{X(S1 + t) ∈ Γ}.

The intervals [Sn−1, Sn) and their length Tn = Sn − Sn−1 is called regeneration periods (RP).
Note, that the functional elements Wn = {X(Sn + t), t ≤ Tn} are independent. They are called
regeneration cycles (RC).

The regenerative approach allows to calculate the regenerative process (RPr) state probabilities
π(t; Γ) = P{X(t) ∈ Γ} in terms of its state probabilities at the separate regeneration period
π(1)(t, Γ) = P{X(Sn−1 + t) ∈ Γ, t < Tn} in the form

π(t; Γ) =
t∫

0

H(du)π(1)(t− u, Γ), (1)

where F(t) = P{Tn ≤ t} and

H(t) = E

[
∑
n≥1

1{Sn≤t}

]
= ∑

n≥1
P{Sn ≤ t} = ∑

n≥1
F∗n(t).

is the renewal function (RF) of the process, where symbol “?′′ means a convolution, The RF satisfies
the Winner-Hopf equation

H(t) = F(t) + F ? H(t) ≡ F(t) +
t∫

0

F(du)H(t− u). (2)
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This approach allows not only to obtain the representation (1), but also to prove the existence
of the stationary probabilities and give its close form representation in terms of the process
distribution at separate regeneration periods. Namely it holds

π(Γ) = lim
t→∞

π(t; Γ) =
1

E[T]

∞∫
0

π(1)(t, Γ)dt. (3)

2.2. Semi–regenerative process

As a generalization to the Markov’s dependency, an idea of semi-Markov chains has been proposed
by E. Cinlar (1969) [2] and J Jakod (1971) [3]. This idea leaded further to the constructions
of semi-Markov processes (SMPr) (see, for example [3], [4]). The joining of these notions with
the regeneration idea leaded to introduction of semi-regenerative processes (SRPr’s), which firstly
appeared under different titles: as semi-Markov processes with additional trajectories in 1966 (Klimov
[5]), regenerative processes with several types of regeneration poins in 1971 (Rykov & Yastrebenetsky
[6]) before it became the name SRPr due to E. Nummeline [7].

The difference of the SRPr from the RPr consists in the assumption that in its semi-regeneration
points of time Sn the future of the process does not depend of its past but depends on its present
state belonging to some set E of regeneration states (RS’s),

P{X(Sn + t) ∈ Γ |FX
Sn
} = P{X(Sn + t) ∈ Γ |X(Sn)} = P{X(S1 + t) ∈ Γ |X(S1)}.

The main characteristic of the SRP is its semi-Markov matrix (SMM) Q(t) = [Qij(t)]ij∈E with
components

Qij(t) = P{X(Sn) = j, Tn ≤ t, |X(Sn−1) = i}.

For SRPr with denumerable RS’s E that starts in RT with an initial distribution α = {αi, i ∈ E}
the formula (1) takes the form

π(t; Γ) = ∑
i∈E

αi

δijπ
(1)
j (t) +

t∫
0

Hij(du)π(1)
j (t− u, Γ)

 . (4)

Here π
(1)
j (t, Γ) = P{X(Sn+1 + t) ∈ Γ, t < Tn |X(Sn + 0) = j} is the process state probability

distribution on a separate semi-regeneration period (SRP) of type j, and H(t) = [Hij(t)] is its
Markov renewal matrix (MRM) with

Hij(t) = E

[
∑
n≥1

1{Sn≤t, X(Sn)=j} |X(0) = i

]
=

[
∑
n≥1

Q∗n(t)

]
ij

.

these functions satisfy the Winner-Hopf equation, in which symbol “?′′ means the matrix-
functional convolution,

H(t) = Q(t) + Q ? H(t). (5)

The corresponding limit theorem takes the form

π(Γ) = lim
t→∞

π(t, Γ) =
1
m

∞∫
0

∑
j∈E

ᾱjπ
(1)
j (t, Γ)dt, (6)

where ᾱ = {ᾱi (i ∈ E)} represents the invariant probabilities of the embedded Markov chain
Y = {Yn = X(Sn), n = 1, 2, . . . }, and m = ∑i∈E ᾱiEi[T] is the expected stationary regeneration
period.
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2.3. Decomposable semi-regenerative process

If the process behavior at the separate regeneration period Tn is too complex and its distribution
can not be analytically represented, sometimes it is possible to find some embedded regeneration
points of time S(1)

k (k = 1, 2, . . . ) into this period, in which the process forgets its past up to the

present state X(1)(S(1)
k ) conditionally to its behavior at the regeneration period Tn. This subset

of the process state is called embedded semi-regeneration states (ESRS’s) and denoted by E(1). This
process is called an embedded regeneration process (ERPr). Spreading out this procedure for all
regeneration periods of the main process leads to construction of decomposable semi-regenerative
process (DSRPr). This procedure can be extended to several embedding levels. The strong
definitions and details can be found in V. Rykov (1975) [8] (see also [9], and [10]).

While analyzing the DSRPr, the role of the ordinary MRM plays the embedded Markov renewal
matrix (EMRM) H(t) = [Hij(t)], which is given by its components

H(1)
ij (t) = Ei

[
∑
k≥0

1{[0, t), j}

(
S(1)

k , X(S(1)
k )
)

1
{S(1)

k <T}

]
.

This matrix study depends on the type of the embedded regeneration points construction. There
are different scenarios of their construction. If they arise as min[S(1)

k , T], then unlike equations
(2), and (5) for EMRM holds the following equation,

H(1)(t) = Q(1)(t) + H(1) ? Q(1)(t)−Q(t). (7)

Here Q(t) and Q(1)(t) are the SMM of the external and internal embedded periods and the
symbol ? denotes as before the matrix-functional convolution.

In most practical situations, both internal and external regeneration points of time coincide
with the times of the regeneration states destinations. At that the external regeneration points of
time are the moments, when the process exits the subset of the embedded regeneration states.
In this case, the transition matrix for the embedded regeneration points of time Q(1)(t) is a
sub-matrix of the matrix Q(t) with components from the subset of the embedded states E(1) and
therefore it is a degenerative one. In this case the equation for EMRM has the form

H(1)(t) = Q(1)(t) + Q(1) ? H(1)(t).

Its solution is
H(1)(t) = (I −Q(1)(t))−1Q(1)(t) = ∑

n≥1
Q(1)∗n(t).

It is bounded for all t and approaches the expected number of visits to subset of states E(1) when
t → ∞. Naturally when the both scenarios are applicable, the solutions of the last equation
coincide with the solution of equation (7).

Similarly to (4) different characteristics of the DSRPr of the first level can be expressed in
terms of its corresponding characteristics of the second level. Particularly, for the one-dimensional
distributions π

(1)
i (t, Γ) the following representation holds

π
(1)
i (t, Γ) = H(1)

i ? π(2)(t, Γ).

Here
π
(2)
i (t, Γ) = P

{
X
(

S(1)
k−1 + t

)
∈ Γ, t < T(1)

k | X(1)(S(1)
k−1) = i

}
are the process state probabilities in ERPr and EMRM H(1)(t) satisfies the equation (7). These
relations make possible to recover the process distribution by its distribution on a separate
minimal periods of embedded regeneration. The limit theorem for SRPr’s allows to calculate
its stationary distributions, and the system of embedded regeneration periods make possible to
calculate them in terms of distributions on smallest regeneration period.

In the next sections several applications of the DSRPr’s for investigation of some real word
QS’s and reliability models are considered.
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3. M/GI/1/∞ Queueing System

We apply the DSRPr to investigation of the main processes in M|G|1|∞ QS. Many authors deals
with this system. A.Ya. Khinchin [11] found the s.s.p.’s of this system in 1932. D. Kendall [12] in
1953 studied this system with the help of method of embedded Markov chains. G. Klimov [5]
uses the method of probabilistic interpretation of generating functions (GF). In next section we
propose the results, given by V. Rykov in [10].

3.1. Number of calls as a regenerative process

Consider a M|GI|1|∞ QS with Poisson input L(t) and recurrent service process, where service
times are i.i.d. r.v.’s Bn with common c.d.f. B(t) = P{Bn ≤ t}. Denote by X = {X(t), t ≥ 0} the
number of calls (NoC) process in the system. Evidently, it is DSRPr, and its RP’s R consists of idle
period (IP) ∆ and busy period (BP) Π, R = ∆ + Π (see figure 1), while its RT’s are Sn = ∑1≤i≤n Ri.

Figure 1: The structure of a regeneration period

The RP in turns consists of

• service time B1 of the first arrived in free system call and

• random number L(B1) BP’s, generated by this call.

