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Abstract 

 

Many software reliability growth models (SRGMs) have been introduced since 1970s. Most of the 

models consider that the faults are independent and debugging method is perfect. In this paper, 

we present a new SRGM under the assumption that the faults are mutually dependent i.e. 

repairing a detected fault may introduce new faults or it may simultaneously correct some future 

faults without any additional effort. The model is validated on two real datasets that are widely 

used in many studies to demonstrate its applicability. The comparisons with eight established 

models in terms of Mean Square Error (MSE), Variance, Predictive Ratio Risk (PRR) and R2 

have been presented. 

 

Keywords: Software Reliability, SRGM, Software Testing, Debugging, Fault 

Prediction, Project Management. 

 

 

I. Introduction 
 

Today we are very much dependent on software systems in many facets of our life. The demand of 

highly reliable software has rapidly increased. Software development is a time consuming and 

intensive job that involves many people, process and technology. Thus software systems are error 

prone. Reliability is an end-user quality feature related to the system-usage. Software reliability 

can be defined as the probability that no failure occurs up to a specified time interval. Unlike 

hardware, it is not possible to measure or quantify software reliability directly. With the help of 

probabilistic and statistical methods, different approaches have been developed for measuring 

software reliability. However, use of software reliability growth models (SRGMs) is a popular and 

traditional way to describe the failure patterns and predict the reliability. The SRGMs are 

represented in abstract forms that include many parameters based on certain assumptions. In the 

last four decades, a sufficient number of SRGMs have been suggested at regular intervals [1][2]. 

They are broadly divided into two groups: times between failure models and fault count models 

[3][4]. The models that recognize MTBF (mean time between failures) as input are referred to as 

times between failures models and the models that use failure rate are referred to as fault count 

models. Examples of some times between failure models are The Jelinski-Mornada de-

eutrophication model (in short J-M model), Littlewood-Verral model etc. The J-M model, known as 

one of the earliest models, assumes that the failure rate is constant between failures and reduces in 

fixed step-size following the repair of each fault [5]. The Littlewood-Verral model which is an 
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updated version of the J-M model considers that the times between failures follow an exponential 

distribution [6]. Most of the SRGMs fall under the category of fault count models such as follows. 

Goel-Okumoto model (or G-O model) is a Non Homogeneous Poisson process (NHPP) with an 

exponentially decaying rate function [7]. Musa Okumoto model represents the cumulative number 

of failures over time in terms of a logarithmic function [8]. Yamada et. al. proposed the delayed S-

Shaped model to describe the increase-decrease failure rate pattern considering the learning 

process of the testers’ skills [9]. Ohba suggested the Inflection S-shaped model with the concept of 

mutual fault dependency (i.e. some faults are discoverable only after the detection of some specific 

faults) [10]. Yamada et. al. [11] also suggested a two variant Imperfect Debugging Model by 

modifying G-O model that incorporates the linear fault introduction rate. H.Pham et. al. suggested 

PNZ model by considering fault introduction rate is a linear function of testing time [12] and PZ 

model by considering fault introduction rate is an exponential function of testing time [13]. Recent 

studies in reliability modelling include different approaches of machine learning techniques or 

deal with the issue of uncertainties due to random operating environment. Jaiswal and Malhotra 

[14] tested different ML techniques for software reliability prediction on different datasets 

collected from industrial projects and compared the results. They concluded that adaptive neuro 

fuzzy inference system (ANFIS) is the most effective method compared to others in predicting 

software reliability. Chang et. al. [15] proposed a testing-coverage model considering the 

uncertainty of operating environment. Pham [16] discussed two NHPP models with and without 

considering the uncertainty factor based on a log-log distribution function. 

 

Till date, near about 200 software reliability growth models have been suggested [4] and most 

of them are based on the assumption that the faults are independent. This assumption is not true in 

real testing environment. The paper presents a model that considers the issue of dependent faults. 

 

II. Proposed Model 
 

A generalized failure intensity function of a software reliability growth model under the 

assumption that the fault detection rate is proportional to the number of remaining faults is given 

by [17]: 

dm(t)

dt
= b(t)[a − m(t)]                                                               (1) 

where, 

▪ m(t) :  The mean value function  (Expected number of faults detected by time t). 

▪ a : Total expected number of faults that exist in the system. 

▪ b(t) : Time dependent fault detection rate per fault. 

 

In practice, it is seen that faults are dependent. Sometimes repairing one fault introduces new 

faults. Sometimes repairing one fault removes some future faults without any extra effort. 

