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Abstract

A single server classical queueing model with Markovian Arrival Process(MAP), phase-type(PH)
distributed service time and rest of the random variables are distributed exponentially is investigated. By
making use of matrix analytic method, the resultant QBD process is examined in the stationary state. The
practical applicability, objectives and the uniqueness of our model have been provided. The busy period
analysis has been done and the distribution function for the waiting time has also been obtained. Some
performance measures are enlisted. At last, some graphical and numerical exemplifications are furnished.
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I. Introduction

As far as the theory of point processes is concerned, the Markovian Arrival Process(MAP)
is one of the most adaptable modelling tools. With an objective to formulate the incoming
processes which may not be compulsorily renewal processes, a different thought notably, Versatile
Markovian Point Processes(VMPP) has been introduced by Neuts [20]. The new terminologies,
specifically Batch MAP and MAP had been coined by Lucantoni et al. [16] for the purpose of easy
understanding of VMPP. The concept of MAP has been extensively discussed by Chakravarthy
[3] in the “Encyclopaedia of Operations Research and Management Science". The parameter matrices
(D0, D1) characterizes the MAP and these matrices are of dimension m. In particular, the change
overs which are related to no arrivals are taken care by D0, whereas the change overs related to
arrivals are taken care by D1.

The generator matrix of the resultant CTMC is given as D = D0 + D1. The invariant probability
matrix of the MAP which is a particular style of semi-Markov process is as follows:∫ t

0
eD0xD1dx = [I − eD0t](−D0)

−1D1.

Suppose π indicates probability vector for the matrix D = D0 + D1 in the stable state with the
condition that πD = 0 and πe = 1. Then, λ = πD1em provides the average count of arrival for
each section of time in the steady state form of the MAP and is named as the fundamental rate.
The PH-distributions and QBD process have been intensively examined by Latouche et al. [13].

The two researchers who have discussed about different types of vacations namely, single
and multiple for a queueing model are Levy and Yechiali [14]. Keilson and Servi [10] have
initiated the notion of Bernoulli vacation. A queueing system with multi-server, exponentially
distributed vacation times had been examined by Levy and Yechiali [15]. By making use of one of
the analysing techniques namely, the partial generating function, the size of the system had been
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computed by them. Takács [24] was the first who introduced the concept of Bernoulli feedback.
He has derived distribution for queue size for a stationary process.

Chakravarthy and Agnihothri [4] have analysed a non-Markovian queueing system in which
service times are PH-distributed with back up server. The phase type nature of the duration of
time in which the server is busy and the sojourn time(system and queue) have been shown by
them. A cost model has also been developed by them for the purpose of finding the amicable
threshold values. Chang et al. [5] have done an analysis of non-Markovian system where the
arrivals come in groups with setup times and finite buffer by employing embedded Markov-chain
technique. They have also derived the stationary distributions for the length of the waiting line at
various instants.

Rajadurai et al. [23] have studied a non-Markovian retrial model where arrivals occur in
groups with unreliable server, two stages of service and vacation. The probability generating
function for the system size at different states have been obtained by them. Jain et al. [7] have
examined the non-Markovian system where arrivals come in groups with breakdown, feedback
and setup. By employing supplementary variable technique, they have established invariant
distribution function of the queue length. They have also determined the staying time in the
waiting line.

A Markovian queueing system with single server, feedback, vacation and impatient customers
has been examined by Marichamy et al. [19]. They have employed probability generating
function technique to study the invariant probability distribution. A multiserver Markovian
retrial queueing system with impatient customers has been examined by Luh et al. [17] by using
Matrix-Analytic Method. They have provided an analytic solution for their model. They have
also employed eigen vector approach for analyzing their system.

Rakesh Kumar et al. [11] have done an analysis in transient and steady state for a queueing
model with balking, reneging and two heterogeneous servers. They have provided various
performance measures and have discussed about some particular cases. Bouchentouf et al. [2]
have done an economic analysis of a batch arrival multiserver Markovian queueing model with
feedback, multiple vacation and impatient customers. They have derived the steady state solution
by using probability generating functions. A Markovian queueing system with multiserver and
impatient customers along with the provision of additional removable servers has been examined
by Jain et al. [6]. They have obtained equilibrium queue size distribution by employing recursive
approach.

Ke et al. [9] have investigated the multiserver Markovian retrial system with balking and
vacation. By using the Matrix-Geometric Method, the formulae for evaluating invariant probabili-
ties and rate matrix have been derived by them. They have constructed cost function and have
performed optimization tasks by employing various numerical methods. Rakesh Kumar et al. [12]
have done a transient analysis of a queueing model with correlated inputs and reneging. They
have studied the model with the aid of Runge-Kutta method. Bouchentouf et al. [1] have analysed
a model with single server, feedback, multiple vacation and balking. They have obtained steady
state probabilities and have developed the model for cost analysis. A non-Markovian retrial
model with feedback, Bernoulli vacation and unreliable server has been investigated by Pavai
Madheswari et al. [18]. The ergodicity condition for their model has been obtained by them. They
have also obtained joint distribution function for various states of the server, system and orbit
size. We have utilized the matrix-analytic method for our discussion and it has been introduced
by Neuts[21]. The logarithmic reduction algorithm has been utilized to compute the rate matrix
and it was described by Latouche et al. [13].