Therefore, the BP satisfies to the following stochastic equation

Π = B1 + ∑
0≤i≤L(B1)

Πi, (8)

and thus its MGF satisfied to the Kendall equation

π(s) = β(s + λ− λπ(s)). (9)

while the MGF of the RP equals

τ(s) = E
[
e−sR

]
= E

[
e−s(∆+Π)

]
=

λπ(s)
λ + s

. (10)

If the system is idle in initial time, then the process behavior X(t) in any time t can be
represented in terms of its behavior at separate RP XR(t) as follows

X(t) = ∑
n≥0

1{Sn≤t<Sn+1}XR(t− Sn).

In terms of MGF Laplace transform (LT) of NoC p(s, z) the last expression takes the form

p(s, z) ≡
∞∫

0

e−stE
[
zX(t)

]
=

∞∫
0

e−su ∑
n≥1

dP{Sn ≤ u}
∞∫

u

e−s(t−u)E
[
zXR(t−u)

]
dt =

= pR(s, z)
s + λ

s + λ− λπ(s)
. (11)
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Here pR(s, z) =
∞∫
0

e−stE
[
zXR(t)

]
, and

∞∫
0

e−st ∑
n≥1

dP{Sn ≤ t} ≡
∞∫

0

e−stdH(t) = h̃(s) =
1

1− τ(s)
=

s + λ

s + λ− λπ(s)
.

is the Laplace-Stilties Transform (LST) of the RF H(t), generated by RT’s Sn.

3.2. NoC on a separate RP

The process XR(t) behavior on a separate RP in terms of its behavior on separate BP XΠ(t) has
the form

XR(t) =

{
0 for t < ∆,
XΠ(t− ∆) for ∆ ≤ t < Π.

From here one can find the LT of the MGF of the process XR(t)

pR(s, z) =
∞∫

0

e−st

e−λt +

t∫
0

λeλvEzXΠ(t−v)dv

 dt =
1 + λpΠ(1, s, z)

s + λ
.

Jointly with (11) this gives a well known formula for LT MGF of NoC process for M|GI|1|∞ QS
in terms of appropriate characteristic at separate BP,

p(s, z) = pR(s, z)
s + λ

s + λ− λπ(s)
=

1 + λpΠ(1, s, z)
s + λ− λπ(s)

. (12)

For the NoC process on a separate BP, opening with only one call, when S(Π)
0 = 0, X(S(Π)

0 ) = 1,
it holds

XΠ(t) = X(S(Π)
n−1) + L(t− S(Π)

n−1), for S(Π)
n−1 ≤ t < S(Π)

n ,

where L(t) is an input Poisson process and a sequence of embedded RT’s S(Π)
n is given recursively

S(Π)
1 = B1, S(Π)

n+1 = S(Π)
n + 1

{X(S(Π)
n )>0}

Bn.

For the LT of NoC MGF on a separate BP pΠ(1, s, z) by calculation with the help of conditional
expectation formula we get

pΠ(1, s, z) =
∞∫

0

e−stE
[
zXΠ(t)

]
= [z + hΠ(1, s, z)]

1− β(s + λ− λz)
s + λ− λz

. (13)

Here h(Π)(1, s, z) denotes LT of ERF, generated by the sequence S(Π)
n , jointly with the MGF of the

process in these times

h(Π)(1, s, z) = E

[
∑
n≥1

e−sSΠ
n zX(SΠ

n )1{X(SΠ
n )>0}

]
.

Due to the expression for NoC at the end of service times

X(SΠ
n ) =

{
X(SΠ

n−1)− 1 + L(SΠ
n − SΠ

n−1) for X(SΠ
n−1) ≥ 1,

0 for X(SΠ
n−1) = 0.

This function satisfies to the equation (details of its derivations see in [10])

h(Π)(1, s, z) = β(s + λ− λz) + z−1h(Π)(1, s, z)β(s + λ− λz)− π(s).
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Solution of this equation is

h(1, s, z) = z
β(s + λ− λz)− π(s)

z− β(s + λ− λz)
, (14)

and its substitution in (13) for LT MGF of NoC at separate BP gives

pΠ(1, s, z) = z
π(s)− z

β(s + λ− λz)− z
× 1− β(s + λ− λz)

s + λ− λz
. (15)

Thus, the last expression jointly with (12) allow to find the LT of the non-stationary MGF of the
NoC process.

3.3. Stationary regime

For MGF of NoC process in stationary regime from (12) and taking into account that from (9) it
follows that π1 = −π′(0) = b1/(1− ρ) we obtain the very known Pollachek-Khinchin formula
for stationary queue,

P(z) = lim
s→0

sp(s, z) = (1− ρ)
(1− z)β(λ− λz)

β(λ− λz)− z
.

4. Priority queueing systems Mr/GIr/1/∞

Priority QS arise in many applications. Such systems studied by many authors and by different
methods: Klimov (1966) [5], Jaiswell (1968) [13], Gnedenko and all (1973) [14]), Klimov, Mishkoi
(1979) [15]. The DSRPr method firstly has been applied for such systems investigation by V. Rykov
in [8]. Here we shortly remind these results.

4.1. System description.

Consider a single-server QS Mr/GIr/1/∞ with r independent Poisson inputs~L(t) = (L1(t), . . . Lr(t))
intensities λk (k = 1, r, with common intensity Λ = ∑1≤k≤r λk. Service times are i.i.d. r.v.
Bk (k = 1, r) with common for each type of calls c.d.f. Bk(t) = P{Bk ≤ t}. The calls are served
with priority discipline in such a manner that the calls of k-th type has a priority before calls of
the (k + 1)− st, k = 1, r− 1. There are different types of priorities:

• head-of-the-line;

• preemptive. In this case there are several sub-cases:

– preemptive resume priority,

– preemptive repeat priority (with new independent realization of interrupted service
times),

– preemptive repeat priority (with the same realization of first represented service time),

– preemptive loss priority.

Denote by

• ~x = (x1, x2, . . . , xr) vector, k-th component of which means the number k-th type calls in the
system;

• E the set of the system states;

• ~X(t) = (X1(t), . . . , Xr(t)) is the NoC process.
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It is evident that under given assumption the process ~X(t) is an DSRPr, and its main RP is the
same as for the M/GI/1/∞ QS and consists from an idle ∆ and a busy Π periods (see figure 1).
Denote by

p(s,~z) =
∞∫

0

e−stE
[
~z~X(t)

]
dt

LT of the process ~X(t) MGF. Because the RP structure for the system Mr/GIr/1/∞ is the same
as for the system M/GI/1/∞, LT of NoC process MGF coincide with analogous for the system
M/GI/1/∞ (12),

p(s,~z) = pR(s,~z)
s + λ

s + λ− λπ(s)
=

1 + λpΠ(1, s,~z)
s + λ− λπ(s)

. (16)

However now Π = Πr is a BP, during which all calls are served. This period consists of
k-periods Πk, during which all calls of k-th and above priority are served and k-cycles during which
only one call k-th type and all calls higher priority are served.

4.2. Structure of NoC process in Mr/GIr/1/∞ QS.

The structure of these periods is shown in the figures 2 and 3

Figure 2: The structure of k-period

Figure 3: The structure of k-cycle

Thus, for calculation of appropriate LT of the MGF pΠ(1, s,~z) NoC at separate BP of the
system and the MGF π(s) of BP introduce the following notations

•
σk = ∑

1≤i≤k
λi, vk = ∑

k≤i≤r
(λi − λizi), Vk = s + vk = σk(1− πk(s + vk));

• the LT MGF of NoC process at separate k-period

pk(~z, s) =
∞∫

0

e−stE
[
~z~X(t)1Πk≤t

]
dt;
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• the LT MGF of NoC process at separate k-cycle

pγk (~z, s) =
∞∫

0

e−stE
[
~z~X(t)1Γk≤t

]
dt;

• the MGF of k-period by πk(s) = E
[
e−sΠk

]
;

• the MGF of k-cycle by γk(s) = E
[
e−sΓk

]
.

With these notations using the considered above structure of embedded k-periods and k-cycles
with the help of DSRP methods in [8] (see also [10]) the following recursive relation for the MGF
LT of NoC of Mr/GIr/1/∞-priority system QS has been obtained

σpΠ(~z, s) = ∑
1≤i≤r

λizi + σi−1πi−1(s + vi)− σiπi(s + vi+1)

zi − γi(s + vi)
pγi (~z, s). (17)

Here the LT of NoC process MGF on a separate k-cycle pγi (~z, s) for different type of priorities
satisfies to the recursive relations

pγk (~z, s) = zk
1− βk(s + v1)

s + v1
+ ∑

1≤i≤k−1

βk(Vi)− βk(Vi+1)

zi − γi(s + vi)
pγi (~z, s). (18)

This provides an algorithm for calculating of all basic characteristics of the system. For details see
[8] and [10].

