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Abstract 

 

Evaluation of reliability is most important when we have to check the availability of supply in any 

electric power system. The basic reliability index which is of importance is failure rate, repair time 

and unavailability of the supply in any electric power system. In this paper evaluation of various 

basic reliability indices for the electric traction system is done. Electric traction system is very 

important as it is used for operation of passenger trains and freight trains across a large rail 

network throughout the world. As the traction system is very important therefore reliability 

evaluation of its various parameters are essential for proper and uninterrupted working of the whole 

electric traction system. 

 

Keywords: Electric Traction System, Reliability, Failure Rate, Repair Rate. 

 

 

I. Introduction 
 

Reliability evaluation of a system or component or element is very important in order to 

predict its availability and other relevant indices. Reliability is the parameter which tells about the 

availability of the system under proper working conditions for a given period of time. A Markov 

cut-set composite approach to the reliability evaluation of transmission and distribution systems 

involving dependent failures was proposed by Singh et al. [1]. The reliability indices have been 

determined at any point of composite system by conditional probability approach by Billinton et 

al. [2]. Wojczynski et al. [3] discussed distribution system simulation studies which investigate the 

effect of interruption duration distributions and cost curve shapes on interruption cost estimates. 

New indices to reflect the integration of probabilistic models and fuzzy concepts was proposed by 

Verma et al.  [4]. Zheng et al. [5] developed a model for a single unit and derived expression for 

availability of a component accounting tolerable repair time. Distributions of reliability indices 

resulting from two sampling techniques are presented and analyzed along with those from MCS 

by Jirutitijaroen and Singh [6]. Dzobe et al. [7] investigated the use of probability distribution 

function in reliability worth analysis of electric power system. Bae and Kim [8] presented an 

analytical technique to evaluate the reliability of customers in a micro grid including distribution 

generations. Reliability network equivalent approach to distribution system reliability assessment 

is proposed by Billinton and Wang [9]. 

Customer and energy based indices consideration for reliability enhancement of distribution 

system using Improved Teaching Learning based optimization is discussed [10]. An Innovative 

Self-Adaptive Multi-Population Jaya Algorithm based Technique for Evaluation and Improvement 

of Reliability Indices of Electrical Power Distribution System, Tiwary et al. [11].  
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Jirutitijaroen et al. [12] developed a comparison of simulation methods for power system 

reliability indexes and their distribution. Determination of reliability indices for distribution 

system using a state transition sampling technique accounting random down time omission, 

Tiwary et al. [13]. Tiwary et al. [14] proposed a methodology based on Inspection-Repair-Based 

Availability Optimization of Distribution System Using Bare Bones Particle Swarm Optimization. 

Bootstrapping based technique for evaluating reliability indices of RBTS distribution system 

neglecting random down time was evaluated [15]. 

Volkanavski et al. [16] proposed application of fault tree analysis for assessment of the power 

system reliability. Li et al. [17] studies the impact of covered overhead conductors on distribution 

reliability and safety. Reliability enhancement of distribution system using Teaching Learning 

based optimization considering customer and energy based indices was obtained in Tiwary et al. 

[18]. Self-Adaptive Multi-Population Jaya Algorithm based Reactive Power Reserve Optimization 

Considering Voltage Stability Margin Constraints was obtained in Tiwary et al. [19]. A smooth 

bootstrapping based technique for evaluating distribution system reliability indices neglecting 

random interruption duration is developed [20]. Tiwary et al. [21] have developed an inspection 

maintenance based availability optimization methodology for feeder section using particle swarm 

optimization. The impact of covered overhead conductors on distribution reliability and safety is 

discussed [22].  Tiwary et al. [23] has discussed a methodology for reliability evaluation of an 

electrical power distribution system, which is radial in nature. Sarantakos et al. [24] introduced a 

method to include component condition and substation reliability into distribution system 

reconfiguration. Tiwary et al. [25] has discussed a methodology for evaluation of customer 

orientated indices and reliability of a meshed power distribution system. Reliability evaluation of 

engineering system is discussed [26]. Battu et al. [27] discussed a method for reliability compliant 

distribution system planning using Monte Carlo simulation. Application of non-parametric 

bootstrap technique for evaluating MTTF and reliability of a complex network with non-identical 

component failure laws is discussed [28]. Tiwary and Tiwary [29] have developed an innovative 

methodology for evaluation of customer orientated indices and reliability study of electrical feeder 

system. 

In this paper basic reliability indices, failure rate, repair rate and unavailability of the electric 

traction system is evaluated. Electric traction system is very important as it is used for operation of 

passenger trains and freight trains across a large rail network throughout the world. As the 

traction system is very important therefore reliability evaluation of its various parameters are 

essential for proper and uninterrupted working of the whole electric traction system. Reliability 

block diagram which is a diagrammatic method for showing how different components are 

connected in a system is designed for the traction system considered and various indices related to 

reliability are obtained. 

 

II. Reliability block diagram representation of electric traction system 
 

Reliability block diagram which is a diagrammatic method for showing how different 

components are connected in a system is obtained for the electric traction system. Electrical 

traction system is that system that uses electrical power for traction system i.e. for railways, trams, 

trolleys, etc. The track electrification means to the type of source which is used while powering the 

electric locomotive systems. The two main types of electric traction systems that exist are as Direct 

Current (DC) electrification system and Alternating Current (AC) electrification system. The 

reliability block diagram of Direct Current (DC) electrification system is shown in Fig. 1. It consist 

of source, overhead wire, pantograph, motor control and motor as its important parts. Each and 

every component of the system is connected in series manner. 
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Fig. 1. Reliability block diagram of Direct Current (DC) electrification system 

 

The reliability block diagram of Alternating Current (AC) electrification system is shown in 

Fig. 2. It consist of source, overhead wire, pantograph, transformer, rectifier, motor control and 

motor as its important parts. It can be seen from Fig. 2 that each and every component is connected 

in series. 

 

 
 

Fig. 2. Reliability block diagram of Alternating Current (AC) electrification system 

 

 

III. Evaluation of reliability and its various indices of electric traction system 
 

The system is having a constant failure rate and therefore the reliability of the system having 

constant failure rate is evaluated by using the following relation. 

R(𝑡) = 𝑒−𝜆𝑡                                                                                                                                                    (1) 

           Where R(t) represents the reliability of each and every component. λ represents the failure 

rate per year and t represents time period which is taken as one year. 

          The mean time to failure (MTTF) can be obtained as follows: 

𝑀𝑇𝑇𝐹 =
1

λ
                                                                                                                                                         (2) 

A series system is that system in which one component fails, the complete system will fail and 

for working of the whole system it is mandatory that all the component are in working condition. 

If one assumes time independent reliability r1, r2…rn, then reliability of series system is given as: 

                                                                                                                                                      (3) 

In series configuration combined failure rate is calculated as follows. 

𝜆𝑇𝑜𝑡𝑎𝑙 = ∑𝜆                                                                                                                                                      (4) 

Unavailability of series configuration is calculated by using following relation. 

𝑈𝑇𝑜𝑡𝑎𝑙 = ∑𝜆𝑟                                                                                                                                                   (5) 

Total repair rate of the components connected in series manner is obtained as follows. 

𝑟𝑇𝑜𝑡𝑎𝑙 =
𝑈

𝜆
                                                                                                                                                          (6) 

 

IV. Result and Discussion 
 

Table 1 shows the initial data such as failure rate per year and repair time in hours for the 

components of direct current (DC) electrification traction system. There are four components in the 

DC electrification traction system which are overhead wire, pantograph, motor control and motor 

and shown as components c1, c2, c3 and c4 respectively. 
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Table 1: Initial data for different components of the direct current electrification traction system. 

component c1 c2 c3 c4 

Failure rate/year 0.04 0.03 0.005 0.004 

Repair time (hrs.) 3 4 5 6 

 

Table 2 shows the initial data such as failure rate per year and repair time in hours for the 

components of alternating current (AC) electrification traction system. There are six components in 

the AC electrification traction system which are overhead wire, pantograph, transformer, rectifier, 

motor control and motor and shown as components c1, c2, c3, c4, c5 and c6 respectively. 

 
Table 2: Initial data for different components of the alternating current electrification traction system. 

component c1 c2 c3 c4 c5 c6 

Failure rate/year 0.04 0.03 0.002 0.003 0.005 0.004 

Repair time (hrs.) 3 4 6 4 5 6 

 

Table 3 provides the evaluated reliability of each component of DC electrification traction 

system as 0.9608, 0.9704, 0.9950 and 0.9960 respectively. The overall reliability of the DC 

electrification traction system obtained is as 0.9240.  

Table 4 provides the evaluated reliability of each component c1, c2, c3, c4, c5 and c6 of AC 

electrification traction system as 0.9608, 0.9704, 0.9980, 0.9950, 0.9950 and 0.9960 respectively. The 

overall reliability of the AC electrification traction system obtained is as 0.9175. 

 
Table 3 Evaluated Reliability of each component of DC electrification traction system 

 

Component Reliability 

c1 0.9608 

c2 0.9704 

c3 0.9950 

c4 0.9960 

 
Table 4 Evaluated Reliability of each component of AC electrification traction system 

 

Component Reliability 

c1 0.9608 

c2 0.9704 

c3 0.9980 

c4 0.9950 

c5 0.9950 

c6 0.9960 

 

Table 5 and Table 6 provide the evaluated mean time to failure of DC electrification traction 

system and evaluated mean time to failure of AC electrification traction system respectively. 

 
Table 5 Evaluated mean time to failure of DC electrification traction system 

Component Evaluated mean time to failure 

c1 25 

c2 33.33 

c3 200 

c4 250 
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Table 6 Evaluated mean time to failure of AC electrification traction system 

Component Evaluated mean time to failure 

c1 25 

c2 33.33 

c3 500 

c4 333.33 

c5 200 

c6 250 

 

Evaluated unavailability for each and every component of the DC electrification traction 

system is shown in Table 7. The evaluated unavailability obtained are 0.12, 0.12, 0.025 and 0.024 

respectively. The evaluated unavailability of each component of the AC electrification traction 

system are 0.12, 0.12, 0.012, 0.012, 0.025 and 0.024 respectively as shown in Table 8. 

 
Table 7 Evaluated unavailability for each and every component of the DC electrification traction system 

component c1 c2 c3 c4 

Unavailability 0.12 0.12 0.025 0.024 

 
Table 8 Evaluated unavailability for each and every component of the AC electrification traction system 

component c1 c2 c3 c4 c5 c6 

Unavailability 0.12 0.12 0.012 0.012 0.025 0.024 

 

Table 9 and Table 10 provide the component level evaluated failure rate, repair rate and 

unavailability for each and every component of the DC electrification traction system and AC 

electrification traction system respectively. 

 
Table 9 Component level evaluated failure rate, repair rate and unavailability for each and every component of the   

            DC electrification traction system. 

Component Level C1 C2 C3 C4 

Failure rate  0.04 0.07 0.075 0.079 

Repair rate 3 3.4286 3.5333 3.6582 

Unavailability 0.12 0.24 0.265 0.289 

 
Table 10 Component level evaluated failure rate, repair rate and unavailability for each and every component of the  

              AC electrification traction system. 

Component 

Level 

C1 C2 C3 C4 C5 C6 

Failure rate  0.04 0.07 0.072 0.075 0.08 0.084 

Repair rate 3 3.4286 3.5 3.52 3.6125 3.7262 

Unavailability 0.12 0.24 0.252 0.264 0.289 0.313 

 

Fig. 3 and Fig. 4 provide the magnitude of evaluated reliability of each component of DC 

electrification traction system and AC electrification traction system respectively. Magnitude of 

evaluated mean time to failure of DC electrification traction system and that of AC electrification 

traction system is shown in Fig. 5 and Fig. 6   respectively.  
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Fig. 3 Magnitude of evaluated reliability of each 

component of DC electrification traction system 

 
Fig. 4 Magnitude of evaluated reliability of each 

component of AC electrification traction system 

 

 
Fig. 5 Magnitude of evaluated mean time to failure of 

DC electrification traction system 

 

 
Fig. 6 Magnitude of evaluated mean time to failure of 

AC electrification traction system 

 
Fig. 7 and Fig. 8 provide the magnitude of evaluated unavailability for each and every 

component of the DC electrification traction system and AC electrification traction system 

respectively.  
 

 
 

Fig. 7 Magnitude of evaluated unavailability for each 

and every component of the DC electrification traction 

system 

 

 
Fig. 8 Magnitude of evaluated unavailability for each 

and every component of the AC electrification traction 

system 

 
Magnitude of component level evaluated failure rate for each and every component of the 

DC electrification traction system, magnitude of component level evaluated failure rate for 

each and every component of the AC electrification traction system, magnitude of 

component level evaluated repair rate for each and every component of the DC 

electrification traction system, magnitude of component level evaluated repair rate for each 
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and every component of the AC electrification traction system are provided in Fig. 9, Fig. 10, 

Fig. 11 and Fig. 12 respectively.             
 

 
 

Fig. 9 Magnitude of component level evaluated failure 

rate for each and every component of the DC 

electrification traction system. 

 
Fig. 10 Magnitude of component level evaluated 

failure rate for each and every component of the AC 

electrification traction system. 

 
Fig. 11 Magnitude of component level evaluated repair 

rate for each and every component of the DC 

electrification traction system. 

 
 

Fig. 12 Magnitude of component level evaluated 

repair rate for each and every component of the AC 

electrification traction system. 

 
Fig. 13 and Fig. 14 provides magnitude of component level evaluated unavailability for each 

and every component of the DC electrification traction system and magnitude of component 

level evaluated unavailability for each and every component of the AC electrification 

traction system respectively. 
 
 

 
Fig. 13 Magnitude of component level evaluated 

unavailability for each and every component of the DC 

electrification traction system. 

 
Fig. 14 Magnitude of component level evaluated 

unavailability for each and every component of the 

AC electrification traction system. 
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V. Conclusion 
 

Identifying various values of reliability is most important when we have to check the 

availability of supply in any system. Electric traction system is very important as it is used for 

operation of passenger trains and freight trains across a large rail network throughout the world. 

Reliability of each component of DC electrification traction system and AC electrification traction 

system is obtained. Mean time to failure and unavailability for each and every component of the 

DC electrification traction system and AC electrification traction system is also calculated. This 

paper has also evaluated the basic reliability indices such as failure rate, repair rate and 

unavailability at the component level for the DC electrification traction system and AC 

electrification traction system respectively. 

 

References 
 

[1]  C. Singh. (1981). Markov cut-set approach for the reliability evaluation of transmission and 
distribution systems. IEEE Trans. on Power Apparatus and Systems, 100: 2719-2725. 

[2]  R. Billinton. (1969). Composite system reliability evaluation. IEEE Trans. on Power Apparatus 
and Systems, 88: 276-281. 

[3]  E. Wojczynski, R. Billinton. (1985). Effects of distribution system reliability index distributions 
upon interruption cost/reliability worth estimates. IEEE Trans. on Power Apparatus and 
Systems, 11: 3229-3235. 

[4]  A. K. Verma, A. Srividya, H. M. R. Kumar. (2002).  A framework using uncertainties in the     
composite power system reliability evaluation. Electric Power Components and Systems, 30: 
679-691. 

[5]  Z. Zheng, L. Cui, Alan G. Hawkes. (2006). A study on a single-unit Markov repairable system 
with repair time omission. IEEE Trans. on Reliability, 55: 182-188. 

[6]  P. Jirutitijaroen, C. singh. (2008). Comparison of simulation methods for power system 
reliability indexes and their distributions. IEEE Trans. on Power Systems, 23: 486-493. 

[7]  O. Dzobe, C. T. Gaunt, R. Herman. (2012). Investigating the use of probability distribution 
functions in reliability-worth analysis of electric power systems. Int. J. of Electrical Power and 
Energy Systems, 37: 110-116. 

[8]  I. S. Bae, J. O. Kim. (2008). Reliability evaluation of customers in a microgrid. IEEE Trans. on 
Power Systems, 23: 1416-1422. 

[9]  R. Billinton, P. Wang. (1998). Reliability-network-equivalent approach to distribution-system-
reliability evaluation. IEE Proc. generation, transmission and distribution, 145: 149-153. 

[10]  A. Tiwary. (2017). Reliability enhancement of distribution system using Teaching Learning 
based optimization considering customer and energy based indices. International Journal on 
Future Revolution in Computer Science & Communication Engineering, 3: 58-62. 

[11] A. Tiwary. (2018). An Innovative Self-Adaptive Multi-Population Jaya Algorithm based 
Technique for Evaluation and Improvement of Reliability Indices of Electrical Power 
Distribution System. International Journal on Future Revolution in Computer Science & 
Communication Engineering, 4: 299-302. 

[12] Jirutitijaroen P, singh C. (2008). Comparison of simulation methods for power system 
reliability indexes and their distribution. IEEE Trans Power Syst, 23: 486–92. 

[13]  A. Tiwary, R. Arya, S. C. Choube, L. D. Arya. (2013). Determination of reliability indices for 
distribution system using a state transition sampling technique accounting random down 
time omission. Journal of The Institution of Engineers (India): series B (Springer), 94: 71-83. 

[14]  A. Tiwary. (2019). Inspection-Repair-Based Availability Optimization of Distribution System 
Using Bare Bones Particle Swarm Optimization. Chapter in Book Series Computational 
Intelligence: Theories, Applications and Future Directions – Volume II, Advances in 
Intelligent Systems and computing, 799. 

 

20



 
Aditya Tiwary, Swati Tiwary 
AN INNOVATIVE METHODOLOGY FOR EVALUATION OF 
RELIABILITY INDICES OF ELECTRIC TRACTION SYSTEM 

RT&A, No 2(62) 
Volume 16, June 202 1   

 

[15] A. Tiwary, R. Arya, L. D. Arya, S. C. Choube. (2017). Bootstrapping based technique for 
evaluating reliability indices of RBTS distribution system neglecting random down time. The 
IUP Journal of Electrical and Electronics Engineering, X: 48-57. 

[16] Volkanavski, Cepin M, Mavko B. (2009). Application of fault tree analysis for assessment of 
the power system reliability. Reliab Eng Syst Safety, 94: 1116–27. 

[17] Li BM, Su CT, Shen CL. (2010). The impact of covered overhead conductors on distribution 
reliability and safety. Int J Electr Power Energy Syst, 32: 281–9. 

[18] A. Tiwary. (2017). Reliability enhancement of distribution system using Teaching Learning 
based optimization considering customer and energy based indices. International Journal on 
Future Revolution in Computer Science & Communication Engineering, 3: 58-62. 

[19]  A. Tiwary. (2018). Self-Adaptive Multi-Population Jaya Algorithm based Reactive Power 
Reserve Optimization Considering Voltage Stability Margin Constraints. International Journal 
on Future Revolution in Computer Science & Communication Engineering, 4: 341-345. 

[20]  R. Arya, A. Tiwary, S. C. Choube, L. D. Arya. (2013). A smooth bootstrapping based technique 
for evaluating distribution system reliability indices neglecting random interruption duration. 
Int. J. of Electrical Power and Energy System, 51: 307-310. 

[21]  A. Tiwary. (2018). Inspection–Maintenance-Based Availability Optimization of Feeder 
Section Using Particle Swarm optimization. Soft Computing for Problem Solving-Advances 
in Intelligent Systems and Computing, 816: 257-272. 

[22]  M. BinLi, C. TzongSu, C. LungShen. (2010). The impact of covered overhead conductors on 
distribution reliability and safety. Int. J. of Electrical Power and Energy System, 32: 281-289. 

[23]  AdityaTiwary. (2019). Reliability evaluation of radial distribution system – A case study. Int. J. 
of Reliability: Theory and Applications, 14, 4(55): 9-13. 

[24]  I. Sarantakos, D. M. Greenwood, J. Yi, S. R. Blake, P. C. Taylor. (2019). A method to include 
component condition and substation reliability into distribution system reconfiguration. Int. J. 
of Electrical Power and Energy System, 109: 122-138. 

[25]  A. Tiwary. (2020). Customer orientated indices and reliability evaluation of meshed power 
distribution system. Int. J. of Reliability: Theory and Applications, 15, 1(56): 10-19. 

[26]  A. Tiwary, P. Patel. (2020). Reliability Evaluation of Hose Reel System - A Practical Approach. 
Journal of Industrial Safety Engineering, 7: 30-34. 

[27]  N. R. Battu, A. R. Abhyankar, N. Senroy. (2019). Reliability Compliant Distribution System 
Planning Using Monte Carlo Simulation. Electric power components and systems, 47: 985-997. 

[28]  A. Tiwary. (2020). Application of Non-Parametric Bootstrap Technique for evaluating MTTF 
and Reliability of a Complex Network with Non-Identical Component Failure Laws. 
Reliability: Theory and Applications, 15: 62-69. 

[29]  A. Tiwary, S. Tiwary. (2020). Evaluation of Customer Orientated Indices and Reliability Study 

of Electrical Feeder System. Reliability: Theory and Applications, 15: 36-43. 

 

21

https://www.sciencedirect.com/science/article/pii/S0142061518318660#!
https://www.sciencedirect.com/science/article/pii/S0142061518318660#!
https://www.sciencedirect.com/science/article/pii/S0142061518318660#!
https://www.sciencedirect.com/science/article/pii/S0142061518318660#!
https://www.sciencedirect.com/science/article/pii/S0142061518318660#!


 
V. Singh, P. Poonia, Jibril Umar Labaran, Ibrahim Abdullahi  
PROBABILISTIC ANALYSIS OF A MULTI-STATE WARM… 

RT&A, No 2(62) 
Volume 16, June 202 1   

22 

 

Probabilistic analysis of a multi-state warm standby k-out-

of-n: G system in a series configuration using copula 

linguists 
 

V.V. Singh 
 Department of Mathematics, Yusuf Maitama University, Kano, Nigeria 

singh_vijayvir@yahoo.com 

P. K. Poonia 
Department of General Requirements, Ibri College of Applied Sciences, Oman 

pkpmrt@gmail.com 

Jibril Umar Labaran 
Department of Mathematics, Yusuf Maitama University, Kano, Nigeria 

julabaran@yahoo.com 

 Ibrahim Abdullahi 
Department of Mathematics, Yusuf Maitama University, Kano, Nigeria 

ibraabdul@nwu.edu.ng 

 

Abstract 

 

This paper discusses the reliability analysis of repairable complex system comprising of two subsystems 

in series configuration together with the controllers. The two subsystems, consisting of three 

undistinguishable units in a parallel arrangement and functioning under 1-out-of-3: G operational 

policy. Controllers control both the subsystems and can be unstable, and the malfunction result in the 

controller prevents system operation. The system may have an unforeseeable catastrophic failure due to 

which the system may not perform its function once the situation arises. The failure rate of the units is 

constant, and the exponential distribution is assumed to obey. The two forms of repair namely general 

repair and Goumbel-Hougard copula repair are used to restore the existing failed units of the system. 

The supplementary variable technique with Laplace transformation is used to evaluate the output of the 

system. Using Stochastic theory, differential equations are derived to obtain essential features of 

reliability such as availability of the system, reliability of the system, MTTF, and profit analysis. Graphs 

were drawn to highlight the behavior of the results. Tables and figures display the findings and suggest 

that copula repair is a more efficient repair policy for the improved performance of repairable systems. 

It brings a different aspect to the research world to adopt multi-dimensional repair in the form of the 

copula. Besides, the findings of the model are useful for system engineers and maintenance managers. 

 

Keywords: k-out-of-n: G/F system configuration; availability; reliability; MTTF; 

Controller; catastrophic failure; Gumbel-Hougaard family copula distribution. 

 

I. Introduction 
 

In the design of complex engineering systems, specifically in the manufacturing sector, the research 

community is lacking in the prospect of developing new frameworks. The architecture of the model 

must be such that it can execute the task effectively and meet high levels of availability and 

reliability. Every enhancement in system reliability is always associated with the cost of the system; 

the improvement in reliability is defensible to the degree that the cost of the system 

unapproachability exceeds the cost of the basic service offered. Reliability may be increased by the 

procurement and installation of new paraphernalia or the repair of existing facilities. In addition to 

the financial component of retaining the status of every industry, customer loyalty is often a crucial 

prerequisite.  
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The system reliability and its measures has a crucial role to play in preserving status and customer 

satisfaction. There are many mechanisms to increase system efficiency and redundancy to boost 

system efficiency and benefit gained. Any equivalent or non-identical components that are retained 

in standby mode assist system operations as required after the main unit/component has failed. As 

per the available reliability theory literature, in particular, three types of standby units viz. cold 

standby, mild standby, and hot standby have been tested by many scholars in the past. Moreover, 

redundancy is very cost-effective in ensuring a certain degree of efficiency of the system. Therefore, 

to increase the stability and efficiency of the k-out-of-n system configuration in which at least k 

components out of n have to run for the system to be operational play a critical role. To explore some 

examples of such type of configured structure, a telecommunications system with four transmitters 

can be modeled as a 2-out-of-4: G system. An extensive bus with six tires four is enabled to perform 

tasks for time is a 4-out-of-6: G system.  Overwhelmingly k-out-of-n system plays a crucial role in 

system reliability theory for the proper operation of the system. The k-out-of-n-type warm standby 

method has found various applications in the field of reliability, including redundant system 

inspection, network architecture, power generation, and transmission networks, etc. 

 

Extensive attempts have been made over the last decades by many scholars, including Kullstam 

(1981), Zhao (1994), Coit (2001), Park and Pham (2012), Wu and Guan (2005), Xing et al. (2012), and 

Ram et al. (2013) to establish strategies for solving k-out-of-n types of systems and computing 

availability, MTBF, and MTTR and other probabilistic measures for repairable systems. They have 

researched the performance of complex repairable systems employing k-out-of-n: G/F, operational 

schemes. Following the performance assessment of complex repairable systems, Zuo and Tian (2006) 

measured the performance of a series-parallel system under varying operating policy conditions. 

Malinowski (2016) has established a network of inflow points, transit-only nodes, and outflow 

points. In their network, arcs were regulated, and components were repairable with constant failure 

and repair rates. The efficiency of this network's performance is determined by the ratio of the total 

demand met at all the outflow points to the total demand needed at these points. Levitin et al. (2013) 

looked at mixed-designed series-parallel systems through reliability measures assuming random 

failure propagation time. The exact reliability formula for consecutive repairable k-out-of-n-type 

operative systems was showed by Liang et al. (2010). Sharma and Kumar (2017) measured 

availability and other efficiency measurements of the successive k-out-of- n machining system using 

standby with multiple working vacations. Eryilmaz (2007, 2009, 2010) has developed formulas for 

consecutive k-out-of-n: F system using lifetime distribution, reliability, and properties of the k-out-

of-n system with arbitrarily dependent components and mixture representations for the protection 

of successive- k systems. A system with (M+N) units under k-out-of-(M+N): G scheme in which the 

M units were inactive warm standby mode has been analyzed by Zhang (2006). Kumar and Gupta 

(2007) evaluated the reliability characteristics of a 1-out-of-2 warm standby system comprising of 

the main unit with a supporting unit, including a repair facility. Cha et al. (2014) suggested a 

competing risk model reliability analysis by considering two types of failures partial failure and 

complete failure as a catastrophic failure phenomenon. They compared deterioration with 

catastrophic failure and showed that a catastrophic failure is more troubling as the system may not 

accomplish its function after a catastrophic failure happens. Levitin and Dai (2012) analyzed a multi-

state sliding window system with multiple failures mode. Every element can have separate states 

for minor failed, major failures, and complete failed states. The reliability of the whole system also 

relies on component reliability, which is assembled in the system.  

 

The controller is a device that controls the output variables and operating conditions imposed with 

the given dynamical systems. Several researchers around the globe have published their findings on 

the reliability of complex repairable systems using controllers. It can be used in engineering systems 

particularly in electronics to control a circuit, in computers as a peripheral unit, in software design 

to create an interface between models and views, game controllers, etc.  
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Controllers can also be used in other systems such as linguistics (control the verb), aviation (control 

the air traffic), biomedical, economic, and socio-economic systems. Digital computers are an integral 

part of complex engineering systems to control the variables like as to control centrifugal force for 

controlling speed, to control the furnace temperature, thermostat controller to control room 

temperature, etc. Ogata (2009) introduced and explained the idea of controllers for modern 

engineering systems. Authors such as Singh et al. (2013) investigated a system consisting of two 

subsystems in a series configuration with controllers in which the first subsystem functions under 

k-out-of-n: G, policy and the second subsystem has three similar units in parallel arrangements. The 

study under different failure rates and two forms of repairs was carried out. Computation of 

availability projected that multi-repair would result in better execution of the system. In all the 

research papers listed above, all the authors discussed several failures and a single method of repair. 

They fail to note if we have more than one form of repair between two adjacent states that could be 

possible in a variety of complex systems. If this is feasible, we can test the reliability characteristics 

using Goumbel-Hougard Copula repair distribution for a completely failed condition. Copulas 

allow one to isolate the dependency structure in a distribution where two or more variable quantities 

are involved. Copulas have been introduced by Nelson (2006). To quote some similar work posed 

by some authors including Ibrahim et al. (2017), Jia et al. (2017), Kumar et al. (2017), and Singh et al. 

(2020b) examined the reliability measurements of systems comprising subsystems in series 

configurations and k-out-of-n: G/ F policy with implications of a joint probability distribution. 

