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Abstract 

 
We derive the exact probability density functions (pdf) of a product of 𝑛  independent Maxwell 

distributed random variables. The distribution functions are derived by using an inverse Mellin 

transform technique from statistics, and are given in terms of a special function of mathematical 

physics, the Meijer G-function.  

 

Keywords: Product Distribution, Maxwell Distribution, Mellin transform technique, Meijer 

G-function, probability density function.  

 
 

1  Introduction 
  

 Engineering, Physics, Economics, Order statistics, Classification, Ranking, Selection, Number 

theory, Genetics, Biology, Medicine, Hydrology, Psychology, these all applied problems depend on the 

distribution of product of random variables[1][2].  

 As an example of use of the product of random variables in physics, Sornette [27] mentions: 

“…To mimic system size limitation, Takayasu, Sato, and Takayasu introduced a threshold 𝑥𝑐 

…and found a stretched exponential truncating the power-law pdf beyond 𝑥𝑐 . Frisch and Sornette 

recently developed a theory of extreme deviations generalizing the central limit theorem which, when 

applied to multiplication of random variables, predicts the generic presence of stretched exponential 

pdfs. The problem thus boils down to determining the tail of the pdf for a product of random variables 

…” 

Several authors have studied the product distributions for independent random variables come 

from the same family or different families, see [21] for t and Rayleigh families, [4] for Pareto and 

Kumaraswamy families, [6] for the t and Bessel families, and [22] for the independent generalized 

gamma-ratio family. In this paper, we find analytically the probability distributions of the product 

∏𝑛𝑖=1 𝑋𝑖, when 𝑋𝑖 is a Maxwell random variable with probability density function (p.d.f)  

 𝑓𝑋𝑖(𝑥𝑖) = √
2

𝜋

𝑥𝑖
2

𝑏𝑖
3 𝑒

−𝑥𝑖
2

2(𝑏𝑖)
2
,    𝑥𝑖 ≥ 0. (1) 

 The functions are derived by using an inverse Mellin transform technique from statistics and given in 

terms of the Meijer G-function.  
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2  Basic Definitions 
  

2.1  Mellin integral transform 

 The Mellin integral transform of 𝑓(𝑥) is defined only for 𝑥 ≥ 0, as:  

 𝑀{𝑓(𝑥)/𝑠} = 𝐸[𝑥𝑠−1] = ∫
∞

0
𝑥𝑠−1𝑓(𝑥)𝑑𝑥 (2) 

 The inverse transform is:  

 𝑓(𝑥) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑥−𝑠𝑀{𝑓(𝑥)/𝑠}𝑑𝑠 (3) 

 The path of integration is any line parallel to the imaginary axis and lying within the strip of analyticity 

of 𝑀{𝑓(𝑥)/𝑠}. 

 

 The Mellin integral transform of the density function 𝑓(𝑥) of the product 𝑋 = 𝑋1. 𝑋2. . . 𝑋𝑛 of 

𝑛 independent random variables 𝑋𝑖 with the density function 𝑓𝑋𝑖(𝑥𝑖) is defined as:  

 𝑀{𝑓𝑋(𝑥)/𝑠} = ∏
𝑛
𝑖=1 𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠} (4) 

 Using the inverse transform formula we obtain the density function of the product distribution as:  

 𝑓𝑋(𝑥) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑥−𝑠∏𝑛𝑖=1 𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠}𝑑𝑠 (5) 

  

2.2  Meijer G-function 

 The Meijer G-function is defined by the contour integral:  

 𝐺𝑝𝑞
𝑚𝑛 (𝑧|

𝑎1, … , 𝑎𝑝
𝑏1, … , 𝑏𝑞

) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑧−𝑠

∏𝑚𝑖=1Γ(𝑠+𝑏𝑖)∏
𝑛
𝑖=1Γ(1−𝑎𝑖−𝑠)

∏
𝑝
𝑖=𝑛+1

Γ(𝑠+𝑎𝑖)∏
𝑞
𝑖=𝑚+1

Γ(1−𝑏𝑖−𝑠)
𝑑𝑠 (6) 

 where 𝑧, {𝑎𝑖}𝑖 , 𝑎𝑛𝑑{𝑏𝑖}𝑖  are in general, complex-valued. The contour is chosen so that it separates the 

poles of the gamma products in the numerator. The Meijer G-function has been implemented in some 

commercial mathematics software packages. 

