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Abstract

Early failures are generally observed due to latent defects within a product caused by faulty components,
faulty assembly, transportation damage and installation damage. Also early life (infant mortality) failures
tend to exhibit a decreasing failure rate over time. Such type of problems can be modelled either by
a complex distribution having more than one parameter or by finite mixture of some distribution. In
this article a single parameter continuous compounded distribution is proposed to model such type of
problems. Some important properties of the proposed distribution such as distribution function, survival
function, hazard function and cumulative hazard function, entropies, stochastic ordering are derived.
The maximum likelihood estimate of the parameter is obtained which is not in closed form, thus iteration
procedure is used to obtain the estimate of parameter. The moments of the proposed distribution does
not exist. Some real data sets are used to see the performance of proposed distribution with comparison
of some other competent distributions of decreasing hazard using Likelihood, AIC, AICc, BIC and KS
statistics.

Keywords: Entropy, Hazard function, KS, MLE, Order Statistics, Quantile function.

I. Introduction

Normal, exponential, gamma and weibull distributions are the basic distributions that demon-
strated in a number of theoretical results in the distributions theory. Particularly, exponential
distribution is an invariable example for a number of theoretical concepts in reliability studies.
It is characterized as constant hazard rate. In case of necessity for an increasing/decreasing
failure rate model ordinarily the choice falls on weibull distribution. Lindley distribution is an
increasing hazard rate distribution and has its own importance as a life testing distribution. The
lindley distribution is one parameter distribution that is a mixture of exponential and gamma
distributions and was proposed by Lindley [16]. The lindley distribution is used to explain the
lifetime phenomenon such as engineering, biology, medicine, ecology and finance. Ghitany et al.
[10]. Lindley distribution has generated little attention in excess of the exponential distribution
because of its decreasing mean residual life function and increasing hazard rate however expo-
nential distribution has constant mean residual life function and hazard rate.
Adamidis & Loukas [1] introduced a two-parameter exponential-geometric distribution with
decreasing hazard rate and Barreto-Souza et al. [5] introduced a decreasing failure rate model,
compounding exponential and poisson-lindley distribution (EPL) and the probability density
function is given as

fepl(x; β, θ) =
βθ2(1 + θ)2e−βx

(1 + 3θ + θ2)

(3 + θ − e−βx)

(1 + θ − e−βx)3 ; x > 0, β > 0, θ > 0 (1)

230

mailto:utpal.statmath@gmail.com


Brijesh P. Singh, Utpal Dhar Das & Sandeep Singh
A Compounded Probability Model for Decreasing Hazard..

RT&A, No 2 (62)
Volume 16, June 2021

Another idea was proposed by Kuş [15] and Tahmasbi & Rezaei [27]. They introduced the
exponential Poisson (EP) and exponential logarithmic (EL) distributions and the pdf is given by

fep(x; β, λ) =
λβ

1− e−λ
e−λ−βx+λe−βx

; x > 0, β > 0, λ > 0 (2)

fel(x; β, p) =
1

− log p
β(1− p)e−βx

1− (1− p)e−βx ; x > 0, β > 0, p ∈ (0, 1) (3)

Chahkandi & Ganjali [8] introduced a class of distributions, which is exponential power series
distributions (EPS), where compounding procedure follows the same way that was previously
given by Adamidis & Loukas [1]. Weibull [29] a Swedish mathematician describe the weibull
distribution that is usefull for increasing as well as decresing hazard and the pdf is defined as

fw(x; β, α) = αβαxα−1e−βx; x > 0, β > 0, α > 0 (4)

Natural mixing of exponential populations, giving rise to a decreasing hazard rate distribution,
were first introduce by Proschan [23]. Subsequently other distributions with decreasing hazard
rates of practical interest were discussed by Cozzolino [7]. The distributions with decreasing
failure rate (DFR) are discussed in the works of Lomax [18], Barlow et al. [4], Barlow & Marshall
[2, 3], Marshall & Proschan [19], Dahiya & Gurland [9], Saunders & Myhre [25], Nassar [21],
Gleser [12], Gurland & Sethuraman [13]. Keeping these ideas in view, in this study, an attempt
has been made to develop a new lifetime distribution by compounding exponential and lindley
distribution and named as compounded exponential-lindley (CEL) distribution. The distributional
properties, estimation of parameters, Fisher information, entropies, stochastic ordering, quantile
function, order statistics and simulation study for the proposed distribution have been discussed
in detail.