5. Polling Systems

Next important application of DSRP are the polling systems that have a wide sphere of appli-
cations. There is vast bibliography on this topic including monographs of Takagi (1986) [16],
Borst (1996) [17], Vishnevsky, Semenova (2012) [18] and reviews of Takagi (1997) [19], Vishnevsky,
Semenova (2006, 2021) [20], [21]. A general description of the polling model one can find in
Fricker & Jabi (1994) [22], where also a stability conditions for the system were presented. Most
of polling systems investigations deal with the system stationary regime at point of times when
server attends users. Here by following [23] we show the possibility of the DSRP theory to be
applied for the poling process (PP) investigation in continuous time.

5.1. The system description

Following to Fricker and Jabi (1994) [22], consider the following model (see Fig 4).
There are r users and a single server. Calls from k-th user (k-calls) form Poisson input

of intensity λk. Therefore, ~L(t) = (L1(t), . . . Lk(t)) is the vector flow with summary intensity
Λ = ∑1≤k≤r λk. Service times are supposed to be i.i.d. r.v. Bk (k = 1, r) with common for k-calls
c.d.f. Bk(t) = P{Bk ≤ t}. Beside for switching from i-th user to the j-th one some random times
Cij with c.d.f. Cij(t) = P{Cij ≤ t} are needed. Note that for up-to-date telecommunication
systems the service time has the same order as the switching time, therefore it is important to
take into account the switching times. Thus, in order to optimize the system behavior it is useful
to introduce some delay for service in such manner that the service of k-calls begins only after
their number attains some level, say lk.

The service consists of several, say n ≥ r, stages that are determined by the polling table —
function f ,

f : {1, 2, . . . , n} → {1, 2, . . . , r},

where f (j) = k denotes that at the j-th stage the k-th user is served and the full round over all
users are accomplished during n stages that composes a cycle of service. Note that for given
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Figure 4: The Polling model

polling table the switching time Cj means switching times C f (j), f (j+1) from f (j)-th user to f (j + 1)
one with c.d.f. Cj(t).

There are different service disciplines δ(j) that could be used at different stages. Some of them
are:

• l-limited service discipline, for which it is served fix, say lk number of f (j) = k-calls, especially
only one call if lk = 1;

• gated service discipline, for which all f (j)-calls that are present at the very beginning of the
stage are served during it;

• exhaustive service discipline for which the service of f (j)-th user is continued until the queue
become empty.

It is supposed that
Assumption 1. All r.v.’s have at least two finite moments.
Assumption 2. the stability conditions for the system are fulfilled.

5.2. Structure of the Polling Process

For the Polling System investigation denote by ~x = (x1, x2, . . . , xr) the states of the polling
system, where xk is a number of k-calls, by E the set of all states, and consider a random
process ~X(t) = {(X1(t), . . . , Xr(t)) : t ≥ 0} with the states space E to which we will refer as a
polling process (PP). It is evident that under given assumption the process ~X(t) is a DSRPr, and
the structure of its main RP’s are the same as for the M|GI|1|∞ QS (see figure 1). However,
the structure of its embedded busy periods now are different and in the following figures are
represented (see Fig’s 5, 6, 7). The BP consists of random number N service cycles Gj, each
of which consists of n stages of Aj (j = 1, n) that also have enough complex structure, which
depends on the service discipline at the stage.

5.3. Stochastic relations for Polling Process

Denote by p(~x, t) = P{~X(t) = ~x} probability distribution of the PP ~X(t). From our assumptions
it follows that the PP is usual multi-dimensional service process for Mr/GIr/1/∞ QS with r
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Figure 5: The structure of a busy period

Figure 6: The structure of a service cycle

Figure 7: The structure of a service stage

types of calls, and therefore LT of the PP MGF accordingly to previous section has the form

p(s,~z) ≡
∞∫

0

e−stE
[
~z~X(t)

]
=

1 + ~Λ′~pΠ(s,~z)
s + Λ− ~Λ′~π(s)

, (19)

where
~Λ′~pΠ(s,~z) = ∑

1≤k≤r
λk pΠ(~e, s,~z), ~Λ′~π(s) = ∑

1≤k≤r
λkπk(s).

Here

pΠ(~ek, s,~z) =
∞∫

0

e−stE~ek

[
~z~XΠ(t)

]
is the LT MGF PP on a separate BP Π, opening with a single k-call, and πk(s) = Eek

[
e−sΠ] is a

MGF of a service cycle G, opening with a single k-call.
Therefore to find LT MGF PP p(s,~z) it is necessary to investigate appropriate functions at

separate BP pΠ(~ek, s,~z) and MGF πk(s) of the service cycle Π), opening with a single k-call and a
number of calls in its end.
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To calculate these functions consider the stochastic relations that associate the process behavior
in any point of times and in points of times at separate embedded periods of regeneration, busy,
cycles and stages of service which were denoted by

• ~XR(t) = {~XR(t), t ≤ R} is the PP at separate RP;

• ~XΠ(t) = {~XΠ(t), t ≤ Π} is the PP at separate BP;

• ~XG(t) = {~XG(t), t ≤ G} is the PP at separate Service Cycle; and

• ~Xj(t) = {~Xj(t), t ≤ Aj} is the PP at separate Service Stage.

Using the structure of the embedded RPr’s the LT of the MGF of the PP in any time can
be represented in terms of appropriate characteristics within the separate service stages. Using
the process behavior at different separate stages the LT of MGF of the PP at them also can be
calculated in closed form for any poling table and different service disciplines. The details can be
found in [23].

6. GI/GI/1/∞ Queueing System

The GI/GI/1/∞ QS is a very interesting model both from theoretical and application point of
views. The detailed study of this system one can find in the book of Cohen (1969) [24]. In this
section we remind the results about application of DSRP method for investigation of one-server
queueing system with recurrent input and generally distributed service time that has been done
by Rykov (1983, 1984) [25], [26].

6.1. System description

Consider a GI/GI/1/∞ QS with recurrent arrival and service processes. The system is a
regenerative one, its RT’s are the arrival times that find the system empty. For simplicity it is
supposed that in the initial time t = 0 a new call arrive in the empty system Denote by

• An — inter-arrival times (i.i.d. r.v.),

• Bn — their service times (i.i.d. r.v.),

• Rk — k-th RP duration,

• Πk — k-th BP duration,

• νk — number of calls, served during k-th BP,

• Nk — number of call, which open k-th RP,

• Sk — arrival times in empty system (RT’s),

• S(o)
n,k — service completion times at separate k-th RP,

• S(i)
n,k — arrival times within separate k-th RP,

The above values are calculated recursively:

N0 = 0, Nk = Nk−1 + νk, νk = min{n : n > Nk−1, S(o)
n,k < S(i)

n,k},

S(o)
n,k = ∑

Nk<i≤n
Bi, S(i)

n,k = ∑
Nk<i≤n

Ai.

Πk = S(o)
νk ,k, Rk = S(i)

νk ,k, S0 = 0, Sk = S[k− 1] + Rk.

169



Rykov V.V.
DECOMPOSABLE SEMI-REGENERATIVE PROCESSES:
REVIEW OF THEORY AND APPLICATIONS

RT&A, No 2 (62)
Volume 16, June 2021

6.2. Main processes

The main processes of the GI/GI/1/∞ QS are:

• Number of calls (NoC) in the system X(t),

• Virtual waiting time (VWT) V(t),

• Actual waiting time (AWT) Wn.

The first two processes are strongly (in sense of Smith) regenerative, which regeneration times
Sk are the times of new calls arrivals in empty system. The discrete time AWT process is also
regenerative sequence with respect to numbers Nk of calls arrived into empty system.

The structure of RP’s for this system is the same as for the system M/GI/1/∞. However
behavior of the main processes at RP’s is enough complex, and for their investigation we’ll use the
construction ERP’s. The structure of regeneration and busy periods at the figure 8 are presented.