 

3  Product of n Independent Maxwell Random Variables 
 

Theorem 1: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to 

(1). Then for 𝑥 > 0 the probability density function p.d.f. of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝑓𝑋(𝑥) = 2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
𝐺0𝑛
𝑛0 (𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
1, … ,1

) (7) 

 

ProofConsider a product of 𝑛 independent random variables  

 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 (8) 

 where 𝑋𝑖 is a Maxwell distributed random variable with probability density function according to (1), 

The Mellin integral transform of 𝑓𝑋𝑖(𝑥𝑖) is:  

 

𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠} = ∫
∞

0
𝑥𝑖
𝑠−1𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

=
1

𝑏𝑖
3√

2

𝜋
∫
∞

0
𝑥𝑖
𝑠+1𝑒

−𝑥𝑖
2

2(𝑏𝑖)
2
𝑑𝑥𝑖

= √
2

𝜋
2𝑠/2

1

𝑏𝑖
(𝑏𝑖
−2)−

𝑠

2Γ(1 + 𝑠/2)

 (9) 

 Where we have used the definition of the gamma function  

 Γ(𝑡) = ∫
∞

0
𝑥𝑡−1𝑒−𝑥 (10) 

 The Mellin integral transform of 𝑓𝑋(𝑥)  

 

𝑀{𝑓𝑋(𝑥)/𝑠} = ∏𝑛𝑖=1 𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠}

= ∏𝑛𝑖=1 [√
2

𝜋
2𝑠/2

1

𝑏𝑖
(𝑏𝑖
−2)−

𝑠

2Γ(1 + 𝑠/2)]
 

 We can find the pdf of 𝑋 as the inverse Mellin transform  
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𝑓𝑋(𝑥) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑥−𝑠[∏𝑛𝑖=1 [√

2

𝜋
2𝑠/2

1

𝑏𝑖
(𝑏𝑖
−2)−

𝑠

2Γ(1 + 𝑠/2)]]𝑑𝑠

=
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
(𝑥2)−

𝑠

2(√
2

𝜋
)𝑛(2−𝑛)−

𝑠

2
1

∏𝑛𝑖=1𝑏𝑖
(∏𝑛𝑖=1 (𝑏𝑖)

−2)−
𝑠

2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)2

𝑑𝑠

2

= 2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
(𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2)−
𝑠

2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)
𝑑𝑠

2

 (11) 

 Finally using the definition of the Meijer G-function we get  

 𝑓𝑋(𝑥) = 2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
𝐺0𝑛
𝑛0 (𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
1, … ,1

) (12) 

 

Corollary 1: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according 

to (1). Then for 𝑡 > 0 the cumulative distribution function c.d.f. of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝐹𝑋(𝑡) = 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑡

2
𝐺1𝑛+1
𝑛1 (𝑡22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2

1,… ,1, −
1

2

) (13) 

 Proof The cumulative distribution function 𝐹𝑋(𝑡) = ∫
𝑡

0
𝑓𝑋(𝑥)𝑑𝑥  is obtained by integrating (7) with 

respect to 𝑥 inside the contour integral by using:  

 ∫
𝑡

0
𝑥−𝑠𝑑𝑥 =

𝑡1−𝑠

1−𝑠
= 𝑡1−𝑠

1

2
(
2

1−𝑠
) = 𝑡1−𝑠

1

2
(
1

2
−
𝑠

2
)−1 (14) 