Therefore, number of fault detections differs with the number of fault removals. Let us consider 

that p is the fault removal rate per detected fault. Therefore, number of faults removed at time t is 

pm(t) and number of remaining faults will be (a − pm(t)). From (1), we can write,  

    
dm(t)

dt
= b(t)[a − pm(t)]                where, p>0;                      (2) 

If p<1 then it means imperfect debugging with high fault introduction rate. If p>1then it 

indicates the one to many mapping between fault detection and fault removal. P =1 represents 

perfect debugging with one to one mapping. The solution of eqn. (2) for the mean value function 

m(t) with the initial condition m(0) = 0, is given by: 
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m(t) = 
a

p
(1 − e−p ∫ b(t)dt

t
0 )                                                          (3) 

We also assume that the fault detection rate per fault will increase with time. Initially the 

testing team takes time to understand the behavior of the system; hence, fault detection rate is 

relatively slow. As testing progresses the team gradually becomes familiar with the system leading 

to higher fault detection rate. In this paper, we consider the following function of b(t): 

b(t) = b(1+ct)                                                                         (4) 

c -is a parameter that reflects the change in fault detection rate with time and b is a constant. 

Replacing the value of (4) in eqn. (3), 

m(t) = 
a

p
(1 − e−pb(t+ct2/2))                                                              (5) 

This is the mean value function of the proposed model. Now we can derive the failure 

intensity function from (5),   

 (t) =  
dm(t)

dt
 = ab(ct + 1)e−pb(t+

ct2

2
))                                                     (6)   

 

III. Analysis of the Model 

 
We evaluate the performance of the proposed model on two different datasets (DS1 and DS2) and 

compare the results with the following eight existing models (Table 1). 

 

Table 1. Software Reliability Models 

Model m(t) 

Goel-Okumoto Model [7] a(1−e−bt) 

Delayed S-Shaped [9] a(1−(1 + bt)e−bt) 

Inflection S-shaped [10] 
a(1 − e−bt)

1 + βe−bt
 

Yamada Imperfect Model-1 [11] 
ab

α + b
(eαt − e−bt) 

Yamada Imperfect Model-2 [11] a(1 − e−bt) (1 −
α

b
) + αat 

P-N-Z Model [12] 
a(1 − e−bt) (1 −

α

b
) + αat

1 + βe−bt
 

Testing Coverage Model [15] N (1 − (
β

β + (at)b
)

α

) 

Loglog Fault-detection Rate Model [16] N(1−e−(atb
−1) ) 

Proposed Model 
a

p
(1 − e−pb(t+ct2/2)) 

 

A. Comparison Criteria 
 

None of the SRGMs is reliable to get accurate results in all circumstances and thus be selected a 

priori. It is necessary to compare multiple models and then select the one that match the failure 

data most accurately. There are many standard criteria known as “Goodness of Fit” criteria 

available for model comparison and selection [18-20]. In this study, we have used the following 

four criteria. 

▪ MSE: The mean square error (MSE) is a calculation of how far the estimated values vary 

from the actual observations, and is defined as [18][19]: 
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MSE =  
∑ (mi − m(ti))2n

i=1

n − k
 

▪ Variance: The variance is the standard deviation of the differences between actual and 

predicted data. It is defined as [18][19]: 

Variance = √
∑ (mi − m(ti) − Bias)2n

i=1

n − 1
               

where, Bias =
∑ (m(ti) − mi)

n
i=1

n
 

▪ PRR: The predictive-ratio risk (PRR) measures the per estimate model deviation from the 

actual data and is defined as [18][19]: 

PRR = ∑ (
(m(ti) − mi)

m(ti)
)

2n

i=1

 

▪ R2: It measures how well a model fits the data. It is also known as the “coefficient of 

determination” and defined as [18][19]: 

R2 = 1 −
∑ (mi − m(ti))2n

i=1

∑ (mi − ∑
mj

n

n
j=1 )n

i=1

2 

The smaller values of MSE, Variance, PRR and AIC criteria indicate fewer numbers of fitting 

errors and better performance [20] whereas the value of R2 is expected to be 1 for an ideal model.  

 

B. Dataset Description 
 

The basic approach of the SRGMs is to predict the future faults by analyzing the past failure data. 

The performance of an SRGM greatly depends on the type of datasets. We consider two datasets 

from Tandem Technical Report-96.1 [21][22] in our experiment. The Tandem report contains four 

failure datasets related to the four different releases of Tandem Computer Project. Table 2 presents 

a failure dataset (DS1) of release 1 having 100 software faults collected over the 20 weeks of testing 

and the 10000 hours of execution. Table 3 provides the dataset (DS2) of Release 4 having 42 faults 

collected over the 19 weeks of testing and the 11305 hours CPU execution. 

Table 2. DS1: Tandem computers failure data − Release 1 

Test Week CPU hrs Cumulative Faults Test Week CPU hrs Cumulative Faults 

1 519 16 11 6539 81 

2 968 24 12 7083 86 

3 1430 27 13 7487 90 

4 1893 33 14 7846 93 

5 2490 41 15 8205 96 

6 3058 49 16 8564 98 

7 3625 54 17 8923 99 

8 4422 58 18 9282 100 

9 5218 69 19 9641 100 

10 5823 75 20 10000 100 

 
 

Table 3. DS2: Tandem computers failure data − Release 4 
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Test Week CPU hrs Cumulative Faults Test Week CPU hrs Cumulative Faults 

1 254 1 11 7621 32 

2 788 3 12 8783 32 

3 1054 8 13 9604 36 

4 1393 9 14 10064 38 

5 2216 11 15 10560 39 

6 2880 16 16 11008 39 

7 3593 19 17 11237 41 

8 4281 25 18 11243 42 

9 5180 27 19 11305 42 

10 6003 29 - - - 

 

C. Parameter Estimation 
 

The parameters of all the 9-models mentioned in Table 1, have been estimated using the least 

square estimation (LSE) technique and time weeks. The resultant values of the parameters have 

been provided in Table 4 for the datasets DS-1 and DS-2 respectively. 