II. Proposed Distribution

Let X1, X2, ..., Xn be a random sample from following exponential distribution with scale parame-
ter λ > 0 and the probability density function (pdf) is in the form

f (x|λ) = λe−λx; x > 0, λ > 0 (5)

The parameter λ > 0 of the above distribution takes continuous value and hazard of the
distribution is constant. Now we assume the parameter λ is a random variable follows lindley
distribution with pdf given as

φ(λ; θ) =
θ2

(θ + 1)
(1 + λ)e−θλ; θ > 0, λ > 0 (6)

Now the pdf of the proposed distribution CEL is given by

g(x; θ) =

∞∫
0

f (x|λ)φ(λ; θ)dλ =
θ2

(θ + 1)

∞∫
0

(λ + λ2)e−λ(x+θ)dλ

=
θ2

(θ + 1)
(x + θ + 2)
(x + θ)3 ; x > 0, θ > 0 (7)
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Figure 1: Probability density function of CEL distribution

and the cumulative distribution function (cdf) of CEL is obtained as

G(x; θ) =
x [x(θ + 1) + θ(θ + 2)]

(θ + 1)(x + θ)2 ; x > 0, θ > 0 (8)
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Figure 2: Cumulative distribution function of CEL distribution

From the figure 1 and 2, it is clear that the distribution is early failure distribution for smaller
value of θ. The survival or reliability function S(x) of CEL having pdf (7), is given as

S(x) =
θ2(x + θ + 1)
(θ + 1)(x + θ)2 (9)
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Figure 3: Survival function of CEL distribution
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The hazard function is defined as

h(x) =
g(x)

1− G(x)
=

g(x)
S(x)

=
(x + θ + 2)

(x + θ)(x + θ + 1)
(10)
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Figure 4: Hazard rate function of CEL distribution

According to Glaser [11], g(t) is density function, g′(t) is the first order derivative and
η(t) = − g′(t)

g(t) . If η′(t) > 0 ∀ t > 0, then the distribution has increasing failure rate (IFR) and if
η′(t) < 0 ∀ t > 0, then the distribution has decreasing failure rate (DFR). For the proposed
CEL distribution

η(t) =
2t + 3θ + 3

(t + θ)(t + θ + 2)
(11)

Differentiating η(t) with respect to t we get

η′(t) = − 2
(t + θ)(t + θ + 2)

− 4
(t + θ)2(t + θ + 2)

− 2(θ − 1)
(t + θ)(t + θ + 2)2

− 2(θ − 1)

[(t + θ)(t + θ + 2)]2
(12)

Now from the equation (12) we have η′(t) < 0 for all t > 0, hence distribution has DFR. Also the
hazard function of the CEL distribution is

h(x) =
(x + θ + 2)

(x + θ)(x + θ + 1)
=

2
(x + θ)

− 1
(x + θ + 1)

After differentiating (10) with respect to x we get

h′(x) = − 2
(x + θ)2 +

1
(x + θ + 1)2

lim
x→0

h′(x) = − 2
θ2 +

1
(θ + 1)2 < 0 ∀ θ > 0 (13)

Therefore h′(0) < 0 ∀ θ > 0, Hence CEL distribution is a distribution of monotonic decreasing
hazard with increasing time.
Now Cumulative hazard function H(t) is defined as

H(t) =
t∫

0

h(x)dx = log

[(
θ + 1

t + θ + 1

)(
t + θ

θ

)2
]

(14)
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Theorem 1. The moments of the CEL(θ) distribution does not exists.