Monika et al. (2019) tested a complex repairable system via a switch and human failure and copula 

approach. Singh et al. (2020a) investigated a repairable network system of three server-based 

computer labs under a 2-out-of-3: G scheme. Raghav et al. (2020) studied a dynamic system with 

two subsystems in a series configuration with imperfect switching devices with copula linguistic 

approach implications and concluded that copula repair predicts better performance over the 

general repair. Rawal et al. (2013) analyzed a model of the internet data center including a redundant 

server with the main mail server trickling different types of failure and two types of repair 

employing copula distribution. Confirming the various operating choices in the system, some critical 

analysis was carried out to determine the various reliability features of the system. A repairable 

warm standby k-out-of-n: G and 2-out-of-4: G systems in series under catastrophic failure and a 

switching device was recently studied by Poonia et al. (2020) using copula repair. This model was 

built by taking n-k+1 states into account in the first subsystem in such a way that it formed a finite 

series during solution unlike as done in the past. Via this article, the scientific community is advised 

by the authors to carry out multi-dimension repairs in the form of copulas, since they have excellent 

results over the general repair.  

 

2. Model description and notations 

 

2.1 System description 

 

Refer to the literature discussed in the introduction, none of the authors studied any system 

consisting of the k-out-of-n: G form of operating strategy with controllers under catastrophic failure. 

In order to close the difference, we examined the reliability of a repairable warm standby system in 

series configurations with two subsystems (namely subsystem-1 & 2).  Each subsystem is having 

three similar units in a parallel configuration and follow 1-out-of-3: good working strategy. Units in 

both subsystems are connected to the controller for the proper functionality of the system, which 

could be unstable at the time of need and the switching time is instantaneous. Also, the system could 

face unexpected catastrophic failures during service. There are four types of possible states for the 

system operation: perfect state, minor failed state, major failed state, and completely failed states. 

The failure rates of the functional and standby units of each subsystem are constant in nature, but 

they follow exponential distributions. The repair system is fitted with two distributions general and 
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Goumbel-Hougard copula distribution. The rate of repair of each device in subsystem-1 and 

subsystem-2 is regarded as the same but different from each subsystem.  

The article is formulated in the following way: Through Section-1, we studied the related work that 

can be retrieved in various articles. Section-2 of the manuscript deliberates system description, 

assumptions, and state description.  Section-3 consists of system configuration and transition 

diagram. Section-4 presents mathematical modeling using differential equations. The empirical 

results for the different output measures of the system are simulated by considering a few specific 

cases listed in section-5.  With the help of graphs, the concluding remarks on our findings with 

interpretations are provided in Section 6. MAPLE (software) is used to obtain both explicit 

expressions and numerical evaluations for reliability physiognomies.  

 

2.2. Assumptions 

 

In this article, we consider the following assumptions:  

1. Subsystem-1 / subsystem-2 operates effectively until one or more units, are in good working 

order i.e. "1-out-of-3: G " policy.  

2. Both the subsystems have a control unit that is unstable in the system, and the controller's 

function is as long as the controller fails, the whole system fails immediately."  

3. An unforeseeable catastrophic failure of the system could occur at any time (t). 

4. The system has four states: Good, minor partially failed, major partially failed, and utterly failed. 

5. If the unit has been restored, it is again operational in both the subsystems. No failure was 

reported due to machine repair.  

6. The repairman is available full time and ready to restore minor and major faults. 

7. A repair person is available to full time and may repair partially or fully failed units.  

8. Partially failed states are restored by employing general repair, while the Gumbel-Hougaard 

copula can be activated to reinstate the system in case of a complete failure. 

 

2.3. Notations 
 

 s , t  Laplace transform / Time scale variable 

1 1/   Failure rate of each unit in subsystem-1/subsystem-2. 

1 2
/c c   The failure rate of controllers in subsystem-1/subsystem-2. 

Tc
   Failure rate related to the catastrophic failure mode. 

( ) ( )1 1/x y  Repair rate of one unit in subsystem-1/subsystem-2. 

( ) ( )2 2/x y  Repair rate of two units in subsystem-1/subsystem-2. 

( )0P t  The state transition probability that the system is in iS  state at an instant for 0i = . 

( )P s  Laplace transformation of the state transition probability ( )P t . 

( ),iP x t  The probability that the system is in state iS  1 to 8i = and the system is under repair 

with elapsed repair time is ,x t x repaired variable and t  is time variable. 

( )pE t  Expected profit in the interval )0, t . 

1 2,K K  Revenue generated and service cost per unit time respectively. 

( )0 x  An expression of the joint probability from failed state Si to good state S0 according 

to Gumbel-Hougaard family copula is given as; 
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         ( ) ( ) ( ) 0 1 2,x C u x u x = ( ) 
1

exp logx x
   = +

  
 where ( ) ( )1u x x= , ( )2

xu x e=  

Here  is the parameter1    . 

 

3. System configuration, transition diagram, and state description 

 

The system configuration is shown in Fig 1 (a) while the state transition diagram in Fig 1 (b). The 

state description of the model highlights that initially all the units in both the subsystems are 

functioning perfectly and it in a state of S0. After one unit has failed in either subsystem, it switches 

to S1 or S4 which are regarded as minor partially failed states. If two units have failed in any 

subsystem, they will be passed to S2 or S5 that are the major partially failed states. In both cases, to 

restore the system we use general repair. States S3, S6, S7, and S8 are complete failed states due to 

failure of all the three units in subsystem-1 or2, or due to failure controllers or catastrophic failure. 

In these complete failed states, a multidimensional repair in the form of the copula is used to restore 

the system. 

Table 1 State Description 

State Description 

S0 
This is a perfect state and all units of subsystem-1 and subsystem-2 are in good working 

condition. 

S1, S4 

The indicated state is deteriorated and deemed to be a minor failed state but is in 

operational mode after the failure of anyone unit in subsystem-1/2. The remaining two 

units are well-functioning. The system is being restored through general repair. 

S2, S5 

The indicated state is deteriorated and deemed to be a major failed state but is in 

operational mode after the failure of any two units in subsystem-1/2. The remaining 

unit is well-functioning. The system is being restored through general repair. 

  S3, S6 

  S7, S8 

The states suggest that the system is in complete failure mode and is being revived 

using the copula distribution of the Gumbel-Hougaard family. 

 

 

 

 

Figure 1 (a) System configuration 
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Figure 1 (b) State transition diagram of the model 

 

4. Preparation of mathematical model 

 
Based on stochastic theory arguments, one can easily develop the set of differentials equations 

associated with the existing mathematical model for the above-mentioned state transition diagram. 

( ) ( ) ( ) ( ) ( )
1 21 1 0 1 1 1 4

0 0

3 3 , ,
Tc c c P t x P x t dx y P y t dy

t
      

   
+ + + + + = +   

    

( ) ( ) ( ) ( )
10 3 0

0 0

, ,cx P x t dx x P x t dx 
 

+ +   

 ( ) ( ) ( ) ( ) 
20 0

0 0

, ,
Tc cy P y t dy z P z t dz 

 

+ +   (1) 

( ) ( )
1 21 1 12 , 0

Tc c c x P x t
t x

    
  

+ + + + + + =   
     (2)

 

( ) ( )
1 21 2 2 , 0

Tc c c x P x t
t x

    
  

+ + + + + + =   
     (3) 

( ) ( )0 3 , 0x P x t
t x


  

+ + =   
                                            (4) 

( ) ( )
1 21 1 42 , 0

Tc c c y P y t
t y

    
  

+ + + + + + = 
  

     (5) 
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( ) ( )
1 21 2 5 , 0

Tc c c y P y t
t y

    
  

+ + + + + + = 
  

     (6) 

( ) ( )
10 , 0cx P x t

t x


  
+ + =   

                                            (7) 

( ) ( )
20 , 0cy P y t

t y


  
+ + = 

  
                                             (8) 

( ) ( )0 , 0
Tc

z P z t
t z


  

+ + =   
                                             (9) 

Boundary conditions 

( ) ( )1 1 00, 3P t P t=          (10) 

( ) ( ) ( )2

2 1 1 1 00, 2 0, 6P t P t P t = =         (11) 

( ) ( )4 1 00, 3P t P t=          (12) 

( ) ( ) ( )2

5 1 4 1 00, 2 0, 6P t P t P t = =        (13) 

( ) ( ) ( ) ( ) ( )3 3

3 1 2 1 5 1 1 00, 0, 0, 6P t P t P t P t   = + = +      (14) 

( ) ( ) ( ) ( ) ( ) ( )
1 1 0 1 2 4 50, 0, 0, 0, 0,c cP t P t P t P t P t P t  = + + + +      (15) 

( ) ( ) ( ) ( ) ( ) ( )
2 2 0 1 2 4 50, 0, 0, 0, 0,c cP t P t P t P t P t P t  = + + + +      (16) 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 4 50, 0, 0, 0, 0,
T Tc cP t P t P t P t P t P t  = + + + +      (17) 

Initial conditions 

( )0 0 1P = , and other state probabilities are zero at 0t =      (18) 

Solution of the model 

Taking Laplace transformation of equations (1) to (17) and using equation (18), we obtain 

( ) ( ) ( ) ( ) ( )
1 21 1 0 1 1 1 4

0 0

3 3 1 , ,
Tc c cs P s x P x s dx y P y s dy      

 

 + + + + + = + +      

( ) ( ) ( ) ( )
10 3 0

0 0

, ,cx P x s dx x P x s dx 
 

+ +      

( ) ( ) ( ) ( ) 
20 0

0 0

, ,
Tc cy P y s dy z P z s dz 

 

+ +   (19) 

( ) ( )
1 21 1 12 , 0

Tc c cs x P x s
x

    
 

+ + + + + + =  
     (20)

 

( ) ( )
1 21 2 2 , 0

Tc c cs x P x s
x

    
 

+ + + + + + =  
      (21) 

( ) ( )0 3 , 0s x P x s
x


 

+ + =  
                                (22) 

( ) ( )
1 21 1 42 , 0

Tc c cs y P y s
y

    
 

+ + + + + + = 
 

     (23) 

( ) ( )
1 21 2 5 , 0

Tc c cs y P y s
y

    
 

+ + + + + + = 
 

     (24) 

( ) ( )
10 , 0cs x P x s

x


 
+ + =  

                                (25) 

( ) ( )
20 , 0cs y P y s

y


 
+ + = 

 
                                (26) 
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( ) ( )0 , 0
Tc

s z P z s
z


 

+ + =  
                                 (27) 

Boundary conditions 

( ) ( )1 1 00, 3P s P s=          (28) 

( ) ( ) ( )2

2 1 1 1 00, 2 0, 6P s P s P s = =        (29) 

( ) ( )4 1 00, 3P s P s=          (30) 

( ) ( ) ( )2

5 1 4 1 00, 2 0, 6P s P s P s = =        (31) 

( ) ( ) ( ) ( ) ( )3 3

3 1 2 1 5 1 1 00, 0, 0, 6P s P s P s P s   = + = +      (32) 

( ) ( ) ( ) ( )
1 1

2 2

1 1 1 1 00, 1 3 6c cP s P s     = + + + +
 

      (33) 

( ) ( ) ( ) ( )
2 2

2 2

1 1 1 1 00, 1 3 6c cP s P s     = + + + +
 

     (34) 

( ) ( ) ( ) ( )2 2

1 1 1 1 00, 1 3 6
T Tc cP s P s     = + + + +

 
     (35) 

Now solving all the equations with the boundary conditions, one may get 

( )
( )0

1
P s

D s
=           (36) 

( )
( ) ( )

1 2

1
1

1

3 1

2
Tc c c

P s
D s s



   
=

+ + + +
                   (37) 

( )
( ) ( )

1 2

2

1
2

1

6 1

Tc c c

P s
D s s



   
=

+ + + +
       (38) 

( )
( )

( )

3 3

1 1

3

6 1
P s

D s s

 +
=                     (39) 

( )
( ) ( )

1 2

1
4

1

3 1

2
Tc c c

P s
D s s



   
=

+ + + +
                              (40) 

( )
( ) ( )

1 2

2

1
5

1

6 1

Tc c c

P s
D s s



   
=

+ + + +
                 (41) 

( )
( )

( )
( )

1 1

1

2 2

1 1 1 1

1
1 6 3 3

c c

c

U
P s

D s s D s s

 
    = + + + + =

 
                                       (42) 

( )
( )

( )
( )

2 2

2

2 2

1 1 1 1

1
1 6 3 3

c c

c

U
P s

D s s D s s

 
    = + + + + =

 
                                  (43)

( )
( )

( )
( )

2 2

1 1 1 1

1
1 6 3 3T T

T

c c

c

U
P s

D s s D s s

 
    = + + + + =

 
                            (44) 

where ( ) ( ) ( )
1 2 1 2

3 3

1 1 1 1 1 13 3 3 3 6
T Tc c c c c cD s s P R T UT           = + + + + + − − − + − + +                                                                                 

( )
1 1 2

1 2

1
1

1 1

2
2T

T

c c c

c c c

P S s
s




   

    
= + + + + =

+ + + + +
 

( )
2 1 2

1 2

2
1

1 2
T

T

c c c

c c c

Q S s
s




   

    
= + + + + =

+ + + + +
 

( )
1 1 2

1 2

1
1

1 1

2
2T

T

c c c

c c c

R S s
s




   

    
= + + + + =

+ + + + +
 

( )
2 1 2

1 2

2
1

1 2
T

T

c c c

c c c

S S s
s




   

    
= + + + + =

+ + + + +
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( )
0

0

0

T S s
s






= =

+
and ( )2 2

1 1 1 11 6 3 3U    = + + + +  

Sum of Laplace transformations of the state transitions, where the system is in operational mode 

and failed state at any time, is as follows 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 4 5upP s P s P s P s P s P s= + + + +                    (45) 

( ) ( )1down upP s P s= −          (46) 

 

5. Evaluation of Reliability Characteristics 

 

5.1 Availability of the system 
 

If the system performs with lowered efficiency i.e. it is in partial failure mode then the system is 

restored through general distribution, but in case of complete failure, repair follows a multivariate 

distribution namely Gumbel-Hougaard copula distribution, which uses the followings path. 

 

( )
( ) 

( )
( ) 

( ) 
1

0

1

1
exp log

exp log

exp log
x x

x x
S s S s

s x x
 

 


  




 +
  

 +
  

= =

 + +
  

and ( )S s
s






=

+
. 

 

We consider both general distribution and copula distribution while evaluating ( )upP s . Taking the 

values of failure rates as
1 1 1 20.02, 0.03, 0.021, 0.022, 0.025c c cT    = = = = = , 1 = 1x =

( )1 1,2i i i = = =  in equations (45). computing inverse Laplace transform, with Maple 17 software 

one can obtain the following availability expression of the system. Here we have considered the 

following particular cases:  

 

(a) When both the subsystems have switching device, we obtain, 

 

2.8040 1.2900 1.1309 1.0955

1.0481 1.0383 0.0093 1.0880

1.0980

( )

            

            

0.030148 0.024319 0.003139 0.011268

0.021207 0.029779 1.007386 0.001840

0.005382

up

t t t t

t t t t

t

P t e e e e

e e e e

e

− − − −

− − − −

−

=

−

+

+ − −

− − +      (47) 

 

(b) When subsystem-2 does not have a switching device i.e.
2

0s = , we obtain, 

 
1.0660 1.0760 2.7765 1.2728

1.1089 1.0734 1.0261 1.0162

0.0104

( )

            

            

0.001895 0.005182 0.020739 0.027661

0.003152 0.011093 0.021381 0.030907

1.014845

up

t t t t

t t t t

t

P t e e e e

e e e e

e

− − − −

− − − −

−

= −

−

+

+ + +

− − −       (48) 

 

(c) When both subsystems 1 and 2 do not have a switching device i.e.
1 2

0s s = = , we obtain, 

 
1.0450 1.0550 2.7501 1.2564

1.0879 1.0522 1.0051 0.9951

0.0114

( )

            

            

0.001948 0.005009 0.011482 0.031176

0.003163 0.010942 0.021539 0.032022

1.021947

up

t t t t

t t t t

t

P t e e e e

e e e e

e

− − − −

− − − −

−

= −

−

+

+ + +

− − −      (49) 
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Similar expressions can be obtained for availability under general repair by taking
0 1 = . Put the 

values of t as 0,5,10,15,20,25,30,35,40,45 and 50 unitst = . The variation in availability under 

general repair and copula repair can be seen in table-2 and corresponding figure-2.  

 

Table 2 Variation in availability for various t under copula and general repair. 

Time (t) Copula Repair General Repair 

(a) (b) (c) (a) (b) (c) 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

5 0.9610 0.9628 0.9648 0.9217 0.9357 0.9498 

10 0.9173 0.9141 0.9116 0.8813 0.8895 0.8981 

15 0.8754 0.8676 0.8610 0.8426 0.8456 0.8490 

20 0.8354 0.8234 0.8132 0.8057 0.8038 0.8027 

25 0.7972 0.7815 0.7680 0.7704 0.7640 0.7588 

30 0.7607 0.7417 0.7254 0.7367 0.7263 0.7174 

35 0.7260 0.7040 0.6851 0.7044 0.6903 0.6782 

40 0.6928 0.6681 0.6471 0.6735 0.6562 0.6411 

45 0.6611 0.6341 0.6112 0.6440 0.6238 0.6061 

50 0.6309 0.6018 0.5772 0.6158 0.5929 0.5730 
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Figure 2 Variation in availability for various t under copula and general repair. 

 

5.2 Reliability of the system 
 

Reliability is the probabilistic measure of a non-repairable system. Taking all repair rates to zero and 

obtain the inverse Laplace transform in (45), we get the reliability of the system after taking the 

failure rates as
1 1 1 20.02, 0.03, 0.021, 0.022, 0.025c c cT    = = = = = . Now consider the same cases 

as availability, we have 
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(a) When both the subsystems have switching device, we obtain, 

 

( ) ( )( )41 41 41

0.0880 0.1280 1.1309 0.1080

1.4681

( )

          3.1754 10 cosh 1.3332 3.1887 10 cosh 1.3332

0.049568 12.572026 0.141705 2.158779

4.384342 10

i

t t t t

t

R t

t t

e e e e

e−

− − − −

−

=

+

+ + +

−
      (50) 

 

Similar expressions for the reliability of the system can be obtained in the other two cases. For 

different values of time-variable 0,5,10,15,20,25,30,35,40,45 and 50 unitst = of time, one may get 

different values of reliability ( )R t  for all the three cases as shown in table-3 and figure-3. 

Table 3 Variation in reliability corresponding to the different cases 

Time (t) (a) (b) (c) 

0 1.0000 1.0000 1.0000 

5 0.6798 0.7589 0.8429 

10 0.4189 0.5220 0.6440 

15 0.2466 0.3431 0.4701 

20 0.1419 0.2203 0.3354 

25 0.0807 0.1399 0.2365 

30 0.0456 0.0883 0.1659 

35 0.0257 0.0557 0.1161 

40 0.0145 0.0351 0.0813 

45 0.0082 0.0221 0.0570 

50 0.0046 0.0140 0.0401 
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Figure 3 Reliability for various time (t) 
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5.3 Mean Time to Failure 
 
Taking all repair rate to zero and the limit as s tends to zero in (45) for the exponential distribution; 

we can obtain the MTTF as: 
2 2

1 1 1 1

1 1 1 1

3 6 3 61
1

2 2
MTTF

   

        

 
= + + + + 

+ + + + 
             (51) 

where 
1 21 13 3

Tc c c     = + + + + and
1 2 Tc c c   = + +  

Now taking the values of different parameters a
1 21 10.02, 0.03, 0.021, 0.022 and c c   = = = =

0.025
Tc

 =  and varying
1 21 1, , ,  and 

Tc c c      one by one respectively as

0.01,0.02,0.03,0.04,0.05,0.06, 0.07,0.08,0.09,0.10  in (56), the variation of MTTF, with respect 

to failure rates can be obtained as given in table-4 and figure-4. 

 

Table 4 Computation of MTTF corresponding to the failure rates 

Failure Rate 
MTTF 

1  1  
1c

  
1c

  
Tc

  

0.01 11.2065 12.2242 11.9856 12.1127 12.5101 

0.02 10.7387 11.5194 10.8417 10.9466 11.2732 

0.03 10.1469 10.7387 9.8897 9.9776 10.2506 

0.04 9.5608 10.0101 9.0855 9.1602 9.3916 

0.05 9.0201 9.3626 8.3997 8.4619 8.6605 

0.06 8.5337 8.7955 7.8031 7.8589 8.0309 

0.07 8.1002 8.3002 7.2842 7.3331 7.4836 

0.08 7.7143 7.8666 6.8277 6.8709 7.0035 

0.09 7.3704 7.4852 6.4231 6.4615 6.5793 

0.10 7.0628 7.1480 6.0623 6.0966 6.2018 
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Figure 4 MTTF as a function of failure rates 
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5.4 Sensitivity Analysis of the system 
 

The model's sensitivity analysis shows how the variance in the mathematical model's output can be 

attributed to various causes of uncertainty in its input or input variation by considering other inputs 

as constants. Sensitivity can be attained by taking the partial differentiation of the mean time to 

failure with respect to the failure rates of the system. Setting the parameters as 
1 0.02, =

1 1 20.03, 0.021, 0.022, 0.025c c cT   = = = = in the partial differentiation of equation (51) obtained 

using maple, we will get the sensitivity of the system as shown in table-5 and figure-5. 

 

Table 5 Computation of sensitivity with regard to the failure rates 

Failure 

Rate 
1

( )MTTF






 

1

( )MTTF






 

1

( )

C

MTTF






 

2

( )

C

MTTF






 

( )

CT

MTTF






 

0.01 -31.0467 -56.2651 -125.8712 -128.4334 -136.6005 

0.02 -56.4646 -77.9323 -103.9328 -105.8611 -111.9739 

0.03 -59.9943 -76.3944 -87.2011 -88.6883 -93.3809 

0.04 -56.6471 -68.9347 -74.1542 -75.3247 -79.0038 

0.05 -51.3805 -60.6203 -63.7889 -64.7261 -67.6625 

0.06 -45.9257 -52.9484 -55.4214 -56.1832 -58.5629 

0.07 -40.8758 -46.2792 -48.5727 -49.1999 -51.1544 

0.08 -36.3955 -40.6038 -42.8988 -43.4211 -45.0452 

0.09 -32.4899 -35.8047 -38.1477 -38.5870 -39.9506 

0.10 -29.1073 -31.7451 -34.1312 -34.5041 -35.6596 
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Figure 5 Sensitivity with respect to failure rates 

 

5.5 Cost Analysis of the system 
 
Incurred profit as the system follows copula repair and general repair has been calculated by 

assuming the same failure and repair rate as per section 5.1. Let us assume the service facility to be 

open at all times, then the estimated profit to be realized in the interval )0,t is 
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( ) ( )1 2

0

t

p upE t K P t dt K t= −                   (52) 

 

Where 1 2 and K K are the revenue generation and service cost in unit time, respectively? Thus 

 

1

2.8040 1.2900 1.0481 0.0093

1.130912 1.0954 1.0383 1.0980

1.0880

( )

107

0.010751 0.018850 0.020233 107.640872

           0.002776 0.010286 0.028680 0.004901

           0.001691

p

t t t t

t t t t

t

E t K e e e e

e e e e

e

− − − −

− − − −

−

= − +

+

+

− −

+ + −

+  2.611709 K t−

(53) 

 

A similar expression can be obtained in case of general repair. Let 1 1K =
2 0.1,0.2,0.3,0.4K =

and 0.5 us varying 0,5,10,15,20,25,30,35,40,45 and 50t = units of time in Eq. (52), the expected 

profit under copula repair and general repair can be seen in table-6 and 7 and corresponding 

diagrams -6 and 7.  

 

Table-6: Expected profit computation in copula repair policy 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

E
x

p
ec

te
d

 P
ro

fi
t 

E
p
(t

)

Time (t)

  K2=0.1

  K2=0.2

  K2=0.3

  K2=0.4

  K2=0.5

 
 

Figure-6: Computation of expected profit in copula repair policy 

 

Time (t) K2=0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5 

0 0.00 0.00 0.00 0.00 0.00 

5 4.39 3.89 3.39 2.89 2.39 

10 8.58 7.58 6.58 5.58 4.58 

15 12.56 11.06 9.56 8.06 6.56 

20 16.34 14.34 12.34 10.34 8.34 

25 19.92 17.42 14.92 12.42 9.92 

30 23.32 20.32 17.32 14.32 11.32 

35 26.53 23.03 19.53 16.03 12.53 

40 29.58 25.58 21.58 17.58 13.58 

45 32.46 27.96 23.46 18.96 14.46 

50 35.19 30.19 25.19 20.19 15.19 
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Table-7: Expected profit computation in general repair policy 
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Figure-7: Computation of expected profit in copula repair policy 

 

 

6. Result discussion and conclusion 

 

This paper analyzes the probabilistic measures of a repairable system consisting of two subsystems 

in series arrangement with controllers under catastrophic failure. Each subsystem consists of three 

replica units in a parallel configuration and operates under 1-out-of-3: G strategy. A study of the 

model with the support of supplementary variables confirms that copula repair is a better and more 

effective repair policy. The following decisions can be made based on the analysis carried out in this 

paper: 

 

 

Time (t) 
K2=0.

1 
K2=0.2 K2=0.3 K2=0.4 K2=0.5 

0 0.00 0.00 0.00 0.00 0.00 

5 4.23 3.73 3.23 2.73 2.23 

10 8.24 7.24 6.24 5.24 4.24 

15 12.05 10.55 9.05 7.55 6.05 

20 15.67 13.67 11.67 9.67 7.67 

25 19.11 16.61 14.11 11.61 9.11 

30 22.38 19.38 16.38 13.38 10.38 

35 25.48 21.98 18.48 14.98 11.48 

40 28.42 24.42 20.42 16.42 12.42 

45 31.22 26.72 22.22 17.72 13.22 

50 33.86 28.86 23.86 18.86 13.86 
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Table-2 and figure-2 include the variation in the availability of the system in three possible 

situations under copula repair and general repair when failure rates are set at different time-related 

values. It can be easily shown that the availability decreases as time t increases in all situations, but 

it is better in the case of copula repair with controllers. The availability is low with general 

maintenance and without controllers. Moreover, not only the availability highlights the need for 

multivariate repair in the form of copulas but also the necessity of controllers. 

Table-3 and figure-3 show evidence for the reliability of the system at various time values. The 

graph revealed a steep decrease in reliability from the top to the bottom in a succinct time in all three 

situations, depending on the failure rate of units. Furthermore, it can be found that the 

corresponding values of availability are higher than the reliability, which underlines the need for 

systematic repair for all dynamic systems for healthier outcomes. 

The MTTF of the system concerning variation in 𝜆1, 𝜇1, 𝜆𝑠1 , 𝜆𝑠2 , and 𝜆𝑐𝑇  indicated in table-4 and 

corresponding figure-4. It can be seen that the MTTF of the system reduces with rising values of all 

the parameters. The MTTF was observed to be the largest in the case of 𝜇1. Thus, MTTF of the system 

in all possible scenarios is decreasing as failure rates 𝜆1, 𝜇1, 𝜆𝑠1 , 𝜆𝑠2 , and 𝜆𝑐𝑇  increase from 0.01 to 0.10.  

Careful observations in table-5 and accompanying figure-5 demonstrate the sensitivity of the 

system and it is very important to note that sensitivity improves with a rise in failure rate values. 

A critical analysis from table 6 (under copula repair) and 7 (under general repair) and figures 6 

and 7 indicate that the estimated profit increases as the service cost K2 decreases, while revenue cost 

per unit time is set at K1=1. The estimated predicted profit is maximum for K2= 0.1 while the 

minimum profit for K2=0.5. One may observe that as service cost reduces, benefit swells with the 

variation of time. In comparison, copula repair is a more efficient repair approach for greater 

performance of repairable systems, since earnings are higher in the case of copula repair. 

The model developed in this paper was found to be highly advantageous in proper maintenance 

analysis, decision, and evaluation of performance. As far as future studies are concerned, we may 

increase the number of units in both the subsystems. Furthermore, the optimum reliability and 

availability of the system can be determined. 
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Abstract 

 
Digitalization is the process of implementing digital transmission systems at the level of primary 

networks, switching and control facilities that ensure the transmission and distribution of 

information flows in digital form at the level of secondary networks, which makes production more 

flexible, competitive, and profitable. First point considered here is an introduction of mathematical 

equivalent to the concept of a pixel, used when replacing the original information with its step-by-

step approximation and estimate of its accuracy. Second point is the study of special knots: extreme 

knots or saddle knots on the grid and construction of level lines around them: ellipses or 

hyperbolas. This construction is connected with some meteorological problems and is based on the 

concept of positive definite quadratic form. Third point is an estimation of the average number of 

Poisson flow points in several cells of a square lattice in different problems of earth sciences. It is 

solved by introduction of relative error of the estimate. 

 

Keywords: pixel, step–by–step approximation, positive definite quadratic form, relative 

error. 

  

 

1. Introduction 
 

Currently, the program of digitalization of information is being widely developed. Digitalization in 

a broad sense is the process of implementing digital transmission systems at the level of primary 

networks, switching and control facilities that ensure the transmission and distribution of 

information flows in digital form at the level of secondary networks, which makes production more 

flexible, competitive, and therefore more profitable. This trend allows us to take a fresh look at the 

already established methods in the processing of information and requires an assessment the 

accuracy of information conversion in various aspects and ensure the further development of 

information technology. 

Such a statement of the question leads, among other things, to estimates of accuracy when 

replacing the original information with its digital expression. In turn, the accuracy estimates 

significantly affect the correctness of the actions of technical systems when receiving external 

information, and therefore the reliability of their operation. This requires the need to build 

mathematical equivalents to the concepts used in the process of digitalization. In particular, there is 

a need to take a fresh look at the concept of a pixel used when replacing the original information 

with its step-by-step approximation. As a result, it becomes necessary to study the transition from 

the original signals to the signals specified on a certain lattice. In turn, the reference to the signals 

given on the grid raises new questions for those tasks where such information is used. 
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Here, this problem is explored for some meteorology questions. It turns out that in these 

problems of meteorology, an important aspect of the analysis of such information is the study of 

singular points on the grid. A detailed study of special points (extreme points or saddle points) 

allows us to set and to solve the problems of forecasting meteorological systems in a new way. 