Consider a nationalized bank which has more than one serving counter. We may consider
any one of those counters. Suppose the server in the counter deals with money transaction in the
following ways(phases).

• Demand Draft(DD)

• Challan

• withdrawal/deposit forms
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Figure 1: Schematic representation of our model

The arriving customer may demand money transaction in any of these ways. At the time of
customer’s entry, suppose the server is available, then the customer get the service at once.
Otherwise, the customer joins the waiting line. Before each transaction, the server will perform
some preparatory work(like refreshing the computer, selecting respective computer page for
different modes of transaction, etc.). After offering the service, the server can either go for
vacation(like attending telephone calls, cross checking the transaction amount, discussing with
the adjacent servers, etc.) or may continue to serve the subsequent customers. Similarly, after
receiving service, if the customer is not satisfied(like incorrect beneficiary name in the demand
draft, deposited/withdrawn extra amount, etc.,), then the customer joins the queue to get the
service again. Otherwise, they exit the bank permanently. During the busy period, the server
may experience breakdown(like loss of internet connection, internal technical errors, virus attack
to the system, etc.). After being repaired, the server will start to provide service to the customer
who faced service interruption and is waiting in the anterior end of the queue. In the course
of breakdown period, the customer in the queue may depart that particular counter(reneging).
Moreover, in the course of vacation period of the server, the incoming customer may balk that
particular counter. Our model has been formulated so that it will be on a par with the above
circumstance.

The rest of our work is organized as follows: the description of our system is provided in
Section II. Section III is devoted to the mathematical formulation of our model. The invariant
analysis of our model has been presented in Section IV. The analysis of the active period of our
system has been done in Section V. The analysis of the sojourn period of our model has been
done in Section VI. Section VII contains a few performance measures of the system. Finally, in
Section VIII, some illustrative examples are furnished via., tabular and graphical work.
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II. Model Description

A queueing system with single server where the customers reach the system as specified by
the MAP whose parameters matrices of dimension n are D0 and D1 has been considered. The
duration of the service offered by the server is considered to be PH-distributed with notation (α, T)
which is of order m, where T0 + Te = 0. At the end of providing service, the server may choose
to undergo vacation with p1 as its probability or commence service to the succeeding customer
with q1 as its probability, where p1 + q1 = 1. The server always choose to avail vacation provided
the system size is zero. The setup process begins at the completion of vacation period with the
constraint that there must be a minimum of single customer in the space for the customer’s to
wait. Or else, the server carry on with his vacation upto a minimal of single customer waiting in
the system for service while coming back from vacation. After the completion of setup process,
the server commences service to the customer. Similarly, to the end of service completion, suppose
a customer is fulfilled, he exits the service station forever with p2 as its probability. Otherwise, the
customer joins the anterior part of the waiting line with q2 as its probability to acquire the service
afresh. During the busy period, the server may get breakdown. As a result, the customer who is
obtaining service at that time has to join the anterior end of the waiting line. At the completion of
repair process, the server commences service to the customer, if any in the waiting line. Or else,
the server undergoes vacation. During the customer’s arrival, if the server is in vacation, then the
customer may balk the system with b as its probability. Further, in the course of breakdown period
of the server, the customer in the waiting line may renege due to their impatience. The vacation
times, setup times, breakdown times, repair times and the reneging times are all supposed to
follow exponential distribution with parameters η, τ, σ, δ abd r respectively.

III. The Generator Matrix

In this section, the generator matrix of the system under study is constructed. Our work starts
with the definition of the desired successive notations.

Notations:

∗ N(t): Size of the system at epoch t

∗ In: n× n identity matrix

∗ 0: The zero matrix of needed dimension

∗ er: r× 1 vector with all its entities to be 1

∗ e=e3n+mn

∗ e1=e2n

∗ e1(1): 2n× 1 vector in which initial n entries are 1 and rest of the entries are zero

∗ e2(2): 2n× 1 vector with n + 1 to 2n entries to be 1 and leftover entries to be zero

∗ e(1): (3n + mn)× 1 vector with first n entries to be 1 and leftover entries to be zero

∗ e(2): (3n + mn)× 1 vector with n + 1 to 2n entries to be 1 and leftover entries to be zero

∗ e(3): (3n + mn)× 1 vector with 2n + 1 to 2n + mn entries to be 1 and leftover entries to be
zero

∗ e(4): (3n +mn)× 1 vector with 2n +mn + 1 to 3n +mn entries to be 1 and rest of the entries
to be zero

∗ ⊗: Symbol for Kronecker multiplication
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∗ ⊕: Symbol for Kronecker addition