 And  

 
1

2
−
𝑠

2
=
(
1

2
−
𝑠

2
)Γ(

1

2
−
𝑠

2
)

Γ(
1

2
−
𝑠

2
)

 

 Then we get  

 ∫
𝑡

0
𝑥−𝑠𝑑𝑥 = 𝑡1−𝑠

1

2

Γ(
1

2
−
𝑠

2
)

Γ(
3

2
−
𝑠

2
)
 

 Let 𝛽𝑛 = 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
  

 𝐹𝑋(𝑡) = 𝑡𝛽𝑛
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
1

2
(𝑡2)−

𝑠

2(2−𝑛∏𝑛𝑖=1 𝑏𝑖
−2)−𝑠/2

Γ(
1

2
−
𝑠

2
)∏𝑛𝑖=1 (Γ(1+

𝑠

2
))

Γ(
3

2
−
𝑠

2
)

 (15) 

 Finally using the definition of the Meijer G-function we obtain  

 𝐹𝑋(𝑡) = 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑡

2
𝐺1𝑛+1
𝑛1 (𝑡22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2

1,… ,1, −
1

2

) 

 

Corollary 2:  Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according 

to (1). Then for 𝑟 > 0, 𝛼 > 0 the moment of order 𝑟 of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝐸[𝑋𝑟] = 2(√
2

𝜋
)𝑛

𝛼𝑟+1

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2
−
𝑟

2

1,… ,1, −
𝑟

2
−
1

2

) (16) 

 Proof  

 

𝐸[𝑋𝑟] = ∫
+∞

−∞
𝑥𝑟𝑓𝑋(𝑥)𝑑𝑥

= ∫
+∞

𝛼
𝑥𝑟𝑓𝑋(𝑥)𝑑𝑥

= 𝛽𝑛
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
∫
∞

𝛼
𝑥𝑟−𝑠(2−𝑛∏𝑛𝑖=1 𝑏𝑖

−2)−𝑠/2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)𝑑𝑥

𝑑𝑠

2

 

 We have  

 ∫
∞

𝛼
𝑥−𝑠+𝑟𝑑𝑥 =

𝛼1+𝑟−𝑠

𝑠−𝑟−1
 (17) 

 Then  

 𝐸[𝑋𝑟] = 𝛽𝑛
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝛼1+𝑟

𝑠−𝑟−1
(2−𝑛∏𝑛𝑖=1 𝑏𝑖

−2𝛼2)−𝑠/2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)
𝑑𝑠

2
 (18) 

 Also we have  
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1

𝑠−𝑟−1
= −

1

2

Γ(
−𝑠

2
+
𝑟

2
+
1

2
)

Γ(
−𝑠

2
+
𝑟

2
+
3

2
)
 (19) 

 Finally using (19) and the definition of the Meijer G-function we obtain  

 

𝐸[𝑋𝑟] = 𝛽𝑛
1

2𝑗𝜋
𝛼𝑟+1(−

1

2
) ∫

𝑐+𝑗∞

𝑐−𝑗∞
(2−𝑛∏𝑛𝑖=1 𝑏𝑖

−2𝛼2)−
𝑠

2
Γ(−

𝑠

2
+
𝑟

2
+
1

2
)

Γ(−
𝑠

2
+
𝑟

2
+
3

2
)
∏𝑛𝑖=1 Γ(1 +

𝑠

2
)

= 2(√
2

𝜋
)𝑛

𝛼𝑟+1

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2
−
𝑟

2

1,… ,1, −
𝑟

2
−
1

2

)

 (20) 

 Corollary 3: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to (1). 

Then for 𝛼 > 0 the expected value of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as: For 𝑟 = 1  

 𝐸[𝑋] = 2(√
2

𝜋
)𝑛

𝛼2

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
0
1, … ,1, −1

) (21) 

 Corollary 4: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to (1). 