These questions are the subject of research in this paper. Special attention is paid here to the 

accuracy of reproducing information from its discrete images and to the possibility of compressing 

information for its further use. For this purpose, it is possible to use such classical mathematical 

constructions as multidimensional Taylor series, positive definite quadratic forms, and etc. 

Last problem is in estimating the mean number of Poisson flow points in some domain 

consisting of few cells in square grid. Its solution is based on a concept of relative error and on 

properties of Poisson distribution. It is connected with earth sciences problems, for example, with 

calculation of a number of rare animals.  

 

2. The mathematical equivalent of the term "pixel" 
 

In computer science, the term "pixel" (Engl. "pixel" is short for pictures element) [1] is the smallest 

logical two-dimensional element of a digital image in raster graphics, or a physical element of the 

matrix of displays that form the image. It is an indivisible object of rectangular (or round) shape, 

characterized by a certain color. 

Signals that transmit sound or time-varying images are currently being digitized to make it 

convenient to transmit them from one point to another. At the same time, to determine and evaluate 

the quality of the transmitted information, it is desirable to construct a mathematical equivalent of 

the concept of "pixel". 

For this purpose, it is natural to use a step-by-step approximation of the functions 

representing the transmitted signals. The quality of such an approximation increases with a decrease 

in the sampling step (in time and/or coordinate). Given the significance of this dependence of the 

approximation quality on the sampling step, it is natural to express this dependence mathematically. 

Let’s start solving the problem by analysing the stepwise approximation of the function 𝑓(𝑡), 

given on the half–interval [0,1). Let’s assume that this function is continuously differentiable and for 

some positive 𝐹 the equality holds  

 

 sup
0≤𝑡≤1

|𝑓′(𝑡)| = 𝐹. (1) 

 

We divide the semi-interval [0,1) into 𝑛 parts by points 𝑖/𝑛, 𝑖 = 0,1, … , 𝑛 − 1. On the half–interval, 

𝑆𝑖 = [
𝑖

𝑛
,
𝑖+1

𝑛
) we approximate the function 𝑓(𝑡) by constant 𝑓 (

𝑖

𝑛
+

1

2𝑛
), by constructing a stepwise 

approximation in this way 𝑓 ̂(𝑡). Using the decomposition of the function 𝑓(𝑡) into a Taylor series 

with a Lagrange residual term in the neighbourhood of the radius 
1

2𝑛
 of the point 

𝑖

𝑛
+

1

2𝑛
, 𝑖 =

0,1, . . . , 𝑛 − 1, we obtain the following inequality  

 

 sup
0≤𝑡<1

|𝑓(𝑡) − 𝑓 ̂(𝑡)| ≤
𝐹

2𝑛
. (2) 

 

Let us now consider the continuously differentiable function of the 𝑚–dimensional 

argument 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚), (𝑡1, . . . , 𝑡𝑚) ∈ [0,1)𝑚. Suppose that there are such positive numbers 

𝐹1, 𝐹2, . . . , 𝐹𝑚, that the relations are satisfied  

 

 sup
0≤𝑡1,𝑡2,...,𝑡𝑚<1

|
∂𝑓(𝑡1,𝑡2,…,𝑡𝑚)

∂𝑡𝑘
| = 𝐹𝑘, 𝑘 = 1,2, . . . , 𝑚. (3) 
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We divide the direct product [0,1)𝑚 of half–intervals into direct products of half–intervals of the 

form 𝑆𝑖1 × 𝑆𝑖2 ×. . .× 𝑆𝑖𝑚 , 𝑖1, 𝑖2, . . . , 𝑖𝑚 = 0,1. . . , 𝑛 − 1. Let’s construct a stepwise approximation of 

𝑓 ̂(𝑡1, 𝑡2, . . . , 𝑡𝑚) functions 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚), assuming it to be equal  

 

 𝑓 (
𝑖1

𝑛
+

1

2𝑛
,
𝑖2

𝑛
+

1

2𝑛
, . . . ,

𝑖𝑚

𝑛
+

1

2𝑛
) 

 

in a direct product 𝑆𝑖1 × 𝑆𝑖2 ×. . .× 𝑆𝑖𝑚 , 𝑖1, 𝑖2, . . . , 𝑖𝑚 = 0,1, . . . , 𝑛 − 1. 

Using the decomposition of the function 𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚) in Taylor 𝑚–dimensional series (see, 

for example, [2]) with a Lagrange-shaped residual term in the set 𝑆𝑖1
× 𝑆𝑖2

×. . .× 𝑆𝑖𝑚
, 𝑖1, 𝑖2, . . . , 𝑖𝑚 =

0,1. . . , 𝑛 − 1 we get the inequality  

 

 sup
0≤𝑡1,𝑡2,...,𝑡𝑚<1

|𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑚) − 𝑓 ̂(𝑡1, 𝑡2, . . . , 𝑡𝑚)| ≤
1

2𝑛
∑𝑚

𝑘=1 𝐹𝑘. (4) 

 

Each step in the 𝑓 ̂ approximation of the 𝑓 function can be called a pixel. Moreover, with a 

decrease in the linear pixel size 
1

𝑛
, the accuracy of such an approximation increases in accordance 

with the formula (4). Note that the accuracy estimates of the step approximation depending on the 

linear pixel dimensions are expressed in a uniform metric. 

 

3. Geometric interpretation of meteorological information in square grid nodes 
 

The most important element of the structure of the pressure field at an altitude of 5 km above the 

Far East is a stable and extensive hollow. Its intensity and geographical localization largely 

determine the nature of atmospheric circulation and weather [3], [4]. When studying this hollow, the 

nodes of the square grid on the map are identified, the node in which the pressure field takes the 

minimum value and the pressure level isolines are built. 

However, it is quite difficult to algorithmize and analytically investigate such a construction. 

Therefore, in this paper, an attempt is made to investigate the function given at the lattice nodes in 

a small neighbourhood of the minimum point, assuming that the step of the square lattice is 

sufficiently small. Assuming that the smooth function given at the lattice nodes reaches a minimum 

at the point of the lattice node, one can calculate the coefficients of the Taylor series. 

The first-order coefficients are zero, and the second-order coefficients define a positive-

definite quadratic shape, whose level lines are ellipses. Calculations show that the orientation of the 

major and minor axes of such an ellipse and their ratio largely determine the nature of atmospheric 

circulation. But since the second coefficients of the Taylor series are determined by the values of the 

function at the nodes of the square lattice, it is necessary to investigate the algorithm for determining 

them and its accuracy depending on the length of the lattice step. 

Let the thrice continuously differentiable function 𝑓(𝑥, 𝑦) be defined on the rectangle 𝐷 =

{0 ≤ 𝑥 ≤ 𝑁ℎ, 0 ≤ 𝑦 ≤ 𝑀ℎ} and measured in points (𝑖ℎ, 𝑗ℎ), 𝑖 = 0,…𝑁, 𝑗 = 0, … ,𝑀. Everywhere else, 

we assume that the value of the lattice step ℎ is sufficiently small. It is known that at the point (𝑘ℎ, 𝑙ℎ), 

the function 𝑓 reaches the global minimum. Moreover, the point (𝑘ℎ, 𝑙ℎ) is internal in the discrete 

set {(𝑖ℎ, 𝑗ℎ), 𝑖 = 0,…𝑁, 𝑗 = 0,… ,𝑀}, 0 < 𝑘 < 𝑁, 0 < 𝑙 < 𝑀. Imagine the decomposition of the 

function 𝑓(𝑥, 𝑦) into a Taylor series with a Lagrange residual term under the condition |𝑥 − 𝑘ℎ| ≤ ℎ,

|𝑦 − 𝑙ℎ| ≤ ℎ:  

 

 𝑓(𝑥, 𝑦) = 𝑓(𝑘ℎ, 𝑙ℎ) +
1

2
[𝐴(𝑥 − 𝑘ℎ)2 + 𝐵(𝑦 − 𝑙ℎ)2 + 2𝐶(𝑥 − 𝑘ℎ)(𝑦 − 𝑙ℎ)] + 𝑂(ℎ3), 

 
 𝐴 = 𝑓𝑥,𝑥(𝑘ℎ, 𝑙ℎ), 𝐵 = 𝑓𝑦,𝑦(𝑘ℎ, 𝑙ℎ), 𝐶 = 𝑓𝑥,𝑦(𝑘ℎ, 𝑙ℎ). 
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Since the point (𝑘ℎ, 𝑙ℎ) is the point of the global minimum of the function 𝑓(𝑥, 𝑦), then the quadratic 

form 𝐴(𝑥 − 𝑘ℎ)2 + 𝐵(𝑦 − 𝑙ℎ)2 + 2𝐶(𝑥 − 𝑘ℎ)(𝑙ℎ) is positive definite and hence the inequalities are 

satisfied 𝐴 + 𝐵 > 0, 𝐴𝐵 > 𝐶2.  

We construct finite-difference estimates of partial derivatives 𝐴, 𝐵, 𝐶:  

 

 𝑎 =
𝑓((𝑘+1)ℎ,𝑙ℎ)−2𝑓(𝑘ℎ,𝑙ℎ)+𝑓((𝑘−1)ℎ,𝑙ℎ))

ℎ2 = 𝐴 + 𝑂(ℎ), 

 

 𝑏 =
𝑓(𝑘ℎ,(𝑙+1)ℎ)−2𝑓(𝑘ℎ,𝑙ℎ)+𝑓(𝑘ℎ,(𝑙−1)ℎ)

ℎ2 = 𝐵 + 𝑂(ℎ), 

 

 𝑐 =
𝑓((𝑘+1)ℎ,(𝑙+1)ℎ)−𝑓((𝑘+1)ℎ,𝑙ℎ)−𝑓(𝑘ℎ,(𝑙+1)ℎ)+𝑓(𝑘ℎ,𝑙ℎ)

ℎ2 = 𝐶 + 𝑂(ℎ). 

 

Then the function 𝑓 may be approximated by the function 𝑓 ̂ with an accuracy of 𝑂(ℎ3) in variables 

𝑋 =
𝑥−𝑘ℎ

ℎ
, 𝑌 =

𝑦−𝑙ℎ

ℎ
:      

 

 𝑓 ̂(𝑥, 𝑦) = 𝑓(𝑘ℎ, 𝑙ℎ) +
1

2
(𝑎𝑋2 + 𝑏𝑌2 + 2𝑐𝑋𝑌), 𝑎 + 𝑏 > 0, 𝑎𝑏 > 𝑐2 

 

and so the quadratic form 𝑎𝑋2 + 𝑏𝑌2 + 2𝑘𝑥𝑦 is also positive definite. 

We reduce this quadratic form to a diagonal form (see, for example, [5]), for which we 

construct its matrix 𝐴 = (
𝑎 𝑐
𝑐 𝑏

) and write out the characteristic equation (𝑎 − 𝜆)(𝑏 − 𝜆) − 𝑐2 = 0. 

The roots of this equation are  

 

 𝜆± =
𝑎+𝑏

2
± √

(𝑎+𝑏)2

4
− 𝑎𝑏 + 𝑐2 > 0, 

 

the eigenvalues of the matrix 𝐴, and its orthonormal eigenvectors �⃗� ± satisfy the linear equations 

𝐴�⃗� ± = 𝜆±�⃗� ±. 

Let’s move to the coordinate system (𝑢+, 𝑢−) with an orthonormal basis �⃗� +�⃗� −. In this 

coordinate system, the quadratic form is 𝑎𝑋2 + 𝑏𝑌2 + 2𝑥𝑦 is represented by the sum of squares 

𝜆+𝑢+
2 + 𝜆−𝑢−

2 . The level lines of this square shape are ellipses of the form 𝜆+𝑢+
2 + 𝜆−𝑢−

2 = 𝑐𝑜𝑛𝑠𝑡 > 0. 

Denote 𝑘 = √
𝜆+

𝜆−
 , then to construct the specified ellipses, the circles given by the equation 𝑢+

2 + 𝑢−
2 =

𝑐𝑜𝑛𝑠𝑡 should be compressed along the 𝑢+ axis by 𝑘 times. The coefficient 𝑘 may be interpreted as 

the ratio of the major and minor axes of an ellipse whose level lines are defined by a quadratic shape 
𝑎𝑋2 + 𝑏𝑌2 + 2𝑐𝑋𝑌. 

It is interesting to note that if 𝑓𝑥 = 𝑓𝑦 = 0 and the condition 𝑎𝑏 < 𝑐2, is satisfied, then it is not 

difficult to establish that 𝜆+ > 0, 𝜆− < 0 and hence the quadratic form 𝑎𝑋2 + 𝑏𝑌2 + 2𝑐𝑋𝑌 in the 

variables 𝑢+, 𝑢− has the form 𝜆+𝑢+
2 + 𝜆−𝑢−

2  and is an alternating sign, and its level lines are 

hyperbolas.  

 

4.  Error in estimating the mean number of Poisson flow points 
 

Specialists in the field of earth sciences have the task of estimating the error of the mean number of 

Poisson flow points from observations in different cells of a square grid. Let the study area be 

divided into 𝑚 cells, and the number of points in them in the area 𝑘 is 𝑛𝑘 , 𝑘 = 1,… ,𝑚. It is natural 

to assume that the random variables 𝑛1, … , 𝑛𝑚 are independent and have Poisson distributions with 

the parameters 𝜆1, … , 𝜆𝑚 . Using the properties of the Poisson distribution, it is easy to establish that 

the random sum 𝑁 = ∑𝑚
𝑘=1 𝑛𝑘 has a Poisson distribution with the parameter Λ = ∑𝑚

𝑘=1 𝜆𝑘 and 

consequently 𝐸(𝑁) = Λ, 𝑉𝑎𝑟(𝑁) = Λ. 
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Using the known properties of the mathematical expectation and the variance of the Poisson 

distribution, we proceed to estimate the relative error. To do this, consider the random variable 
𝑁

𝐸(𝑁)
=

𝑁

Λ
. Variance of this random variable 𝑉𝑎𝑟 (

𝑁

Λ
) =

1

Λ
 and so the relative error of such an estimate 

satisfies the relation √𝑉𝑎𝑟 (
𝑁

Λ
) =

1

√Λ
. Therefore, the relative error decreases with the growth of Λ. 

This result does not depend on the nonuniformity of the distribution density of the Poisson 

flow of points, and therefore does not depend on the parameters 𝜆1, … , 𝜆𝑚 . It can be considered by 

choosing the efficiency indicator of a complex system like a relative error. This result is based on the 

well-known models of Poisson point flows in the theory of random sets, which are used in the earth 

sciences [6]. 
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Abstract 

 

In this paper, we describe how to analyze and propose the accelerated life test plans for the 

development of the excellence and reliability of the product. We focus on estimating the costs of 

maintenance service policy because it has a very significant position to assist any manufacturing 

organization for sale and available its equipment and maintenance cost-effective. The constant-stress 

partially accelerated life test is assumed when the lifetime of test units follows Generalized Inverted 

Exponential distribution under the progressive censoring scheme. The maximum likelihood estimates, 

Fisher Information matrix, and the asymptotic variance and covariance matrix are obtained. The 

confidence intervals of the estimators are also obtained. Furthermore, a simulation study is conducted 

to check the accuracy of the findings. 

 

Keywords: Life Testing, Constant-stress, Maintenance service policy, Progressive 

censoring, Generalized Inverted Exponential distribution, Simulation Study. 

 

I. Introduction 
 

In current scenario due to rapid and frequent technological changes the demand of manufacturing 

designs has been improving day by day due to which it is quit challenging and complex to obtain 

information about the lifetime of items or products under normal usage when the product of high 

reliability is tested because some commonly used life tests provide no or very few failures at the end 

of the test. So in such situation accelerated life testing (ALT) may be applied as one of the solution 

in which the product or material is tested under higher than usual used conditions to obtain the 

information quickly on the life distribution or performance of a product. These conditions are 

referred as stresses may be in the form of temperature, voltage, force etc. Generally there are three 

types of life test methods in accelerated life testing design – First is constant stress ALT, second is 

step stress ALT and third is progressive stress ALT. In the present research we are focusing only on 

constant stress accelerated life testing in which we may have fixed stress levels applied for different 

groups of tested items. It refers that every item is subjected to only one stress level until the item 

fails or the test is stopped for other reasons. ALT can be divided into two categories: complete (all 

failure data are available) or censored (some of the failure data are missing).  

 

 The data obtained from ALT cannot be extrapolated to use condition because in accelerated life 

testing (ALT), the mathematical model relating to the lifetime of an item and stress is known or can 

be assumed.  
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But, in some cases these relationships are not known and cannot be assumed, So a partially 

accelerated life test (PALT) can be used in such cases in which the test items are run at both normal 

and higher than normal stress conditions. The constant stress partially accelerated life test (CSPALT) 

and step stress partially accelerated life test (SSPALT) are the two commonly used methods in PALT. 

The products cann’t be tested at either usual or higher than usual condition until and unless the test 

is terminated in CSPALT. On the other hand in SSPALT as an approach to accelerate failures which 

increases the load applied to the products in a specified discrete sequence. A sample of test items is 

first to run at use condition and if it does not fail for a specified time, then it is run at accelerated 

condition until prespecified numbers of failures are obtained or a prespecified time has reached.  

 

In many cases when life data are analyzed, an experiment can be out of control due to many reasons 

like components of a system may break accidentally and all the units in the sample may not fail. This 

type of data is called censored or incomplete data. Due to different types of censoring, censored data 

can be divided into Type I censored (or time censored) data and Type II censored (or failure-

censored) data. These two censoring schemes do not allow for units to be removed from the test at 

points other than the final termination point. Although, the removal of items or components from 

the test during testing is possible in the progressive type censoring scheme. In such types of 

situation, the multiple censoring schemes are the best choice for an engineer or reliability Weibull 

distribution with constant stress under the type-I censoring scheme. Anwar and Islam [4] analyzed 

the constant stress PALT plan for Gompertz distribution under type I censoring. 

 

Zhang and Fang [5] dealt with an estimation of acceleration factor when the lifetime of units follows 

Exponential distribution under CSPALT based on type-I censored data. A new approach of 

constructing the exact lower and upper confidence limits is proposed by them for the acceleration 

factor. Sadia and Islam [6] presented a study on CSPALT plans when the lifetime of units follows 

Rayleigh distribution based on type-II censored data. Shi and Shi [7] dealt with a study on CSPALT 

using the masked series system when the lifetime of components follows Complementary 

Exponential distribution based on progressive type-II censoring. Ismail [8] discussed a study on 

CSPALT for Weibull distribution based on a hybrid censoring scheme. He makes a statistical 

inference by using two methods; maximum likelihood and percentile bootstrap method. Nassar and 

Elharoun [9] presented an inference on CSPALT for Exponentiated Weibull distribution in the case 

of multiply censored data. Hassan et al. [10] showed a study on CSPALT for inverted Weibull 

distribution in the multiply censoring scheme. Cheng and Wang [11] estimated parameters under 

multiply censoring scheme when the lifetime of items follows Burr XII distribution. Currently, Alam 

et al. [12] tackled CSPALT based on a multiply censoring scheme when the lifetime of failure units 

follows the Exponentiated Exponential failure model. Currently, Alam et al. [13] presented a study 

on ALT when the lifetime of test units follows Burr type-X for Type-II censoring and Progressive 

censoring, respectively. Alam et al. [14] also presented a study on maintenance service policy under 

SSPALT when the lifetime of test units follows the Power function failure model with progressive 

censoring.  

 

The current study based on maintenance service policy problem under CSPALT for Progressive 

censoring when the lifetime of test units follows Generalized Inverted Exponential distribution. 

The information (lifetime data) is censored when the accurate failure time of an item is unknown. 

Many types of censoring schemes are available, such as left, right, interval, Type-I, Type-II, hybrid, 

progressive, progressive Type-I, and progressive Type-II censoring, etc. We consider only the 

progressive Type-II censoring scheme in this paper. The Type-I and Type-II censoring schemes are 

mainly common and popular schemes in lifetime theory. The only major drawback in both Type-I 

and Type-II censoring schemes is that the experimenter cannot withdraw live items during the 

experiment. A newly censoring scheme which is a generalization of classical Type-II censoring 

scheme comes in light. It gives permission to draw item or items during the experiment.  
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For literature about this scheme, the authors refer to the book by Balakrishnan and Aggrawalla [15], 

and an article by Balakrishnan [16]. The progressive Type-II censoring is explained as follows: 

The lifetime of n  units are nXXX ,...,, 21 , and these test units are put on the testing. Also, suppose 

that niX i ,...,2,1, =  are independent and identically distributed (i.i.d) with cumulative distribution 

function )(xF  and probability distribution function )(xf . Before the experiment, an integer m

)( nm  is resolved, and the progressive Type-II censoring scheme )0,,...,,( 21 im RRRR and 


=

+=
m

i

iRmn
1

is specified. Now, ith  failure is observed, and after the failure, iR functioning items 

are randomly removed from the test during the lifetime testing experiment. niX nmi ,...2,1,:: =
 
and 

m  are the totally observed lifetimes, which are observed samples for the progressively Type-II 

censoring scheme. 
nmmnmnm xxx ::::2::1 ...  are the observed values of the progressively Type-II 

right censored samples. 

 

The paper is organized as follows; The model description, test procedure, and basic assumptions for 

CSPALT are given in section 2. The point estimation, interval estimation, Fisher information matrix, 

and confidence intervals are presented in section 3.. The estimating costs of maintenance service 

policy under Generalized Inverted Exponential distribution are presented in section 4. A simulation 

study using Monte-Carlo technique is proposed in section 5. Finally, the conclusions are made in 

last sections. 

 

 

II. Model Description and Test Procedure 
 

I. Model Description 

 

In life testing theory, the one parameter (negative) Exponential distribution plays an important role 

because of its simplicity and it prefers to any other one parameter distribution. A generalized case 

of this distribution is presented by Gupta and Kundu [17] and known as Generalized Exponential 

distribution. A shape parameter is introduced by him. Lin et al. [18] introduced another extension 

of Exponential distribution, and this extension is known as Inverted Exponential distribution. They 

obtained the maximum likelihood estimator, confidence limits and also presented a comparison of 

this distribution with that of inverted Gaussian and Log-normal distributions using a maintenance 

data set. Bayes estimators of the parameter and risk functions under special loss functions are 

obtained by Dey [19]. A new distribution is presented by Abouammoh and Alshingiti [20] which is 

known as Generalized Inverted Exponential Distribution (GIED). Nadarajah and Kotz [21] noted 

that this distribution is original from the Exponentiated Frechet distribution. Due to the convenient 

structure of the distribution function, the GIED can be used in different applications, for example, 

in accelerated life testing, horse racing, queue theory, modeling wind speeds, etc. 

The probability density function )(pdf for GIED is given as 

0,,0,)1(),,( 1

2
−= −−− 


  tee

t
tf tt

                                                                             (1) 

where,  and  are shape and scale parameters, respectively. 

The curve of the above equation (1) is shown in figure 1. 
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Figure1. Probability density function curve of GIED 

 

The cumulative density function )(cdf for GIED is given as 

0,,0,)1(1),,( −−= −   tetF t
                                                                                         (2) 

The curve of the above equation (2) is shown in figure 2. 

 

 
Figure2. Cumulative density function curve of GIED 

 

The reliability function for GIED is given as 
 )1(),,( tetR −−=  

The curve of the above expression is shown in figure 3. 

 

 
Figure3. Reliability function curve of GIED 

 

The hazard function for GIED is given as 

,)1(),,( 1

2

−−− −= tt ee
t

tH 
  

The curve of the above expression is shown in figure 4. 
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Figure4. Hazard function curve of GIED 

 

Abouammoh and Alshingiti [20] and Nadarajah and Kotz [21] studied many interesting and useful 

properties of GIED. The hazard function of GIED depends on the shape parameter, and it can be 

increasing, or decreasing but not constant. If the shape parameter is greater than 4, this distribution 

has a unmoral and right-skewed density function Moreover, this distribution provides a better fit 

than Gamma, Weibull, Generalized Exponential, and Inverted Exponential distributions. The 

reliability estimation in the context of this distribution with progressively Type-II censoring scheme 

is studied by Krishna and Kumar [22]. 

 

II. Test Procedure 

 

The test procedure of CSPALT based on progressive Type-II censored data assuming the lifetime 

item has GIED is described as follows 

The pdf under normal condition is given as follows 

1

1

21 ,...,2,1,0,,0,)1()( mitee
t

tf i

tt

i
ii =−= −−− 

 
                                                         (3) 

The cdf under normal condition is given as follows 

0,,0,)1(1)(1 −−=
− 

i

t

i tetF i                                                                                               (4) 

where, it is the observed lifetime of an item i , that is tested at normal condition. 

The pdf and cdf of the lifetime TY 1−=  , under accelerated condition are given in following 

equations, (5) and (6) 

0,,0,)1(
)(

)( 1

22 −= −−−




 

j

yy

j

j yee
y

yf jj                                                                 (5) 

22 ,...,2,1,0,,0,)1()( mjyeyF j

y

j
j =−=

−


                                                                   (6) 

where, jy is the observed lifetime of an item j , that is tested at the accelerated condition and 

)1(  is the acceleration factor. 

 

III. Basic Assumptions 

 

The necessary assumptions for CSPALT are given as 

• The lifetimes of items iT  1,...,2,1 mi =  are independent and identically distributed (i.i.d.) 

random variable with pdf provided in equation (3), which is allocated to normal condition. 

• The lifetimes of items iT  1,...,2,1 mi =  are independent and identically distributed (i.i.d.) 

random variable with pdf provided in equation (3), which is allocated to normal condition. 

• iT  and jY  are mutually independent also. 
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• 1m  and 2m are the total number of items at normal and accelerated conditions, respectively. 

21 mmm += =Total number of items. 

 

III. Estimation Procedure 
 

The point and interval estimation are presented in this section. 

 

I. Point Estimation 

 

Let nXXX ,...,, 21  are the lifetime of n  independent units which put on test. These units are 

independently and identically distributed (i.i.d.) as GIED distribution with probability density 

function, which is presented in equation (1). The m  completely ordered lifetimes are denoted by 

 
nmmnmJnnmJnmnm xxxxxx ::::1::::2::1 ......

1
 +

 

Here, J denoted the number of failed units in normal conditions. 

Hence, the likelihood function for GIED with progressively Type-II censored data under CS-PALT 

is given as: 
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After putting values from equations (3), (4), (5) and (6), we get the following log likelihood function, 

which is given as 
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where, lxLL i == ),,,(ln   

The Maximum likelihood (ML) estimates of ,  , and acceleration factor   are obtained from the 

following non-linear equations (9), (10) and (11). 
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The solution of the above three non-linear equations is impossible manually. So an iterative 

technique (Newton-Raphson method) is applied to solve these equations. 
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II. Interval Estimation 

 

The Fisher information matrix under progressive Type-II censoring scheme is given as  
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Now, the variance-covariance matrix under progressive Type-II censoring scheme is the inverse of 

the Fisher Information matrix and it is given as 
1−= I                                                                                                                                                          (14) 

The ML estimates of distribution parameters and   are asymptotically normally distributed and 

consistent in large samples. 

So, the two-sided approximate )%1(100 −  confidence limits for distribution parameters and   

are obtained in the following way: 
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 𝐿�̂� = �̂� − 𝑧𝛾 2⁄ 𝜎(�̂�)𝑎𝑛𝑑𝑈�̂� = �̂� + 𝑧𝛾 2⁄ 𝜎(�̂�)  

𝐿�̂� = �̂� − 𝑧𝛾 2⁄ 𝜎(�̂�)𝑎𝑛𝑑𝑈�̂� = �̂� + 𝑧𝛾 2⁄ 𝜎(�̂�)

𝐿�̂� = �̂� − 𝑧𝛾 2⁄ 𝜎(�̂�)𝑎𝑛𝑑𝑈�̂� = �̂� + 𝑧𝛾 2⁄ 𝜎(�̂�)

}                                                                     (15) 

Where  
2z  is the  th2)1(100 −  standard normal percentile. (*) is the standard deviation for 

the ML estimates �̂�, �̂�and�̂�, it is calculating by taking the square root of the first diagonal element of 

the 
1−I . 

 

 

 

IV. Estimating Costs of Maintenance Service Policy under GIED 
 

There are numbers of authors has explored the problem of maintenance service policy instance, some 

are as follows- Yiwei et al. [29] studied a cost-driven predictive maintenance policy for structural 

airframe maintenance. Maintenance policy is formally derived based on the trade-off between 

probabilities of occurrence of unscheduled and scheduled maintenance. Yiwei et al. [30] proposed 

predictive airframe maintenance strategies using model-based prognostics. According to them  two 

predictive maintenance strategies based on the developed prognostic model and applied to fatigue 

damage propagation in fuselage panels. In the research of Lie et al. [31] a preventive maintenance 

policy is also proposed for the single-unit system failures which have sudden shocks and internal 

deterioration. The emphasize of the study was to minimize the expected cost per unit time defining 

the optimal preventive replacement interval, inspection interval, and the number of inspections. 

Another study was done by Sukhwa et al. [32] For designing and optimizing maintenance service 

policy. In another study Fabrian and Luis [33] has suggested a method to definite maintenance 

intervals to those of similar systems under development, and this method has been applied in an 

aircraft manufacturing company using the current operation database. Michail et al. [34] did one 

research and developed an aircraft maintenance planning optimization tool and its application to an 

aircraft component. In another important research by Shey-Huei et al. [35] has suggested the optimal 

preventive maintenance policy for multi-state systems. 

 

The maintenance service policy ends when the arrangement period reaches time (usage level )(H ).  

The system’s renewal is not involved. The preventive and corrective maintenances are under this 

policy. At a constant interval of time )( , the system should go for periodically preventive 

maintenance under this policy. At each failure within successive preventive maintenances, the 

system should go for minimally repaired. A complicated repairable system with a long life is perfect 

for this type of service arrangement. 