∗ Y(t) - Server’s nature at instant t,
where

Y(t) =


0, server undergoes vacation

1, server is in setup process

2, server is offering service

3, server is in breakdown

∗ S(t): Service phase of the server at epoch t

∗ M(t): Phase of the MAP at epoch t

∗ λ: Fundamental rate of arrival and is mentioned by λ = ßD1e in which ß is the probability
vector of the matrix D = D0 + D1 in the steady state

∗ γ: The rate at which the server offers service, where γ = [α(−T)−1e]−1

Clearly, {(N(t),Y(t),S(t),M(t)): t ≥ 0} is a Continuous Time Markov Chain (CTMC) with suc-
ceeding state space:

Ω = U(0) ∪
⋃
j≥1

U(j)

where

U(0) = {(0, 0, k) : 1 ≤ k ≤ n} ∪ {(0, 3, k) : 1 ≤ k ≤ n}

and

U(j) = {(j, i, k) : i = 0, 1; 1 ≤ k ≤ n} ∪ {(j, 2, l, k) : 1 ≤ l ≤ m, 1 ≤ k ≤ n}
∪ {(j, 3, k) : 1 ≤ k ≤ n}

The generator matrix of our Markov chain is as below:

Q =



B00 B01 0 0 0 0 0 · · ·
B10 C1 C0 0 0 0 0 · · ·
0 C2 C1 C0 0 0 0 · · ·
0 0 C2 C1 C0 0 0 · · ·
0 0 0 C2 C1 C0 0 · · ·

· · · · · · · · · . . . . . . . . . · · · · · ·


where

B00 =

[
D0 + bD1 0

δIn D0 − δIn

]
, B01 =

[
(1− b)D1 0 0 0

0 0 0 D1

]
,

B10 =


0 0
0 0

p2T0 ⊗ In 0
0 rIn

 , C2 =


0 0 0 0
0 0 0 0

p1 p2T0 ⊗ In 0 q1 p2T0α⊗ In 0
0 0 0 rIn

 ,

C0 =


(1− b)D1 0 0 0

0 D1 0 0
0 0 Im ⊗ D1 0
0 0 0 D1

 ,

C1 =


D0 − η In + bD1 η In 0 0

0 D0 − τ In α⊗ τ In 0
p1q2T0 ⊗ In 0 (q1q2T0α + T)⊕ (D0 − σIn) em ⊗ σIn

0 0 α⊗ δIn D0 − (r + δ)In

 .
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IV. System Analysis

I. Stability Condition

Define C = C0 + C1 + C2 which results that C is a generator matrix and hence, we could compute
it’s invariant vector which is indicated by Ψ and it abides

ΨC = 0; Ψe = 1

where Ψ = (ψ0, ψ1, ψ2, ψ3).
The vector Ψ, partitioned as Ψ = (ψ0, ψ1, ψ2, ψ3) is determined by solving the successive equations:

ψ0[D− η In] + ψ2[p1T0 ⊗ In] = 0,

ψ0[η In] + ψ1[D− τ In] = 0,

ψ1[α⊗ τ In] + ψ2[(q1T0α + T)⊕ (D− σIn)] + ψ3[α⊗ δIn] = 0,

ψ2[em ⊗ σIn)] + ψ3[D− δIn] = 0

subject to

ψ0en + ψ1en + ψ2emn + ψ3en = 1.

The necessary and sufficient condition stablility is ΨA0e < ΨA2e
i.e.,

ψ0[(1− b)D1en] + ψ1[D1en] + ψ2[em ⊗ D1en] + ψ3[D1en] < ψ2[p2T0 ⊗ en] + ψ3[ren].

II. The Invariant Probability Vector

In the steady state, let the probability vector of the generator Q be specified by x and it is of
infinitesimal dimension.
This probability vector is further subdivided in the following fashion: x = (x0, x1, x2, ...), where
the dimension of x0 and xi are 2n and 3n + mn respectively, for i ≥ 1.
Since x is an invariant vector of Q, the subsequent constraints will be abide by it:

xQ = 0, xe = 1.

Once the stableness is attained, the steady-state probability vector x may be determined by solving
the subsequent equations.

xi+1 = x1Ri, i ≥ 1

where R is the least non-negative solution of the equation

R2C2 + RC1 + C0 = 0

and the remaining vectors namely, x0 and x1 can be determined by solving the subsequent
equations:

x0B00 + x1B10 = 0,

x0B01 + x1[C1 + RC2] = 0

with the normalizing condition

x0e2n + x1[I − R]−1e3n+mn = 1.

The rate matrix R may be computed by using “Logarithmic Reduction Algorithm" given by
Latouche et al. [13].
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V. Busy Period Analysis

The time duration between the advent of the customer to the system no customers and the epoch
at which the system size becomes zero for the first time is defined as the active period. Thus, the
first passage time from level 1 to 0 and the active period are the same.

Likewise, the first return time to level 0 with minimum one visit to a state in any other level
may be defined as the busy cycle. Initially, the idea of the fundamental period is proposed to
analyze the active period. The first passage time from the level i to i− 1,(i ≥ 2) may be defined as
the fundamental period for the QBD process. A distinct argumentation has to be carried out for
the boundary states viz., i = 0, and 1.