Proof: Suppose the random variable X comes from CEL(θ) then the rth moment is given by

E(Xr) =

∞∫
0

xrg(x)dx =
θ2

θ + 1

∞∫
0

xr x + θ + 2
(x + θ)3 dx

Now

1
θ + 1

∞∫
0

xr(
1 + x

θ

)2 dx +
2

θ(θ + 1)

∞∫
0

xr(
1 + x

θ

)3 dx

Let x
θ = z; dx = θdz; x → 0, z→ 0, and x → ∞, z→ ∞ above integral become

θr+1

θ + 1

∞∫
0

zr

(1 + z)2 dz +
2θr+1

θ(θ + 1)

∞∫
0

zr

(1 + z)3 dz

using Beta integral of second kind i.e
∞∫
0

xm−1

(1+x)m+n dx = B(m, n) ; m > 0; n > 0, we get

E(Xr) =
θr+1

θ + 1
B(r + 1, 1− r) +

2θr+1

θ(θ + 1)
B(r + 1, 2− r)

=
θr+1

θ + 1

[
B(r + 1, 1− r) +

2
θ

B(r + 1, 2− r)
]

(15)

Here range is −1 < r < 1. But range of r should be r ≥ 1. Hence E(Xr) does not exists. Therefore
mean, variance, SD as well as higher order moments does not edxists for CEL(θ).

Theorem 2. The moment generating function of CEL(θ) does not exists.

Proof: Let X be the random variable from NWEL(θ) distribution then the moment generating
function (mgf) is given by

E(etx) =

∞∫
0

etxg(x)dx =
θ2

θ + 1

∞∫
0

etx x + θ + 2
(x + θ)3 dx

=
θ2

θ + 1

 ∞∫
0

etx

(x + θ)2 dx +

∞∫
0

2etx

(x + θ)3 dx

 (16)

Now
∞∫

0

etx

(x + θ)2 dx =

[
etx

−(x + θ)

]∞

0
+ t

∞∫
0

etx

(x + θ)
dx

=
1
θ
+ lim

ε→∞

t
ε∫

0

etx

(x + θ)
dx

 (17)

Now applying L’Hospital rules we get

lim
x→∞

etx

(x + θ)
= lim

x→∞

tetx

1
= ∞

Hence integrand is divergent, as well as the function is not integrable over R we conclude thta
E(etx) does not exists. The characteristic function of CEL distribution is defined as

Φx(t) =
∞∫

0

eitxg(x)dx =
1

θ + 1

∞

∑
k=0

(−1)k (k + 1)!
(it)k+1

[
1 +

2
θ
(k + 2)

]
(18)
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III. Entropies

An entropy is a measure of randomness occured in any system. Entropy is an important property
of probability distributions and it measures the uncertainty in a probability distribution.

I. Rényi Entropye

An entropy is a measure of variation of the uncertainty, Rényi [24] gave an expression of the
Entropy function defined by

e(η) =
1

1− η
log

 ∞∫
0

gη(x)dx


where 0 < η < 1, Substituting the value of g(x) from (7)

e(η) =
1

1− η
log

 ∞∫
0

(
θ2

(θ + 1)
(x + θ + 2)
(x + θ)3

)η

dx


=

1
1− η

log

( θ2

θ + 1

)η ∞∫
0

{
1

(x + θ)2 +
2

(x + θ)3

}
dx


Now applying Binomial expansion (a + b)n =

n
∑

k=0
(n

k)akbn−k we get

1
1− η

log

( θ2

θ + 1

)η ∞∫
0

η

∑
k=0

(
η

k

)(
1

x + θ

)2k ( 2
(x + θ)3

)η−k
dx


after simlification we get the Renyi entropy as

e(η) =
η

1− η
log
(

θ2

θ + 1

)
+

1
1− η

log

[
η

∑
k=0

(
η

k

)
2η−k

(3η − k− 1)θ(3η−k−1)

]
(19)

where 0 < η < 1, θ > 0, x > 0

II. Tsallis Entropy

This is introduced by Tsallis [28] as a basis for generalizing the standard statistical mechanics

Sλ =
1

1− λ

1−
∞∫

0

gλ(x)dx


=

1
1− λ

1−
(

θ2

(θ + 1)

)λ ∞∫
0

(
(x + θ + 2)
(x + θ)3

)λ

dx


Now applying Binomial expansion (a+ b)n =

n
∑

k=0
(n

k)akbn−k and simplifying we get Tsallis Entropy

as in (20).