 

The important Assumptions of the Maintenance Service Policy are: 

 

• The successive failure and random actions are mutually independent. 

• The successive failures are said to be known on the parameters of distributions. 

• Only minimal repairs are conducted when the repairs were completed in maintenance. 

• The Servicing activity held responsible to restores life to a bit. 

• The repairs times are minor to compare to the item's life. 

• The age renovation is stable even after each preventive maintenance. 

• The unit amount of minimal repairs has a constant average between the unit amount of 

preventive maintenances and preventive maintenances. 

 

The expected cost of maintenance service policy is the sum of the total sum of expected costs, all 

minimal repairs, and the expected costs of all planned preventive maintenance over the policy’s 

period.  
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We can get the expected cost of maintenance service per unit time by dividing the expected total cost 

by the duration of service policy. 

 

According to Rahman [30], the expected cost of maintenance service policy can be defined in the 

following steps 

• Taking the equivalent length of the preventive maintenance period )( , the expected cost 

of minimal repairs among preventive maintenance for GIED is given as 
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                                (16) 

• The expected cost of preventive maintenance is given as  

pmpm CTNCTE *)( =                                                                                                                  (17) 

Here, the arrangement is periodically maintained at Nth  preventive maintenance. 

• The total expected cost per unit time ),( NCT  for GIED is given as 
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where = NH  

 

V. Simulation Study and Results 
 

In this segment, we carry out a simulation study to check the performance of the estimators having 

GIED distribution using progressive Type-II censoring scheme. This study is prepared by Monte 

Carlo Simulation technique by R-Software. To test out the performance of estimators, the means 

square error (MSEs) and absolute relative bias (RAB) are estimated. The key steps for the study are 

(i) The total sample m is divided into two parts, 1m  and 2m . 

where  mm =1  and )1(2 −= mm  

• Generate random samples of size 1m ( 1,2,21,1 1
... mttt  ) and 2m ( 2,2,21,2 2

... mttt  ) 

under normal and accelerated conditions, respectively, from GIED distribution by the 

inverse CDF method. 

• Generate 1000 random samples of sizes 35, 70, and 105 and specify the following values. 

 Case (I) )2.2,9.0,9.0( ===  , Case (II) )5.2,7.0,7.0( ===   

               Case (III) )2.2,2.1,6.0( ===  , Case (IV) )5.2,9.0,5.0( ===   

• The distribution parameters and acceleration factor are achieved for each sample and all set 

of parameters.  

• By equation (15), for confidence levels %99%,95= , the two-sided confidence limits are 

obtained for parameters , and  . 

• The Newton Raphson technique is used to solve all non-linear equations. 

• The above steps are replicated 1000 times with different values of parameters. 

• From equations (16-18), the expected cost of maintenance service policy is estimated for 

preventive maintenance, total costs, minimal repairs, and expected cost rate, and the length 

of the maintenance service policy )(H is chosen as three years. 

• At the usual cost )800( =pmCT , preventive maintenance be every four months )30.0( =

. If there are failures linking two consecutive preventive maintenance, the minimal repairs 

will be completed at an average cost )650( =mrCT . Finally, the expected cost of preventive 

maintenance is 23360, 23360)( =pmCE . 
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Table 1: The Biases and MSEs with different size of samples for progressive Type-II censoring 

 

Table 2: The Biases and MSEs with different size of samples for progressive Type-II censoring 

 

 

Table 3:  At Confidence Level %99%,95= , the Confidence Limits of Estimates at Various Size 

of Samples 

 

  

  

Parameters 

Case I 

)2.2,9.0,9.0( ===   

Case II 

)5.2,7.0,7.0( ===   

m  Estimates RAB MSE Estimates RAB MSE 

 

35 

𝜇 1.227 0.908 1.192 1.368 1.402 2.002 

𝜂 0.409 0.504 1.063 0.208 0.608 1.155 

𝛽 1.872 0.394 1.531 1.887 2.094 2.360 

 

70 

𝜇 1.098 0.611 0.969 1.109 1.318 1.559 

𝜂 0.502 0.394 0.744 1.009 0.373 1.024 

𝛽 1.998 0.576 0.902 2.665 1.670 2.006 

 

105 

𝜇 2.082 0.299 0.033 1.401 1.703 1.133 

𝜂 0.280 0.155 0.214 0.218 0.099 0.715 

𝛽 2.498 0.221 0.604 1.977 1.137 0.883 

  

Parameters 

Case III 

)2.2,2.1,6.0( ===   

Case IV 

)5.2,9.0,5.0( ===   

m   Estimates RAB MSE Estimates RAB MSE 

 

35 

𝜇 1.809 1.767 2.092 2.001 0.969 2.004 

𝜂 2.498 1.091 1.869 2.550 1.308 1.908 

𝛽 1.005 1.351 1.531 1.990 1.782 2.400 

 

70 

𝜇 1.676 1.029 1.760 2.413 0.308 1.610 

𝜂 2.012 0.762 1.444 1.610 0.810 1.042 

𝛽 2.001 0.433 1.202 1.910 1.063 1.204 

 

105 

𝜇 1.302 0.650 1.033 2.915 0.344 0.772 

𝜂 1.643 1.190 0.914 1.709 0.142 0.724 

𝛽 0.985 0.125 8.104 2.809 0.771 1.771 

  

 

Parameters 

Case I :

)2.2,9.0,9.0( ===   

 

 
  

Case I I:

)5.2,7.0,7.0( ===   

 

 

 

  
CI, 96.1=z  CI, 58.2=z  CI, 96.1=z  CI, 58.2=z  

m  Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

35 

𝜇 1.25 2.34 1.13 1.81 0.18 0.83 2.19 0.78 1.69 0.22 

𝜂 1.42 2.51 0.97 1.60 0.11 1.40 2.54 1.09 1.66 0.48 

𝛽 0.96 2.11 0.92 1.51 0.72 1.07 2.15 0.60 1.52 0.26 

 

70 

𝜇 1.04 2.05 0.85 1.34 0.10 1.15 2.03 1.16 1.62 0.19 

𝜂 0.91 1.83 0.69 1.26 0.38 0.99 1.80 0.83 1.40 0.28 

𝛽 0.99 1.54 0.93 1.29 0.59 0.81 1.47 0.65 1.45 0.40 

 

105 

𝜇 0.85 1.66 0.82 1.18 0.09 0.70 1.35 0.90 1.43 0.19 

𝜂 0.69 1.32 0.77 1.10 0.28 0.77 1.23 0.81 1.16 0.36 

𝛽 0.66 0.96 0.84 1.06 0.33 0.54 0.82 0.49 0.77 0.61 
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Table 4: At Confidence Level %99%,95= , the Confidence Limits of Estimates at Various Size 

of Samples 

 

Table 5: Expected cost rate, total cost, minimal repair time, and its confidence level for GIED 
m  Minimal repair cost Total cost Cost rate 

𝐸(𝐶𝑇𝑚𝑟) Lower 

Bound 

Upper 

Bound 

𝐸(𝐶𝑇𝑡𝑜𝑡𝑎𝑙) Lower 

Bound 

Upper 

Bound 

𝐸(𝐶𝑇(𝜏, 𝑁)) Lower 

Bound 

Uppe

r 

Boun

d 

Case –I )2.2,9.0,9.0( ===   

35 274558.9 3872.8 8054.4 98192.3 3912.

4 

4562.3 96832.1 3421.6 49821.5 

70 221852.0 5732.1 9023.7 84632.7 4132.

5 

7099.4 71093.7 5320.2 82313.4 

105 19277.0 81432.

4 

9793.5 80981.4 2987.

8 

3983.3 65421.2 4542.7 69874.2 

Case-II )5.2,7.0,7.0( ===   

35 89198.3 45020.7 61345.8 62176.6 2970.9 36876.9 32790.6 2076.9 45786.9 

70 71612.0 9112.4 11935.0 64830.3 4765.8 7876.8 25595.4 4765.2 7176.2 

105 45423.8 4023.7 5839.5 59763.9 9762.3 10965.3 20954.2 4859.5 77654.5 

Case-III )2.2,2.1,6.0( ===   

35 53909.9 23754.7 3321.9 39654.9 3432.8 4876.8 16593.6 6543.9 9654.9 

70 39976.4 44876.6 6654.4 35937.5 4325.8 7354.9 15987.8 6543.5 106543.9 

105 41287.4 8565.5 106549.

4 

30654.1 5435.4 6543.1 29043.6 3876.3 5765.8 

 

VI. Conclusion 
 

This study proposed a partially accelerated life test plan under constant stress and estimating costs 

of maintenance service policy using the progressive Type-II censoring scheme for the Generalized 

Inverted Exponential distribution. The following assumptions are: 

 

• As the sample size increases, the values of MSEs and RABs reduce and confidence intervals 

become narrower or the confidence interval size decreases. Thus, the MLEs have cheering 

statistical outcomes. We can also observe that the numerical outcomes and theoretical 

conclusions support each other, and our suppositions are also satisfied. (see, Table 1,2,3 and 

4). 

  

 

Parameters 

Case III:

)2.2,2.1,6.0( ===   

 

 

 

  

Case I V:

)5.2,9.0,5.0( ===   

 

 

 

  
CI, 96.1=z  CI, 58.2=z  CI, 96.1=z  CI, 58.2=z  

m  Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

35 

𝜇 1.04 2.11 0.91 1.90 0.09 0.78 2.16 0.97 1.91 0.11 

𝜂 1.69 2.65 1.11 1.71 0.19 1.29 2.11 1.11 1.80 0.38 

𝛽 1.73 2.43 0.85 1.63 0.32 1.09 1.88 0.78 1.63 0.31 

 

70 

𝜇 0.79 1.65 1.00 1.44 0.15 1.25 1.93 1.05 1.49 0.10 

𝜂 0.71 1.56 0.61 1.03 0.40 0.96 1.52 0.72 1.29 0.20 

𝛽 1.29 1.44 0.77 1.33 0.22 0.72 1.36 0.59 0.90 0.32 

 

105 

𝜇 0.55 1.09 0.65 0.90 0.14 0.49 0.85 0.62 0.87 0.16 

𝜂 0.69 1.12 0.72 0.94 0.21 0.78 1.53 0.45 0.73 0.32 

𝛽 0.79 0.99 0.85 1.26 0.28 0.76 0.99 0.66 1.16 0.22 
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• The model parameters and costs of maintenance service policy have direct relationship for 

the Generalized Inverted Exponential distribution. (see Table 5) 

• Also, maintenance service and sample sizes have inverse relationship. (see Table 5) 
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Abstract 

 

A new upside-down bathtub shaped failure rate distribution, DUS Inverse Weibull (DUS-IW) 

distribution is proposed and its properties are studied. The DUS-IW distribution has upside-

down bathtub shaped and decreasing failure rate functions. Moments, moment generating 

function, characteristic function, quantiles, etc. are derived. Estimation of parameters of the 

distribution is performed via maximum likelihood method. Reliability of single component and 

multi component stress-strength models are derived. A simulation study is performed for 

validating the estimates of the model parameters. DUS-IW distribution is applied to two real data 

sets and found that DUS-IW distribution is a better fit than other well-known distributions. 

 

Keywords: upside-down bathtub shaped failure rate, reliability, stress-strength 

 

 

I. Introduction 
 

The statistical analysis of lifetime data is of importance in various fields of applied science 

especially in reliability, biomedical, engineering, social sciences, etc. To explain reallife 

phenomenon, there are a lot of lifetime distributions. Among all of them, some frequently used 

distributions are Exponential, Gamma, Weibull, Lognormal, etc. Each has their own merits and 

demerits due to their flexibility of shapes and failure rates like increasing, decreasing or constant 

failure rate, depends on the nature of distributions. A comprehensive account of lifetime models 

and the methods for analyzing them are given in [15]. Weibull distribution is one of the most 

widely used distributions from the exponential family and is used in the reliability engineering, 

hydrological, energy studies, etc. There exist many variations of it using different transformations, 

such as Inverse Weibull (IW) distribution. Similar to Weibull distribution, IW distribution has its 

significance and role in real life phenomenon. The complementary Weibull and reciprocal Weibull 

(see [8] and [19]) are exactly the IW distribution. The IW distributionhas received some attention in 

the literature and is another lifetime probability distribution which can be used in the reliability 

engineering discipline. The IW distribution can be used to model a variety of failure characteristics 

such as infant mortality, useful life and wear-out periods. Extensive work has been doneon the IW 

distribution, see [12], [3], [4] and [16]. Along with these, IW distribution is used as an alternative to 

Weibull distribution to model wind speed data, [1].  
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Generalized Inverse Weibull distribution is another extension of Weibull distribution, [10].  

Theoretical analysis of IW distribution is found to be quite interesting as well, [13]. 

In statistical literature, there are various methods to propose a new distribution by using 

some baseline distribution. A transformation gives a more accurate distribution with easy 

computation and interpretation as it contains no new parameters other than parameters involved 

in the baseline distribution. Exponential transformed Lindley distribution is applied to Yarn data, 

[18]. DUS transformation is a method which has been introducedto get a new distribution by using 

Exponential distribution as baseline distribution, [14], with application to survival data analysis. 

DUS transformation of Exponential distribution used for the problem of estimation of the 

parameter based on upper record values, [22].  An upside-down bathtub shaped failure rate model 

using DUS transformation on the Lomax distribution as baseline distribution is found to be a better 

fit than existing distributions, [7]. A new lifetime distribution based on the DUS transformation by 

using Weibull distribution as the baseline distribution is another choice of existing models, [11]. In 

this paper, an attempt has been made here to obtain a new distribution using the DUS 

transformation with IW distribution as baseline distribution, to study upside down bathtub data. 

This paper is organized as follows. In Section II, the details of DUS Transformation are 

given. In section III, the probability density function, cumulative distribution function, survival 

function and failure rate function of the DUS transformation of IW distribution is given. Shapes of 

the probability density function andfailure rate function are discussed in this Section IV. Statistical 

properties including moments, moment generating function (mgf), characteristic function (cf) and 

quantile function of the proposed distribution are discussed in Section V. Stress-strength reliability 

evaluation is discussed in Section VI. Estimation of the parameters using method of maximum 

likelihood is discussed in SectionVII. The results are given in Section VIII which includes a 

simulation study that is conducted to validate the estimatesand a real data analysis which is used 

to illustrate the usefulness of the proposed distribution. Final conclusions and discussions are 

given in Section IX. 

 

II. DUS Transformation 
 

Let f(x) and F(x) be the probability density function (pdf) and cumulative distribution function 

(cdf) of some baseline distribution, then the pdf g(x) of the distribution obtained by DUS 

Transformation of the baseline distribution is given by 

𝑔(𝑥) =
1

𝑒−1
𝑓(𝑥)𝑒𝐹(𝑥).                                                                (1) 

If the pdf g(x) of the distribution obtained by DUS Transformation is given by (1), then the 

corresponding  cdf, survival function and failure rate function  are given by 

𝐺(𝑥) =
1

𝑒−1
[𝑒𝐹(𝑥) − 1]                                                               (2)  

𝑆(𝑥) =
1

𝑒−1
[𝑒 − 𝑒𝐹(𝑥)]                                                               (3) 

and 

ℎ(𝑥) =
1

𝑒−𝑒𝐹(𝑥)
𝑓(𝑥)𝑒𝐹(𝑥)                                                           (4) 

respectively. 

 

III. DUS-IW(α,β) Distribution 

 

Let Y be a random variable from the two-parameter Weibull distribution with the shape parameter 

α and the scale parameter β. Its pdf is given by 

𝑓(𝑦) =
𝛼

𝛽
(
𝑦

𝛽
)
𝛼−1

𝑒
−(

𝑦

𝛽
)
𝛼

, y>0, α,β>0. 

By using the reciprocal of the random variable Y, i.e., X=1/Y, the distribution of X is called Inverse 

Weibull distribution with the shape parameter α and the scale parameter β, denoted by IW(α,β).  
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The pdf and the cdf of the IW distribution are given below 

𝑓(𝑥) =
𝛼

𝛽
(
𝑥

𝛽
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽
)
−𝛼

, x>0, α, β>0                                                 (5) 

and 

𝐹(𝑥) = 𝑒
−(

𝑥

𝛽
)
−𝛼

,x>0, α, β>0                                                        (6) 

respectively. 

Let g(x) be the pdf obtained by DUS transformation (1), corresponding to the baseline pdf (5) and 

cdf (6), then 

𝑔(𝑥) =
1

𝑒−1

𝛼

𝛽
(
𝑥

𝛽
)
−(𝛼+1)

exp {− (
𝑥

𝛽
)
−𝛼

+ 𝑒
−(

𝑥

𝛽
)
−𝛼

}, x>0, α, β>0.                               (7) 

For simplicity, we call the distribution having pdf (7) as DUS transformation of IW(α,β) 

distribution and denote it as DUS-IW(α,β)distribution.  

The cdf of DUS-IW(α,β) distribution is obtained using (2) and is given by, 

𝐺(𝑥) =
1

𝑒−1
{𝑒𝑒

−(
𝑥
𝛽
)
−𝛼

− 1}, x>0, α, β>0.                                                   (8) 

 

I. Survival function and Failure rate function 
 

The survival function S(x), using (3), is given by, 

𝑆(𝑥) =
1

𝑒−1
{𝑒 − 𝑒𝑒

−(
𝑥
𝛽
)
−𝛼

}, x>0, α, β>0.                                                   (9) 

The failure rate function of DUS-IW(α,β) distribution, using (4), is given by, 
 

ℎ(𝑥) =
1

𝑒−𝑒𝑒
−(

𝑥
𝛽
)
−𝛼 (

𝛼

𝛽
) (

𝑥

𝛽
)
−(𝛼+1)

e
{−(

𝑥

𝛽
)
−𝛼

+𝑒
−(

𝑥
𝛽
)
−𝛼

}

, x>0, α, β>0.                     (10) 

 

IV. Shapes 
 

It can be seen that the pdf of DUS-IW(α, β) distribution has the shape properties, specifically, 

α < 1, β > 1 ⇒ g(x) is decreasing, 

α < 1, β < 1 ⇒ g(x) is unimodal, 

α > 1, β < 1 ⇒ g(x) is unimodal, 

α > 1, β > 1 ⇒ g(x) is unimodal. 

Mode of the distribution can be found as a solution of the equation,  
𝑑

𝑑𝑥
log 𝑔 (𝑥) = 0. 

By substituting the pdf, we get  
𝑑

𝑑𝑥
log [

1

𝑒 − 1

𝛼

𝛽
(
𝑥

𝛽
)
−(𝛼+1)

exp {− (
𝑥

𝛽
)
−𝛼

+ 𝑒
−(

𝑥

𝛽
)
−𝛼

}] = 0. 

Simplifying the equation, we get, 

−(𝛼+1)

𝑥
+ 𝛽𝛼𝛼𝑥−(𝛼+1) [1 + 𝑒

−(
𝑥

𝛽
)
−𝛼

] = 0.                                               (11) 

On solving (11) numerically, we get the mode of the distribution. The plots of pdf and failure rate 

function of DUS-IW(α,β) distribution for different values of α and β are shown the Figures 1 and 2 

respectively. 
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Figure 1: Pdf of DUS-IW(α,β) for (0.8,0.8),(2.25,0.6), (0.3,1.75) and (2.5,1.75) 

 
Figure 2: Failure rate function of DUS-IW(α,β) for (0.5,0.5),(1.5,0.6),(0.25,1.5) and (1.25,1.5) 

Figure 2 shows the graph of failure rate function of DUS-IW(α, β) distribution for the parameter 

values (0.5,0.5), (1.5,0.6), (0.25,1.5) and (1.25,1.5). Failure rate function h(x) is monotonically 

decreasing for α <1 and upside-down for α >1. 

 

V. Statistical Properties 

I. Moments 
 

Let X be a random variable with its pdf given by (7), then its rth raw moment is obtained by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) 

= ∫ 𝑥𝑟
∞

0

[
1

𝑒 − 1

𝛼

𝛽
(
𝑥

𝛽
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽
)
−𝛼

] 𝑑𝑥 

=
1

𝑒 − 1

𝛼

𝛽
∫ 𝑥𝑟

∞

0

(
𝑥

𝛽
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽
)
−𝛼

∑

[𝑒
−(

𝑥

𝛽
)
−𝛼

]

𝑚

𝑚!

∞

𝑚=0

𝑑𝑥 

= ∑
1

𝑒 − 1

𝛼

𝛽

𝛽𝛼+1

𝑚!
∫ 𝑥𝑟

∞

0

(𝑥)−(𝛼+1)𝑒
−(𝑚+1)(

𝑥

𝛽
)
−𝛼

𝑑𝑥.

∞

𝑚=0
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Put𝑢 = 𝑥−𝛼 

Then, 𝑑𝑢 = −𝛼𝑥−(𝛼+1)𝑑𝑥,  

implies, 

𝜇𝑟
′ = ∑

𝛽𝛼

𝑚! (𝑒 − 1)
∫ (𝑢−

1

𝛼)
𝑟∞

0

𝑒−(𝑚+1)(𝛽)𝛼𝑢𝑑𝑢

∞

𝑚=0

 

= ∑
𝛽𝛼

𝑚! (𝑒 − 1)
∫ 𝑢−

𝑟

𝛼
+1−1

∞

0

𝑒−(𝑚+1)(𝛽)𝛼𝑢𝑑𝑢

∞

𝑚=0

 

= ∑
𝛽𝛼

𝑚! (𝑒 − 1)

𝛤(−
𝑟

𝛼
+ 1)

((𝑚 + 1)𝛽𝛼)−
𝑟

𝛼
+1

∞

𝑚=0

 

= ∑
𝛤(−

𝑟

𝛼
+ 1)

(𝑚 + 1)! (𝑒 − 1)((𝑚 + 1)𝛽𝛼)−
𝑟

𝛼

∞

𝑚=0

 

= ∑
𝛤(−

𝑟

𝛼
+ 1)(𝑚 + 1)

𝑟

𝛼𝛽𝑟

(𝑚 + 1)! (𝑒 − 1)

∞

𝑚=0

. 

Therefore, 

𝜇𝑟
′ = ∑

𝛤(−
𝑟

𝛼
+1)(𝑚+1)

𝑟
𝛼𝛽𝑟

(𝑚+1)!(𝑒−1)
∞
𝑚=0                                                           (12) 

 

Hence, the rth raw moment. 

Putting r=1 in (12), we get the 1st raw moment (mean) and is given by, 

𝜇1
′ = 𝐸(𝑋) 

𝜇1
′ = ∑

𝛤(−
1

𝛼
+1)(𝑚+1)

1
𝛼𝛽

(𝑚+1)!(𝑒−1)
∞
𝑚=0 .                                                          (13) 

 

Putting r=2 in (12), we get the 2nd raw moment and is given by, 

𝜇2
′ = 𝐸(𝑋2) 

𝜇2
′ = ∑

𝛤(−
2

𝛼
+ 1)(𝑚 + 1)

2

𝛼𝛽2

(𝑚 + 1)! (𝑒 − 1)
.

∞

𝑚=0

 

Then, the variance of the random variable X is given by, 

𝑉(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2
 

𝑉(𝑋) = ∑
𝛤(−

2

𝛼
+1)(𝑚+1)

2
𝛼𝛽2

(𝑚+1)!(𝑒−1)
∞
𝑚=0 − (∑

𝛤(−
1

𝛼
+1)(𝑚+1)

1
𝛼𝛽

(𝑚+1)!(𝑒−1)
∞
𝑚=0 )

2

.                               (14) 

 

II. Moment Generating Function 

 
The mgf of DUS-IW(α,β) distribution is, 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥
∞

0

𝑔(𝑥)𝑑𝑥 

=∫ 𝑒𝑡𝑥
∞

0

[
1

𝑒 − 1

𝛼

𝛽
(
𝑥

𝛽
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽
)
−𝛼

] 𝑑𝑥 

=
1

𝑒 − 1

𝛼

𝛽
𝛽(𝛼+1)∫ 𝑒𝑡𝑥

∞

0

(𝑥)−(𝛼+1)𝑒
−(

𝑥

𝛽
)
−𝛼

∑

[𝑒
−(

𝑥

𝛽
)
−𝛼

]

𝑚

𝑚!

∞

𝑚=0

𝑑𝑥 

= ∑
1

𝑒 − 1

𝛼𝛽𝛼

𝑚!
∫ (𝑥)−(𝛼+1)𝑒

−(𝑚+1)(
𝑥

𝛽
)
−𝛼

∑
[𝑡𝑥]𝑛

𝑛!

∞

𝑛=0

𝑑𝑥
∞

0

∞

𝑚=0

 

= ∑ ∑
𝛼𝛽𝛼

(𝑒 − 1)𝑚! 𝑛!
∫ (𝑥)−(𝛼+1)𝑒

−(𝑚+1)(
𝑥

𝛽
)
−𝛼

(𝑡𝑥)𝑛𝑑𝑥.
∞

0

∞

𝑛=0

∞

𝑚=0
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Put𝑢 = 𝑥−𝛼 

Then, 𝑑𝑢 = −𝛼𝑥−(𝛼+1)𝑑𝑥 

implies, 

𝑀𝑋(𝑡) = ∑ ∑
𝛽𝛼

(𝑒 − 1)𝑚! 𝑛!
∫ (

1

𝑢
)

𝑛

𝛼

𝑒−(𝑚+1)(𝛽)𝛼𝑢(𝑡)𝑛𝑑𝑢
∞

0

∞

𝑛=0

∞

𝑚=0

 

= ∑ ∑
𝛽𝛼(𝑡)𝑛

(𝑒 − 1)𝑚! 𝑛!
∫ (𝑢)−

𝑛

𝛼
+1−1𝑒−(𝑚+1)(𝛽)𝛼𝑢𝑑𝑢

∞

0

∞

𝑛=0

∞

𝑚=0

 

= ∑ ∑
(𝑡)𝑛𝛤(−

𝑛

𝛼
+ 1)(𝑚 + 1)

𝑛

𝛼𝛽𝑛

(𝑒 − 1)(𝑚 + 1)! 𝑛!

∞

𝑛=0

∞

𝑚=0

. 

Therefore, 

𝑀𝑋(𝑡) = ∑ ∑
(𝑡)𝑛𝛤(−

𝑛

𝛼
+1)(𝑚+1)

𝑛
𝛼𝛽𝑛

(𝑒−1)(𝑚+1)!𝑛!

∞
𝑛=0

∞
𝑚=0 .                                                   (15) 

 

III. Characteristic Function 
 

The cf, 𝜙𝑋(𝑡) is given by, 

𝜙𝑋(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) = ∫ 𝑒𝑖𝑡𝑥
∞

0

𝑔(𝑥). 𝑑𝑥 

=∫ 𝑒𝑖𝑡𝑥
∞

0

[
1

𝑒 − 1

𝛼

𝛽
(
𝑥

𝛽
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽
)
−𝛼

] 𝑑𝑥 

=
1

𝑒 − 1

𝛼

𝛽
𝛽(𝛼+1)∫ 𝑒𝑖𝑡𝑥

∞

0

(𝑥)−(𝛼+1)𝑒
−(

𝑥

𝛽
)
−𝛼

∑

[𝑒
−(

𝑥

𝛽
)
−𝛼

]

𝑚

𝑚!

∞

𝑚=0

𝑑𝑥 

= ∑
1

𝑒 − 1

𝛼𝛽𝛼

𝑚!
∫ (𝑥)−(𝛼+1)𝑒

−(𝑚+1)(
𝑥

𝛽
)
−𝛼

∑
[𝑖𝑡𝑥]𝑛

𝑛!

∞

𝑛=0

𝑑𝑥
∞

0

∞

𝑚=0

 

= ∑ ∑
𝛼𝛽𝛼

(𝑒 − 1)𝑚! 𝑛!
∫ (𝑥)−(𝛼+1)𝑒

−(𝑚+1)(
𝑥

𝛽
)
−𝛼

(𝑖𝑡𝑥)𝑛𝑑𝑥
∞

0

∞

𝑛=0

∞

𝑚=0

 

Put𝑢 = 𝑥−𝛼 . 

Then, 𝑑𝑢 = −𝛼𝑥−(𝛼+1)𝑑𝑥, 

implies, 

𝜙𝑋(𝑡) = ∑ ∑
𝛽𝛼

(𝑒 − 1)𝑚! 𝑛!
∫ (

1

𝑢
)

𝑛

𝛼

𝑒−(𝑚+1)(𝛽)𝛼𝑢(𝑖𝑡)𝑛𝑑𝑢
∞

0

∞

𝑛=0

∞

𝑚=0

 

= ∑ ∑
𝛽𝛼(𝑖𝑡)𝑛

(𝑒 − 1)𝑚! 𝑛!
∫ (𝑢)−

𝑛

𝛼
+1−1𝑒−(𝑚+1)(𝛽)𝛼𝑢𝑑𝑢

∞

0

∞

𝑛=0

∞

𝑚=0

 

= ∑ ∑
(𝑖𝑡)𝑛𝛤(−

𝑛

𝛼
+ 1)(𝑚 + 1)

𝑛

𝛼𝛽𝑛

(𝑒 − 1)(𝑚 + 1)! 𝑛!
.

∞

𝑛=0

∞

𝑚=0

 

Therefore, 

𝜙𝑋(𝑡) = ∑ ∑
(𝑖𝑡)𝑛𝛤(−

𝑛

𝛼
+1)(𝑚+1)

𝑛
𝛼𝛽𝑛

(𝑒−1)(𝑚+1)!𝑛!