NOTATIONS:

∗ Gjj′(k, x) - The probability of the QBD process entering the level i − 1 by performing
precisely k changeovers to the left and also by entering the state (i, j′) with the constraint
that it started in the state (i, j) at instant t = 0.

∗ G̃jj′(z, s) = ∑∞
k=1 zk ∫ ∞

0 e−sxdGjj′(k, x) : |z| ≤ 1, Re(s) ≥ 0

∗ G̃(z, s)− The matrix (G̃jj′(z, s))

∗ G = (Gjj′) = G̃(1, 0)- The matrix which takes care of the first passage times for the states
other than the boundary state.

∗ G(1,0)
jj′ (k, x) - The probability of the QBD process get into the level 0 by doing exactly k

change overs to the left with the condition that it commenced in the level 1 at instant t = 0.

∗ G(0,0)
jj′ (k, x) - The first return time to the level 0.

∗ E1j, E2j - The expected first passage time and the expected number of customers who
acquired service in the interval of first passage time between the levels i and i− 1 respectively,
with the constraint that the process is in the state (i, j) at the instant t = 0.

∗ ~E1, ~E2 - The column vectors with E1j and E2j as their entries respectively.

∗ ~E
(1,0)
1 , ~E(1,0)

2 - The vectors providing the expected first passage time from level 1 to level 0
and the expected number of service completion in that interval respectively.

∗ ~E
(0,0)
1 , ~E(0,0)

2 - The vectors providing the expected first return time to level 0 and the expected
number of service completion in that interval respectively.

It is evident that the matrix G̃(z, s) abides the subsequent equation:

G̃(z, s) = z[sI − A1]
−1 A2 + [sI − A1]

−1 A0G̃2(z, s)

If the rate matrix R is obtained, the determination of the matrix G may be done by utilizing the
successive result

“G = −[A1 + RA2]
−1 A2”.

Likewise, the matrix G may be determined by using the logarithmic reduction algorithm(Latouche
et al. [13]).

The succeeding equations which are fulfilled by G̃(1,0)(z, s) and G̃(0,0)(z, s) are for the boundary
states viz., 1 and 0 respectively.

G̃(1,0)(z, s) = z[sI − A1]
−1B10 + [sI − A1]

−1 A0G̃(z, s)G̃(1,0)(z, s)

G̃(0,0)(z, s) = [sI − B00]
−1B01G̃(1,0)(z, s).
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Since the matrices G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are all stochastic, the subsequent moments may
be readily computed. At z = 1 and s = 0,

~E1 = − ∂

∂s
{G̃(z, s)} = −[A0(G + I) + A1]

−1e,

~E2 =
∂

∂z
{G̃(z, s)} = −[A0(G + I) + A1]

−1 A2e,

~E1
(1,0)

= − ∂

∂s
{G̃(1,0)(z, s)} = −[A1 + A0G]−1[A0 ~E1 + e],

~E2
(1,0)

=
∂

∂z
{G̃(1,0)(z, s)} = −[A1 + A0G]−1[B10e + A0 ~E2],

~E1
(0,0)

= − ∂

∂s
{G̃(0,0)(z, s)} = −B−1

00 [e + B01 ~E1
(1,0)

],

~E2
(0,0)

=
∂

∂z
{G̃(0,0)(z, s)} = −B−1

00 B01 ~E2
(1,0)

.

VI. Waiting time analysis

With the aid of analysis of first passage time, the distribution function for the waiting time of an
arriving customer has been derived in this section.

Let W(t), where t ≥ 0 be a vector of dimension 1× m which indicates the waiting time
distribution of an arriving tagged customer in the queue. While taking a multi-server model with
Bernoulli vacation under study, we could see that W(0+) = 0, because each arriving customer has
to hold up for the completion of either vacation period or service period. Let (∗) ∪ {0, 1, 2, · · · }
indicates the state space of an absorbing CTMC. The service for the arriving tagged customer will
commence from their arrival into the absorbing state (∗). For this absorbing Markov chain, the
transition matrix is as follows:

Q̃ =



0 0 0 0 0 0 · · ·
H0 F0 0 0 0 0 · · ·
H1 F10 F 0 0 0 · · ·
0 0 F2 F 0 0 · · ·
0 0 0 F2 F 0 · · ·
0 0 0 0 F2 F · · ·

· · · · · · · · · . . . . . . . . . · · ·


where

H0 =

[
η
δ

]
, F0 =

[
−η 0
0 −δ

]
, H1 =


0
0

q1 p2T0

0

 , F10 =


0 0
0 0

p1 p2T0 0
0 r

 ,

F =


−η η 0 0
0 −τ τα 0

p1q2T0 0 q1q2T0α + T − σIm σem
0 0 δα −(δ + r)

 , F2 =


0 0 0 0
0 0 0 0

p1 p2T0 0 q1 p2T0α 0
0 0 0 r

 .