e(η) =
1

1− λ

[
1−

(
θ2

θ + 1

)λ λ

∑
k=0

(
λ

k

)
2λ−k

(3λ− k− 1)θ(3λ−k−1)

]
(20)
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IV. Quantile Function

The quantile function for CEL distribution is defined in the form xq = Q(u) = G−1(u) where
Q(u) is the quantile function of G(x) in the range 0 < u < 1. Taking G(x) is the cdf of CEL
distribution and inverting it as above will give us the quantile function as follows

G(x) =
x [x(θ + 1) + θ(θ + 2)]

(θ + 1)(x + θ)2 = u (21)

Simplifying equation (21) above gives the following:(
x

x + θ

)2
+

xθ(θ + 2)
(x + θ)2 = u

Now let x
x+θ = z we get from above

z2 +

(
θ + 2
θ + 1

)
z(1− z) = u

z2 − z(θ + 2) + u(θ + 1) = 0 (22)

This is a quadratic equation and after solving we get the solution for x as

z =
x

x + θ
=

(θ + 2)±
√
(θ + 2)2 − 4u(θ + 1)

2

Q(u) = θ

[
2

−θ ±
√
(θ + 2)2 − 4u(θ + 1)

− 1

]
(23)

where u is a uniform variate on the unit interval (0,1).
The median of X from the CEL distribution is simply obtained by setting u = 0.5 and this
substitution of u = 0.5 in the above equation (23) gives.

Median = θ

[
2

−θ +
√
(θ + 1)2 + 1

− 1

]
(24)

Bowley’s measure of skewness based on quartiles is defined as:

SK =
Q( 3

4 )− 2Q( 1
2 ) + Q( 1

4 )

Q( 3
4 )−Q( 1

4 )
(25)

and [20] presented the Moors’ kurtosis based on octiles by

KT =
Q( 7

8 )−Q( 5
8 )−Q( 3

8 ) + Q( 1
8 )

Q( 6
8 )−Q( 1

8 )
(26)

where Q(.) is calculated by using the quantile function from equation (23).

V. Stochastic Orderings

Stochastic ordering of a continuous random variable is an important tool to judging their
comparative behaviour. A random variable X is said to be smaller than a random variable Y.
(i) Stochastic order X ≤st Y if FX(x) ≥ FY(x) for all x.
(ii) Hazard rate order X ≤hr Y if hX(x) ≥ hY(x) for all x.
(iii) Mean residual life order X ≤mrl Y if mX(x) ≥ mY(x) for all x.
(iv) Likelihood ratio order X ≤lr Y if fX(x)

fY(x) decreases in x.
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The following results by Shaked & Shanthikumar [26] are well known for introducing stochastic
ordering of distributions

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

i.e X ≤st Y

with the help of following theorem we claim that CEL distribution is ordered with respect to
strongest likelihood ratio ordering

Theorem 3. Let X ∼ CEL(θ1) distribution and Y ∼ CEL(θ2) distribution. If θ1 > θ2 then X ≤lr Y
and therefore X ≤hr Y, X ≤mrl Y and X ≤st Y.

Proof: We have

fX(x)
fY(x)

=
θ2

1(θ2 + 1)
θ2

2(θ1 + 1)

(
x + θ1 + 2
x + θ2 + 2

)(
x + θ2

x + θ1

)3
; x > 0

Now taking log both side we get

log
[

fX(x)
fY(x)

]
= log

[
θ2

1(θ2 + 1)
θ2

2(θ1 + 1)

]
+ log

(
x + θ1 + 2
x + θ2 + 2

)
+ 3 log

(
x + θ2

x + θ1

)
By differentiating both side we get

d
dx

log
fX(x)
fY(x)

=
θ2 − θ1

(2 + θ1 + x)(2 + θ2 + x)
+

3(θ2 − θ1)

(x + θ1)(x + θ2)

Thus for θ1 > θ2, d
dx log fX(x)

fY(x) < 0.This means that X ≤lr Y and hence X ≤hr Y, X ≤mrl Y and
X ≤st Y.

VI. Distribution of order statistics

Let X1, X2, ..., Xm be a random sample of size m from CEL distribution and let X1;m ≤ X2;m ≤
... ≤ Xm;m represent the corresponding order statistics. The pdf of Xm;m i.e rth order statistics is
given by

g(r:m)(x) =
m!