Then for 𝛼 > 0 the expected value of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 

𝜎2 = 2(√
2

𝜋
)𝑛

𝛼3

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
−
1

2

1,… ,1, −
3

2

)

−[2(√
2

𝜋
)𝑛

𝛼2

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
0
1, … ,1, −1

)]2

 (22) 

 Proof. By definition the variance of 𝑋/𝑌 is:  

 𝜎2 = 𝐸[𝑍2] − 𝐸[𝑍]2 (23) 

 

Corollary 5:Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to 

(1). Then for 𝑥 > 0 the survival function of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝑆𝑋(𝑥) =

(

 

1 if𝑥 ≤ 0

1 − 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑥

2
𝐺1𝑛+1
𝑛1 (𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2

1,… ,1, −
1

2

) if𝑥 > 0
 (24) 

 Proof By definition of the survival function  

 𝑆𝑋(𝑥) = 1 − 𝐹𝑋(𝑥) (25) 

 

Corollary 6:Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to 

(1). Then for 𝑥 > 0 the hazard function of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 ℎ𝑋(𝑥) =

(

 
 

0 if𝑥 ≤ 0

2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
𝐺0𝑛
𝑛0(𝑥22−𝑛∏𝑛𝑖=1𝑏𝑖

−2|
1,…,1

)

1−2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑥

2
𝐺1𝑛+1
𝑛1 (𝑥22−𝑛∏𝑛𝑖=1𝑏𝑖

−2|

1

2

1,…,1,−
1

2

)

if𝑥 > 0 (26) 

 

 

4  Examples and special cases 
  

4.1  Product of two independent Maxwell random variables 

   

    1.  Probability density function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random 

variables with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the probability density function of 𝑋 is  

 𝑓𝑋(𝑥) = (

0 𝑖𝑓𝑥 ≤ 0

2

𝜋
𝐺02
20 (

𝑥2

16
|
1,1

) 𝑖𝑓𝑥 > 0
 (27) 
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    2.  Cumulative distribution function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell 

random variables with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the cumulative distribution 

function of 𝑋 is 

For 𝑡 > 0  

 𝐹𝑋(𝑡) =

(

 
 

0 𝑖𝑓𝑡 ≤ 0

𝑡

𝜋
𝐺13
21 (

𝑡2

16
|

1

2

1,1, −
1

2

) 𝑖𝑓𝑡 > 0
 (28) 

  

    3.  Moment of order "r": Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables 

with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the moment of order r of 𝑋 is 

For 𝛼 > 0  

 𝐸[𝑋𝑟] = −
𝛼𝑟+1

𝜋
𝐺13
21 (

𝛼2

16
|

1

2
−
𝑟

2

1,1, −
𝑟

2
−
1

2

) (29) 

  

    4.  Expected value: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables with 

scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Expected value of 𝑋 is  

 𝐸[𝑋] = −
𝛼2

𝜋
𝐺13
21 (

𝛼2

16
|
0
1,1, −1

) (30) 

  

    5.  Variance: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables with scale 

parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Variance of 𝑋 is  

 
𝜎2 = −

𝛼3

𝜋
𝐺13
21 (

𝛼2

16
|
−
1

2

1,1, −
3

2

)

−[−
𝛼2

𝜋
𝐺13
21 (

𝛼2

16
|
0
1,1, −1

)]2

 (31) 

  

    6.  Survival function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables 

with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Survival function of 𝑋 is  

 𝑆𝑋(𝑡) =

(

 

1 if𝑡 ≤ 0

1 −
𝑡

𝜋
𝐺13
21 (

𝑡2

16
|

1

2

1,1, −
1

2

) if𝑡 > 0
 (32) 

  

    7.  Hazard function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables 

with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Hazard function of 𝑋 is 

For 𝑡 > 0  

 ℎ𝑋(𝑥) =

(

 
 

0 𝑖𝑓𝑥 ≤ 0
2

𝜋
𝐺02
20(

𝑥2

16
|
1,1

)

1−
𝑥

𝜋
𝐺13
21(

𝑥2

16
|

1

2

1,1,−
1

2

)

𝑖𝑓𝑥 > 0 (33) 
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Figure  1:  Plot of the probability density function for two independent Maxwell random variables  

for 𝑏1 = 1, 𝑏2 = 2. 