With an objective to derive the arriving tagged customer’s waiting time distribution W(t), where
(t ≥ 0), we begin with the process of finding the system size probability vector in the steady state
at the arrival instant and it is indicated by z(0) = (z0(0), z1(0), z2(0), ...). As the arrival process
obeys the Markovian property, the system size probability vector in the steady state at the arrival
epoch is as follows:

z0(0) = x0[I2 ⊗
D1en

λ
, ]
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zi(0) = xi[I3+m ⊗
D1en

λ
], for i ≥ 1

where λ indicates the fundamental arrival rate of the MAP.
Define z(t) = (z∗(t), z0(t), z1(t), · · · ),
where
zi(t), i ≥ 1 - 1× (3 + m) vector,
z0(t) - a 1× 2 vector
and their components provide the probability of the CTMC whose generator matrix is Q̃ being
in the respective state of level i at epoch t. Since z∗(t) specifies the probability of the tagged
customer being in the absorbing state at epoch t, we get W(t) = z∗(t), where t ≥ 0.
The differential equation ź(t) = z(t)Q̃, where t ≥ 0 reduces to

ź∗(t) = z1(t)H1

ź0(t) = z0(t)F0 + z1(t)F10

źi(t) = zi(t)F + zi+1(t)F2, i ≥ 1

where ´ specifies the derivative with respect to t.
Let us compute the Laplace Stieltjes Transform(LST) for W(t) with the aid of technique indi-

cated by Neuts et al. [21]. By commencing the process at the state i with zi(0), i ≥ 1 as initial
probability vector, the row vector ω(s) specifies the LST of the first passage time to level 1. As
indicated in [21], we get,

ω(s) =
∞

∑
i=1

zi(0)[(sI − F)−1F2]
i−1. (1)

Let the LST of the absorbing time to the state (∗) with the constraint that the process commences
at level i = 0, 1, 2 be specified by φ(i, s). Just as in [21], we have

φ(0, s) = [sI − F0]
−1H0, (2)

φ(1, s) = [sI − F]−1F10φ(0, s) + [sI − F]−1H1. (3)

Thus, we may simply observe that the LST for the distribution of waiting time is as below:

W̄(s) = z0(0) φ(0, s) + ω(s) φ(1, s). (4)

I. Average waiting time

The average waiting time is provided as

EW = −z0(0)φ́(0, 0)− ώ(0)e3+m −ω(0)φ́(1, 0)em. (5)

The expected time to enter into the absorbing state (∗) given that the system is in the level i = 0
is provided by the foremost term of the preceding equation. In the same way, if the system is in
level i ≥ 1, then the mean time for accessing the state (∗) is provided by the end two terms of the
preceding equation.
By differentiating (2) and (3), and setting s = 0, we obtain,

φ́(0, 0) = (−1)[−F0]
−2H0, (6)

φ́(1, 0) = (−1)[−F]−2F10φ(0, 0) + [−F]−1F10φ́(0, 0)− [−F]−2H1. (7)

With the help of (6) along with the vector z(0) = (z0(0), z1(0), z2(0), · · · ), we may readily compute
the first term of (5). From (1), we get

ω(0) =
∞

∑
i=1

zi(0)Vi−1, (8)
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where V = [−F]−1F2. Since the matrix V is stochastic, we get

ω(0)e3+m = 1− z0(0)e2. (9)

With the help of (7) and (9) along with the vector z(0) = (z0(0), z1(0), z2(0), · · · ), we may readily
compute the final term of (5).
By differentiating (1) and making s = 0, we get

ώ(0) = (−1)
∞

∑
i=1

z1+i(0)
i−1

∑
j=0

V j[−F]−1Vi−j. (10)

As V is stochastic, we get

(−1)ώ(0)e3+m = (−1)
∞

∑
i=1

z1+i(0)
i−1

∑
j=0

V j[−F]−1e3+m. (11)

With the help of the method mentioned in Kao et al. [8]. and Neuts et al. [22], let us evaluate
the value of (−1)ώ(0)e3+m. We begin with the construction of a matrix V2 which is such that
V2 is stochastic, generalized inverse of I −V and I −V + V2 is non-singular. The matrix V2 can
be assumed to be V2 = e1+m1+m2+m1m2 v0 in which v0 is the stationary probability vector of V.
Further, with the help of the property VV2 = V2V = V2, we have

i−1

∑
j=0

V j(I −V + V2) = I −Vi + iV2, for i ≥ 1. (12)

By using (14) in (13), we obtain,

(−1)ώ(0)e3+m = {x1[I − R]−1[I3+m ⊗
D1en

λ
]−ω(0) + x1R[I − R]−2[I3+m ⊗

D1en

λ
]V2}

× [I −V + V2]
−1[−F]−1e3+m. (13)

Hence, all the terms of (5) have been found out and so we may readily obtain the average period
of waiting.