(r− 1)!(m− r)!
Gr−1(x) [1− G(x)]m−r g(x)

= Z
m−r

∑
l=0

(
m− r

l

)
(−1)lGr+l−1(x)g(x) (27)

where Z = m!
(r−1)!(m−r)! and g(x) and G(x) are pdf and cdf of CEL distribution defined in (7) and

(8) respectively.
Substituting for G(x) and g(x) in (27) and applying the general binomial expansion, we have

g(r:m)(x) = Z
m−r

∑
l=0

(
m− r

l

)
(−1)l

[
x [x(θ + 1) + θ(θ + 2)]

(θ + 1)(x + θ)2

]r+l−1 θ2

(θ + 1)
(x + θ + 2)
(x + θ)3

= Z
m−r

∑
l=0

(r+l−1)

∑
k=0

(
m− r

l

)(
r + l − 1

k

)
Cl;k

x2r+2l−k−2(x + θ + 2)
(x + θ)2r+2l+1 (28)

where Cl;k = (−1)l
(

θ2

(θ+1)

)k+1 (
θ+2

θ

)k
.

Hence, the pdf of the minimum order statistic X(1) and maximum order statistic X(n) of the CEL
distribution are respectively given by, respectively given by

g(1:m)(x) = Z
m−1

∑
l=0

l

∑
k=0

(
m− 1

l

)(
l

k

)
Cl;k

x2l−k(x + θ + 2)
(x + θ)2l+3 (29)
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VII. Estimation of the Parameter of CEL Distribution

Suppose X = (X1, X2, X3, ..., Xn) be an independently and identically distributed (iid) random
variables of size n with pdf (7) from CEL(θ). Then, the likelihood function based on observed
sample X = (x1, x2, x3, ..., xn) is defined as

L(θ; x) =
(

θ2

θ + 1

)n n

∏
i=0

xi + θ + 2
(xi + θ)3 (30)

The log-likelihood function corresponding to (30) is given by

log L = 2n log θ − n log(θ + 1) +
n

∑
i=0
{log(xi + θ + 2)− 3 log(xi + θ)} (31)

Hence, the log-likelihood equation for estimating θ is

2n
θ
− n

(θ + 1)
+

n

∑
i=0

{
1

(xi + θ + 2)
− 3

(xi + θ)

}
= 0 (32)

Above equation is not solvable analytically for θ. Thus numerical iteration technique is used to
get its numerical solution. Fisher Information matrix can be estimated by

I(θ̂) =
[
−∂2

∂θ2 log L
]

θ=θ̂

∂2

∂θ2 log L = −2n
θ2 +

n
(θ + 1)2 +

n

∑
i=0

{
3

(xi + θ)2 −
1

(xi + θ + 2)2

}
(33)

For large samples, we can obtain the confidence intervals based on Fisher information matrix
I−1(θ̂) which provides the estimated asymptotic variance for the parameter θ. Thus, a two-sided
100(1− α)% confidence interval of θ and it is defined as θ̂ ± Zα/2

√
varθ̂. Where Zα/2 denotes

the upper α-th percentile of the standard normal distribution.

VIII. Simulation study

In this section we evaluate the performance of the MLEs of the model parameter for the CEL
distribution. We generate random variables from CEL(θ) and then obtain m.l.e. of the parameter
θ, Now for θ = 1.5, 2, 2.5, 3 we generate the sample size 20, 30, 50, 90, 150, 200. The program is
replicated N= 2,500 times to get the maximum likelihood estimate of θ. The simulation results
are reported in Table (1).
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Table 1: Simulation results for different values of θ

θ=1.5

n Bias MSE Var. Est.
20 0.07273 0.25756 0.26034 1.57273
30 0.06864 0.16356 0.16447 1.56864
50 0.03938 0.09339 0.09211 1.53938
90 0.01632 0.04662 0.04854 1.51632
150 0.01270 0.02856 0.02858 1.51270
200 0.01126 0.02597 0.02152 1.51126