Figure 8: Structure of the RP for the GI/GI/1/∞-system

Denote by

• F(t) = P{Rn ≤ t} RP c.d.f.;

• f (s) = E[e−sRn ] =
∞∫
0

estF(dt) the RP MGF;

• P(z, t) = E[zX(t)] MGF of the N0C process X;

• p(z, s) =
∞∫
0

e−stP(z, t)dt its LT;

• P(R)(z, t) = E
[
zX(t) 1{t < R}

]
process X(t) MGF on a separate RP;

• p(z, s) =
∞∫
0

e−stP(R)(z, t)dt its LT;

• V(x, t) = P{V(t) < x} process V(t) distribution;

• v(x, s) =
∞∫
0

e−stV(x, t)dt its MGF;

• V(R)(x, t) = P{V(t) < x, t < R} process V(t) distribution on a separate RP;

• v(R)(x, s) =
∞∫
0

e−stV(R)(x, t)dt its MGF within a separate RP;
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• H(t) = ∑
n≥1

P{Sn ≤ t} = ∑
n≥1

F(∗n)(t) the main processes RF.

According to the RPr’s theory for LT the NoC and VWT processes it holds

p(z, s) = p(R)(z, s)(1 + h(s)) =
p(R)(z, s)
1− f (s)

;

v(x, s) = s(R)(x, s)(1 + h(s)) =
v(R)(x, s)
1− f (s)

;

Analogous expressions take place for AWT process {Wn} with respect to discrete RPr {Nk},
which discrete RF is

hk = E

[
∑
n≥0

1k(Nn)

]
= ∑

n≥0
P{Nn = k} = ∑

n≥0
g∗n(k),

where g(k) = P{N1 = k} is the distribution of the number of calls served at separate RP, and
g∗n(k) means the discrete n-th convolution of functions g at point k.

Therefore, to investigate the processes in any time point one should investigate them on a
separate RP’s. Because they are identically distributed it is enough to consider them at the first
RP. To do that denote by N = N1 = ν1 the number of calls served during the first RP and consider
two-dimensional Random Walk Yn = (S(i)

n , S(o)
n ). For simplicity here and further the index of the

RP number is omitted. It is evident that

N = min{n : S(o)
n < S(i)

n }, Π = S(o)
N , R = S(i)

N .

6.3. Busy, idle periods and number of calls, served at BP

Denote by (R2
+, R2

+) the positive quadrant of an Euclid plane (t1, t2). Put

R2
< = {(t1, t2) : t1 < t2}, R2

≥ = {(t1, t2) : t1 ≥ t2},

and introduce the sequence of measures

π1(C) = P{(A, B) ∈ C} =
∫

R2
+

1C(t1, t2)A(dt1)B(dt2),

πn(C) = P{S(i)
j < S(o)

j : j = 1, n− 1, (S(i)
n , S(o)

n ) ∈ C}.

For C ∈ R2
≥ the value πn(C) is the probability of the event {N = n, (R, Π) ∈ C},

πn(C) = P{N = n, (R, Π) ∈ C}.

So the parametric measure
π̃(z, C) = ∑

n≥1
πn(C)zn

is the MGF of the number of calls served during RP jointly with RP and BP lengths. Many system
characteristics can be expressed in terms of measure π̃(z, C):

• For C1
x = {(t1, t2) : t2 − t1 ≥ x} the value 1− π̃(1, C1

x) is server idle time distribution,

1− π̃(1, C1
x) = P{∆ = R−Π ≤ x};

• For C2
x = {(t1, t2) ∈ R2

≥ : t1 < x} the value π̃(1, C2
x) is the RP length distribution,

π̃(1, C2
x) = P{R ≤ x};
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• For C3
x = {(t1, t2) ∈ R2

≥ : t2 < x} the value π̃(1, C3
x) is the BP length distribution

π̃(1, C3
x) = P{Π ≤ x};

• For C0
x = {(t1, t2) ∈ R2

≥ : t2 > x > t1} one has

π̃(1, C0
x) = P{Π ≤ x < R}.

In order to study the parametric measure π̃(z, C) introduce a measure q(c) and a kernel
Q(ω, C) for ω ∈ R2

+, C ∈ R2
+ with e1 = (1, 0), e2 = (0, 1) as follows:

q(C) =
∫

R2
+

1C(t1, t2)A(dt1)B(dt2) = π1(C);

Q(ω, C) =
∫

R2
+

1C(ω + t1e1, ω + t2e2)A(dt1)B(dt2).

The following Theorem has been proved in Rykov (1983) [25].

Theorem 1. For ρ = a−1b < 1 the function π̃(z, C) is

(i) a probability measure on R2
+ and a MGF with respect to z, i.e. π̃(1, R2

+) = 1;

(ii) it satisfies to the equation
π̃(z, C) = z(q(C) + π̃oQ(C)), (20)

where an operation π̃oQ(C)) means integration under the set R2
<:

π̃oQ(C)) =
∫

R2
<

π̃(z, dω)Q(ω, C).

�

It is possible to show that Q(., .) generates a continuous operator with the norm ‖Q‖ = 1, and
so for z < 1 the equation (20) has a unique solution that could be represented in the form

π̃(z, C) = zqo ∑
k≥0

zkQ(ok) = zqoG(z, C),

where
G(z, ω, C) = ∑

k≥0
zkQok(ω, C). (21)

Unfortunately, the condition ‖Q‖ = 1 does not allow directly to find the solution of this equation
for z = 1 and does not guarantee its uniqueness. Nevertheless, the following theorem holds:

Theorem 2. (Rykov (1983) [25].) For ρ = a−1b < 1 the kernel

G(z, ω, C) = Eω

[
∑
n≥0

zn1
{S(i)

k <S(o)
k , k=1, n−1, (S(i)

n , S(o)
n )∈C}

]

exists and is finite for any bounded sets C ∈ R2
+ and |z| ≤ 1. Moreover, the representation (21)

holds.

172



Rykov V.V.
DECOMPOSABLE SEMI-REGENERATIVE PROCESSES:
REVIEW OF THEORY AND APPLICATIONS

RT&A, No 2 (62)
Volume 16, June 2021

6.4. Investigation of the main processes on a separate BP

For investigation of VWT process on a separate BP consider the arrival epochs Si
n as ERT’s and

introduce an ERK

U(ω, C) = Eω

[
∑

n<N
1C(V(S(i)

n ), S(i)
n )

]
,

that satisfies to the ERE

U(ω, C) = Q(1)(ω, C) + U ∗Q(1)(ω, C)−Q(ω, C).

Here Q and Q(1) are transition probability kernels of corresponding semi-Markov chains:

Q(1)(ω, C) = Eω1C(V(A), A) =
∫

R2
+

1C(x + u− v, v)B(du)A(dv);

Q(ω, C) = Eω1C(V(R), R) = P{(0, R) ∈ C}.

In the special case ω = 0, ERK can be directly calculated

U(C) = E

[
∑

n<N
1C(V(Si

n), Si
n)

]
= E

[
∑

n<N
1C(So

n − Si
n), Si

n)

]
=

= ∑
n≥0

∫
R2
<

πn(du, dv)1C(v− u, u) =
∫

R2
<

π̃(1, du, dv)1C(v− u, u). (22)

Therefore the DSRP theory leads to the following result.

Theorem 3. (Rykov (1984), [26]) C.d.f. V(R)(x, t) of VWT process for the GI/GI/1/∞ QS on a
separate RP is determined by the expression

V(R)(x, t) = (1− A(t))(1− B(x + t)) +

+
∫

u<t, v<t−u+x

U(dv, du)(1− A(t− u))(1− B(t− u + x− v)), (23)

where ERK satisfies the expression (22).

Analogous argumentation allow to calculate the distribution of an AWT process on a separate
RP. A little bit more complex argumentation that include ERT’s of the second level is used for
calculation of NoC distribution on a separate RP.

The above theorems proofs and detailed investigation of the GI|GI|1|∞ QS with the DSRPr’s
methods one can find in Rykov (1983, 1984) [25], [26].

In further two sections some recent applications of DSRP will be proposed.

7. Reliability of a double redundant renewable system

Consider a homogeneous cold double redundant repairable system with generally distributed
life- and repair times, which, according to modified Kendall’s notations [12], will be denoted as
< GI2/GI/1 >. The system consists of two identical units which can be in two possible states:
operational and failed. The system fails when both units are in a failed state. For the repairable
system, different strategies of renovation are possible. In this section we consider a strategy when
after the system failure it continues to operate in the previous regime, and after the repair of a
failed unit, it returns into the state one, where a new system cycle begins, where one unit starts
working while the other one being to repair (see figure 9).
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7.1. The problem setup: assumption and notations

Denote by Ai (i = 1, 2, . . . ) lifetimes of the system units, by Bi (i = 1, 2, . . . ), their repair times,
and suppose that all these r.v. are mutually independent and identically distributed for each
sequence. Thus, denote by A(t) = P{Ai ≤ t} and B(t) = P{Bi ≤ t} the corresponding c.d.f.
Suppose that the instantaneous failures and repairs are impossible and their mean times are finite:

A(0) = B(0) = 0, a =
∫ ∞

0
(1− A(x))dx < ∞, b =

∫ ∞

0
(1− B(x))dx < ∞,

and in the initial time t = 0 both units are in good state.
Denote by E = {i = 0, 1, 2} the set of system states, where i means the number of failed units,

and introduce a random process X = {X(t), t ≥ 0}, where

X(t) = number of failed units at time t.