∞
𝑛=0

∞
𝑚=0 .                                                (16) 

 

IV. Quantile Function 
 

The pth quantile function, denoted by Q(p) of DUS-IW(α,β) distribution is obtained by solving 

F(Q(p))=p, where 0<p<1. That is, 

1

𝑒 − 1
{𝑒𝑒

−(
𝑄(𝑝)
𝛽

)
−𝛼

− 1} = 𝑝 
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and the pth quantile function is, 

𝑄(𝑝) =
−𝛽

{log(log(1+𝑝(𝑒−1)))}
1
𝛼

.                                     (17) 

 

Median (2nd quartile) of DUS-IW(α,β) distribution is obtained by substituting p = 1/2 in (17), 

i.e.,  

𝑄2 =
−𝛽

{log(log(1+
1

2
(𝑒−1)))}

1
𝛼

.                                         (18) 

Setting p = 1/4 in (17), we get the 1st quartile of DUS-IW(α,β) distribution as follows, 

𝑄1 =
−𝛽

{log(log(1+
1

4
(𝑒−1)))}

1
𝛼

.                                        (19) 

Setting p = 3/4 in (17), we get the 3rd quartile of DUS-IW(α,β)distribution as follows, 

𝑄3 =
−𝛽

{log(log(1+
3

4
(𝑒−1)))}

1
𝛼

.                                                             (20)       

A random sample X with DUS-IW(α,β) distribution can be simulated using 

𝑋 =
−𝛽

{log(log(1+𝑈(𝑒−1)))}
1
𝛼

 , where U⁓U(0,1)                                          (21) 

 

VI. Stress-Strength Reliability 

 
Stress-Strength model has a significant role in reliability engineering. The stress-strength reliability 

is defined as the probability that the random strength greater than the random stress of a 

component or system, [6]. A study on point estimation of the stress-strength reliability parameter 

for parallel system with independent and non-identical components can be seen in literature, [20]. 

In this section, reliability estimation of single component stress-strength model (SSS) and 

multicomponent stress-strength model (MSS) are considered. 

 

I. Single Component Stress-Strength Reliability 
 

Here we consider the reliability of SSS based on two independent random variables X and Y, 

where X represents the ‘strength’ and Y represents the ‘stress’. Suppose X and Y have the DUS-

IW(α, β1) and DUS-IW (α, β2) distributions respectively, then the system reliability R = P(Y < X) is 

 
𝑅 = 𝑃(𝑌 < 𝑋) 

= ∫ 𝑔𝑋(𝑥)𝐺𝑌(𝑥). 𝑑𝑥
∞

0

 

= ∫
1

𝑒 − 1

𝛼

𝛽1
(
𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽1
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

1

𝑒 − 1
{𝑒𝑒

−(
𝑥
𝛽2

)
−𝛼

− 1} 𝑑𝑥
∞

0

 

=
1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽1
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

{𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

− 1} . 𝑑𝑥
∞

0

 

=
1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

[exp (−(
𝑥

𝛽1
)
−𝛼

+ 𝑒
−(

𝑥

𝛽1
)
−𝛼

+ 𝑒
−(

𝑥

𝛽2
)
−𝛼

) − exp (−(
𝑥

𝛽1
)
−𝛼

+ 𝑒
−(

𝑥

𝛽1
)
−𝛼

)]𝑑𝑥
∞

0

 

=
1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽1
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

𝑑𝑥
∞

0

−
1

𝑒 − 1
 

= 𝐼1 −
1

𝑒 − 1
 

where𝐼1 =
1

(𝑒−1)2

𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽1
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

𝑑𝑥
∞

0
 

=
1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽1
)
−𝛼

∑

[𝑒
−(

𝑥

𝛽1
)
−𝛼

]

𝑚

𝑚!

∞

𝑚=0

∑

[𝑒
−(

𝑥

𝛽2
)
−𝛼

]

𝑛

𝑛!

∞

𝑛=0

𝑑𝑥
∞

0
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= ∑ ∑
1

𝑚! 𝑛!

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(𝑚+1)(

𝑥

𝛽1
)
−𝛼

𝑒
−𝑛(

𝑥

𝛽2
)
−𝛼

𝑑𝑥
∞

0

 

= ∑ ∑
1

𝑚!𝑛!

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(𝑚+1)(

𝑥

𝛽1
)
−𝛼

∑
(−1)𝑝𝑛𝑝 (

𝑥

𝛽2
)
−𝛼𝑝

𝑝!

∞

𝑝=0

𝑑𝑥
∞

0

 

= ∑ ∑∑
(−1)𝑝𝑛𝑝

𝑚! 𝑛! 𝑝!

∞

𝑝=0

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
𝛼

𝛽1
∫ (

𝑥

𝛽1
)
−(𝛼+1)

𝑒
−(𝑚+1)(

𝑥

𝛽1
)
−𝛼

(
𝑥

𝛽2
)
−𝛼𝑝

𝑑𝑥
∞

0

 

Put𝑢 = 𝑥−𝛼 

Then, 𝑑𝑢 = −𝛼𝑥−(𝛼+1)𝑑𝑥, 

implies, 

𝐼1 = ∑ ∑∑
(−1)𝑝𝑛𝑝

𝑚! 𝑛! 𝑝!

∞

𝑝=0

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
𝛼

𝛽1
∫

𝛽1
𝛼+1𝛽2

𝛼𝑝

𝛼

∞

0

𝑒−(𝑚+1)𝛽1
𝛼𝑢 . 𝑢𝑝. 𝑑𝑢 

= ∑ ∑∑
(−1)𝑝𝑛𝑝

𝑚! 𝑛! 𝑝!

∞

𝑝=0

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
1

𝛽1
𝛽1

𝛼+1𝛽2
𝛼𝑝∫ 𝑒−(𝑚+1)𝛽1

𝛼𝑢. 𝑢𝑝. 𝑑𝑢
∞

0

 

= ∑ ∑∑
(−1)𝑝𝑛𝑝

𝑚! 𝑛! 𝑝!

∞

𝑝=0

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
𝛽1

𝛼𝛽2
𝛼𝑝 𝛤(𝑝 + 1)

((𝑚 + 1)𝛽1
𝛼)𝑝+1

 

= ∑ ∑∑
(−1)𝑝𝑛𝑝

𝑚!𝑛! 𝑝!

∞

𝑝=0

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
𝛽1

𝛼𝛽2
𝛼𝑝

𝛽1
𝛼𝑝𝛽1

𝛼

𝛤(𝑝 + 1)

((𝑚 + 1))𝑝+1
 

= ∑ ∑∑
(−1)𝑝𝑛𝑝

𝑚! 𝑛! 𝑝!

∞

𝑝=0

∞

𝑛=0

∞

𝑚=0

1

(𝑒 − 1)2
(
𝛽2
𝛽1
)
𝛼𝑝 𝛤(𝑝 + 1)

((𝑚 + 1))𝑝+1
 

Therefore, 

𝑅 = ∑ ∑ ∑
(−1)𝑝𝑛𝑝

𝑚!𝑛!𝑝!

∞
𝑝=0

∞
𝑛=0

∞
𝑚=0

1

(𝑒−1)2
(
𝛽2

𝛽1
)
𝛼𝑝 𝛤(𝑝+1)

((𝑚+1))𝑝+1
−

1

𝑒−1
                                 (22) 

 

 

II. Multicomponent Stress-Strength Reliability 
 

Here we consider the reliability of MSS based on the independent random variables X1, X2, …, Xk 

and Y, where X1, X2, …, Xk represents the k i.i.d. ‘strength’ components and Y represents the 

‘stress’. Suppose asystem with these Xi’s functions if atleast s (1 ≤ 𝑠 ≤ 𝑘) components operate. Let, 

F(.) be the distribution function of X and G(.) be the distribution function of Y. Then the system 

reliability 𝑅𝑠,𝑘 = Prob(atleast s of the Xi’s exceed Y).  

i.e., 

𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖
) ∫ [1 − 𝐹(𝑥)]𝑖[𝐹(𝑥)]𝑘−𝑖𝑑𝐺(𝑥)

∞

−∞
𝑘
𝑖=𝑠                                       (23) 

Various works have been done in MSS (see for example, [2], [17] and [21]). Suppose Xi’s and Y 

have the DUS-IW(α, β1) and DUS-IW(α, β2) distributions respectively, then the reliability in MSS 

using (23) is, 

𝑅𝑠,𝑘 = ∑(
𝑘
𝑖
)∫ [1 −

1

𝑒 − 1
{𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

− 1}]

𝑖
∞

0

[
1

𝑒 − 1
{𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

− 1}]

𝑘−𝑖𝑘

𝑖=𝑠

 

1

𝑒 − 1

𝛼

𝛽2
(
𝑥

𝛽2
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽2
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

𝑑𝑥 

=∑(
𝑘
𝑖
)∫ [1 +

1

𝑒 − 1
−

1

𝑒 − 1
𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

]

𝑖
∞

0

[−
1

𝑒 − 1
{1 − 𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

}]

𝑘−𝑖𝑘

𝑖=𝑠

 

1

𝑒 − 1

𝛼

𝛽2
(
𝑥

𝛽2
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽2
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

𝑑𝑥 

=∑(
𝑘
𝑖
)∫ [

𝑒

𝑒 − 1
{1 − 𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

−1}]

𝑖
∞

0

[(−1)
1

𝑒 − 1
{1 − 𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

}]

𝑘−𝑖𝑘

𝑖=𝑠
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1

𝑒 − 1

𝛼

𝛽2
(
𝑥

𝛽2
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽2
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

𝑑𝑥 

= ∑(
𝑘
𝑖
) (

𝑒

𝑒 − 1
)
𝑖

(−1)𝑘−𝑖 (
1

𝑒 − 1
)
𝑘−𝑖 1

𝑒 − 1

𝛼

𝛽2
∫ [1 − 𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

−1]

𝑖
∞

0

[1 − 𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

]

𝑘−𝑖𝑘

𝑖=𝑠

 

(
𝑥

𝛽2
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽2
)
−𝛼

𝑒𝑒
−(

𝑥
𝛽2

)
−𝛼

𝑑𝑥 

Using binomial expansion (1 − 𝑥)𝑛 = ∑ (
𝑛
𝑘
) (−1)𝑘𝑥𝑛−𝑘𝑛

𝑘=0 , we get, 

= ∑(
𝑘
𝑖
) 𝑒𝑖(−1)𝑘−𝑖 (

1

𝑒 − 1
)
𝑘+1 𝛼

𝛽2
∫ ∑(

𝑖
𝑗
) (−1)𝑗

𝑖

𝑗=0

[𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

−1]

𝑖−𝑗

∑(
𝑘 − 𝑖
𝑝

) (−1)𝑝
𝑘−𝑖

𝑝=0

[𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

]

𝑘−𝑖−𝑝
∞

0

𝑘

𝑖=𝑠

 

(
𝑥

𝛽2
)
−(𝛼+1)

𝑒
−(

𝑥

𝛽2
)
−𝛼

∑

[𝑒
−(

𝑥

𝛽2
)
−𝛼

]

𝑚

𝑚!

∞

𝑚=0

𝑑𝑥 

=∑∑∑ ∑ (
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)
𝑒𝑖(−1)𝑘−𝑖

𝑚!

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(
1

𝑒 − 1
)
𝑘+1 𝛼

𝛽2
(−1)𝑗+𝑝∫ [𝑒𝑒

−(
𝑥
𝛽1

)
−𝛼

−1]

𝑖−𝑗

[𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

]

𝑘−𝑖−𝑝
∞

0

𝑘

𝑖=𝑠

 

(
𝑥

𝛽2
)
−(𝛼+1)

𝑒
−(𝑚+1)(

𝑥

𝛽2
)
−𝛼

𝑑𝑥 

= ∑∑∑ ∑ (
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)
𝑒𝑖𝛼𝛽2

𝛼

𝑚! (𝑒 − 1)𝑘+1

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(−1)𝑘−𝑖+𝑗+𝑝𝑒−𝑖+𝑗∫ [𝑒𝑒
−(

𝑥
𝛽1

)
−𝛼

]

𝑘−𝑗−𝑝
∞

0

𝑘

𝑖=𝑠

 

(𝑥)−(𝛼+1)𝑒
−(𝑚+1)(

𝑥

𝛽2
)
−𝛼

𝑑𝑥 

=∑∑∑ ∑ (
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)
𝑒𝑗𝛽2

𝛼

𝑚! (𝑒 − 1)𝑘+1

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(−1)𝑘−𝑖+𝑗+𝑝∫ 𝛼(𝑥)−(𝛼+1)
∞

0

𝑘

𝑖=𝑠

 

∑

[(𝑘 − 𝑗 − 𝑝)𝑒
−(

𝑥

𝛽1
)
−𝛼

]

𝑛

𝑛!

∞

𝑛=0

𝑒
−(𝑚+1)(

𝑥

𝛽2
)
−𝛼

𝑑𝑥 

= ∑∑∑ ∑ ∑(
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)

∞

𝑛=0

𝑒𝑗𝛽2
𝛼(𝑘 − 𝑗 − 𝑝)𝑛

𝑚! (𝑒 − 1)𝑘+1𝑛!

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(−1)𝑘−𝑖+𝑗+𝑝∫ 𝛼(𝑥)−(𝛼+1)
∞

0

𝑘

𝑖=𝑠

 

𝑒
−𝑛(

𝑥

𝛽1
)
−𝛼

𝑒
−(𝑚+1)(

𝑥

𝛽2
)
−𝛼

𝑑𝑥. 

Put 𝑢 = 𝑥−𝛼  

Then, 𝑑𝑢 = −𝛼𝑥−(𝛼+1)𝑑𝑥, 

implies, 

𝑅𝑠,𝑘 =∑∑∑ ∑ ∑(
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)

∞

𝑛=0

𝑒𝑗𝛽2
𝛼(𝑘 − 𝑗 − 𝑝)𝑛

𝑚! (𝑒 − 1)𝑘+1𝑛!

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(−1)𝑘−𝑖+𝑗+𝑝∫ 𝑒−𝑛𝛽1
𝛼𝑢𝑒−(𝑚+1)𝛽2

𝛼𝑢𝑑𝑢
∞

0

𝑘

𝑖=𝑠

 

= ∑∑∑ ∑ ∑(
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)

∞

𝑛=0

𝑒𝑗𝛽2
𝛼(𝑘 − 𝑗 − 𝑝)𝑛

𝑚! (𝑒 − 1)𝑘+1𝑛!

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(−1)𝑘−𝑖+𝑗+𝑝∫ 𝑒−𝑢(𝑛𝛽1
𝛼+(𝑚+1)𝛽2

𝛼)𝑑𝑢
∞

0

𝑘

𝑖=𝑠

 

= ∑∑∑ ∑ ∑(
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)

∞

𝑛=0

𝑒𝑗𝛽2
𝛼(𝑘 − 𝑗 − 𝑝)𝑛

𝑚! (𝑒 − 1)𝑘+1𝑛!

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

(−1)𝑘−𝑖+𝑗+𝑝 [
𝑒−𝑢(𝑛𝛽1

𝛼+(𝑚+1)𝛽2
𝛼)

−(𝑛𝛽1
𝛼 + (𝑚 + 1)𝛽2

𝛼)
]

0

∞𝑘

𝑖=𝑠

 

 

=∑∑∑ ∑ ∑(
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)

∞

𝑛=0

𝑒𝑗𝛽2
𝛼(𝑘 − 𝑗 − 𝑝)𝑛(−1)𝑘−𝑖+𝑗+𝑝

𝑚! (𝑒 − 1)𝑘+1𝑛! (𝑛𝛽1
𝛼 + (𝑚 + 1)𝛽2

𝛼)

∞

𝑚=0

𝑘−𝑖

𝑝=0

𝑖

𝑗=0

𝑘

𝑖=𝑠

. 

Therefore, 

𝑅𝑠,𝑘 = ∑ ∑ ∑ ∑ ∑ (
𝑘
𝑖
) (

𝑖
𝑗
) (

𝑘 − 𝑖
𝑝

)∞
𝑛=0

𝑒𝑗𝛽2
𝛼(𝑘−𝑗−𝑝)𝑛(−1)𝑘−𝑖+𝑗+𝑝

𝑚!(𝑒−1)𝑘+1𝑛!(𝑛𝛽1
𝛼+(𝑚+1)𝛽2

𝛼)

∞
𝑚=0

𝑘−𝑖
𝑝=0

𝑖
𝑗=0

𝑘
𝑖=𝑠 .            (24) 
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VII. Maximum Likelihood Estimation 
 

In this section, we discuss method of maximum likelihood for the estimation of parameters α and 

β. Let X1, X2, . . . ,Xn be an observed random sample from DUS-IW(α,β) distribution with unknown 

parameters α and β. The maximum likelihood estimator(MLE)s of the parameters of the DUS-

IW(α, β) distribution are derived as below. The likelihood function is 

𝐿(𝑥) =∏𝑓(𝑥𝑖 , 𝛼, 𝛽)

𝑛

𝑖=1

 

i.e., 

𝐿(𝑥) = (
1

𝑒 − 1
)
𝑛 𝛼𝑛

𝛽𝑛
∏(

𝑥𝑖
𝛽
)
−(𝛼+1)

𝑒
−∑ (

𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1 𝑒∑ 𝑒

−(
𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1

𝑛

𝑖=1

 

So that the log-likelihood function becomes 

log 𝐿 = − 𝑛 log(𝑒 − 1) + 𝑛 log 𝛼 − 𝑛 log 𝛽 − (𝛼 + 1)∑[log 𝑥𝑖 − log 𝛽]

𝑛

𝑖=1

−∑(
𝑥𝑖
𝛽
)
−𝛼

𝑛

𝑖=1

 

+∑ 𝑒
−(

𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1                                                                                                                  (25) 

The partial derivatives of log L in (25) with respect to unknown parameters α and β are, 

𝜕 log 𝐿

𝜕𝛼
=

𝑛

𝛼
− ∑ [log 𝑥𝑖 − log 𝛽]𝑛

𝑖=1 + ∑ (
𝑥𝑖

𝛽
)
−𝛼

𝑛
𝑖=1 log∑ (

𝑥𝑖

𝛽
)𝑛

𝑖=1 + ∑ 𝑒
−(

𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1 (

𝑥𝑖

𝛽
)
−𝛼

log (
𝑥𝑖

𝛽
)     (26) 

𝜕 log 𝐿

𝜕𝛽
= −

𝑛

𝛽
+ (𝛼 + 1)

𝑛

𝛽
− 𝛼∑ (𝑥𝑖)

−𝛼𝑛
𝑖=1 𝛽𝛼−1 − ∑ 𝑒

−(
𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1 𝛼 ∑ (𝑥𝑖)

−𝛼𝑛
𝑖=1 𝛽𝛼−1            (27) 

Setting the left side of above two equations to zero, we get the likelihood equations as a system of 

two non-linear equations in α and β. 

𝑛

𝛼
− ∑ [log 𝑥𝑖 − log 𝛽]𝑛

𝑖=1 + ∑ (
𝑥𝑖

𝛽
)
−𝛼

𝑛
𝑖=1 log∑ (

𝑥𝑖

𝛽
)𝑛

𝑖=1 + ∑ 𝑒
−(

𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1 (

𝑥𝑖

𝛽
)
−𝛼

log (
𝑥𝑖

𝛽
) = 0       (28) 

−
𝑛

𝛽
+ (𝛼 + 1)

𝑛

𝛽
− 𝛼∑ (𝑥𝑖)

−𝛼𝑛
𝑖=1 𝛽𝛼−1 − ∑ 𝑒

−(
𝑥𝑖
𝛽
)
−𝛼

𝑛
𝑖=1 𝛼 ∑ (𝑥𝑖)

−𝛼𝑛
𝑖=1 𝛽𝛼−1 = 0              (29) 

Solving these systems, (28) and (29), in α and β gives the MLEs of α and β. These equations cannot 

be solved analytically and statistical software R can be used to solve them numerically, by taking 

initial value arbitrarily. 

 

VIII. Results 

I. Simulation Study 
 

In statistics, simulation is used to assess the performance of the model. It is a numerical technique 

for conducting experiments on the computer. There are certain simulation techniques for 

generating and analyzing like Monte-Carlo simulation. With considered (21), here we take 

different combinations of parameters α and β with samples of sizes n=25, 50, 100,500 and 1000 and 

the samples are generated from the DUS-IW(α,β) model. The bias and the mean square error 

(MSE) of the parameter estimates are calculated using the equations, 

                                                                  Bias=
1

𝑛
∑ (𝜀�̂� − 𝜀𝑖)
𝑛
𝑖=1 (30) 

and  

MSE=
1

𝑛
∑ (𝜀�̂� − 𝜀𝑖)

2.𝑛
𝑖=1                                                               (31) 

The simulation is conducted for three different cases using different true parameter values. The 

selected true parameter values are α=0.2 and β=0.8, α=1 and β=1.5 and α=1 and β=1 for the first, 

second, and third cases, respectively. As the sample size increases, MSE decreases for all selected 

parameter values as in Table 1, 2 and 3. Also, the bias is nearer to zero when the sample size 

increases. Thus, the estimates tend to the true parameter values as the sample size increases. 
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Table 1: Simulation study at α=0.2 and β=0.8 

n Estimated 

value of 

Parameters 

Bias MSE 

25 �̂�=0.2112962 

�̂�=1.871778 

0.01129618 

1.071778 

0.001374719 

13.29915 

50 �̂�=0.204941 

�̂�=1.185226 

0.004941044 

0.3852255 

0.0005514951 

2.116492 

100 �̂�=0.2020091 

�̂�=0.9837115 

0.002009123 

0.1837115 

0.0002558455 

0.4104516 

500 �̂�=0.1988177 

�̂�=0.8201508 

-0.001182251 

0.02015084 

4.310696x10-05 

0.04473991 

1000 �̂�=0.1982047 

�̂�=0.8006457 

-0.0017953 

0.0006456743 

2.387253x10-05 

0.01871488 

 
Table 2: Simulation study at α=1 and β=1.5 

n Estimated 

value of 

Parameters 

Bias MSE 

25 �̂�=1.056977 

�̂�=1.594545 

0.0569774 

0.09454492 

0.03443659 

0.1449253 

50 �̂�=1.024739 

�̂�=1.536913 

0.02473883 

0.03691277 

0.01378851 

0.06391387 

100 �̂�=1.010164 

�̂�=1.522311 

0.01016389 

0.02231105 

0.006394628 

0.03083641 

500 �̂�=0.9940904 

�̂�=1.499751 

-0.005909631 

-0.0002490474 

0.001077642 

0.005798989 

1000 �̂�=0.9910253 

�̂�=1.496801 

-0.008974667 

-0.003199132 

0.0005967668 

0.002582339 

 
Table 3: Simulation study at α=1 and β=1 

n Estimated 

value of 

Parameters 

Bias MSE 

25 �̂�= 1.056977 

�̂�= 1.06303 

0.05697739 

0.06302988 

0.03443657 

0.06441129 

50 �̂�=1.024739 

�̂�= 1.024608 

0.02473881 

0.02460846 

0.0137885 

0.02840616 

100 �̂�= 1.010164 

�̂�= 1.014874 

0.0101639 

0.01487402 

0.00639462 

0.0137051 

500 �̂�= 0.9940904 

�̂�= 0.9998339 

-0.005909626 

-0.0001661259 

0.001077644 

0.002577332 

1000 �̂�= 0.9910254 

�̂�= 0.9978672 

-0.008974635 

-0.002132811 

0.0005967686 

0.001147696 

 

Hence, DUS-IW(α, β) distribution possesses least bias and MSE values as the sample size increases. 

 

II. Data Analysis 
 

In this section, we illustrate the use of DUS-IW(α, β) distribution using two real data sets. We fit 

DUS-IW(α, β) distribution to these two data sets and compare the results with IW distribution, 
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DUS-Lomax (DUS-L) distribution, Lomax distribution, Gompertz Lomax (GL) distribution, DUS-

Exponential(DUS-E) distribution and Inverse Lindley (IL) distribution. The first data-sets, 

considered here, represent the survival times of two groups of patients suffering from head and 

neck cancer disease. The data here considered is of the patients belonging to one group who were 

treated using a combined radiotherapy and chemotherapy (CT + RT) ([9]). Another data is of 46 

observations reported on active repair times (hours) for an airborne communication transceiver 

([5]). The data sets are given below: 

 
Table 4: Survival times of patients treated using RT+CT: 

12.2 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 

63.47 68.46 78.26 74.47 81.43 84 92 94 110 112 

119 127 130 133 140 146 155 159 173 179 

194 195 209 249 281 319 339 432 469 519 

633 725 817 1776       

 
Table 5: Repair Time: 

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 

0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 

1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0 

3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 

7.5 8.8 9.0 10.3 22.0 24.5     

 

Using the R software, the analysis is carried out. The tables 6 and 7 gives the estimates of the 

model parameters, AIC (Akaike information criterion) and the BIC (Bayesian information criterion) 

values, where, 

𝐴𝐼𝐶 = −2𝑙 + 2𝑘                                             (32) 

𝐵𝐼𝐶 = −2𝑙 + 𝑘 log 𝑛                                            (33) 

where l denotes the log-likelihood function, k is the number of parameters and n is the sample size. 

Also, using the Kolmogorov-Smirnov(K-S) test, the perfection of competing models is tested. 

The K-S statistic is given by, 

𝐾𝑆 = 𝑚𝑎𝑥 {
𝑖

𝑚
− 𝑧𝑖 , 𝑧𝑖 −

𝑖−1

𝑚
}                                                         (34) 

where, 𝑧𝑖 is the cumulative distribution of 𝑥𝑖, 𝑥𝑖’s being the ordered observations and m is the 

number of classes. Both the KS-statistic and p-value are given in tables 6 and 7 as well. 

 
Table 6: Estimates of the parameters, AIC, BIC and KS statistic of the fitted model in data set 1 (Table 4): 

Model Estimates AIC BIC KS-statistic p-value 

DUS-IW �̂�=1.119 

�̂�=57.556 

561.83 565.40 0.087 0.868 

IW �̂�= 1.013 

�̂�=76.227 

563.14 566.71 0.093 0.811 

DUS-L �̂�=3.165 

�̂�=0.003 

563.81 567.38 0.093 0.806 

Lomax �̂�=4.40 

�̂�=0.001 

564.91 568.48 0.104 0.695 

GL �̂�=0.0185 

�̂�=0.467 

�̂�=0.719 

𝛾=1.99 

571.54 578.68 0.129 0.414 

DUS-E �̂�=0.006 569.82 571.60 0.198 0.021 

IL �̂�=77.68 561.16 562.94 29.01 5.551×10-16 

69



 
Gauthami P, Chacko V M 
DUS INVERSE WEIBULL DISTRIBUTION 

RT&A, No 2(62) 
Volume 16, June 2021  

 

 
Table 6 and Table 7 show that, DUS-IW(α, β) has lowest AIC, BIC, KS-Statistic, and largest p-value 

based on KS-Statistic. The second lowest AIC, BIC, KS-Statistic and second largest p-value are 

obtained by the IW distribution. The proposed distribution, DUS-IW(α, β) can be used when 

failure rate pattern of lifetime distribution is upside-down shaped. In Data set 1 and 2 it seems that 

DUS-IW(α,β) is more appropriate than other distributions (IW distribution, DUS-L distribution, 

Lomax distribution, GL distribution, DUS-E distribution and IL distribution). So DUS-IW(α, β) is 

better alternative in the situations in which upside-down distributions arises. 
 

Table 7: Estimates of the parameters, AIC, BIC and KS statistic of the fitted model in data set 2 (Table 5): 

Model Estimates AIC BIC KS-statistic p-value 

DUS-IW �̂�=1.109 

�̂�=0.857 

204.68 208.34 0.078 0.942 

IW �̂�=1.013 

�̂�=1.130 

205.38 209.04 0.081 0.926 

DUS-L �̂�=2.610 

�̂�=0.227 

209.40 213.06 0.118 0.548 

Lomax �̂�=3.549 

�̂�=0.108 

209.91 213.57 0.127 0.446 

GL �̂�=1.776 

�̂�=1.165 

�̂�=0.189 

𝛾=0.245 

213.96 221.27 0.129 0.432 

DUS-E �̂�=0.344 217.31 219.14 0.211 0.033 

IL �̂�=1.577 204.34 206.17 0.883 2.2×10-16 

 
IX. Discussion 

 
A new distribution, DUS-IW(α, β) distribution, is proposed and its properties are studied. The 

DUS-IW(α, β) has an upside-down shaped and decreasing failure rate functions. We derived the 

moments, moment generating function, characteristic function, quantiles, etc. of the proposed 

distribution. Estimation of parameters of the distribution is performed via maximum likelihood 

method. Reliability of single component and multi component stress-strength models are derived. 

A simulation study is performed to validate the estimates of the model parameters. DUS-IW(α, β) 

distribution is applied to two real data sets and shown that DUS-IW(α, β) distribution is a better fit 

than other well-known distributions. Thus DUS-IW(α, β) distribution can be used in real data 

analysis as a better alternative to the existing distributions. 
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Abstract 

 

Double sampling technique and control charts are used for predicting about unknown parameters of 

the big population and developing algorithms for imposing control over growth factor. This sampling 

procedure has two approaches like sub-sample and independent sample.  Aim is to estimate mean file-

size by both and to find out which approach is better in big data setup. Comparative mathematical 

tools used herein are mean squared error,   confidence interval, relative confidence interval length 

measure and control charts of digital file-size for monitoring. Estimation strategies are proposed and   

confidence intervals are computed over multiple points of time. At each time, it was found that 

confidence intervals are catching the true values. First kind of approach (as case I) of double sampling 

found better than the second. A new simulation strategy is proposed who is observed efficient for 

comparison purpose. Single-valued simulated confidence intervals are obtained using the new 

simulation strategy and found covering the truth in its range. As an application of outcomes, control 

charts are developed to monitor the parametric growth over long duration. Upper and Lower control 

limits are drawn for business managers to keep a watch on digital file-size estimates whether their 

growth under control? Outcomes may be extended for reliability evaluation under discrete time 

domain. The content herein is a piece of thought, idea and analysis developed by deriving motivation 

from past references to handle big data using double sampling.  Findings of the study can be used for 

developing software based monitoring system using process control charts for managers. 