θ=2

20 0.11554 0.53363 0.50319 2.11554
30 0.07354 0.29175 0.30196 2.07354
50 0.04340 0.16161 0.16965 2.04340
90 0.01612 0.08701 0.08982 2.01612
150 0.01415 0.05453 0.05321 2.01415
200 0.00896 0.03761 0.03949 2.00896

θ=2.5

20 0.15021 0.82604 0.81882 2.65021
30 0.11545 0.50885 0.50463 2.61544
50 0.06234 0.27557 0.27921 2.56234
90 0.02329 0.14411 0.14678 2.52329
150 0.02114 0.08766 0.08675 2.52114
200 -0.00545 0.06452 0.06337 2.49455

θ=2.5

20 0.21267 1.23999 1.25054 3.21267
30 0.16488 0.82261 0.77061 3.16488
50 0.09941 0.40727 0.42342 3.09941
90 0.06733 0.22374 0.22481 3.06733
150 0.03938 0.12947 0.13061 3.03938
200 0.03598 0.09335 0.09728 3.03598

It is clearly observed from the Table (1) that the values of bias and mean square error (MSE)
of the parameter estimates decreases as the sample size n increases. It indicates the consistency of
the estimator.

IX. Goodness of fit

The application of goodness of fit of proposed CEL distribution has been discussed with two real
data sets. First data set presents the results of a life-test experiment in which specimens of a type
of electrical insulating fluid were subject to a constant voltage stress (34 KV/minutes), this data
set is reported by Nelson [22] and other data is represents 30 failure times of the air conditioning
system of an airplane has been reported in a paper by Linhart & Zucchini [17] and has also
been analyzed by Barreto-Souza & Bakouch [6] and so on. For comparing the suitability of the
model, we have considered following criterion’s; namely AIC (Akaike Information Criterion), BIC
(Bayesian information criterion), AICc (Corrected Akaike information criterion) and KS statistics
with associated p-value of the fitted distributions are presented in Table (2) and Table (3).The AIC,
BIC, AICc and KS Statistics are computed using the following formulae

AIC = −2loglik + 2k, BIC = −2loglik + k log n

AICc = AIC +
2k2 + 2k
n− k− 1

, D = sup
x
|Fn(x)− F0(x)|

where k= the number of parameters, n= the sample size, and the Fn(x)=empirical distribution
function and F0(x) is the theoretical cumulativedistribution function.
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Table 2: MLE’s, - 2ln L, AIC, KS and p-values of the fitted distributions for the 1st dataset.

Distribution Estimate -2LL AIC BIC AICc KS p-value
CEL(θ) 7.0385 137.98 139.98 140.92 140.21 0.1131 0.9458

EPL(β, θ) (0.0334, 0.5521) 136.18 140.18 142.06 140.93 0.1500 0.7312
EL(β, p) (0.0393, 0.0982) 135.98 139.98 141.87 140.73 0.1382 0.8137
EP(β, λ) (0.0409, 2.2112) 136.89 140.89 142.78 141.64 0.1611 0.6497

Weibull(β, θ) (0.0818, 0.7708) 136.77 140.77 142.66 141.52 0.1613 0.6482
Gamma(β, θ) (0.0480, 0.6897) 137.23 141.23 143.12 141.98 0.1846 0.4802
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Figure 5: Fitted pdfs of 1st data set
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Figure 6: Fitted cdfs and ecdf of 1st data set
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Figure 7: p-p and q-q plot for the 1st data set.

Here we notice that all of the considered models fit the data at 5% level of significance but
the proposed distribution has minimum KS and maximum p-value among all the fitted models.
Therefore, we may say that proposed CEL distribution is the most acceptable model for the
present data set among the other considered models. For better visualization of the fitted models
the estimated pdfs, cdfs, pp and qq plots are shown in Figure 5, Figure 6, Figure 7 for the first
data set.

Table 3: MLE’s, - 2ln L, AIC, KS and p-values of the fitted distributions for the 2nd dataset.