Denote by F the time between system failures, and by by F1 the time to first system failure
(see Figure 9). Their c.d.f. are: F(t) = P{F ≤ t} and F1(t) = P{F1 ≤ t}. We are interesting in
calculation of:

• the reliability function R(t) = P{F > t] = 1− F(t);

• the distribution of the time to the first system failure F1(t);

• the system t.d.p. πj(t) = P{X(t) = j} (j = 0, 1, 2);

• the s.s.p. πj = lim
t→∞

πj(t) ≡ lim
t→∞

P{X(t) = j}, (j = 0, 1, 2);

• the availability coefficient Kav. = π0 + π1 = 1− π2.

The following notations will be used next:

• a modified LT:

ãB(s) =
∫ ∞

0
e−sxB(x)dA(x), b̃A(s) =

∫ ∞

0
e−sx A(x)dB(x); (24)

• the modified mean values:

aB = − d
ds

ãB(s)
∣∣
s=0 =

∫ ∞

0
xB(x)dA(x), bA = − d

ds
b̃A(s)

∣∣
s=0 =

∫ ∞

0
xA(x)dB(x); (25)

• the probabilities P{B ≤ A} and P{B ≥ A} associated with these transformations through
the relations:

p ≡ P{B ≤ A} = ãB(0), q = 1− p ≡ P{B > A} = b̃A(0).

Note the property of transformations (24)

ã1−B(s) = ã(s)− ãB(s), (26)

7.2. Reliability Function

Process X is a regenerative one. A trajectory of this process is illustrated on Figure 9. Here, F
means the time between system failures. The variable G specifies the length of a RP according
to a defined renovation policy. The following lemma holds for the LSTs of the time F between
failures and the time to the first failure F1.

Lemma 1. The LST f̃ (s) = E
[
e−sF] of the time F between failures and the LST f̃1(s) = E

[
e−sF1

]
of the time to the first failure F1 are of the form:

f̃ (s) =
ã(s)− ãB(s)

1− ãB(s)
, f̃1(s) = ã(s)

ã(s)− ãB(s)
1− ãB(s)

. (27)
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F

G

Figure 9: Trajectory of the process X.

Proof. From the Figure 9 can be seen that the system lifetime F satisfies the following stochastic
equation:

F =

{
A + F if B < A,
A if B > A.

(28)

Applying the LT to this equation and taking into account notations (24), one can obtain

f̃ (s) = E
[
e−sF

]
=

∞∫
0

e−stdF(t) = f̃ (s)ãB(s) + ã1−B(s). (29)

From here the first relation in of (27) follows. The second one directly follows from the stochastic
relation F1 = A + F. �

The main result of this subsection is the following theorem:

Theorem 4. The LT R̃(s) of the system reliability function R(t) = 1− F(t) is

R̃(s) =
1− ã(s)

s(1− ãB(s))
. (30)

Proof. Taking into account that the LT of any c.d.f. is connected with its LST by the relation
F̃(s) = s−1 f̃ (s), the proof follows directly from (27). �

The expected system life time between failures E[F] and mean time to the first failure E[F1]
are obtained in the form:

E[F] =
a
q

, E[F1] = a +
a
q

.

7.3. Time dependent system state probabilities

For calculation of the system state t.d.p.’s the renewal theory is used. In our case, the process X
is a RPr with a delay (see Figure 9) and its RT’s are

S0 = 0, S1 = A1, S2 = S1 + G1, . . . , Sk+1 = Sk + Gk, . . . .
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Here, RP’s Gi (i = 1, 2, . . . ) are the time intervals between two successive returns of the process
X into state 1 after a system failure, when one of the system units begins to operate and the other
one begins to repair. Thus, the process X state t.d.p.’s πj(t) = P{X(t) = j} (j = 0, 1, 2) can be

represented in terms of its distribution on a separate RP π
(1)
j (t) = P[X(t) = j, t < G] (j = 0, 1, 2)

and the renewal function H(t) as follows:

πi(t) = π
(1,1)
i (t) +

t∫
0

dH(u)π(1)
j (t− u). (31)

Here the distribution of the process X at the first RP is of the form

π
(1,1)
j (t) = P[X(t) = j, t < A1] = δj0(1− A(t)). (32)

In terms of the c.d.f. G(t) = P{Gi ≤ t} of r.v.’s Gi, the RF H(t) is determined as follows:

H(t) = ∑
k≥1

P

[(
∑

1≤i≤k
Gi

)
≤ t

]
= ∑

k≥1
G∗k(t). (33)

Consider, first of all, the RP distribution.

Lemma 2. The LST of the RP is of the form:

g̃(s) = E[e−sG] =
b̃A(s)

1− ãB(s)
. (34)

Proof. The RP is the time between two successive visits of the process to state 1 from the state
2, when two events begin simultaneously: operating of one unit and the repair the other one.
Figure 9 shows that r.v. G satisfies the following stochastic equation:

G =

{
A + G if A > B,
B if A ≤ B.

(35)

Applying LST to this stochastic equation leads to the equation

g̃(s) = E
[
e−sG

]
=

∞∫
0

e−stdG(t) =
∞∫

0

dA(x)
[

B(x)e−sx g̃(s) +
∫

y>x
e−sydB(y)

]
=

= g̃(s)
∞∫

0

e−sxB(x)dA(x) +
∫ ∞

0
e−sy A(y)dB(y) = g̃(s)ãB(s) + b̃A(s), (36)

which implies the expression (34) for the LST of the RP. �
By differentiation due to properties of ãB(0) and b̃A(0) one can obtain the mean length of the

RP as:
E[G] =

aB + bA
q

.

Lemma 3. The LST of the system RF is given by

h̃(s) =
b̃A(s)

1− (ãB(s) + b̃A(s))
. (37)

Proof. From the renewal theory, it is well known (and follows from (33)) that the LST of the
RF H(t) is defined as h̃(s) = g̃(s)(1− g̃(s))−1. Thus, substitution of the expression (34) for g̃(s)
into this one leads to (37). �
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Theorem 5. The LT’s π̃j(s) of the process X state t.d.p’s. πj(t) (j = 0, 1, 2) are of the form:

π̃j(s) = δj0
1− ã(s)

s
+

b̃a(s)
1− (ãB(s) + b̃A(s))

π̃
(1)
j (s), (j = 0, 1, 2), (38)

where π̃
(1)
j (s) (j = 0, 1, 2) are the LTs of the t.d.p.’s π

(1)
j (t) (j = 0, 1, 2) in a separate RP. These

probabilities will be calculated in he next subsection.

Proof. Applying LT to equation (31) and taking into account equation (32), one can obtain

π̃j(s) = δj0
1− ã(s)

s
+ h̃(s)π̃(1)

j (s). (39)

A substitution into this equality of the expression (37) for h̃(s) leads to (38). �

7.4. The state probabilities on a separate RP

Now, we calculate of the process state t.d.p.’s on a separate RP. The probability π
(1)
2 (t) can be

calculated easy for the main level RP.

Lemma 4. The LT of the second t.d.p. π
(1)
2 (t) in the main RP is given by

π̃
(1)
2 (s) =

ã(s)− (ãB(s) + b̃A(s))
s(1− ãB(s))

. (40)

Proof. Due to representation of the RP by formula (35), and as it is shown in Figure 9, the
event {X(t) = 2, t < G} occurs if and only if either the event {A1 ≤ t ≤ B1} occurs or the events
{t > u = A1 > B1} and {X(t− u) = 2, t− u < G} occur. Thus, it holds

π
(1)
2 (t) = P[J(t) = 2, t < G] = P[A ≤ t < B] +

t∫
0

dA(u)B(u)π(1)
2 (t− u).

From this equation it follows the LST

π̃
(1)
2 (s) =

∞∫
0

e−st A(t)(1− B(t))dt + ãB(s)π
(1)
2 (s),

and

π̃
(1)
2 (s) =

1
1− ãB(s)

∞∫
0

e−st A(t)(1− B(t))dt.