VII. Performance Measures

∗ Probability of server is on vacation:

Pvacation = x0e1(1) + x1(I − R)−1 e(1)

∗ Probability of server is in setup process:

Psetup = x1(I − R)−1e(2)

∗ Probability of server is busy:

Pbusy = x1(I − R)−1e(3)

∗ Probability of server is in breakdown:

Pbreakdown = x0e1(2) + x1(I − R)−1e(4)

∗ The mean system:

Esystem = x1(I − R)−2e

∗ The mean system size when the server is undergoing vacation:

Ev = x1(I − R)−2e(1)
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∗ Expected system size during setup process:

Es = x1(I − R)−2e(2)

∗ Average system size when the server is busy:

Eb = x1(I − R)−2e(3)

∗ Expected system size during breakdown:

Ebd = x1(I − R)−2e(4)

VIII. Numerical Illustrations

The comprehensive aim of this section is to explore the performance of our system through
numerical and graphical exemplifications. For the arrival patterns, we took the following
distinctive MAP representations so that their mean is 1, and Chakravarthy [3] suggested these
values.

Erlang of order 2-(A-Erl):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]

Exponential-(A-Exp):

D0 =
[
−1
]

, D1 =
[
1
]

Hyperexponential-(A-Hyp-Exp):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
It is evident that they have zero correlation because of the renewal character of these three arrival
processes.

MAP - Negative Correlation-(A-MAP-NC):

D0 =

−1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 , D1 =

 0 0 0
0.01002 0 0.99220
223.4925 0 2.2575


The successive PH - distributions have been taken for service times suggested by Chakravarthy
[3] as well.

Erlang of order 2-(S-Erl):

α = (1, 0), T =

[
−2 2
0 −2

]

Exponential-(S-Exp):

α = (1), T =
[
−1
]
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Hyperexponential-(S-Hyp-Exp):

α = (0.8, 0.2), T =

[
−2.8 0

0 −0.28

]

Illustration 1

From the Tables 1-4, we study the impact of the repair rate δ against the probability of server
being busy. Fix λ = 1, γ = 6, σ = 3, η = 6, τ = 5, r = 1, b = 0.6, p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5, q1 = 0.5.
For 1 - limited vacation(1-Lv): p1 = 1, q1 = 0.
From Tables 1-4, we derive the succeeding observations.

∗ As the repair rate(δ) maximizes, the probability of server being busy also increases for
distinct feasible groupings of service and arrival times.

∗ While correlating the tabulated values for distinct arrival patterns, the probability of server
being busy maximizes more rapidly for A-Hyp-Exp and gradually for A-MAP-NC. In the
same way, the probability of server being busy increases gradually for S-Hyp-Exp and
rapidly for S-Erl.

∗ Also, the probability of server being busy maximizes slowly for Bv and quickly for 1-Lv for
distinct arrangements of arrival and service patterns.

Illustration 2

From the Tables 5-8, we study the impact of the service rate γ on the expected waiting time(EW).
We fix λ = 1, δ = 1, σ = 3, η = 6, τ = 5, r = 1, b = 0.6, p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5; q1 = 0.5.
For 1 - limited vacation(1-Lv): p1 = 1; q1 = 0.
From Tables 5-8, we get the subsequent interpretation.

∗ While raising the service rate, EW minimizes for distinct possible combinations of service
and arrival patterns.

∗ While correlating the values of distinct arrival patterns, EW decreases more quickly in
the case of A-Hyp-Exp whereas slowly for A-Erl. Similarly, EW decreases gradually for
S-Hyp-Exp and more quickly in the case of S-Erl.

∗ Further, the average waiting time decreases rapidly for 1-Lv and slowly in the case of Bv.

Illustration 3

From the 2D graphs 2-13, we view the effect of the vacation rate η on average system size (Esystem).
Fix λ = 1, δ = 1, σ = 3, γ = 6, τ = 5, r = 1, b = 0.6, p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5, q1 = 0.5.
For 1 - limited vacation(1 - Lv): p1 = 1, q1 = 0.

From Figures 2-13, we could see that while raising the vacation rate (η), the rate of decrement
of Esystem is high in the case of A-Hyp-Exp and low for A-Erl. Also, it is high in the case of S-Erl
and low in the case of S-Hyp-Exp. Further, we may view that Esystem decreases quickly in the
case of 1 - Lv and slowly in the case of Bv.
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Table 1: Repair rate vs. Probability of server being busy - A-Exp

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.16152 0.17895 0.18126 0.20038 0.10756 0.11959
3.0 0.17270 0.19495 0.19591 0.22133 0.11197 0.12588
4.0 0.17896 0.20409 0.20422 0.23354 0.11437 0.12930
5.0 0.18299 0.21001 0.20961 0.24155 0.11589 0.13147
6.0 0.18581 0.21417 0.21340 0.24721 0.11695 0.13296
7.0 0.18791 0.21725 0.21622 0.25142 0.11773 0.13406

Illustration 4

From the 2D graphs 14-25, we study the impact of the breakdown rate(σ) on the mean period of
waiting(EW). Fix λ = 1, δ = 1, η = 6, γ = 6, τ = 5, r = 1, b = 0.6,
p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5, q1 = 0.5.
For 1 - limited vacation(1 - Lv): p1 = 1, q1 = 0.