Distribution Estimate -2LL AIC BIC AICc KS p-value
CEL(θ) 30.267 307.17 309.17 310.57 309.31 0.1061 0.8695

EPL(β, θ) (0.0101, 0.9193) 302.87 306.87 309.68 307.32 0.1282 0.7076
EL(β, p) (0.0111, 0.1932) 302.83 306.83 309.63 307.28 0.1291 0.6986
EP(β, θ) (0.0105, 1.8243) 303.22 307.22 310.02 307.66 0.1468 0.5375

Weibull(β, θ) (0.0183, 0.8536) 307.87 310.68 308.32 303.87 0.1534 0.4806
Gamma(β, θ) (0.0136, 0.8119) 304.33 308.33 311.13 308.78 0.1694 0.3556
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Figure 8: Fitted pdfs of 2nd data set
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Figure 9: Fitted cdfs of 2nd data set
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Figure 10: p-p and q-q plot for the 2nd data set.

For the second data set also all the considered models fit well. Here also, the value of KS
statistics is the minimum for CEL distribution with the maximum p-value. From the above
discussion on two real data sets we see that all the considered six decreasing failure models fit
to the two data sets. The fitted models the estimated pdfs, cdfs, pp and qq plots are shown in
Figure 8, Figure 9, Figure 10 for the second data set.

X. Applications on infant mortality data

Since the CEL distribution is an early failure distribution then this may be suitable for the data of
infant deaths. In this study an attemt has been made to apply CEL distribution for the data of
infant deaths taken from the fourth round of National Family Health Survey (NFHS-4) for the
most poupulous state of India i.e. Uttar Pradesh conducted in 2015-16 (IIPS and ICF, 2017)[14].
The data on infant deaths for four categories have been extacted and CEL distribution with other
compitent distributions considered here have been applied. The fitting, estimate of parameters, KS
distance and its p-value are provided in table 4-7. The p-value reveals that the CEL distribution is
most appropriate among all considered distributions.
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Table 4: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
deaths of mothers aged 20-25)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 104 90.61 83.12 80.71 76.30 72.18 143.00
1-2 17 30.67 33.66 36.74 34.29 36.55 16.75
2-3 2 15.03 17.46 18.91 19.43 21.51 4.39
3-4 10 98.83 10.35 10.69 12.09 13.18 1.28
4-5 5 5.79 6.66 6.49 7.90 8.26 0.39
5-6 7 4.07 4.53 4.16 5.32 5.26 0.12
6-7 7 3.02 3.19 2.78 3.64 3.39 0.04
7-8 2 2.33 2.31 1.92 2.52 2.21 0.01
8-9 3 1.85 1.71 1.36 1.76 1.45 0.00

9-10 4 1.50 1.28 0.98 1.24 0.95 0.00
10-11 2 1.24 0.97 0.71 0.87 0.63 0.00
11-12 3 1.05 0.74 0.53 0.62 0.42 0.00
Total 166 166.00 166.00 166.00 166.00 166.00 166.00

Estimates of
parameter

θ = 1.4410
θ = 0.6102
β = 0.2399

λ = 2.4852
β = 0.2700

p = 0.2378
β = 0.3399

α = 0.8961
β = 0.5304

α = 0.4745
β = 0.9554

K-S Distance 0.0807 0.1257 0.1403 0.1668 0.1917 0.2478
p-value 0.2206 0.0094 0.0025 0.0002 0.0000 0.0000

Table 5: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
deaths of mothers aged 25-30)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 94 86.94 84.05 84.79 76.14 75.60 104.47
1-2 17 22.52 24.63 27.91 28.19 30.36 22.28
2-3 8 9.93 11.02 11.38 14.02 14.74 6.86
3-4 3 5.51 6.01 5.43 7.72 7.55 2.24
4-5 3 3.48 3.67 2.91 4.45 3.99 0.75
5-6 0 2.40 2.41 1.69 2.64 2.15 0.26
6-7 3 1.74 1.66 1.05 1.58 1.18 0.09
7-8 2 1.33 1.18 0.68 0.96 0.66 0.03
8-9 4 1.04 0.86 0.46 0.58 0.37 0.01

9-10 1 0.84 0.64 0.31 0.36 0.21 0.00
10-11 2 0.69 0.48 0.22 0.22 0.12 0.00
11-12 0 0.57 0.37 0.16 0.13 0.07 0.00
Total 137 137.00 137.00 137.00 137.00 137.00 137.00