 

Keywords: Big Big-Data, Double Sampling, Sub-Sample, Estimation, Control Limits, Control 

Charts, Process Control, Social Media Portal, Mean squared error, Simulation, Confidence 

Interval (CI). 

 

I. Introduction 
 

Due to emergence of digital technologies and appearance of social media platforms worldwide, 

people are habitual for ease and comforts contained therein. While user registration, participation 

and content-communication through these platforms, the digital data is facing challenges in terms 

of drastic growth in volume, velocity and variety. Momentum of data over time domain has got 

immense speed to occupy memory space at servers/data centers. Often users do not remove their 

long past garbage data from the social media account. Space allocation to users is unlimited due to 

inherent competition in IT business. No service provider wants reduction in user database.  

Therefore, forecasting (or prediction) require about possible expansion of digital space over 

continuous time. A manager of Data center is interested to know how much investment cost 

needed for enhancing capacity of storing units relating to social media portal. Fig.1 to Fig. 3 reveal 

scenario of expanding digital space over time 𝑡1, 𝑡2 and 𝑡3 (𝑡1< 𝑡2 < 𝑡3). 
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     Digital Storage related to big data  

 

 

 

 

 

Figure 1: The digital model of data storage at time 𝑡1 

 

 

The figure 1 is allocation of default memory space at the time of user-registration on a portal at 

time t1. 

 

Digital Storage related to big data 

 

 

 

 

Figure 2: Digital model of data storage at time 𝑡2 

After  t1 and before t2 (𝑡2 > 𝑡1) , figure 2 shows increment in default allocated digital space. While 

at time instant 𝑡3 (𝑡3 > 𝑡2 > 𝑡1). the default space demand got extra ordinary longevity.    

 

Digital storage related to big data 

 

 

 

 

 

Figure 3: The digital model of data storage at time 𝑡3 

      

 Alert system requires for constant monitoring of the storage space who can convey managers of 

IT-business for further planning and cost investments. It could be developed by the joint efforts of 

sampling methodologies available in literature and process control charts over time frame. 
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 Double sampling scheme is a tool for estimating population parameters where first sample 

provides guess(low cost) estimate of parameters of the support variable while second sample 

provides precise estimates of  main variable of interest. This scheme has two variants like (a) 

second sample as sub-sample of first (b) second sample as independent. Fig 4 shows the scheme 

diagrammatic layout of double sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using scheme of figure 4.1,and 4.2, one can obtain the sample based prediction about  average file-

size floating  in portal of social media communication model described in Figure 5 where two-way 

communication exist among large voluminous group of  registered users. 

 

 

 

 

 

 

 

 

 

Figure 5. Portal based Social Media communication model and floating files 

       Statistical methods are used in process control and size measure, which exhibit the extent of 

conformity of the situation under specifications determined by the relevant authority. It is one of 

aspects affecting decision making based on specifications set at early level and continued until the 

completion [1]. Big data take into account digital streams with observations on file-size generated 

sequentially over time. Among many different purposes, one common task is to collect and 

analyze big data and to monitor the longitudinal performance of the related processes. Big data 

assume different forms of data-streams gathered through  complex engineering systems like 
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Figure 4.1: Double sampling Scheme (at 𝑗𝑡ℎ 

occasion 𝑡𝑖) under case I 

 

Figure 4.2: Double sampling Scheme (at 𝑖𝑡ℎ occasion 𝑡𝑖) 

under case II 
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sequences of satellite images, climate data, website transaction logs, credit cards, etc which have 

complicated data structure and complex storage mechanism. Statistical process control charts [28] 

could be utilized as an important tool a for monitoring and decision making [2]. 

 

 

 

 

 

 

Figure 6: Process control chart of file size variable 

II. Literature Review 

Parameter estimation problem in big data setup is an opportunity which enhanced by 

contributions to the higher education sectors in terms of developing indicators for decision making 

[3][4]. Broad aspect of big data including special features and characteristics was narrated [6] with 

consolidated description by integrating definitions from practitioners and academics. It was 

focused on analytics related to unstructured data, whose share is   95% of  the big data. While 

dealing with big data and sampling methodologies, scientists can derive  machine learning 

algorithms by the implementation of supervised statistical data mining. Analysis techniques can be 

used for a single machine scheduling problem in light of hidden patterns using optimized 

scheduling sequence [7]. Analysis depends on the ability of data scientists to make sense and 

develop insight into huge data volume. Way of developing an actionable idea is known as data 

exploration who brings out hidden facts and so is challenging task.  

       Data requires first a small view to have insights [8] for further course of actions. Sampling 

methodologies can play vital role by creating preliminary insight into big data. Sampling frame is 

collection of all units of the population that can use in big data for sample selection. Random 

sample of registered users on portal can be drawn to obtain estimates of individuals and such 

precisions are the same as of those when frame consisting of a list of individuals is taken into 

account [9]. Online social network portals generate large population of individuals where unbiased 

sampling could be used as a tool for prediction. Convergence properties of the random walk were 

studied using sampling of Facebook data [10]. Estimation of the influence of an event connected 

through social media is a problem to handle with because social media is widely exploited as 

communication platform for relevant and irrelevant information. It opens avenue for mathematical 

formulation and characterization   using casual inference [11]. Avenues in web-based large scale 

social networks are to explore concise and coherent methods for summarization and to draw valid 

conclusions. Sampling methodologies on social media network have key role as knowledge 

discovery tools while a suitable methodology can carry out with efficient decision [12]. Big data 

may suffer due to incompleteness of required values, and so, need to be replaced by neighboring 

computations.  Digital media platforms often have distinctive temporal patterns that can be 

exploited for computations in situations involving incomplete information. Iterative type methods 

suggest to estimate the parameters in the underlying point process and assign weights to the 

unknown events with direct calculable score function [13].  
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 The ratio based chain-type exponential estimator for finite population mean under double 

sampling with the auxiliary variable support can provide an efficient estimation methodology [14] 

applicable in big data. Empirical study as a tool could be used for the betterment of outcome. 

Extension of exponential-type estimator under double sampling was an outcome [15] with 

comparative efficiency of the past. In practice, one can find multiple variants affecting the main 

variable of interest. The multivariate exponential type estimators could be used in setup of double 

sampling [16] who may efficient performer than single support variant. In presence of non-

response and with the help of fractional raw moments, estimate of population parameter could be 

more efficient using such inputs [17]. 

        The Gaussian process is useful for prediction and can be applied over big data. It is useful 

where the additive model works well and response depends upon a small number of features [18]. 

International groups of customers relating to business deals constitute big data and, therefore, exist 

like open problem for business manager to deal with. Data of sale of cars available on the internet 

can be analyzed [19] just to have an insight for perception, preferences, preparedness and internet 

experience of potential car customers while making a purchase/sale decision.  A coordination 

among manufacturer, supplier, retailer is essential to manage forward and reverse supply chain in 

business. It relates to price-fixing, storing capacity, profit sharing and decision making in a closed-

loop supply chain in order to maintain the smooth functioning. Responsibility-sharing is prime 

factor that affects outcome and profit. Such require optimal selling price, optimal time, wholesale 

price, sharing percentage and optimal return rate in such a manner that objective function be 

maximize [20]. The stratified double sampling scheme can be used for estimating finite population 

mean in presence of more than one support variables using regression time estimators [21]. The 

basic idea used is to use the ranks of two support variables and extension of the same idea in 

double sampling setup is due to [22]. 

 

III. Motivation and Problem Undertaken 

 
Mean estimation strategies exist in literature [23] for estimating average file-size of text, video and 

image type communication among registered users on asocial media platform. According to 

sampling theory [25-27],while the population mean of support variable is unknown, the double 

sampling is used. This motivates for developing generalization of the aspect [23] for real world 

situation. In big data, it is difficult to find out parametric information of support variable priorly 

known because of data-volume, velocity and variety. This motivates for use of double sampling in 

early literature. Moreover, simulation method with this scheme still not explored.  This paper 

considers the scenario of absence of support variable parametric information and presents new 

estimation strategies along with a new simulation procedure useful in comparative analysis. As an 

application, control charts are developed to monitor parametric changes in big data over multiple  

time occasions. Reliability could be examined through discrete-time domain over a long period. 

The mathematical support is derived from [23], [24-26] and [27]. 

 

I. Assumptions 

1.  Let at time 𝑡𝑗, the 𝑗𝑡ℎ registered user on a web portal generates data values  {(𝑇𝑖)𝑡𝑗
}  as text,  

{(𝑉𝑖)𝑡𝑗
} as  video and {(𝐼𝑖)𝑡𝑗

}  as image (reveals variety) 𝑖 = 1,2,3, … 𝑁, 𝑗 = 1,2,3, … 𝑀, where M is the 

total time points of observations ( reveals velocity), N is total registered users, large in numbers, on 

a web portal ( reveals volume). 

2.  Symbol T is used for text, V for video, and I for image. 
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IV. Parameters 

((𝑇.̅ )𝑡𝑗
)

𝑡𝑒𝑥𝑡
=  𝑁−1 [∑ (𝑇𝑖)𝑡𝑗

𝑁
𝑖=1 ]                    (1) 

((𝑉.̅ )𝑡𝑗
)

𝑣𝑖𝑑𝑒𝑜
=  𝑁−1 [∑ (𝑉𝑖)𝑡𝑗

𝑁
𝑖=1 ]                                                                  (2) 

((𝐼.̅ )𝑡𝑗
)

𝑖𝑚𝑎𝑔𝑒
=  𝑁−1 [∑ (𝐼𝑖)𝑡𝑗

𝑁
𝑖=1 ]                                                                   (3) 

Symbols 𝐶𝑇
(𝑗)

, 𝐶𝑉
(𝑗)

, 𝐶𝐼
(𝑗)

  are  coefficients of variation  shown in (7), (8), (9) and 𝜌𝑇𝑉, 𝜌𝑉𝐼 , 𝜌𝐼𝑇 are 

correlation coefficients of respective pair of populations.   Also 𝜌𝑎𝑏 = 𝜌𝑏𝑎 holds for any two pair of 

variables a and b. Whatever follows hereunder, the  𝑡1  used for time occasion j=1;     𝑡𝑗 for   𝑗𝑡ℎ time 

occasion. Some other symbols in use are: 

(𝑆𝑇
2(𝑗)

)
𝑡𝑒𝑥𝑡

  =  
1

𝑁−1
∑ [(𝑇𝑖)𝑡𝑗

− (𝑇.̅ )𝑡𝑗
]𝑁

𝑖=1

2

 = 𝑆𝑇
2(𝑗)

 at 𝑡𝑗                               (4) 

(𝑆𝑉
2(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

 =
1

𝑁−1
∑ [(𝑉𝑖)𝑡𝑗

− (𝑉.̅ )𝑡𝑗
]𝑁

𝑖=1

2

 = 𝑆𝑉
2(𝑗)

 at 𝑡𝑗                   (5) 

(𝑆𝐼
2(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

=
1

𝑁−1
∑ [(𝐼𝑖)𝑡𝑗

− (𝐼.̅ )𝑡𝑗  
]𝑁

𝑖=1

2

 =  𝑆𝐼
2(𝑗)

 at 𝑡𝑗                 (6) 

The (4), (5), (6) show the variability factor of T, V and I with respect to their means (1), (2), (3). 

Moreover equations (7), (8), (9) are derived as ratio of (4), (5), (6) with (1), (2), (3).   

(𝐶𝑇
(𝑗)

)
𝑡𝑒𝑥𝑡

=  [𝑆𝑇
(𝑗)

/(𝑇.̅ )𝑡𝑗
] = 𝐶𝑇

(𝑗)
 at 𝑡𝑗                                   (7) 

(𝐶𝑉
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

= [𝑆𝑉
(𝑗)

/(𝑉.̅ )𝑡𝑗
] = 𝐶𝑇

(𝑗)
 at 𝑡𝑗                                (8) 

(𝐶𝐼
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

= [𝑆𝐼
(𝑗)

/(𝐼.̅ )𝑡𝑗
]= 𝐶𝑇

(𝑗)
 at 𝑡𝑗                                (9) 

V. Sample Selection using Double Sampling 

Consider figure 4.1 and figure 4.2 where a primary large sample 𝑛′ (𝑛′ < 𝑁)is drawn by random 

sampling without replacement and second sample of size 𝑛′′(𝑛′′ < 𝑛′) is drawn in either of the 

following manners: 

            Case I: second sample as a sub-sample. 

            Case II: second sample as independent to primary sample. 

Mean of primary sample 𝑛′ at 𝑗𝑡ℎ point of time are:. 

(𝑇.̅′
(𝑗)

)
𝑡𝑒𝑥𝑡

= (𝑛′)
−1

[∑ (𝑇𝑘
′
(𝑗)

)𝑛′

𝑘=1 ]           = (𝑇.̅′(𝑗) )   at 𝑡𝑗                                  (10) 

(𝑉.̅′
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

= (𝑛′)
−1

[∑ (𝑉𝑘
′
(𝑗)

)𝑛′

𝑘=1 ]         = (𝑉.̅′(𝑗) )   at 𝑡𝑗                                          (11) 

(𝐼.̅′
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

= (𝑛′)
−1

[∑ (𝐼𝑘
′
(𝑗)

)𝑛′

𝑘=1 ]          = (𝐼.̅′(𝑗) )     at 𝑡𝑗                                 (12) 

          The (10),(11) and (12) help to have an idea about the unknown (1), (2), (3) in rough manner  

with low cost and time effort.  Means based on 𝑛′ are not very accurate because role of primary 

sample 𝑛′ is just to provide a guess of (1), (2), (3). To get precise estimate, second sample 𝑛′′ 

(𝑛′′ < 𝑛′) is drawn and appropriate methodologies are used on accurate data of 𝑛′′ to obtain 
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sample means as under :  

(𝑇.̅′′
(𝑗)

)
𝑡𝑒𝑥𝑡

= (𝑛′′)
−1

[∑ (𝑇𝑘
′′

(𝑗)

)𝑛′′

𝑘=1 ]                   = (𝑇.̅′′(𝑗) )   at 𝑡𝑗                      (13) 

(𝑉.̅′′
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

= (𝑛′′)
−1

[∑ (𝑉𝑘
′′

(𝑗)

)𝑛′′

𝑘=1 ]                 = (𝑉.̅′′(𝑗) )   at 𝑡𝑗                         (14) 

(𝐼.̅′′
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

= (𝑛′′)
−1

[∑ (𝐼𝑘
′′

(𝑗)

)𝑛′′

𝑘=1 ]                   = (𝐼.̅′′(𝑗) )   at 𝑡𝑗                       (15) 

  The (13), (14), (15) are used to estimate unknown (1), (2), (3). Moreover, sample mean squares on 

𝑛′′ are: 

(𝑆𝑇
2′′(𝑗)

)
𝑡𝑒𝑥𝑡

=
1

𝑛′′−1
∑ [(𝑇𝑘

′′
(𝑗)

) − (𝑇.̅′′
(𝑗)

)]𝑛′′

𝑖=1

2

              = 𝑆𝑇
2′′(𝑗)

 at 𝑡𝑗                           (16) 

(𝑆𝑉
2′′(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

=
1

𝑛′′−1
∑ [(𝑉𝑘

′′
(𝑗)

) − (𝑉.̅′′
(𝑗)

)]𝑛′′

𝑖=1

2

  = 𝑆𝑉
2′′(𝑗)

 at 𝑡𝑗             (17) 

(𝑆𝐼
2′′(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

=
1

𝑛′′−1
∑ [(𝐼𝑘

′′
(𝑗)

) − (𝐼.̅′′
(𝑗)

)
 
]𝑛′′

𝑖=1

2

 = 𝑆𝐼
2′′(𝑗)

 at 𝑡𝑗              (18) 

Sample coefficients of variations are:   

(𝐶′′𝑇
(𝑗)

)
𝑡𝑒𝑥𝑡

= [𝑆𝑇
2′′(𝑗)

/ (𝑇.̅′′
(𝑗)

)]   = (𝐶′′𝑇
(𝑗)

)  at 𝑡𝑗              (19) 

(𝐶′′𝑉
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

= [𝑆𝑉
2′′(𝑗)

/ (𝑉.̅′′
(𝑗)

)]   = (𝐶′′𝑉
(𝑗)

)  at 𝑡𝑗              (20) 

(𝐶′′𝐼
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

= [𝑆𝐼
2′′(𝑗)

/ (𝐼.̅′′
(𝑗)

)]   = (𝐶′′𝐼
(𝑗)

)  at 𝑡𝑗              (21) 

The symbols 𝜌𝑇,𝑉 , 𝜌𝑉,𝐼, 𝜌𝐼,𝑇 are used for correlation coefficient in population while 𝜌′′
𝑇,𝑉

 ,   𝜌′′
𝑉,𝐼

, 

  𝜌′′
𝐼,𝑇

  are used for the same purpose but on data of 𝑛′′ called  as sample estimate of correlation  

coefficient. 

VI. Double Sampling based Methods of Estimation 

Let 𝐸1 , 𝐸2 , 𝐸3 are double sampling based estimation strategies for estimating unknown big-data 

population parameters (1), (2), (3) respectively. At  jth point of time  𝑡𝑗 , they are as under: 

(𝐸1
(𝑗)

)
𝑡𝑒𝑥𝑡

= [𝑇.̅′′(𝑗) ((𝑉.̅′ )
𝑡𝑗

/𝑉.̅′′
(𝑗)

)]                                               (22) 

(𝐸2
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

= [𝑉.̅′′(𝑗) ((𝐼.̅′ )
𝑡𝑗

/𝐼.̅′′
(𝑗)

)]                                                                 (23) 

(𝐸3
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

= [𝐼.̅′′(𝑗) ((𝑇.̅′ )
𝑡𝑗

/𝑇.̅′′
(𝑗)

)]                                                               (24) 

Equations (22), (23), (24) are  in accordance with references  [24][25][26][27]  extended for set-up of 

big data. These are logically formulated such that in (22) the T is variable of main interest while V 

is support variable correlated to 𝑇 since larger T provides increment in 𝑉.  Therefore, with the  help 

of V, a better estimate of T could be obtained. Similar logical justifications are used for formulation 

of  (23) and (24). The 𝐸1 , 𝐸2 , 𝐸3 are   biased for estimation of (1), (2), (3) because  𝐸[𝐸𝑚] ≠ (𝑇. )𝑡𝑒𝑥𝑡  or 

((𝑉.̅ )𝑡𝑗
)

𝑣𝑖𝑑𝑒𝑜
 or (𝐼.̅ )𝑖𝑚𝑎𝑔𝑒 for m=1,2,3  where 𝐸[. ] denotes expectation of estimate.  

               The general form of mean squared error (MSE) is describe below  for �̂� to be an estimator 

of true value 𝜃. 

𝑀(�̂�) = 𝐸[�̂� − 𝜃]
2
 where  �̂� corresponds to 𝐸𝑖

(𝑗)
,i=1,2,3  sequentially while 𝜃 are (1), (2), (3) 

respectively. 

Mean squared error under ,Case I ,are  (𝑠𝑒𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 [24][25] [26][27] ): 
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[𝑀𝑆𝐸 (𝐸1
(𝑗)

)
𝑡𝑒𝑥𝑡

]
𝐼

  = [(𝑇.̅ )𝑡𝑗
2 ] [(𝑉20)𝑇

(𝑗)
+ ((𝑉02)𝑇

(𝑗)
− (𝑉02

′ )
𝑇

(𝑗)
) − 2 {(𝑉11)𝑇

(𝑗)
− (𝑉11

′ )
𝑇

(𝑗)
}]           (25) 

[𝑀𝑆𝐸 (𝐸2
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

]
𝐼

= [(𝑉.̅ )𝑡𝑗
2 ] [(𝑉20)𝑉

(𝑗)
+ ((𝑉02)𝑉

(𝑗)
− (𝑉02

′ )
𝑉

(𝑗)
) − 2 {(𝑉11)𝑉

(𝑗)
− (𝑉11

′ )
𝑣

(𝑗)
}]             (26) 

[𝑀𝑆𝐸 (𝐸3
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

]
𝐼

= [(𝐼.̅ )𝑡𝑗
2 ] [(𝑉20)𝐼

(𝑗)
+ ((𝑉02)𝐼

(𝑗)
− (𝑉02

′ )
𝐼

(𝑗)
) − 2 {(𝑉11)𝐼

(𝑗)
− (𝑉11

′ )
𝐼

(𝑗)
}]             (27) 

Mean squared errors, under case II, are  (𝑠𝑒𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 [24][25] [26][27]): 

[𝑀𝑆𝐸 (𝐸1
(𝑗)

)
𝑡𝑒𝑥𝑡

]
𝐼𝐼

  = [(𝑇.̅ )𝑡𝑗
2 ] [(𝑉20)𝑇

(𝑗)
+ ((𝑉02)𝑇

(𝑗)
+ (𝑉02

′ )
𝑇

(𝑗)
) − 2(𝑉11)𝑇

(𝑗)
]             (28) 

[𝑀𝑆𝐸 (𝐸2
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

]
𝐼𝐼

= [(𝑉.̅ )𝑡𝑗
2 ] [(𝑉20)𝑉

(𝑗)
+ ((𝑉02)𝑉

(𝑗)
+ (𝑉02

′ )
𝑉

(𝑗)
) − 2(𝑉11)𝑉

(𝑗)
]             (29) 

[𝑀𝑆𝐸 (𝐸3
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

]
𝐼𝐼

= [(𝐼.̅ )𝑡𝑗
2 ] [(𝑉20)𝐼

(𝑗)
+ ((𝑉02)𝐼

(𝑗)
+ (𝑉02

′ )
𝐼

(𝑗)
) − 2(𝑉11)𝐼

(𝑗)
]             (30) 

Using expectation 𝐸[. ]of sample mean, following are expressions up-to first order of 

approximations (𝑠𝑒𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 [24][25] [26][27]): 

(𝑉𝑞𝑚
(𝑗)

)
𝑇

= 𝐸 [{(𝑇.̅′′(𝑗) ) − (𝑇.̅ )𝑡𝑗
}

𝑞

{(𝑉.̅′′(𝑗) ) − (𝑉.̅ )𝑡𝑗
}

𝑚

]      

  

= 𝜌𝑇𝑉
𝑟 𝑁−𝑛

𝑁𝑛
[(𝐶𝑇

(𝑗)
)

𝑡𝑒𝑥𝑡
]

𝑞

[(𝐶𝑉
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

]
𝑚

                  (31) 

(𝑉𝑞𝑚
′(𝑗)

)
𝑇

= 𝐸 [{(𝑇.̅′′(𝑗) ) − (𝑇.̅ )𝑡𝑗
}

𝑞

{(𝑉.̅′(𝑗) ) − (𝑉.̅ )𝑡𝑗
}

𝑚

]               

                 

= 𝜌𝑇𝑉
𝑟 𝑁−𝑛′

𝑁𝑛′ [(𝐶𝑇
(𝑗)

)
𝑡𝑒𝑥𝑡

]
𝑞

[(𝐶𝑉
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

]
𝑚

                  (32) 

(𝑉𝑞𝑚
(𝑗)

)
𝑉

= 𝐸 [{(𝑉.̅′′(𝑗) ) − (𝑉.̅ )𝑡𝑗
}

𝑞

{(𝐼.̅′′(𝑗) ) − (𝐼.̅ )𝑡𝑗
}

𝑚

]      

  

= 𝜌𝑉𝐼
𝑟 𝑁−𝑛

𝑁𝑛
[(𝐶𝑉

(𝑗)
)

𝑣𝑖𝑑𝑒𝑜
]

𝑞

[(𝐶𝐼
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

]
𝑚

                    (33) 

(𝑉𝑞𝑚
′(𝑗)

)
𝑉

= 𝐸 [{(𝑉.̅′′(𝑗) ) − (𝑉.̅ )𝑡𝑗
}

𝑞

{(𝐼.̅′(𝑗) ) − (𝐼.̅ )𝑡𝑗
}

𝑚

]      

  

= 𝜌𝑉𝐼
𝑟 𝑁−𝑛′

𝑁𝑛′ [(𝐶𝑉
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

]
𝑞

[(𝐶𝐼
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

]
𝑚

                   (34) 

(𝑉𝑞𝑚
(𝑗)

)
𝐼

= 𝐸 [{(𝐼.̅′′(𝑗) ) − (𝐼.̅ )𝑡𝑗
}

𝑞

{(𝑇.̅′′(𝑗) ) − (𝑇.̅ )𝑡𝑗
}

𝑚

]      

  

= 𝜌𝐼𝑇
𝑟 𝑁−𝑛

𝑁𝑛
[(𝐶𝐼

(𝑗)
)

𝑖𝑚𝑎𝑔𝑒
]

𝑞

[(𝐶𝑇
(𝑗)

)
𝑡𝑒𝑥𝑡

]
𝑚

                       (35) 

(𝑉′𝑞𝑚
(𝑗)

)
𝐼

= 𝐸 [{(𝐼.̅′′(𝑗) ) − (𝐼.̅ )𝑡𝑗
}

𝑞

{(𝑇.̅′(𝑗) ) − (𝑇.̅ )𝑡𝑗
}

𝑚

]      

  

= 𝜌𝐼𝑇
𝑟 𝑁−𝑛′

𝑁𝑛′ [(𝐶𝐼
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒𝑠

]
𝑞

[(𝐶𝑇
(𝑗)

)
𝑡𝑒𝑥𝑡

]
𝑚

                     (36) 

 

where   𝑞 = 0,1,2 𝑚 = 0,1,2  and 𝑟 = 1 if  𝑞 = 𝑝 = 1  else   𝑟 = 0.  

 

The pooled estimates, based on sample 𝑛′′ , over 𝑀 different time points (occasions) are :  

[(𝐸1)𝑡𝑒𝑥𝑡 
]

I
= ∑ 𝑊𝑗𝑇  (𝐸1

(𝑗)
)

𝑡𝑒𝑥𝑡
             ,   𝑊𝑗𝑇 =

1

𝑀

𝑀
𝑗=1                 (37) 

[(𝐸2)𝑣𝑖𝑑𝑒𝑜]I = ∑ 𝑊𝑗𝑉    (𝐸2
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

          ,   𝑊𝑗𝑉 =
1

𝑀

𝑀
𝑗=1                (38) 

[(𝐸3)𝑖𝑚𝑎𝑔𝑒]
I

= ∑ 𝑊 𝑗𝐼 (𝐸3
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

          , 𝑊𝑗𝐼 =
1

𝑀

𝑀
𝑗=1                (39) 

The (37), (38), (39) are  weighted average over M occasions of 𝐸1 , 𝐸2 , 𝐸3 under case I and same is 

derived for case II in (40), (41), (42). 
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[(𝐸1)𝑡𝑒𝑥𝑡 
]

II
 = ∑ 𝑊𝑗𝑇  (𝐸1

(𝑗)
)

𝑡𝑒𝑥𝑡
            ,    𝑊𝑗𝑇 =

1

𝑀

𝑀
𝑗=1                        (40) 

[(𝐸2)𝑣𝑖𝑑𝑒𝑜]II = ∑ 𝑊𝑗𝑉    (𝐸2
(𝑗)

)
𝑣𝑖𝑑𝑒𝑜

          ,   𝑊𝑗𝑉 =
1

𝑀

𝑀
𝑗=1                        (41) 

[(𝐸3)𝑖𝑚𝑎𝑔𝑒]
II

= ∑ 𝑊 𝑗𝐼 (𝐸3
(𝑗)

)
𝑖𝑚𝑎𝑔𝑒

          , 𝑊𝑗𝐼 =
1

𝑀

𝑀
𝑗=1                      (42) 

 

The pooled mean squared errors (MSE) on M points of time also have weighted sum shown in (43) 

to (48) for Case I and II. 

 

[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]I  = ∑ 𝑊𝑗𝑇
2   𝑀𝑆𝐸(𝐸1

(𝑗)
)𝑡𝑒𝑥𝑡

𝑀
𝑗=1                             (43) 

[𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]I = ∑ 𝑊𝑗𝑉
2  𝑀𝑆𝐸 (𝐸2

(𝑗)
)𝑣𝑖𝑑𝑒𝑜

𝑀
𝑗=1                            (44) 

[𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
I

= ∑ 𝑊𝑗𝐼
2  𝑀𝑆𝐸(𝐸3

(𝑗)
)𝑖𝑚𝑎𝑔𝑒

𝑀
𝑗=1                          (45) 

[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]II  = ∑ 𝑊𝑗𝑇
2   𝑀𝑆𝐸(𝐸1

(𝑗)
)𝑡𝑒𝑥𝑡

𝑀
𝑗=1                       (46) 

[𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]II = ∑ 𝑊𝑗𝑉
2  𝑀𝑆𝐸 (𝐸2

(𝑗)
)𝑣𝑖𝑑𝑒𝑜

𝑀
𝑗=1                        (47) 

[𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
II

= ∑ 𝑊𝑗𝐼
2  𝑀𝑆𝐸(𝐸3

(𝑗)
)𝑖𝑚𝑎𝑔𝑒

𝑀
𝑗=1                              (48) 

 

The 95% confidence interval, in general, is defined for two estimated numbers 𝑎′, 𝑏′ in probability 

sense denoted as 𝑃[. ] like P[𝑎′ < 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 < 𝑏′] = 0.95 . It is explained as  estimate 𝑎′, 𝑏′ 

obtained from sample, there is 95% chance that 𝑎′, 𝑏′ will catch (predict) the true value. More 

explicitly, the 95% confidence interval is computed as 𝑃[𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 ± 1.96√𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟] =

0.95 (see [25]).   