Calculating the integral in the last expressions by partial integration we get (40). �

Since the calculation of the probabilities π
(1)
j (j = 0, 1) is not a trivial task, we intend to apply

the theory of DSRP [6, 9, 10]. For this consider the process X as an ERPr at the time interval F,
which ERT’s are the random number ν = min{n : An < Bn} of time epochs

S(1)
1 = A11{A1>B1}, S(1)

2 = S(1)
1 + A21{A1>B1, A2>B2}, . . .

up to the time, when the event {An ≤ Bn} happens for first time. It means that the time interval
G(1) between ERT’s has a distribution G(1)(t) = A(t) and these epochs lie within the time interval
F, which is determined by the equation (28).

According to this theory, the process distribution within the basic RP (RP of the first level)
π
(1)
i (t), similar to the equation (31), can be presented in terms of distributions in ERP’s (RP’s of

the second level) π
(2)
j (t) and ERF H(1)(t) in the following way:
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π
(1)
j (t) = π

(2)
j (t) +

∞∫
0

dH(1)(u)π(2)
j (t− u), j = 0, 1, (41)

where
π
(2)
j (t) = P{X(t) = j, t < G(2)}, j = 0, 1

is the process t.d.p.’s on a separate RP of the second level, and the ERF H(1)(t) satisfies the
equation

H(1)(t) = A(t) +
t∫

0

dH(1)(u)A(t− u)− F(t), (42)

where F(t) is the CDF of the time between system failures determined by its LST (27).
Similar to the basic case, the solution of equations (41) and (42) can be represented in terms of

their LTs and LSTs:

π̃
(2)
j (s) =

∞∫
0

e−stπ
(2)
j (t)dt, h̃(1)(s) =

∞∫
0

e−stdH(1)(t).

The next lemma specifies connections between process distributions in the first and in the second
level regeneration cycles in terms of their LTs.

Lemma 5. The LT’s of the process t.d.p.’s of the first and in the second level RP’s satisfy the
relation

π̃
(1)
j (s) = π̃

(2)
j (s)

ãB(s)
1− ãB(s)

j = 0, 1. (43)

Proof. Applying LT to equation (41), we get

π̃
(1)
j (s) = (1 + h̃(1)(s))π̃(2)

j (s). (44)

Due to (42), the LST h̃(1)(s) of the embedded renewal function H(1)(t) is of the form

h̃(1)(s) = ã(s) + h̃(1)(s)ã(s)− f̃ (s),

which leads in turn to

h̃(1)(s) =
ã(s)− f̃ (s)

1− ã(s)
.

Substitution of this relation into equation (44) and taking into account the expressions for f̃ (s)
from (27) we get the result (40) that completes the proof. �

We have to calculate now only the π̃
(2)
j (s) (j = 0, 1).

Lemma 6. In notations (24), the LT’s of the second level system state probabilities are:

π̃
(2)
0 (s) =

1
s
(ã(s)− (ãB(s) + b̃A(s)));

π̃
(2)
1 (s) =

1
s
[1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))]. (45)

Proof. For probabilities π̃
(2)
j (t) (j = 0, 1) from Figure 9, it follows that

• The event {X(t) = 0, t < G(1) occurs if and only if {B ≤ t < A};

• The event {X(t) = 1, t < G(1)} occurs if and only if {t < B ≤ A}, or if {t < A ≤ B}.
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Hence, the respective probabilities are

π
(2)
0 (t) = P{B < t < A} = B(t)(1− A(t)),

π
(2)
1 (t) = P{t < B < A}+ P{t < A < B}. (46)

Calculation LT’s of these expressions by partial integration in terms of notations (24) leads to (45),
that ends the proof. The details of calculation one can find in [28]. �

By combining all these results in [28], the process t.d.p. have been found. They are too
cumbersome and are omitted here. We show here only the system s.s.p.’s. By using a Tauber
theorem

πj = lim
t→∞

πj(t) = lim
s→0

sπ̃j(s) (47)

in [28] for the process s.s.p.’s the following results have been obtained.

Theorem 6. The system state stationary probabilities are:

π0 = 1− b
aB + bA

, π1 =
a + b

aB + bA
− 1, π2 = 1− a

aB + bA
. (48)

For a Markov model < M2|M|1 >, when A(t) = 1 − e−αt, B(t) = 1 − e−βt this result
coincides with those calculated by direct approach using Birth and Death process for the Markov
case.

8. k-out-of-n system

In this section we apply the theory of DSRP to study of k-out-of-n : F model, which has
applications in many real-world phenomena. There are many papers devoted to investigations of
this model. A detailed review of previous investigations of the model one can find in [29]. Some
special applications of this model to engineering problems in oil and gs industry one can find
in [35] and [36].

8.1. Stating the problem. Notations

Consider k-out-of-n : F system, which can be considered as a reparable n-components reliability
system in parallel that fails when k of its components fail. It is supposed that the life times of the
systems’ components are i.i.d. r.v.’s with common exponential distribution of parameter α. Failed
components are repaired by a single facility. Repair times are i.i.d. r.v. Bi (i = 1, 2, . . . ) with the
common c.d.f. B(t) = P{Bi ≤ t}.

For the system study introduce the following notations:

• E = {0, 1, . . . k} is the system set of states, where j means number of failed components and
k is the system failure state;

• λi = (n− i)α intensity of one of components failure, when the system is in the state i;

• define the random process X = {X(t), t ≥ 0} by the relation

X(t) = j, if in time epoch t the system is in the state j ∈ E;

• system (and the process) t.d.s. probabilities πj(t) = P{X(t) = j};

• the process s.s.p. πj = lim
t→∞

P{X(t) = j};

• the time T to the system failure, T = inf{t : X(t) = k};

• reliability function R(t) = P{T > t}.
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For repairable k-out-of-n : F system there exist at least two possible scenarios of the system
repair after its fail:

• Partial repair regime, when after the system failure it continues to work in previous regime
and after the repair of repaired component it passes to the state k− 1;

• Full repair regime, when after the system failure the repair of whole system begins, after
which the system becomes as a new one, and comes to the state 0. After each system
failure the full repair duration are i.i.d. r.v. Gi (i = 1, 2, . . . ) with the common c.d.f.
G(t) = P{Gi ≤ t}.

Suppose that in the very beginning all system components are in good (UP) state, which
means that the initial state of the process is zero, X(0) = 0. It is also supposed that immediate
components failures and repairs are impossible and mean failure and repair times are finite,

B(0) = G(0) = 0,
∞∫

0

(1− B(t))dt < ∞,
∞∫

0

(1− G(t))dt < ∞. (49)

Further in the section the system t.d.p. πj(t), reliability function R(t), and the system s.s.p. πj
are calculated.

8.2. Partial repair regime.

Consider firstly partial repair regime, when after the system failure the repair of previously failed
component is continued and after its end the system goes to the state k− 1. In this case we will
consider the process X as a semi-regenerative one (see figure 10). Its regeneration times Sn of
the type j are the times of repair end when system occurs in state j, X(Sn + 0) = j, SRP’s are
Tn = Sn − Sn−1, and the RS’s is E1 = {j : (j = 0, k− 1)}.

( )J t
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1k 

k
...

...
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. . .

. . .

2S 3S *S
**S

0 0S 

Figure 10: Trajectory of the process J for system with partial repair

The SMP X behavior is determined by its SMM Q(t) = [Qij(t)]ij∈E1 with transition probabili-
ties

Qij(t) = P{X(Sn + 0) = j Tn ≤ t |X(Sn−1 + 0) = i}.
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For its calculation denote by

pij(t) =
(

n− i
j− i

)
(1− e−αt)j−ie−(n−j)αt

the probability that during time t the process passes from the state i to the state j. Let

Pik(t) = ∑
j≥k

pij(t) = 1− ∑
i≤j≤k−1

pij(t)

be the probability that starting from state i, the process leaves the subset of states E1 during time
t. Note that the last probability is the lifetime c.d.f. of the non-reparable k-out-of-n : F system
starting from the state i. To simplify further calculations, we represent these probabilities by
Newton’s binomial formula by using for simplicity the substitution λi = (n− i)α as

pij(t) =
(

n− i
j− i

)
e−λjt

j−i

∑
m=0

(−1)m
(

j− i
m

)
e−αmt. (50)

and

Pik(t) = 1− ∑
i≤j≤k−1

(
n− i
j− i

)
e−λjt

j−i

∑
m=0

(−1)m
(

j− i
m

)
e−αmt. (51)

Using these notations for the SMM in [29] the following lemma has been proved.