From Figures 14-25, we may view that while raising the breakdown rate (σ), the speed of
increment of EW is maximum for A-Hyp-Exp and minimum for A-Erl. Also, it is high in the case
of S-Erl and low in the case of S-Hyp-Exp. Further, we may view that EW increases quickly in the
case of 1 - Lv and slowly in the case of Bv.

Illustration 5:

From the 3D graphs 26-37, we analyse the impact of the setup rate (τ) and the rate of service pro-
vided by the server(γ) on the probability of server is availing vacation(Pvacation). Fix λ = 1, δ = 1,
η = 6, σ = 3, r = 1, b = 0.6, p1 = 0.5, q1 = 0.5, p2 = 0.5, q2 = 0.5.

A quick view of Figures 26-37 reveals the fact that Pvacation increases while maximizing both
the setup rate and the rate of service offered by the server for various arrangement of arrival and
service patterns. Further, it maximizes rapidly for A-MAP-NC and gradually for A-Hyp-Exp. In
the same way, the rate of increment is high for S-Erl and low for S-Hyp-Exp.

Illustration 6:

From the 3D graphs 38-49, we observe the consequences of the customer’s reneging rate(r) and
the server’s vacation rate(η) on the Average system size(Esystem). Fix λ = 1, δ = 1, γ = 6,
σ = 3, τ = 5, b = 0.6, p1 = 0.5, q1 = 0.5, p2 = 0.5, q2 = 0.5 .

A quick view of Figures 38-49 reveals the point that Esystem reduces while maximizing both
the reneging rate and the vacation rate of the customer and the server respectively for distinct
groupings of arrival and service times. Further, it minimizes quickly for A-Hyp-Exp and slowly
for A-Erl. In the same way, the rate of decrement of Esystem is high in the case of S-Erl and low in
the case of S-Hyp-Exp.
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Table 2: Repair rate vs. Probability of server being busy - A-Erl

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.15626 0.17639 0.17582 0.19840 0.103440 0.11650
3.0 0.16632 0.19163 0.18908 0.21864 0.107370 0.12228
4.0 0.17192 0.20028 0.19653 0.23038 0.109510 0.12541
5.0 0.17552 0.20587 0.20135 0.23805 0.110870 0.12739
6.0 0.17805 0.20978 0.20474 0.24347 0.111830 0.12876
7.0 0.17993 0.21269 0.20727 0.24750 0.112530 0.12977

Table 3: Repair rate vs. Probability of server being busy - A-Hyp-Exp

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.18240 0.18781 0.20235 0.20704 0.12405 0.13085
3.0 0.19805 0.20641 0.22252 0.23028 0.13007 0.13901
4.0 0.20676 0.21714 0.23403 0.24396 0.13318 0.14345
5.0 0.21229 0.22412 0.24145 0.25296 0.13506 0.14625
6.0 0.21610 0.22902 0.24664 0.25934 0.13632 0.14817
7.0 0.21890 0.23265 0.25046 0.26410 0.13723 0.14957

Table 4: Repair rate vs. Probability of server being busy - A-MAP-NC

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.15122 0.17400 0.17037 0.19642 0.099946 0.11412
3.0 0.16029 0.18861 0.18240 0.21606 0.103440 0.11950
4.0 0.16540 0.19691 0.18923 0.22745 0.105400 0.12244
5.0 0.16873 0.20229 0.19369 0.23490 0.106680 0.12432
6.0 0.17110 0.20607 0.19685 0.24017 0.107590 0.12563
7.0 0.17287 0.20887 0.19922 0.24409 0.108280 0.12659
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Table 5: Service rate vs. Average waiting time-A-Exp

SERVICE

γ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 2.4993 8.3702 2.9533 11.000 1.4773 4.0849
8.0 2.0203 6.1915 2.3009 7.4783 1.2958 3.4923
9.0 1.7030 4.9497 1.8916 5.7077 1.1625 3.0774
10.0 1.4788 4.1511 1.6132 4.6482 1.06040 2.7703
11.0 1.3129 3.5965 1.4130 3.9461 0.97959 2.5337
12.0 1.1857 3.1900 1.2627 3.4485 0.91410 2.3457

Table 6: Service rate vs. Average waiting time-A-Erl

SERVICE

γ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 1.87310 6.2099 2.20200 8.1571 1.12500 3.0281
8.0 1.51780 4.5819 1.71990 5.5304 0.98996 2.5852
9.0 1.28300 3.6557 1.41810 4.2119 0.89072 2.2755

10.0 1.11750 3.0610 1.21320 3.4243 0.81472 2.0465
11.0 0.99508 2.6488 1.06610 2.9033 0.75462 1.8703
12.0 0.90133 2.3471 0.95583 2.5346 0.70591 1.7305

Table 7: Service rate vs. Average waiting time-A-Hyp-Exp

SERVICE

γ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 7.0763 25.198 8.5479 33.276 3.8226 12.076
8.0 5.5843 18.612 6.5041 22.603 3.2673 10.278
9.0 4.5926 14.841 5.2154 17.213 2.8615 9.0147