 

For Case I, the confidence intervals (CI) are in (49), (50) and (51). 

 

  𝑃[(𝐸1)𝑡𝑒𝑥𝑡 − 1.96√[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]I  ,           (𝐸1)𝑡𝑒𝑥𝑡 + 1.96√[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]I ]                      =0.95         (49) 

𝑃[(𝐸2)𝑣𝑖𝑑𝑒𝑜 − 1.96 √[𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]I  ,      (𝐸2)𝑣𝑖𝑑𝑒𝑜 + 1.96 √[𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]I ]                  =0.9           (50) 

𝑃 [(𝐸3)𝑖𝑚𝑎𝑔𝑒 − 1.96 √[𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
I
 ,    (𝐸3)𝑖𝑚𝑎𝑔𝑒 + 1.96 √[𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]

I
  ]              =0.95           (51) 

 

For second case II, CI are expressed  in (52), (53) and (54). 

 

𝑃[(𝐸1)𝑡𝑒𝑥𝑡 − 1.96√[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]II  ,            (𝐸1)𝑡𝑒𝑥𝑡 + 1.96√[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]II ]                     =0.95         (52) 

𝑃[(𝐸2)𝑣𝑖𝑑𝑒𝑜 − 1.96 √[𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]II  ,       (𝐸2)𝑣𝑖𝑑𝑒𝑜 + 1.96 √[𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]II ]                =0.95         (53) 

𝑃 [(𝐸3)𝑖𝑚𝑎𝑔𝑒 − 1.96 √[𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
II

 ,     (𝐸3)𝑖𝑚𝑎𝑔𝑒 + 1.96 √[𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
II

  ]            =0.95         (54) 

I. Population Description 
 

For calculation and comparison, in order to avoid complexity, a small population of size N=100 is 

considered whose detail is in annexure A.  Descriptive statistics of the population as per (1), (2), 

(3), (4), (5), (6), (7), (8) are in table 1 calculated at  six points of time 𝑡1 to  𝑡6. 
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Table 1: Descriptive statistics of population at six points of time (users are the same) 

𝒕𝟏, N=100 [𝑇.̅ ]𝑡1
=74.14  [𝑉.̅ ]𝑡1

=105.3 [𝐼.̅ ]𝑡1
=145.07 𝜌𝑇,𝑉

(1) =0.7 

𝜌𝑉,𝐼
(1)  =0.8 

𝜌𝐼,𝑇
(1)  =0.7 

𝑆𝑇
2(1)

=1537.04 𝑆𝑉
2(1)

=3756.03 𝑆𝐼
2(1)

=6784.69 

𝐶𝑇
(1)

=0.53 𝐶𝑉
(1)

=0.58 𝐶𝐼
(1)

=0.57 

 

𝒕𝟐, N=100 

[𝑇.̅ ]𝑡2
=67.7 [𝑉.̅ ]𝑡2

=98.13 [𝐼.̅ ]𝑡2
=226.18 𝜌𝑇,𝑉

(2) =0.6 

𝜌𝑉,𝐼
(2)  =0.7 

𝜌𝐼,𝑇
(2)  =0.5 

𝑆𝑇
2(2)

=1365.71 𝑆𝑉
2(2)

=3501.81 𝑆𝐼
2(2)

=16979.73 

𝐶𝑇
(2)

=0.55 𝐶𝑉
(2)

=0.60 𝐶𝐼
(2)

=0.58 

 

𝒕𝟑, N=100 

[𝑇.̅ ]𝑡3
=125.92 [𝑉.̅ ]𝑡3

=137.29 [𝐼.̅ ]𝑡3
=362.74 𝜌𝑇,𝑉

(3) =0.5 

𝜌𝑉,𝐼
(3)  =0.8 

𝜌𝐼,𝑇
(3)  =0.7 

𝑆𝑇
2(3)

=4212.01 𝑆𝑉
2(3)

=7083.59 𝑆𝐼
2(3)

=42405.57 

𝐶𝑇
(3)

=0.52 𝐶𝑉
(3)

=0.61 𝐶𝐼
(3)

=0.57 

 

𝒕𝟒, N=100 

[𝑇.̅ ]𝑡4
=110.79 [𝑉.̅ ]𝑡4

=144.05 [𝐼.̅ ]𝑡4
=142.45 𝜌𝑇,𝑉

(4) =0.7 

𝜌𝑉,𝐼
(4)  =0.8 

𝜌𝐼,𝑇
(4)  =0.6 

𝑆𝑇
2(4)

=2382.75 𝑆𝑉
2(4)

=5670.83 𝑆𝐼
2(4)

=7309.01 

𝐶𝑇
(4)

=0.44 𝐶𝑉
(4)

=0.52 𝐶𝐼
(4)

=0.60 

 

𝒕𝟓 , N=100 

[𝑇.̅ ]𝑡5
=148.92 [𝑉.̅ ]𝑡5

=236.51 [𝐼.̅ ]𝑡5
=257.97  

𝜌𝑇,𝑉
(5) =0.5 

𝜌𝑉,𝐼
(5)  =0.8 

𝜌𝐼,𝑇
(5)  =0.5 

𝑆𝑇
2(5)

=7393.63 𝑆𝑉
2(5)

=15047.95 𝑆𝐼
2(5)

=17480.67 

𝐶𝑇
(5)

=0.58 𝐶𝑉
(5)

=0.52 𝐶𝐼
(5)

=0.51 

𝑊5𝑇 =0.167 𝑊5𝑉 =0.167 𝑊5𝐼 =0.167 

 

𝒕𝟔 , N=100 

[𝑇.̅ ]𝑡6
=173.5 [𝑉.̅ ]𝑡6

=308.78 [𝐼.̅ ]𝑡6
=306.78 𝜌𝑇,𝑉

(6) =0.7 

𝜌𝑉,𝐼
(6)  =0.8 

𝜌𝐼,𝑇
(6)  =0.6 

𝑆𝑇
2(6)

=4997.55 𝑆𝑉
2(6)

=29899.47 𝑆𝐼
2(6)

=29761.89 

𝐶𝑇
(6)

=0.41 𝐶𝑉
(6)

=0.56 𝐶𝐼
(6)

=0.56 

      Primary sample of size 𝑛′ = 40 is drawn  from N=100 to calculate the mean size of unknown 

parameters [𝑇.̅ ]𝑡𝑗
 , [𝑉.̅ ]𝑡𝑗

 and 𝐼.̅𝑡𝑗
 over six points of time.  This sample is used to have a guess value 

of the population parameter to use as supportive information. Calculation of sample means on 

𝑛′ = 40 is in table 2. 

Table 2: Sample-based mean estimates at six occasions (𝑛′=40 primary sample) 

At time 𝒕𝟏(occasion one) 𝑛′ = 40 [𝑇.̅′ ]
𝑡1

=83.58 [𝑉.̅′ ]
𝑡1

=114.85 𝐼.̅′𝑡1
=152.85 

At time 𝒕𝟐(occasion two)𝑛′ = 40 [𝑇.̅′ ]
𝑡2

=75.95 [𝑉.̅′ ]
𝑡2

=107.12 𝐼.̅′𝑡2
=244.53 

At time 𝒕𝟑(occasion third) 𝑛′ = 40 [𝑇.̅′ ]
𝑡3

=139.07 [𝑉.̅′ ]
𝑡3

=153.5 𝐼.̅′𝑡3
=382.25 

At time 𝒕𝟒(occasion four) 𝑛′ = 40 [𝑇.̅′ ]
𝑡4

=120.95 [𝑉.̅′ ]
𝑡4

=150.9 𝐼.̅′𝑡4
=157.97 

At time 𝒕𝟓(occasion five) 𝑛′ = 40 [𝑇.̅′ ]
𝑡5

=174.12 [𝑉.̅′ ]
𝑡5

=274.93 𝐼.̅′𝑡5
=281.48 

At time 𝒕𝟔(occasion six) 𝑛′ = 40 [𝑇.̅′ ]
𝑡6

=181.38 [𝑉.̅′ ]
𝑡6

=362.38 𝐼.̅′𝑡6
=337.05 

       A second sample of size 𝑛′′ = 10 is taken for estimation of means on variable of main interest 

over six points of time. Estimates on 𝑛′′are in table 3 for strategy under case I. Similarly, for 

strategy under case II, the calculations are in table 4. The pooled estimate of text-data, video-data 

and images-data using equation (22), (23), (24) are in table 5 and table 6  along with MSE 

calculation using (25) to (30). 
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Table 3: Result of sample-based calculation at six occasions (𝑛′′=10, first sample) under Case I [eq. (13)-

(21) and (25)-(27)] 

 
𝑡1 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡1

=99.30 [𝑉.̅′′ ]
𝑡1

=118.30 [𝐼.̅′′ ]
𝑡1

=148.90 MSE_Text=265.51 𝜌𝑇𝑉
′′ (1)

=0.4 

𝜌𝑉𝐼
′′ (1)

 =0.4 

𝜌𝐼𝑇
′ (1)

 =0.2 

𝑆𝑇
2′′(1)

=1220.90 𝑆𝑉
2′′(1)

=5572.46 𝑆𝐼
2′′(1)

=7921.43 MSE_Video=566.86 

𝐶𝑇
′′(1)

=0.35 𝐶𝑉
′′(1)

=0.63 𝐶𝐼
′′(1)

=0.60 MSE_Image=768.16 

 
𝑡2 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡2

=84.80 [𝑉.̅′′ ]
𝑡2

=102.40 [𝐼.̅′′ ]
𝑡2

=238.20 MSE_Text=424.44 𝜌𝑇𝑉
′′ (2)

=-0.3 

𝜌𝑉𝐼
′′ (2)

 =0.3 

𝜌𝐼𝑇
′′ (2)

 =0.1 

𝑆𝑇
2′′(2)

=1230.18 𝑆𝑉
2′′(2)

=4394.04 𝑆𝐼
2′′(2)

=20243.96 MSE_Video=490.99 

𝐶𝑇
′′(2)

=0.41 𝐶𝑉
′′(2)

=0.65 𝐶𝐼
′′(2)

=0.60 MSE_Image=2348.19 

 
𝑡3 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡3

=144.40 [𝑉.̅′′ ]
𝑡3

=165.40 [𝐼.̅′′ ]
𝑡3

=372.40 MSE_Text=1197.09 𝜌𝑇𝑉
′′ (3)

=-0.4 

𝜌𝑉𝐼
′′ (3)

 =0.4 

𝜌𝐼𝑇
′′ (3)

 =-0.0 

𝑆𝑇
2′′(3)

=3185.16 𝑆𝑉
2′′(3)

=10899.60 𝑆𝐼
2′′(3)

=49400.49 MSE_Video=1106.98 

𝐶𝑇
′′(3)

=0.39 𝐶𝑉
′′(3)

=0.63 𝐶𝐼
′′(3)

=0.60 MSE_Image=6106.08 

 
𝑡4 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡4

=129.80 [𝑉.̅′′ ]
𝑡4

=132.20 [𝐼.̅′′ ]
𝑡4

=147.10 MSE_Text=98.56 𝜌𝑇𝑉
′′ (4)

=0.6 

𝜌𝑉𝐼
′′ (4)

 =0.7 

𝜌𝐼𝑇
′′ (4)

 =0.6 

𝑆𝑇
2′′(4)

=1307.51 𝑆𝑉
2′′(4)

=2028.84 𝑆𝐼
2′′(4)

=8529.66 MSE_Video=345.68 

𝐶𝑇
′′(4)

=0.28 𝐶𝑉
′′(4)

=0.34 𝐶𝐼
′′(4)

=0.63 MSE_Image=523.50 

 
𝑡5 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡5

=193.20 [𝑉.̅′′ ]
𝑡5

=307.40 [𝐼.̅′′ ]
𝑡5

=323.30 MSE_Text=752.35 𝜌𝑇𝑉
′′ (5)

=0.4 

𝜌𝑉𝐼
′′ (5)

 =0.8 

𝜌𝐼𝑇
′′ (5)

 =0.0 

𝑆𝑇
2′′(5)

=9574.18 𝑆𝑉
2′′(5)

=8915.60 𝑆𝐼
2′′(5)

=13703.34 MSE_Video=520.64 

𝐶𝑇
′′(5)

=0.51 𝐶𝑉
′′(5)

=0.31 𝐶𝐼
′′(5)

=0.36 MSE_Image=3214.32 

 
𝑡6 

𝒏′′ = 𝟏𝟎 

𝑇.̅′′𝑡6
=212.00 [𝑉.̅′′ ]

𝑡6
=412.60 [𝐼.̅′′ ]

𝑡6
=276.10 MSE_Text=478.96 𝜌𝑇𝑉

′′ (6)
=0.7 

𝜌𝑉𝐼
′′ (6)

 =0.2 

𝜌𝐼𝑇
′′ (6)

 =0.6 

𝑆𝑇
2′′(6)

=2686.44 𝑆𝑉
2′′(6)

=38532.04 𝑆𝐼
2′′(6)

=27937.66 MSE_Video=6424.23 

𝐶𝑇
′′(6)

=0.24 𝐶𝑉
′′(6)

=0.48 𝐶𝐼
′′(6)

=0.61 MSE_Image=1875.89 

 

Table 4: Result of sample-based calculation   (𝑛′′=10, first sample) under Case II [eq. (13)-(21) and (28)-

(30)] 

 
𝑡1 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡1

=99.30 [𝑉.̅′′ ]
𝑡1

=118.30 [𝐼.̅′′ ]
𝑡1

=148.90 MSE_Text=355.53 𝜌𝑇𝑉
′′ (1)

=0.4 

𝜌𝑉𝐼
′′ (1)

 =0.4 

𝜌𝐼𝑇
′′ (1)

 =0.2 

𝑆𝑇
2′′(1)

=1220.90 𝑆𝑉
2′′(1)

=5572.46 𝑆𝐼
2′′(1)

=7921.43 MSE_Video=654.93 

𝐶𝑇
′′(1)

=0.35 𝐶𝑉
′′(1)

=0.63 𝐶𝐼
′′(1)

=0.60 MSE_Image=820.38 

 
𝑡2 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡2

=84.80 [𝑉.̅′′ ]
𝑡2

=102.40 [𝐼.̅′′ ]
𝑡2

=238.20 MSE_Text=532.38 𝜌𝑇𝑉
′′ (2)

=-0.3 

𝜌𝑉𝐼
′′ (2)

 =0.3 

𝜌𝐼𝑇
′′ (2)

 =0.1 

𝑆𝑇
2′′(2)

=1230.18 𝑆𝑉
2′′(2)

=4394.04 𝑆𝐼
2′′(2)

=20243.96 MSE_Video=566.21 

𝐶𝑇
′′(2)

=0.41 𝐶𝑉
′′(2)

=0.65 𝐶𝐼
′′(2)

=0.60 MSE_Image=2599.03 

 
𝑡3 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡3

=144.40 [𝑉.̅′′ ]
𝑡3

=165.40 [𝐼.̅′′ ]
𝑡3

=372.40 MSE_Text=1503.78 𝜌𝑇𝑉
′′ (3)

=-0.4 

𝜌𝑉𝐼
′′ (3)

 =0.4 

𝜌𝐼𝑇
′′ (3)

 =-0.0 

𝑆𝑇
2′′(3)

=3185.16 𝑆𝑉
2′′(3)

=10899.60 𝑆𝐼
2′′(3)

=49400.49 MSE_Video=1278.36 

𝐶𝑇
′′(3)

=0.39 𝐶𝑉
′′(3)

=0.63 𝐶𝐼
′′(3)

=0.60 MSE_Image=6755.85 

 
𝑡4 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡4

=129.80 [𝑉.̅′′ ]
𝑡4

=132.20 [𝐼.̅′′ ]
𝑡4

=147.10 MSE_Text=124.07 𝜌𝑇𝑉
′′ (4)

=0.6 

𝜌𝑉𝐼
′′ (4)

 =0.7 

𝜌𝐼𝑇
′′ (4)

 =0.6 

𝑆𝑇
2′′(4)

=1307.51 𝑆𝑉
2′′(4)

=2028.84 𝑆𝐼
2′′(4)

=8529.66 MSE_Video=481.63 

𝐶𝑇
′′(4)

=0.28 𝐶𝑉
′′(4)

=0.34 𝐶𝐼
′′(4)

=0.63 MSE_Image=499.85 

 
𝑡5 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]
𝑡5

=193.20 [𝑉.̅′′ ]
𝑡5

=307.40 [𝐼.̅′′ ]
𝑡5

=323.30 MSE_Text=783.31 𝜌𝑇𝑉
′′ (5)

=0.4 

𝜌𝑉𝐼
′′ (5)

 =0.8 

𝜌𝐼𝑇
′′ (5)

 =0.0 

𝑆𝑇
2′′(5)

=9574.18 𝑆𝑉
2′′(5)

=8915.60 𝑆𝐼
2′′(5)

=13703.34 MSE_Video=650.11 

𝐶𝑇
′′(5)

=0.51 𝐶𝑉
′′(5)

=0.31 𝐶𝐼
′′(5)

=0.36 MSE_Image=4012.67 

 
𝑡6 

𝒏′′ = 𝟏𝟎 

[𝑇.̅′′ ]𝑡6
=212.00 [𝑉.̅′′ ]𝑡6

=412.60 [𝐼.̅′′ ]𝑡6
=276.10 MSE_Text=678.99 𝜌𝑇𝑉

′′ (6)
=0.7 

𝜌𝑉𝐼
′′ (6)

 =0.2 

𝜌𝐼𝑇
′′ (6)

 =0.6 

𝑆𝑇
2′′(6)

=2686.44 𝑆𝑉
2′′(6)

=38532.04 𝑆𝐼
2′′(6)

=27937.66 MSE_Video=7951.35 

𝐶𝑇
′′(6)

=0.24 𝐶𝑉
′′(6)

=0.48 𝐶𝐼
′′(6)

=0.61 MSE_Image=1816.54 
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Table 5: Result of sample-based pooled calculation at six occasions under case I using one sample 

 
𝒏′′ = 𝟏𝟎 

[(𝐸1)𝑡𝑒𝑥𝑡 
]

I
=126.06 [(𝐸2)𝑣𝑖𝑑𝑒𝑜 

]
I

=195.47 [(𝐸3)𝑖𝑚𝑎𝑔𝑒  
]

I
=258.18 

[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]I =40.93 [𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]I =44.61 [𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
I

=304.28 

CI (113.52-138.59) (182.38-208.56) (223.99-292.36) 

True Value 116.82 171.62 240.19 

Length (CI) 25.07 26.18 68.37 

Table 6: Result of sample-based pooled calculation at six occasions under case II using one sample 

 
𝒏′′ = 𝟏𝟎 

[(𝐸1)𝑡𝑒𝑥𝑡 
]

II
=126.06 [(𝐸2)𝑣𝑖𝑑𝑒𝑜 

]
II

=195.47 [(𝐸3)𝑖𝑚𝑎𝑔𝑒  
]

II
=258.18 

[𝑀𝑆𝐸(𝐸1)𝑡𝑒𝑥𝑡]II =47.85 [𝑀𝑆𝐸(𝐸2)𝑣𝑖𝑑𝑒𝑜]II =54.95 [𝑀𝑆𝐸(𝐸3)𝑖𝑚𝑎𝑔𝑒]
II

=339.36 

CI (112.50-139.61) (181.21-209.99) (222.04-294.31) 

True Value 116.82 171.62 240.19 

Length (CI) 27.11 28.78 72.27 

Table 5 and table 6 contain one-sample combined estimates, pooled to six occasions, on the 

variable of main interest (T or V or I). The MSE under case I is smaller than Case II. The length of 

confidence intervals in case I is lower showing efficiency over case II. 

II. Practically Difficulty 

The confidence intervals (CI) in table 5 and table 6 are sample dependent therefore difficult to 

conclude uniquely. Reason behind is that one can draw many samples of size 𝑛′′ from 𝑛′ (total 

𝑛′
𝐶

𝑛′′ ) and many from N (total 𝑁𝐶
𝑛′′). Each time the average of sample estimate fluctuates and 

accordingly variation  occur in predicted value of confidence intervals. Look at table 6 , 

[(𝐸2)𝑣𝑖𝑑𝑒𝑜 
]

II
=195.47, CI = (181.21-209.99)  where CI does not  catch the true value 171.62 which is 

evidence of difficulty. To cope up this,  a new simulation procedure is proposed in section 6.2 

based on many samples who ultimately determines the single-value of lower and upper limits. 

III. Simulation Procedure Algorithm for Double Sampling 

 In order to get single-value of limits of 95% confidence interval , a simulation procedure is 

proposed:   

Step 1: Draw a primary random sample of size 𝑛′. 

Step2: Draw second sample as under 

            Case I: as sub-sample of 𝑛′ 

           Case II: as independent sample from N 

Step 3: Compute  lower limit (say ‘a’) and upper limit (say ‘b’) of confidence interval(CI) using 

each sub-sample (or independent sample) , where  95% confidence interval is     𝑃𝑟𝑜𝑏. [𝑎 <

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 < 𝑏] = 0.95.   It is like table 3 and table 4 form t1 to t6 using equations (49) to 

(54). 

Step 4: Repeat step 2 and step 3 for k times (k=200 ). 

Step 5: Compute the Less Than Type (LTT) and More Than Type (MTT) cumulative probabilities 

by constructing class-intervals for ‘a’ and ‘b’ separately for each CI. 

Step 6: Plot data of step 5 of cumulative probabilities (on y-axis) over class-intervals (on x-axis)  

and draw two graphs. A perpendicular drawn from point of intersection of two graphs 

,on the x-axis, determines single-point of simulated value of lower limit ‘a’ (and 

corresponding upper limit ‘b’) of confidence interval for unknown parameters to be 

predicted. Express outcomes in tabular presentation like tables 8,9,10 and table 11. 
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IV. Features of proposed simulation procedure for double sampling: 

(a) It is based on k-samples, where K may be as large possible. 

 (b) It considers cumulative probabilities which is ratio of cumulative frequency to  

total frequency. 

(c) It takes into account the perpendicular drawn from point of intersection of the 

cumulative probability curves  which always remain unique for lower as well as upper 

limit. 

(d) It eliminates problem discussed in section I. 

 

V. Demonstration of Simulation procedure: 

Out of k= 200 samples, after calculation of confidence intervals on each sample, let 𝑓𝑖  

be  frequencies of class intervals ∝𝑖  − ∝𝑖+1 relating to lower limit of CI , such that 

∑ 𝑓𝑖 = 𝑘 = 200 holds. Probabilities are 𝑝𝑖 = 𝑓𝑖 𝑘⁄  , 𝑖 = 1,2,3, …  

 

Table 7. Demonstration of Simulation Procedure 

Class 

Intervals 
(for lower limit 

‘a’) 

Frequencies 
(Occurrence of estimate 

‘a ‘)  

Probabilities LTT (Step 5) MTT (Step 5) 

∝1−∝2 
∝2−∝3 
∝3−∝4 
∝4−∝5 
− − − 
− − − 
− − − 

𝑓1 
𝑓2 
𝑓3 
𝑓4 

. 

. 

. 

𝑝1 = 𝑓1 𝑘⁄  
𝑝2 = 𝑓2 𝑘⁄  
𝑝3 = 𝑓3 𝑘⁄  
𝑝4 = 𝑓4 𝑘⁄  

. 

. 

. 

𝐶1 = 𝑝1 
𝐶2 = 𝑝1 + 𝑝2 
𝐶3 = 𝑝1 + 𝑝2 + 𝑝3 
𝐶4 = 𝑝1 + 𝑝2 + 𝑝3

+ 𝑝4 
. 
. 
. 

𝐶1
′ = 1 

𝐶2
′ = 1 − 𝑝1 

𝐶3
′ = 1 − 𝑝1 − 𝑝2 

𝐶4
′ = 1 − 𝑝1 − 𝑝2

− 𝑝3 
. 
. 
. 

Total ∑ 𝑓𝑖 = 𝑘 = 200 ∑ 𝑝𝑖 = 1   

 Plot 𝐶𝑖 and 𝐶𝑖
′ over class-interval on a graph to find point of intersection of two curves ( step 6). 

Draw a perpendicular on X-axis from point of intersection which uniquely determine single-value 

of ‘a’. 

 

VI. Application of proposed Simulation Procedure 

Figure 7-78 provide the simulated single-valued  lower limit ‘a’ and simulated single-valued upper 

limit ‘b’ of confidence intervals as an application. 

Graphs (fig. 7-42) are under case I on t1 to t6 . Note that SCI symbolized for simulated confidence 

interval,  TD text dataset, VD  video data and ID indicates image dataset in all  hereunder: 

 
Figure 7: At 𝑡1, Case I, Lower limit of text data at (a=65.30)  Figure 8: At  𝑡1, Case I, Lower limit of text data at (b=101.56) 
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The figure 7 is calculates value a=65.30 (perpendicular from intersection point) which is the lower 

limit of simulated confidence interval of text dataset at 𝑡1under case I.  Similarly, figure 8 has 

upper limit of simulated confidence interval of text data at 𝑡1 under case I whose perpendicular 

from point of intersection  is  b=101.56.  

 
Figure 9: At 𝑡1, Case I, Lower limit of video data at (a=96.04) Figure10: At  𝑡1, Case I, Upper limit of video data at (b=137.79) 

Figure 9 provides value a=96.04 (perpendicular from intersection point) as lower limit of simulated 

confidence interval of video dataset at 𝑡1 under case I.  Likewise, figure 10 shows upper limit of 

simulated confidence interval of video data at 𝑡1 under case I where perpendicular from 

intersection point is at b=137.79. 

 
Figure 11: At 𝑡1, Case I, Lower limit of image data at (a=109.36) Figure 12: At  𝑡1, Case I, Upper limit of image data at (b=197.01) 

Figure 11 reveals the value a=109.36 (perpendicular from intersection point) as lower limit of   SCI 

of image dataset at 𝑡1 under case I.  Figure 12 displays upper limit of SCI of image data at occasion 

one, under case I which is b=197.01. 

 
Figure 13: At 𝑡2, Case I, Lower limit of text data at (a=53.08) Figure 14: At 𝑡2, Case I, Upper limit of text data at (b=96.30) 

Figure 13 is at time 𝑡2 showing value a=53.08 , under case I , and figure 14 is similar for  upper limit  

b=96.30 under case I at 𝑡2 

 
Figure 15: At 𝑡2, Case I, Lower limit of video data at (a=89.56) Figure 16: At  𝑡2, Case I, Upper limit of video data at (b=128.33) 

Figure 15 and 16 reveal value a=89.56 as lower and b=128.33 as upper at 𝑡2, for case I.  

 
Figure 17: At 𝑡2, Case I, Lower limit of image data at (a=164.44) Figure 18: At  𝑡2, Case I, Upper limit of image data at (b=320.34) 
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Figure 17 and 18 reflect  towards value a=164.44 and  b=320.34 at 𝑡2 case I. 

 
Figure 19: At 𝑡3, Case I, Lower limit of text data at (a=97.39) Figure 20: At  𝑡3, Case I, Upper limit of text data at (b=176.44) 

Figure 19 and 20 reveal for  a=97.39 and b=176.44 at 𝑡2 case I. 

 
Figure 21: At 𝑡3, Case I, Lower limit of video data at (a=125.06) Figure 22: At  𝑡3, Case I, Upper limit of video data at (b=187.50) 

The figure 21 and 22 have a=125.06, b=187.50. 

 
Figure 23: At 𝑡3, Case I, Lower limit of image data at (a=278.48) Figure 24: At  𝑡3, Case I, Upper limit of image data at (b=487.83) 

Values a=278.48 and b=487.83 are in figure 23 to 24. Similar are in figure 25 to 78 under case I and 

case II for T, V and I over time t1 to t6. Figure caption from 25-78 are self explanatory and reveal 

auto interpretation as above 

 
Figure 25: At 𝑡4, Case I, Lower limit of text data at (a=93.22) Figure 26: At 𝑡4, Case I, Upper limit of text data at (b=146.75) 

 
Figure 27: At 𝑡4, Case I, Lower limit of video data at (a=129.03) Figure 28: At 𝑡4, Case I, Upper limit of video data at (b=175.43) 

 
Figure 29: At 𝑡4, Case I, Lower limit of image data at (a=112.47) Figure 30: At 𝑡4, Case I, Upper limit of image data at (b=204.60) 
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Figure 31: At 𝑡5, Case I, Lower limit of text data at (a=130.39) Figure 32: At 𝑡5, Case I, Upper limit of text data at (b=214.44) 

 
Figure 33: At 𝑡5, Case I, Lower limit of video data at (a=236.75) Figure 34: At 𝑡5, Case I, Upper limit of video data  at (b=314.93) 

 
Figure 35: At 𝑡5, Case I, Lower limit of image data at (a=200.37) Figure 36: At 𝑡5, Case I, Upper limit of image data at (b=368.03) 

 
Figure 37: At 𝑡6, Case I, Lower limit of text data at (a=142.73) Figure 38: At 𝑡6, Case I, Upper limit of text data at (b=216.89) 

 
Figure 39: At 𝑡6, Case I, Lower limit of video data at (a=285.58) Figure 40: At 𝑡6, Case I, Upper limit of video data at (b=461.31) 

 
Figure 41: At 𝑡6, Case I, Lower limit of image data at (a=244.35) Figure 42: At 𝑡6, Case I, Upper limit of image data at (b=431.30) 

The following Fig. 43-78 are showing time point wise t1 to t6 the simulated results under 

case II.  