Lemma 7. The differentials of the process X SMMs components are:

Q0j(dt) =

t∫
0

λ0e−λ0u du p1j+1(t− u)B(dt− u), j = 0, k− 2;

Q0k−1(dt) =

t∫
0

λ0e−λ0u du P1k(t− u)B(dt− u);

Qij(dt) = pij+1(t)B(dt), (i = 1, k− 2, j = i− 1, k− 2);

Qik−1(dt) = Pik(t)B(dt). (52)

Their LST q̃ij(s) =
∫ ∞

0 e−stQij(dt) are:

q̃0j(s) =
λ0

s + λ0

(
n− 1

j

) j

∑
m=0

(−1)m
(

j
m

)
b̃(s + λj+1−m), j = 0, k− 2;

q̃0k−1(s) =
λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
b̃(s + λj−m);

q̃ij(s) =

(
n− i

j− i + 1

) j−i+1

∑
m=0

(−1)m
(

j− i + 1
m

)
b̃(s + λj+1−m);

q̃ik−1(s) = ∑
j≥k

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
b̃(s + λj−m), (53)

Remind now that the state t.d.p.’s of the process X are determined not only by its SMM but
also by the initial distribution~α(0) = {α(0)i : i ∈ E}. Thus, denoting by ~π(t) = {πj(t) : j ∈ E}
the vector of the process state probabilities, where

πj(t) = P{X(t) = j} (j ∈ E),

and by Π(t) = [πij(t)]ij∈E the probability transition matrix of the process X, where

πij(t) = P{X(t) = j |X(0) = i)} (i, j ∈ E)
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in matrix form it means that ~π(t) =~α(0)Π(t).
On the other side, according to the theory of SRPr, the process transition probabilities Π(t) in

terms of appropriate transition probabilities Π(1)(t) = [π
(1)
ij (t)]ij∈E where

π
(1)
ij (t) = P{X(Sn−1 + t) = j, t ≤ Tn |X(Sn−1 + 0) = i)} (i ∈ E1, j ∈ E)

are the transition probabilities on separate RP’s can be represented in the form

Π(t) = Π(1)(t) + H ? Π(1)(t). (54)

here the MRM H(t) =
[
Hij(t)

]
ij∈E1

with

Hij(t) = E

[
∑
n≥1

1{Sn≤t, J(Sn)=j} |X(0) = i

]

satisfies to the equations
H(t) = Q(t) + Q ? H(t). (55)

The above results show that the best way for the system state t.d.p. representation and the
equations for MRM solution is its representation in terms of LS and LST. Therefore passing to LT

Π̃(s) =
∞∫

0

e−stΠ(t)dt, Π̃(1)(s) =
∞∫

0

e−stΠ(1)(t)dt,

and LST

q̃(s) =
∞∫

0

e−stQ(dt), h̃(s) =
∞∫

0

e−st H(dt)

from equations (54) and (55) one can obtain the following results:

Π̃(s) = Π̃(1)(s) + h̃(s) · Π̃(1)(s) (56)

and
h̃(s) = q̃(s) + q̃(s) · h̃(s). (57)

At least the process t.d.p. on separate RP’s given in the following lemma (its proof can be
found in [29]):

Lemma 8. The process state t.d.p. on a separate SRP are:

π
(1)
00 (t) = e−λ0t;

π
(1)
0j (t) =

t∫
0

λ0e−λ0u p1j(t− u)(1− B(t− u))du (j = 1, k− 1);

π
(1)
0k (t) =

t∫
0

λ0e−λ0uP1k(t− u)(1− B(t− u))du;

π
(1)
ij (t) = pij(t)(1− B(t)) (1 ≤ i ≤ j ≤ k− 1);

π
(1)
ik (t) = Pik(t)(1− B(t)) (i = 1, k− 1). (58)
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Their LT π̃
(1)
ij (s) are:

π̃
(1)
00 (s) =

1
s + λ0

;

π̃
(1)
0j (s) =

λ0

s + λ0

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
1− b̃(s + λj−m)

s + λj−m
(j = 1, k− 1);

π̃
(1)
0k (s) =

λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
1− b̃(s + λj−m)

s + λj−m
;

π̃
(1)
ij (s) =

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
1− b̃(s + λj−m)

s + λj−m
, (1 ≤ i ≤ j ≤ k− 1);

π̃
(1)
ik (s) = ∑

j≥k

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
1− b̃(s + λj−m)

s + λj−m
. (59)

By joining the above results the following theorem follows

Theorem 7. The LT of the process X state t.d.p. in matrix form given by the equality

Π̃(s) = (I − q̃(s))−1Π̃(1)(s), (60)

where components π̃
(1)
ij (s) of the matrix Π̃(1)(s) are given by formulas (59) in lemma 8, and

components q̃l j(s) of matrix q̃(s) given by the formula (52) from lemma 7. �

The s.s.p.’s of the process could be calculated by passing to limits as t→ ∞ in the last equality.
But it would be preferable to use the limit theorem for transition probabilities of SRPr’s.

Theorem 8. The stationary regime of the considered system under partial repair regime exists
and its s.s.p.’s equal

πj =
1
m ∑

0≤l≤j∧(k−1)
αlπ̃

(1)
l j (0) (j = 0, k), (61)

where m = λ−1
0 (α0 + λ0b), π̃

(1)
ij (0) can be found from the formulas (59) of lemma 8, and

~α = {αl : l ∈ E} is the invariant probability measure of the embedded Markov chain that satisfies
the system of equations

~α′ =~α′ q̃(0), ∑
l∈E

αl = 1.

�

8.3. Full repair regime.

For study of the system behavior under the full repair regime we will consider the main process
X as a regenerative one, whose regeneration points of time Sn (n = 1, 2, . . . ), S0 = 0 are the times
when the system fully repaired after its failure. The regeneration periods Θn = Sn − Sn−1 of
the process X consist of two terms: the system life times (times to the system failure after its
repair) Fn and the system repair times after its failure Gn : Θn = Fn + Gn (see figure 11). Denote
by F(t) = P{Fn ≤ t} and Γ(t) = P{Θn ≤ t} the common distribution function of r.v.’s Fn and
Θn (n = 1, 2, . . . ).

From the RPr’s theory in sense of Smith it follows that the process t.d.p. πj(t) = P{X(t) = j}
can be represented in terms of corresponding process t.d.p. π

(Θ)
j (t) = P{X(t) = j, t < Θ} at

separate RP Θ as follows

πj(t) = π
(Θ)
j (t) +

t∫
0

π
(Θ)
j (t− u)H(du). (62)
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Figure 11: The main process as a regenerative one.

Here H(t) is the appropriate RF, which is generated by the distribution Γ(t) = P{Θn ≤ t} of r.v’s.
Θn, and can be calculated as

H(t) = ∑
n≥1

P{Sn ≤ t} = ∑
n≥1

Γ(∗n)(t). (63)

Its LST equals

h̃(s) =
∞∫

0

e−st H(dt) =
γ̃(s)

1− γ̃(s)
, (64)

where γ̃(s) is the LST of the c.d.f. Γ(t).
Thus, for the process analysis we need firstly to calculate the RP Θn distribution and the

process distribution π
(Θ)
j (t) on them. Remind that the r.v. Θn is the sum of two independent r.v.’s

Fn and Gn, the distributions of the second one is supposed to be known and the distribution of
the first one will be done jointly with its LST later in lemma 10 (see Corollary 1 from it).

Let us turn now to calculation of the process t.d.p.’s π
(Θ)
j (t) on a separate RP. The process

behavior on the separate RP’s Θn = Fn + Gn can be divided into two parts: as a process behavior
at separate system lifetime Fn and its behavior during the repair time Gn,

{X(Sn−1 + t) = j, t ≤ θn} =
{

X(Sn−1 + t) = j for t ≤ Fn (j 6= k),
k for Fn < t ≤ Θn.

(65)

Thus, the process t.d.p.’s on at a separate RP are given in the following lemma.

Lemma 9. The process state t.d.p.’s at the separate RP Θ in terms of according probabilities on
separate system life times F are

π
(Θ)
j (t) = (1− δjk)π

(F)
j (t) + δjkP{F ≤ t < Θ} (66)

and have LT

π̃
(Θ)
j (s) = (1− δjk)π̃

(F)
j (s) + δjk f̃ (s)

1− g̃(s)
s

. (67)
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Proof. The proof follows directly from the relation (65) and details can be found in[29]. �
The last equality shows that we need in the system lifetime F distribution and the process

distribution on it. For this, we turn to the process X analysis on separate system lifetime. Since
the process behavior on the system lifetimes Fn is rather complicated, the process X behavior
within any of them will be considered as an ESRP X(1)

n = {X(1)
n (t) : t ≥ 0} with

X(1)
n (t) = X(Sn−1 + t), t ≤ Fn.