10.0 3.8918 12.403 4.3372 13.972 2.5526 8.0765
11.0 3.3742 10.703 3.7059 11.814 2.3102 7.3514
12.0 2.9785 9.4514 3.2334 10.279 2.1151 6.7739

Table 8: Service rate vs. Average waiting time-A-MAP-NC

SERVICE

γ S-Exp S-Erl S-Hyp-Exp
Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 2.4453 8.3500 2.8876 11.014 1.45970 4.0420
8.0 1.9814 6.1528 2.2527 7.4498 1.28680 3.4530
9.0 1.6761 4.9065 1.8574 5.6667 1.16010 3.0422
10.0 1.4616 4.1086 1.5902 4.6048 1.06330 2.7393
11.0 1.3035 3.5567 1.3989 3.9042 0.98690 2.5066
12.0 1.1826 3.1538 1.2559 3.4097 0.92503 2.3221
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Figure 2: Vacation rate vs. Esystem - M/M/1
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Figure 3: Vacation rate vs. Esystem - M/Ek/1

6 8 10 12

2

3

4

5

Vacaation rate (η)

E s
ys

te
m

Bv
1 - Lv

Figure 4: Vacation rate vs. Esystem - M/Hk/1
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Figure 5: Vacation rate vs. Esystem - EK/M/1
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Figure 6: Vacation rate vs. Esystem - Ek/Ek/1
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Figure 7: Vacation rate vs. Esystem - Ek/Hk/1
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Figure 8: Vacation rate vs. Esystem - Hk/M/1
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Figure 9: Vacation rate vs. Esystem - Hk/Ek/1
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Figure 10: Vacation rate vs. Esystem - Hk/Hk/1
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Figure 11: Vacation rate vs. Esystem - MAP-NC/M/1

6 8 10 12

5

10

15

20

Vacation rate (η)

E s
ys

te
m

Bv
1 - Lv

Figure 12: Vacation rate vs. Esystem - MAP-NC/Ek/1
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Figure 13: Vacation rate vs. Esystem - MAP-NC/Hk/1
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Figure 14: Breakdown rate vs. Mean period of waiting - M/M/1
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Figure 15: Breakdown rate vs. Mean period of waiting - M/Ek/1
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Figure 16: Breakdown rate vs. Mean period of waiting - M/Hk/1
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Figure 17: Breakdown rate vs. Mean period of waiting - Ek/M/1
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Figure 18: Breakdown rate vs. Mean period of waiting - Ek/Ek/1
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Figure 19: Breakdown rate vs. Mean period of waiting - Ek/Hk/1
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Figure 20: Breakdown rate vs. Mean period of waiting - Hk/M/1
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Figure 21: Breakdown rate vs. Mean period of waiting - Hk/Ek/1
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Figure 22: Breakdown rate vs. Mean period of waiting - Hk/Hk/1
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Figure 23: Breakdown rate vs. Mean period of waiting - MAP-NC/M/1
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Figure 24: Breakdown rate vs. Mean period of waiting - MAP-NC/Ek/1
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Figure 25: Breakdown rate vs. Mean period of waiting - MAP-NC/Hk/1
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Figure 26: (Setup and Service rate of the Server) vs. Pvacation
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Figure 27: (Setup and Service rate of the Server) vs. Pvacation
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Figure 28: (Setup and Service rate of the Server) vs. Pvacation
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Figure 29: (Setup and Service rate of the Server) vs. Pvacation
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Figure 30: (Setup and Service rate of the Server) vs. Pvacation
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Figure 31: (Setup and Service rate of the Server) vs. Pvacation
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Figure 32: (Setup and Service rate of the Server) vs. Pvacation
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Figure 33: (Setup and Service rate of the Server) vs. Pvacation
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Figure 34: (Setup and Service rate of the Server) vs. Pvacation
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Figure 35: (Setup and Service rate of the Server) vs. Pvacation
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Figure 36: (Setup and Service rate of the Server) vs. Pvacation
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Figure 37: (Setup and Service rate of the Server) vs. Pvacation
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Figure 38: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 39: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 40: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 41: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 42: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 43: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 44: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 45: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 46: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 47: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 48: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 49: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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IX. Conclusion

Our article deals with a classical queueing model with MAP arrival, single server, PH-service
together with vacation, setup time, breakdown, repair, feedback, balking and reneging. The
stability condition for our system has been obtained. In addition, the active period of model under
study has been explored. The consequences of the vacation rate(η) and the breakdown rate(σ)
upon average size of the system and expected waiting time respectively for two different types of
vacation, namely 1-limited and Bernoulli vacation have been visualized with the aid of 2D graphs.
Further, the impact of both the setup(τ) and service rate(γ) of the server upon probability that
the server is undergoing vacation has been pictured with the support of 3D graphs. Also, the
consequences of both reneging rate(r) and vacation rate (η) on the average size of the system has
been pictured with the support of 3D graphs. In addition, one can perform the cost analysis for
our model and can also extend the work by considering BMAP for arrival process.
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