 

 
Figure  2:  Plot of the cumulative distribution function for two independent Maxwell random 

variables  for 𝑏1 = 1, 𝑏2 = 2. 

    

 
 

Figure  3:  Plot of the hazard function for two independent Maxwell  

random variables  for 𝑏1 = 1, 𝑏2 = 2. 
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5  Applications 
 

The air molecules surrounding us are not all traveling at the same speed, even if the air is all at 

a single temperature. Some of the air molecules will be moving extremely fast, some will be moving 

with moderate speeds, and some of the air molecules will hardly be moving at all. Because of this, we 

can’t ask questions like "What is the speed of an air molecule in a gas?" since a molecule in a gas could 

have any one of a huge number of possible speeds. 

So instead of asking about any one particular gas molecule, we ask questions like, "What is the 

distribution of speeds in a gas at a certain temperature?" In the mid to late 1800s, James Clerk Maxwell 

and Ludwig Boltzmann figured out the answer to this question. Their result is referred to as the 

Maxwell-Boltzmann distribution, because it shows how the speeds of molecules are distributed for an 

ideal gas. The Maxwell-Boltzmann distribution is often represented with the following graph.  

 
Figure  4: Maxwell-Boltzmann distribution 

   

 The y-axis of the Maxwell-Boltzmann graph can be thought of as giving the number of 

molecules per unit speed. So, if the graph is higher in a given region, it means that there are more gas 

molecules moving with those speeds.  

 Let take the following example: we are interested to find the distribution 𝑋 =

𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10, where 𝑋𝑖 are independent Maxwell random variables with scale parameters 

𝑏𝑖,𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 3, 𝑏4 = 4, 𝑏5 = 5, 𝑏6 = 6, 𝑏7 = 7, 𝑏8 = 8, 𝑏9 = 9, 𝑏10 = 10. 

So the speeds of molecules are distributed for an ideal gas with respect to the probability density 

function of 𝑋  

 𝑓𝑋(𝑥) = 2(√
2

𝜋
)10

1

(12345678910)
𝐺010
100 (𝑥22−10(

1

13168189440000
)|
1,1,1,1,1,1,1,1,1,1

) (34) 
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Figure  5:  Plot of n=10 independent Maxwell rondom variables  for 𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 3, 𝑏4 =
4, 𝑏5 = 5, 𝑏6 = 6, 𝑏7 = 7, 𝑏8 = 8, 𝑏9 = 9, 𝑏10 = 10. 

 

6  Monte Carlo simulation: 
  

Monte Carlo simulations are used to model the probability of different outcomes in a process 

that cannot easily be predicted due to the intervention of random variables. It is a technique used to 

understand the impact of risk and uncertainty in prediction and forecasting models. 

A Monte Carlo simulation can be used to tackle a range of problems in virtually every field such 

as finance, engineering, supply chain, and science. It is also referred to as a multiple probability 

simulation.  

 
 

Figure  6:  Monte Carlo simulation for the product of two independent maxwell  

random variables for scale parameters 𝑏1 = 1, 𝑏2 = 2. 
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7  Conclusion 
  

This paper has derived the analytical expressions of the PDF, CDF, the moment of order 𝑟, the 

survival function, and the hazard function, for the distribution of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 when 𝑋𝑖 are Maxwell 

random variables distributed independently of each other, we have illustrated our results for 𝑛 = 2 as 

a special case, then we have discussed an application of the distribution of product 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 , finally, 

we have confirmed our result using Monte Carlo simulation.  
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