Its ESRT S(1)
l of the type j are the times of any repair ends (inside a separate system lifetime Fn)

that find the system in state j. They are the same as for the SRP in the subsection 8.2 except the
fact that right now the process X(1)

n is considered on a separate system lifetime and therefore never
occurs in state k− 1 after the repair ends. Thus there are only k− 1 ERS’s, E(1) = {0, 1, . . . , k− 2}.

To study the process behavior on separate system lifetime denote by

• T(1)
l = S(1)

l − S(1)
l−1, l = 1, 2, . . . the intervals between ESRT’s of the ESRP X(1) (the times

between repair ends);

• Q(1)(t) = [Q(1)
ij (t)]ij∈E(1) ESMM, which components are the process transition probabilities

between ESRT,

Q(1)
ij (t) = P{X(1)(S(1)

l + 0) = j, T(1)
l ≤ t |X(1)(S(1)

l−1 + 0) = i};

• H(1)(t) = [H(1)
ij (t)]ij∈E(1) EMRM, which components are the conditional ERF’s on a separate

lifetime period

H(1)
ij (t) = E

[
∑
l≥1

1
{X(1)(S(1)

l +0)=j, S(1)
l ≤t}

|X(1)(S(1)
0 ) = i

]
.

We start with calculation of the ESMM Q(1)(t) = [Q(1)
ij (t)]ij∈E(1) of the ESRP X(1). For this

note that its components coincide with those from subsection 8.2 except the fact that now the
process X(1) never falls in state k− 1 after the repair end. Thus they are defined only for j ≤ k− 2
and in terms of notations (50, 51) are represented in differential forms in lemma 7 by formulas
(52, 53). Now, since the set of ERS’s is a proper subset of the process states, the ESMM is a
degenerative matrix in contrast to the matrix of the previous section. Hence, we are ready to
represent some useful characteristics of the model. Introduce:

• the vector-function ~F(dt) = [Fik(dt)], components of which are the differentials of the c.d.f.’s
of the absorbing state k destination time by the ESRP starting from state i (i = 0, k− 2);

• the vector-function ~Q(1)(t) = [Q(1)
ik (t)], components of which are differentials f the c.d.f.’s of

the absorbing state k destination time by the ESRPr starting from state i along a monotone
trajectory.

The components of the last one analogous to lemma 7, satisfy to the expressions

Q(1)
0k (dt) =

t∫
0

λ0e−λ0u du P1k(t− u)B(dt− u),

Q(1)
ik (dt) = Pik(t)B(dt). (68)

Their LST q̃(1)ij (s) are

q̃(1)0k (s) =
λ0

s + λ0
∑

j≥k−1

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
b̃(s + λj−m);

q̃(1)ik (s) = ∑
j≥k−1

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
b̃(s + λj−m). (69)
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For the vector ~F(t) the following representation holds.

Lemma 10. The vector ~F(t) satisfies to the equation

~F(dt) = ~Q(1)(dt) + Q(1) ? ~F(dt), (70)

whose unique solution in terms of LST is

~̃f (s) = (I − q̃(1)(s))−1~̃q(1)(s). (71)

Proof. The first equation is obtained with the help of the complete probability formula and its
solution in terms of LST is evident. �

From this lemma some useful corollaries follow.

Corollary 1. The first component F0k(t) of vector ~F(t) is c.d.f. of time to the first (and between)

failures for system starting from state 0. The first component f̃0k(s) of vector ~̃f (s) is the MGF of
the respective times. For simplicity we will denote them without indexes as it was done before
f̃ (s) ≡ f̃0k(s). �

Corollary 2. Since the process regeneration cycle Θ equals to the sum of two independent r.v.’s:
time to the system failure and its repair time its MGF is

τ(s) ≡ E
[
e−sΘ

]
= f̃ (s)g̃(s). (72)

�

Now the expression (64) leads to the following corollary.

Corollary 3. The LST h̃(s) of the RF H(t) of the system operating in the full repair regime equals
to

h̃(s) =
f̃ (s)g̃(s)

1− f̃ (s)g̃(s)
. (73)

�
Taking into account that

R(t) = 1− F(t) = 1−
t∫

0

f (u)du

one can obtain the following corollary

Corollary 4. The LT of the reliability function of the system is

R̃(s) =
1
s
(1− f̃ (s)). (74)

�

To study the process behavior during a separate system lifetime cycle we consider

• the matrix Π(F)(t) = [Π(F)
ij (t)]ij∈E(1) , which components are the transition probabilities of

the process on a separate life-cycle,

Π(F)
ij (t) = P{X(1)

n (t) = j, t < Fn |X(1)
n (0) = i};

• the matrix Π(1)(t) = [Π(1)
ij (t)]ij∈E(1) , which components are the transition probabilities of

the process on a separate ESRP (between successive repair ends),

Π(1)
ij (t) = P{X(1)

n (S(1)
l−1 + t) = j, t < T(1)

l |X(1)
n (S(1)

l−1 + 0) = i}.
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In terms of these notations and according to the DSRP theory the following representations
take place (symbol ? here means matrix-functional convolution)

Π(F)(t) = Π(1)(t) + H(1) ? Π(1)(t). (75)

In terms of the LT of matrices Π(F)(t), Π(1)(t) and LST of matrix H(1)(t) this equation take the
form

Π̃(F)(s) = Π̃(1)(s) + h̃(1)(s) · Π̃(1)(s). (76)

In our case
H(1)(dt) = Q(1)(dt) + Q(1) ∗ H(1)(dt),

and therefore
h̃(1)(s) = (I − q̃(1)(s))−1q̃(1)(s).

From here it follows

I + h̃(1)(s) = I + ∑
l≥1

q̃(1)∗l(s) = (I − q̃(1)(s))−1,

and
Π̃(F)(s) = Π̃(1)(s) + h̃(1)(s) · Π̃(1)(s) = (I − q̃(1)(s))−1 · Π̃(1)(s). (77)

The system state transition probabilities on a separate embedded repair time Π(1)(t) coincide
for the embedded set of states E(1) with the corresponding probabilities as in the section 8.2 and
represented in the formula (58) in lemma 8. The above results can be summing as follows.

Theorem 9. The LT π̃j(s) of the process X starting from the state zero state t.d.p.’s equals to

π̃j(s) =
1

1− f̃ (s)g̃(s)

{
π̃
(F)
j (s) for j = 1, k− 1,

f̃ (s) 1−g̃(s)
s for j = k,

(78)

where f̃ (s) is defined by the first component of the vector ~̃f (s) from corollary 1, which is
represented by formula (71). The LT of time-dependent process state probabilities on a separate
process lifetime period π̃

(F)
j (s) is the first row of matrix Π̃(F)(s), which can be calculated from

(76, 59).

Remark 1. Since any main RP begins with the state 0, for calculation of the process state t.d.p.’s
as well as s.s.p.’s we need only in probabilities with the initial zero state.

Remark 2. The representation of the final results in the initial system information in general are
too cumbersome and it needs additional study for concrete situations.

From this theorem by using the Smith’s key renewal theorem one can obtain the stationary
process probabilities.

Theorem 10. The s.s.p. πj of the process X, starting from any state, equals to

πj =
1

E[F] + E[G]

{
π̃
(F)
j (0) for j = 1, k− 1,

E[G] for j = k,
(79)

where E[F] = − f̃ ′(0) is the expected system lifetime. It can be found from the formula (71), and
the values π̃

(F)
j (0) are the components of first row of matrix Π̃(F)(0), which can be calculated

from (76, 59).
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9. Conclusion

A review of the Smith’s regeneration idea development is proposed in this paper. It is shown
that the DSRPr can be used as a useful method for study of different stochastic models. Several
previous and two recent results of application this method are demonstrated. For all considered
systems the state t.d.p.’s and the s.s.p.’s are represented in terms of respective probabilities on a
separate ERP. Some other applications for complex hierarchical system investigations can be find
in [30], [31], [32].

The proposed approach allows to obtain analytical expressions of main quality of service
characteristics for various complex stochastic models. Presence of analytical results allows to
propose more detailed analysis of such systems. Especially these results can be used for further
investigation of output systems characteristics sensitivity to the shape of the input distributions
that determine the system behavior. Some of these investigations can be found in series of our
papers. Review of these one can see for example in [33] and [34].
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