Table 4. Parameter Estimation using LSE 

Model DS1 DS2 

Goel-Okumoto a = 130.2, b = 0.083 a = 89.63, b = 0.037 

Delayed S-Shaped a = 104, b = 0.265 a = 47.23, b = 0.207 

Inflection S-shaped a =110.829, b =0.172, β =1.205 a =43.36, b =0.279, β = 6.459 

Yamada Imperfect Model-1 a =130.2, b =0.083, 𝛼 =4.25*10-4 a =87.94, b =0.037, 𝛼= 0.0001 

Yamada Imperfect Model-2 a =130.2, b =0.083, 𝛼 =1.283*10-4 a =87.69, b =0.038, 𝛼=0.0001 

P-N-Z Model a =116.324, b = 0.14, 𝛼 = 0.001,      

β = 0.787 

a =31.44, b = 0.353, α= 0.023,   β 

= 7.275 

Testing Coverage Model  N = 119.205, a = 13.798*10-3,         

b = 1.111, α = 65.069, β = 7.337 

N = 44.398, a = 0.04, b =1.672, 

α = 25.908, β = 5.356 

Loglog Fault-detection Model N =105.109, a =1.095, b = 0.947 N = 48.72, a = 1.051, b = 1.237 

Proposed Model a = 100.926, b = 0.087, p = 0.937,    

c = 0.092 

a = 41.598, b = 0.027, p = 0.967, 

c = 0.659 

 

D. Results and Comparison 
 

The criteria values (MSE, Variance, PRR and R2) of all the models have been provided in Table 5 

and 6. For both the datasets, the proposed model provides highest R2, lowest Variance and PRR 

and second lowest MSE values. The findings clearly indicate that the proposed model fits better 

than many existing models studied in the paper. Figure 1 and 2 display two curves representing 

the deviation of the measured faults according to the proposed model from the actual observed 

faults for DS-1 and DS-2 respectively. 

 

Table 5. Model Comparison for DS1 
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Model MSE Variance PRR R2 

Goel-Okumoto 12.915 3.511 0.203 0.986 

Delayed S-Shaped 28.065 5.772 1.084 0.969 

Inflection S-shaped 10.564 3.177 0.305 0.989 

Yamada Imperfect Model-1 13.787 3.514 0.204 0.986 

Yamada Imperfect Model-2 13.688 3.504 0.203 0.986 

P-N-Z Model 12.662 3.315 0.277 0.988 

Testing Coverage Model 14.577 3.445 0.3 0.987 

Loglog Fault-detection Rate Model 8.437 2.861 0.238 0.991 

Proposed Model 10.688 3.064 0.295 0.990 

Table 6. Model Comparison for DS2 

Model MSE Variance PRR R2 

Goel-Okumoto 5.1 2.527 6.726 0.976 

Delayed S-Shaped 1.095 1.017 0.126 0.995 

Inflection S-shaped 1.117 0.999 0.8 0.995 

Yamada Imperfect Model-1 5.380 2.222 6.324 0.976 

Yamada Imperfect Model-2 5.410 2.519 6.816 0.976 

Testing Coverage Model 1.50 1.340 0.111 0.995 

Loglog Fault-detection Rate Model 3.75 1.951 5.235 0.983 

P-N-Z Model 1.086 0.973 0.424 0.995 

Proposed Model 1.150 0.983 0.340 0.995 

 

 

 
 

Figure 1: Expected faults vs. observed faults for DS1 

 

 

 

0

20

40

60

80

100

120

0 5 10 15 20

Observed Faults

Expected Faults

227



 
M.A. Haque and N. Ahmad 
AN SRGM CONSIDERING MUTUAL FAULT DEPENDENCY 

RT&A, No 2(62) 
Volume 16, June 2021  

 

Figure 2: Expected faults vs. observed faults for DS2 

 

IV. Conclusion 
 

The paper presents a new software reliability growth model addressing the issue of mapping 

between fault detection and fault removal processes. The proposed model incorporates a time 

dependent fault detection rate function. The model has been tested with two actual failure datasets 

and compared with eight established models using four different criteria. The results are very 

promising. However, there are some scopes for possible improvements. We only tested the model 

with two datasets, which is insufficient to claim any superiority about the model performance. 

Moreover, the datasets are relatively old. Future work will focus on broader validation of the 

proposed model based on more recent datasets considering different comparison criteria. 
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