Estimates
of parameter

θ = 1.0624
θ = 0.3689
β = 0.2355

λ = 3.4829
β = 0.3033

p = 0.2501
β = 0.4879

α = 0.8868
β = 0.7795

α = 0.7081
β = 0.9833

K-S Distance 0.0515 0.0726 0.0672 0.1304 0.1342 0.1150
p-value 0.8509 0.4507 0.5508 0.0171 0.0128 0.0492
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Table 6: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
deaths in year 2003)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 76 66.35 64.10 60.46 55.41 55.08 98.89
1-2 9 18.33 19.84 23.23 20.33 21.54 7.25
2-3 3 8.28 9.03 10.54 11.09 11.82 1.43
3-4 2 4.65 4.99 5.42 6.87 7.05 0.32
4-5 1 2.97 3.09 3.06 4.54 4.41 0.07
5-6 2 2.05 2.07 1.86 3.11 2.84 0.02
6-7 3 1.50 1.46 1.19 2.18 1.87 0.00
7-8 1 1.14 1.07 0.80 1.55 1.25 0.00
8-9 3 0.90 0.81 0.55 1.11 0.85 0.00

9-10 2 0.72 0.63 0.39 0.81 0.59 0.00
10-11 3 0.60 0.50 0.28 0.59 0.41 0.00
11-12 3 0.50 0.40 0.20 0.43 0.29 0.00
Total 108 108.00 108.00 108.00 108.00 108.00 108.00

Estimates of
parameter

θ = 1.1394
θ = 0.2528
β = 0.1512

λ = 3.1272
β = 0.2785

p = 0.1183
β = 0.3040

α = 0.7880
β = 0.6433

α = 0.7081
β = 0.9833

K-S Distance 0.0894 0.1102 0.1439 0.1907 0.1937 0.2119
p-value 0.3392 0.1361 0.0204 0.0006 0.0005 0.0000

Table 7: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
death in year 2004)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 54 46.83 42.23 42.22 38.71 36.31 75.22
1-2 15 17.27 18.87 20.22 19.41 20.56 10.87
2-3 3 8.79 11.02 10.77 11.40 12.59 3.25
3-4 2 5.28 6.01 6.28 7.21 7.89 1.08
4-5 1 3.51 3.67 4.11 4.74 5.00 0.37
5-6 2 2.49 2.41 2.82 3.19 3.20 0.13
6-7 4 1.86 1.66 2.00 2.18 2.06 0.05
7-8 2 1.44 1.18 1.45 1.51 1.33 0.02
8-9 2 1.15 0.86 1.07 1.05 0.87 0.01

9-10 2 0.94 0.64 0.08 0.73 0.57 0.00
10-11 2 0.78 0.48 0.60 0.56 0.37 0.00
11-12 2 0.66 0.37 0.46 0.36 0.24 0.00
Total 91 91.00 91.00 91.00 91.00 91.00 91.00

Estimates of
parameter

θ = 1.6062
θ = 0.7679
β = 0.2496

λ = 2.6031
β = 0.2382

p = 0.3311
β = 0.3477

α = 0.9427
β = 0.4853

α = 0.5032
β = 1.0726

K-S Distance 0.0788 0.1293 0.1294 0.1680 0.1943 0.2332
p-value 0.6064 0.0876 0.0871 0.0102 0.0017 0.0000
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XI. Conclusions

A single parameter lifetime distribution CEL(θ) has been introduced. The CEL(θ) distribution is
mean free distribution and has decreasing hazard. The moment generating function, rth oreder
moments does not exists thus mean, variance, cumulant generating function, mean deviation
about mean and median, Bonferroni, Gini index, mean residual life function (MRLF) also does
not exists. The beauty of CEL distribution is that, this is a single parameter decreasing hazard
distribution and explains the phenomenon better than other two parameter models. Although
the moments do not exist, but Figure 1 indicates that, the distribution is highly positively skewed
distribution. As the value of θ is increasing the density of the distribution becomes flatten. Hence,
we can easily conclude that the proposed CEL distribution may be considered as a suitable
model for the case of decreasing failure rate scenario with a hope to get better model in various
disciplines such as medical, engineering, and social sciences.
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