 
Figure 43: At 𝑡1, Case II, Lower limit of text data at (a=63.72) Figure 44: At 𝑡1, Case II, Upper limit of text data at (b=103.49) 
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Figure 45: At 𝑡1, Case II, Lower limit of video data at (a=94.95)  Figure 46: At 𝑡1, Case II, Upper limit of video  data at (b=139.18) 

 
Figure 47: At 𝑡1, Case II, Lower limit of image data at (a=106.98) Figure 48: At 𝑡1, Case II, Upper limit of image data at (b=199.75) 

 
Figure 49: At 𝑡2, Case II, Lower limit of text data at (a=50.86)   Figure 50: At 𝑡2, Case II, Upper limit of text data at (b=98.45) 

 
Figure 51: At 𝑡2, Case II, Lower limit of video data at (a=88.27) Figure 52: At 𝑡2, Case II, Upper limit of video data at (b=129.26) 

 
Figure 53: At 𝑡2, Case II, Lower limit of image data at (a=158.51) Figure 54: At 𝑡2, Case II, Upper limit of image data at (b=324.26) 

 
Figure 55: At 𝑡3, Case II, Lower limit of text data at (a=92.06) Figure 56: At 𝑡3, Case II, Upper limit of text data at (b=180.96) 

 
Figure 57: At 𝑡3, Case II, Lower limit of video data at (a=124.15) Figure 58: At 𝑡3, Case II, Upper limit of video data at (b=188.82) 
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Figure 59: At 𝑡3, Case II, Lower limit of image data at (a=271.49) Figure 60: At 𝑡3, Case II, Upper limit of image data at (b=491.64) 

 
Figure 61: At 𝑡4, Case II, Lower limit of text data at (a=90.28) Figure 62: At 𝑡4, Case II, Upper limit of text data at (b=150.54) 

 
Figure 63: At 𝑡4, Case II, Lower limit of video data at (a=125.51)  Figure 64: At 𝑡4, Case II, Upper limit of video data at (b=178.96) 

 
Figure 65: At 𝑡4, Case II, Lower limit of image data at (a=111.75) Figure 66: At 𝑡4, Case II, Upper limit of image data at (b=205.07) 

 
Figure 67: At 𝑡5, Case II, Lower limit of text data at (a=129.04) Figure 68: At 𝑡5, Case II, Upper limit of text data at (b=216.24) 

 
Figure 69: At 𝑡5, Case II, Lower limit of video data at (a=235.86)  Figure 70: At 𝑡5, Case II, Upper limit of video data at (b=318.93) 

 
Figure 71: At 𝑡5, Case II, Lower limit of image data at (a=191.57) Figure 72: At 𝑡5, Case II, Upper limit of image data at (b=376.60) 

 
Figure 73: At 𝑡6, Case II, Lower limit of text data at (a=138.04) Figure 74: At 𝑡6, Case II, Upper limit of text data at (b=221.40) 

89



 
Abdul Alim, Diwakar Shukla  
DOUBLE SAMPLING BASED PARAMETER ESTIMATION IN BIG 
DATA AND APPLICATION IN CONTROL CHARTS 

RT&A, No 2(62) 
Volume 16, June 2021  

 

 
Figure 75: At 𝑡6, Case II, Lower limit of video data at (a=278.96)  Figure 76: At 𝑡6, Case II, Upper limit of video data at (b=469.30) 

 
Figure 77: At 𝑡6, Case II, Lower limit of image data at (a=241.10) Figure 78: At 𝑡6, Case II, Upper limit of image data at (b=434.08) 

VII. Tabular Presentation for summarization (part of Step 5): 

After simulation is over, outcomes of all  above  graphs are summarized in table 8 9, 10 and 11.  

Table 8: Summary of simulated CI over 𝑡1 to 𝑡6  under case I ( based on figures 7-42 ) 

Time-

Occasions 

Dataset Figures Lower Limit Figures Upper Limit True Value 

 
𝑡1 

T Figure 7 a=65.30 Figure 8 b=101.56 74.14 

V Figure 9 a=96.04 Figure 10 b=137.79 105.3 

I Figure 11 a=109.36 Figure 12 b=197.01 145.07 

 
𝑡2 

T Figure 13 a=53.08 Figure 14 b=96.30 67.7 

V Figure 15 a=89.56 Figure 16 b=128.33 98.13 

I Figure 17 a=164.44 Figure 18 b=320.34 226.18 

 
𝑡3 

T Figure 19 a=97.39 Figure 20 b=176.44 125.92 

V Figure 21 a=125.06 Figure 22 b=187.50 137.29 

I Figure 23 a=278.48 Figure 24 b=487.83 362.74 

 
𝑡4 

T Figure 25 a=93.22 Figure 26 b=146.75 110.79 

V Figure 27 a=129.03 Figure 28 b=175.43 144.05 

I Figure 29 a=112.47 Figure 30 b=204.60 142.45 

 
𝑡5 

T Figure 31 a=130.39 Figure 32 b=214.44 148.92 

V Figure 33 a=236.75 Figure 34 b=314.93 236.51 

I Figure 35 a=200.37 Figure 36 b=368.03 257.97 

 
𝑡6 

T Figure 37 a=142.73 Figure 38 b=216.89 173.5 

V Figure 39 a=285.58 Figure 40 b=461.31 308.78 

I Figure 41 a=244.35 Figure 42 b=431.30 306.78 

 Table 9: Summary of simulated CI over 𝑡1 to 𝑡6  under case II (based on figures 43-78 ) 

Time-Occasions Dataset Figures Lower Limit Figures Upper Limit True Value 

 
𝑡1 

T Figure 43 a=63.70 Figure 44 b=103.49 74.14 

V Figure 45 a=94.95 Figure 46 b=139.18 105.3 

I Figure 47 a=106.98 Figure 48 b=199.75 145.07 

 
𝑡2 

T Figure 49 a=50.86 Figure 50 b=98.45 67.7 

V Figure 51 a=88.27 Figure 52 b=129.26 98.13 

I Figure 53 a=158.51 Figure 54 b=324.26 226.18 

 
𝑡3 

T Figure 55 a=92.06 Figure 56 b=180.96 125.92 

V Figure 57 a=124.15 Figure 58 b=188.82 137.29 
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I Figure 59 a=271.49 Figure 60 b=491.64 362.74 

 
𝑡4 

T Figure 61 a=90.28 Figure 62 b=150.54 110.79 

V Figure 63 a=125.51 Figure 64 b=178.96 144.05 

I Figure 65 a=111.75 Figure 66 b=205.07 142.45 

 
𝑡5 

T Figure 67 a=129.04 Figure 68 b=216.24 148.92 

V Figure 69 a=235.86 Figure 70 b=318.93 236.51 

I Figure 71 a=191.57 Figure 72 b=376.60 257.97 

 
𝑡6 

T Figure 73 a=138.04 Figure 74 b=221.40 173.5 

V Figure 75 a=278.96 Figure 76 b=469.30 308.78 

I Figure 77 a=241.10 Figure 78 b=434.08 306.78 

Table 8 and 9 reflect scenario of  corresponding true values within the predicted range which is 

beauty of method. 

Table 10: Pooled simulated confidence interval average result over 𝑡1 to 𝑡6 undercase I [Using eq. (37)-(39)] 

Time-Occasions Dataset Lower Limit Upper Limit True Value Length 

 

𝑡1-𝑡6 

 

T a=96.67 b=158.17 116.82 61.5 

V a=160.00 b=233.67 171.62 73.67 

I a=184.50 b=334.50 240.19 150 

Table 11: Pooled simulated confidence interval average result over 𝑡1 to 𝑡6  under case II [Using eq 

(40).(41),(42)] 

Time-Occasions Dataset Lower Limit Upper Limit True Value Length 

 

𝑡1-𝑡6 

 

T a=93.67 b=161.33 116.82 67.66 

V a=157.33 b=236.83 171.62 79.5 

I a=179.67 b=338.17 240.19 158.5 

 

 

VII. Discussion 

           In view to outcomes of table 8, 9, 10, 11 , one can observe  in table 8, at 𝑡1, the true values are 

74.14 for text-data, 105.3 for video-data and 145.07 for image-data whereas simulated confidence 

intervals are(65.30 − 101.56)𝑇, (69.04 − 137.79)𝑉 and (109.36 − 197.01)𝐼 respectively.  All true 

values are within the simulated confidence intervals. Similarly, at 𝑡2, the true value are 67.7 for 

text-data, 98.13 for video-data and 226.18 for the image-data while simulated CI are (53.08 −

96.30)𝑇, (89.56 − 128.33)𝑉 and (164.44 − 320.34)𝐼. At 𝑡3,  true values are  125.92 for T, 137.29 for V 

and 362.74 for I while  corresponding CI  are (97.39 − 176.44)𝑇 , (125.06 − 187.50)𝑉 and (278.48 −

487.83)𝐼 . All true values found well within the simulated confidence intervals under case I. 

        Observing  𝑡4, in table 8, simulated CI are(93.22 − 146.75)𝑇, (129.03 − 175.43)𝑉 and (112.47 −

204.60)𝐼 against true values   110.79, 144.05   and 142.45.  These are also catching the truth. At  𝑡5,   

true values are 148.92 for T, 236.51 for V and for I 257.97 while  CI are   (130.39 − 214.44)𝑇, 

(236.75 − 314.93)𝑉 and (200.37 − 368)𝐼   At 𝑡6, the true  are 173.05, 308.78 and 306.78 whereas the 

SCI are predicting accurately to true values being within the range  (142.73 − 216.89)𝑇, (285.58 −

461.31)𝑉 and (244.35 − 431.30)𝐼 respectively for the case I.   

Looking at estimation by Double sampling strategy under case II, true values are same as 

earlier but the confidence intervals, at 𝑡1, are (63.70 − 103.49)𝑇, (94.95 − 139.18)𝑉 and (106.98 −

199.75)𝐼 showing all true values within the confidence intervals. Similarly, 𝑎𝑡 𝑡2, the confidence 

interval are (50.86 − 98.45)𝑇, (88.27 − 129.26)𝑉 and (158.51 − 324.26)𝐼, at 𝑡3,  they  are (92.06 −

180.96)𝑇, (124.15 − 188.82)𝑉 and (271.49 − 491.64)𝐼, at 𝑡4, we have  (90.28 − 150.54)𝑇, (125.51 −

178.96)𝑉 and (11.75 − 205.07)𝐼, at 𝑡5,  one can find as    (129.04 − 216.24)𝑇, (235.86 − 318.93)𝑉 
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and (191.57 − 376.60)𝐼, and lastly, at 𝑡6, their presence are as  (138.04 − 221.40)𝑇, (278.96 −

469.30)𝑉 and (241.10 − 434.08)𝐼 respectively. 

In the context to table 10, the single valued pooled simulated confidence intervals, under case 

I, are  (96.67 − 158.17)𝑇, (160.00 − 233.67)𝑉 and (184.50 − 334.50)𝐼 with respect to average true 

values 116.82, 171.62 and 240.19.  The length of simulate confidence intervals, at average level, are 

61.5, 73.67, and 150 in sequence for T, V and I. 

 Likewise, table 11 contains same under case II who are   (93.67 − 161.33)𝑇, (157.33 − 236.83)𝑉 

and (179.67 − 338.17)𝐼  Lengths of confidence intervals, at  average level ,are 67.66, 79.5, and 158.5 

respectively. 

VIII. Comparison and Efficiency 

Define Relative CI Length Measure (RCILM) as 

 

𝐑𝐂𝐈𝐋𝐌 = [
(CI length)case II

(CI length)case I

] × 100 

Table 12: Relative CI Length Measure using table 10 and table 11 ( under simulation) 

Dataset RCILM 

T 110.01% 

V 107.91% 

I 105.66% 

Table 12.1: Relative CI Length Measure using table 5 and table 6 (without simulation) 

Dataset RCILM 

T 108.13% 

V 109.93% 

I 105.70% 

 

It is observed in table 12, and table12.1, the case I is having a smaller length of confidences than 

case II consistently in every type T, V and I. 

IX. Developing Control Charts using simulated confidence intervals as tools for 

managerial decision 

Control charts for managerial decision about web-portals, data-centers are one of applications of 

confidence interval. Consider the theory discussed in section 1 and in figure 6. The graphical trace 

of CI over 𝑡1to 𝑡6 displayed in figure 79 to 90, for the case I and case II , can be used.   

  

Figure 7: CL of Text file-size measures under case I       Figure 80: CL of Video file-size measures under case I 
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Figure 81: CL of Image file-size measures under case I    Figure 82: CL of Text file-size measures under case II 

  

Figure 83: CL of Video file-size measures under case II  Figure 84: CL of Image file-size measures under case II 

       

     Fig. 79-81 reveal Upper Control Limit (UCL or UL) and Lower Control Limit (LCL or LL) of the 

file-size measures of text-data, video-data and image-data used in  communication . Similarly, Fig. 

82-84 are showing same application for case II and these are file-size production procss control 

charts. The simulated value ‘a’ is LCL(or LL) and simulated value ‘b’ is UCL( or UL) of the 

confidence intervals. 

             Such are helpful for decision making regarding control over  size measure of 

communication files on social media web-portal and ,as a consequence, alert can issue for further 

infrastructure, resources required to achieve the goal of profit.  For example,  IT- industry 

(Servers/Data Center/ hardware/software), if alarmed well before about flowing  digital file-size, 

who is growing fast in big data environment over time, better management can be thought of in 

timely manner. While file-size measure, if increases exponentially over time then  investment  in  

Data Centers urgently needed .  

  In view to  fig. 85-90 , matter of importance is to watch  whether same habits of 

communication of users   are maintained ?  If at 𝑛𝑡ℎ point of time 𝑡𝑛 (n = 1,2,3 … . , ∞), the Upper 

Control Limit (UCL) or Lower Control Limit (LCL) are crossed in control charts , there is 

significant evidance exist for change of habits of communication of file-size. At this juncture, the  

industry owner needs to review decision regarding up-gradation  or framing new policy to share 

memory resources with others  in order to maximize profit. Simulated confidence intervals play 

key role for developing such monitoring. 

  

Figure 85: CL of Text file-size under case I           Figure 86: CL of Video file-size under case I 
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Figure 87: CL of Image file-size under case I        Figure 88: CL of Text file-size under case II 

  
Figure 89: CL of Video file-size under case II       Figure 90: CL of Image file-size under case II 

X. Conclusion 

On recapitulation, the double sampling approach has been adopted in the content for estimating 

the population parameter in the setup of big data where volume, variety and velocity 

characteristics are present simultaneously. The idea of number of registered users on a social 

networking platform communicating through Text, Video and Image files has been considered 

over different time span. Estimate of average file size is focused whose growth needs to be 

monitored over time variations. Estimation strategies have been suggested in the setup of double 

sampling. When has two approaches as (a) sub-sample and (b) independent sample. Both have 

been compared and found that the proposed methods capture the true values of the population 

mean over several occasions (time frame). The merge setup of the average of all occasions also 

reveals that both strategies (case I and case II) cover the true values. A new simulation algorithm 

based on double sampling is suggested to obtain a single value estimate of  95% confidence 

interval whose estimate also predict about the true value. Efficiency comparison of two cases is 

made through the tool RCILM which shows case I better than case II. The study is useful for a 

managerial decision since the lower control limit and upper control limit growth can generate an 

alert for IT-business managers. Control charts predict for the future event to check whether the 

average values of file sizes at farther occasions are within the UCL or LCL or not. If the control 

limits violate then re-thinking about IT-business infrastructure may be originated to cope up the 

future challenges. If the control limits violates then re-thinking about IT-business infrastructure 

may be originated to cope up the future challenges. 
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ANNEXURE   A 

Population N=100  
ID T V I T V I T V I T V I T V I T V I 

0 10 15 6 13 10 10 18 21 15 20 25 27 31 35 38 41 49 52 

1 5 8 7 9 3 11 8 11 17 9 12 13 15 16 18 19 23 24 

2 9 12 11 5 7 17 16 17 27 18 23 24 28 32 34 37 44 47 

3 8 11 14 16 6 23 14 15 36 15 19 21 24 27 29 32 38 40 

4 12 20 18 10 15 29 22 28 45 24 30 32 37 42 46 49 59 62 

5 11 16 22 9 11 35 19 22 54 21 27 29 33 37 41 44 52 56 

6 13 18 25 11 13 41 23 25 64 26 33 35 40 46 49 53 64 68 

7 14 21 29 17 16 47 25 29 73 27 34 37 42 48 52 56 67 71 

8 15 23 33 13 18 52 27 32 82 30 38 41 47 53 58 62 74 79 

9 17 26 37 15 21 58 30 36 91 33 42 45 52 58 63 68 82 87 

10 18 28 40 24 23 64 33 39 101 36 46 49 56 64 69 75 89 95 

11 20 31 44 18 26 70 35 43 110 39 49 53 61 69 75 81 97 102 

12 21 33 48 19 28 76 38 46 119 42 53 57 66 74 81 87 104 110 

13 23 36 51 21 31 82 41 50 128 45 57 61 70 79 86 93 111 118 

14 24 38 55 22 33 88 44 53 138 48 61 65 75 85 92 99 119 126 

15 26 41 59 24 36 94 46 57 147 51 64 69 80 90 98 105 126 134 

16 27 43 62 25 38 100 49 60 156 54 68 73 84 95 103 112 133 141 

17 29 46 66 27 41 106 52 64 165 57 72 77 89 100 109 118 141 149 

18 30 48 70 28 43 112 54 67 175 60 76 82 94 106 115 124 148 157 

19 32 51 74 30 46 118 57 71 184 63 79 86 98 111 120 130 155 165 

20 33 53 77 31 48 124 60 74 193 66 83 90 103 116 126 136 163 173 

21 35 56 81 33 51 129 62 78 202 69 87 94 108 121 132 142 170 180 

22 36 58 85 34 53 135 65 81 212 72 91 98 112 127 138 148 177 188 

23 38 61 88 36 56 141 68 85 221 75 94 102 117 132 143 155 185 196 

24 39 63 92 37 58 147 71 88 230 78 98 106 122 137 149 161 192 204 

25 41 66 96 39 61 153 73 92 239 81 102 110 126 142 155 167 199 212 

26 42 68 99 40 63 159 76 95 249 84 106 114 131 148 160 173 207 219 

27 44 71 103 42 66 165 79 99 258 87 109 118 135 153 166 179 214 227 

28 45 73 107 43 68 171 81 102 267 90 113 122 140 158 172 185 221 235 

29 47 76 111 45 71 177 84 106 276 93 117 126 145 163 177 191 229 243 

30 48 78 114 46 73 183 87 109 286 96 121 130 149 169 183 198 236 251 

31 50 81 118 48 76 189 89 113 295 99 124 134 154 174 189 104 244 258 

32 51 83 122 49 78 195 92 116 304 102 128 138 159 179 195 110 251 266 

33 53 86 125 51 81 200 95 120 313 105 132 142 163 184 200 116 258 274 

34 54 88 129 52 83 206 98 123 323 108 136 146 168 190 206 122 266 282 

35 56 91 133 54 86 212 100 127 332 111 139 150 173 195 212 128 273 290 

36 57 93 136 55 88 218 103 130 341 114 143 154 177 200 217 135 280 297 

37 59 96 140 57 91 224 106 134 350 117 147 158 182 205 223 141 288 305 

38 60 98 144 58 93 230 108 137 360 120 151 163 187 211 229 147 295 313 

39 62 101 148 60 96 236 111 141 369 123 154 167 191 216 234 153 302 321 

40 63 103 151 61 98 242 114 144 378 126 158 171 196 221 240 159 310 329 

41 65 106 155 63 101 248 116 148 387 129 162 175 101 226 246 165 317 336 

42 66 108 159 64 103 254 119 151 397 132 166 179 105 232 252 171 324 344 

43 68 111 162 66 106 260 122 155 406 135 169 183 110 237 257 178 332 352 

44 69 113 166 67 108 266 125 158 415 138 173 187 115 242 263 184 339 360 

45 71 116 170 69 111 272 127 162 424 141 177 191 119 247 269 190 346 368 

46 72 118 173 70 113 277 130 165 434 144 181 195 124 253 274 96 354 375 

47 74 121 177 72 116 283 133 169 443 147 184 199 128 258 280 102 361 383 

48 75 123 181 73 118 289 135 172 452 150 188 203 133 263 286 208 368 391 

49 77 126 185 75 121 295 138 176 461 153 192 207 138 268 291 114 376 399 

50 78 128 188 76 123 301 141 179 471 156 196 211 142 274 297 121 383 407 

51 80 131 192 78 126 307 143 183 480 159 199 215 147 279 303 127 391 414 

52 81 133 196 79 128 313 146 186 489 162 203 219 152 284 309 233 398 422 

53 83 136 199 81 131 319 149 190 498 165 207 223 156 289 314 139 405 430 

54 84 138 203 82 133 325 152 193 508 168 211 227 123 295 320 145 413 438 

55 86 141 207 84 136 331 154 197 517 171 214 231 120 300 326 251 420 446 

56 87 143 210 85 138 337 157 200 526 174 218 235 170 305 331 158 427 453 

57 89 146 214 87 141 343 160 204 535 177 222 239 175 310 337 264 435 461 

58 90 148 218 88 143 348 162 207 545 180 226 244 180 316 343 170 442 469 

59 92 151 222 90 146 354 165 211 554 183 229 248 84 321 348 245 449 477 

60 93 153 225 91 148 360 168 214 563 186 233 252 28 326 354 180 457 485 

61 95 156 229 93 151 366 170 218 572 189 237 256 94 331 360 288 464 492 

97



 
Abdul Alim, Diwakar Shukla  
DOUBLE SAMPLING BASED PARAMETER ESTIMATION IN BIG 
DATA AND APPLICATION IN CONTROL CHARTS 

RT&A, No 2(62) 
Volume 16, June 2021  

 

62 96 158 233 94 153 372 173 221 582 192 241 260 98 337 366 135 471 500 

63 98 161 236 96 156 378 176 225 591 195 244 264 102 342 371 202 479 508 

64 99 163 240 97 158 384 179 228 600 198 248 268 108 347 377 207 486 516 

65 101 166 244 99 161 390 181 232 609 101 252 272 113 352 383 196 493 524 

66 102 168 247 80 163 396 184 235 619 104 256 276 114 358 388 199 501 531 

67 104 171 251 35 166 402 187 239 628 107 259 280 213 363 394 258 508 539 

68 105 173 255 81 168 408 189 242 637 105 263 284 126 368 400 231 515 547 

69 107 176 259 102 171 414 192 246 646 113 267 288 131 373 405 237 523 555 

70 108 178 262 99 173 420 195 249 656 116 271 292 135 379 411 244 530 563 

71 110 181 266 88 176 425 197 253 665 109 274 296 140 384 417 250 538 570 

72 111 183 270 106 178 431 200 256 674 85 278 300 145 389 423 256 545 578 

73 113 186 273 59 181 437 203 260 683 95 282 304 149 394 428 262 552 586 

74 45 188 277 43 183 443 81 263 693 100 113 122 140 158 171 185 221 234 

75 116 191 281 114 186 449 208 267 702 132 289 212 159 405 440 274 567 602 

76 117 193 284 26 188 455 211 270 711 102 293 123 163 410 445 281 574 609 

77 119 196 288 117 191 461 214 274 720 132 297 13 168 415 451 284 582 617 

78 120 45 292 118 40 467 216 63 730 140 102 25 173 421 457 293 589 625 

79 122 201 70 120 196 112 219 281 175 125 100 30 177 129 462 299 596 633 

80 123 170 85 121 165 136 178 238 213 142 108 33 182 331 268 205 604 641 

81 125 106 103 123 101 165 159 148 258 127 113 137 187 336 274 211 611 648 

82 126 208 107 82 203 171 130 291 268 152 116 241 191 342 340 217 618 156 

83 128 211 210 43 206 336 85 295 525 155 119 145 196 347 385 224 626 164 

84 129 13 214 55 8 342 133 18 535 150 125 110 101 352 291 230 633 272 

85 131 216 215 129 102 344 135 302 538 142 140 270 105 357 497 236 640 180 

86 132 218 231 130 103 370 138 305 578 178 179 154 110 363 302 242 148 287 

87 134 25 225 132 20 200 142 35 563 167 180 102 114 368 508 248 155 295 

88 135 223 229 133 218 205 243 112 573 170 165 78 319 373 375 254 162 203 

89 137 226 233 135 221 100 246 116 583 173 141 69 324 378 519 260 170 311 

90 138 105 110 136 100 176 249 125 275 176 88 73 328 384 525 267 300 319 

91 122 5 15 120 0 24 220 7 38 144 107 29 378 27 464 200 98 234 

92 102 152 210 100 147 336 184 102 525 104 102 75 316 57 288 218 300 230 

93 113 136 148 111 131 237 203 130 370 126 99 10 350 396 229 300 290 188 

94 110 20 35 108 15 56 198 28 88 120 100 97 341 385 218 200 201 172 

95 106 120 152 104 115 243 191 68 380 112 142 86 329 371 203 205 219 201 

96 102 119 125 100 114 200 184 67 313 102 153 175 316 357 288 203 200 130 

97 105 100 101 103 95 162 189 40 253 103 152 184 326 368 299 231 215 220 

98 100 85 90 98 80 144 180 19 225 108 50 70 310 350 280 210 290 175 

99 120 75 60 118 70 96 216 100 150 130 100 100 372 320 356 292 288 124 

100 125 70 25 123 65 40 225 98 63 85 113 12 388 338 375 213 213 150 
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ANNEXURE   B 

CI of 200 Sample each size n=10 (Case I) 
SNo Text Lower Text Upper Video Lower Video Upper Image Lower Image Upper 

1 113.52 138.60 182.37 208.56 223.99 292.37 

2 134.15 169.82 178.21 208.20 183.23 259.15 

3 108.70 125.20 172.51 192.64 278.78 322.86 

4 98.32 117.18 172.70 207.84 301.50 346.83 

5 119.85 144.72 175.90 211.48 223.60 286.24 

6 121.10 150.73 182.54 218.73 205.16 279.25 

7 135.22 165.82 162.97 191.85 213.89 276.67 

8 107.45 131.03 173.59 190.97 267.18 329.69 

9 115.60 145.78 179.46 217.16 223.00 289.18 

10 102.87 128.53 177.76 216.92 263.89 328.07 

11 119.50 148.09 185.18 227.06 202.44 264.31 

12 102.11 119.69 179.10 199.41 275.68 331.41 

13 118.51 153.85 180.19 218.56 199.86 279.23 

14 106.84 127.94 160.98 185.00 302.64 342.08 

15 103.74 129.75 179.12 204.78 245.36 322.51 

16 117.55 148.77 186.01 224.57 198.17 272.13 

17 105.39 122.01 182.75 223.76 252.77 303.68 

18 105.64 131.99 181.69 221.76 242.17 309.79 

19 115.26 151.50 184.97 228.85 191.27 272.69 

20 139.27 173.37 175.76 208.77 182.90 256.83 

21 106.22 135.39 186.06 226.95 225.24 299.26 

22 126.17 154.80 165.86 192.99 239.90 295.12 

23 119.28 148.90 186.63 228.59 197.25 265.25 

24 104.62 129.03 182.03 233.05 244.82 302.58 

25 109.70 132.10 180.57 207.67 241.39 301.99 

26 109.59 136.66 193.94 250.75 224.91 283.77 

27 112.16 134.94 171.35 186.03 265.34 319.65 

28 110.89 132.73 172.02 192.35 269.83 321.56 

29 117.83 142.03 169.00 195.69 250.72 309.13 

30 104.50 128.95 186.04 239.64 229.02 294.26 

31 115.42 142.35 178.97 219.60 216.32 284.98 

32 109.82 133.50 172.50 192.44 259.31 319.72 

33 118.35 148.42 170.85 207.27 220.90 290.64 

34 117.23 147.41 168.79 210.57 232.76 302.81 

35 106.93 128.39 172.62 192.64 277.41 326.53 

36 100.11 124.66 174.54 212.28 276.27 334.68 

37 116.23 151.28 170.03 222.55 222.16 297.20 

38 115.01 143.91 172.40 209.72 228.85 298.03 

39 124.20 151.61 181.42 204.62 209.17 274.60 

40 109.92 134.92 168.40 202.58 255.59 315.39 

41 96.04 116.00 180.62 229.87 280.33 332.95 

42 114.19 135.99 179.51 203.90 241.11 295.96 

43 112.50 141.00 186.95 227.50 216.99 286.86 

44 105.28 131.40 173.25 212.63 245.62 313.91 

45 119.59 152.94 194.83 247.39 182.06 258.71 

46 109.18 138.42 178.99 215.70 232.22 306.16 

47 114.30 143.11 175.95 213.92 223.81 295.47 

48 135.22 163.57 178.67 197.15 196.52 260.81 

49 111.77 140.48 181.12 209.78 224.21 295.44 

50 110.99 142.28 165.22 211.79 236.64 304.69 

51 114.41 139.16 182.11 206.76 225.46 290.48 

52 129.25 157.94 193.22 236.13 178.00 237.86 

53 106.16 137.59 168.71 222.81 245.27 312.38 

54 113.25 135.28 179.40 206.03 240.28 296.19 

55 113.81 140.55 174.47 212.01 229.48 297.07 

56 102.93 130.27 193.84 245.45 213.22 291.80 

57 117.30 143.95 178.53 203.92 225.81 289.36 

58 102.00 126.05 162.87 202.67 297.51 344.91 

59 102.80 120.83 173.43 208.17 290.48 332.71 

60 94.26 113.51 178.32 227.06 279.52 341.99 

61 110.06 136.33 177.09 214.88 246.23 312.45 

62 98.90 117.90 173.64 219.16 289.73 339.52 
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63 120.69 152.76 169.95 200.50 221.78 298.05 

64 125.12 157.64 183.58 229.75 190.87 265.37 

65 122.31 148.69 180.86 204.78 219.87 281.78 

66 107.87 139.21 168.18 214.57 231.77 314.20 

67 122.91 147.34 176.85 198.15 225.04 282.71 

68 108.28 132.06 177.18 200.03 252.48 315.42 

69 119.26 149.26 189.96 232.44 194.19 260.22 

70 115.23 137.86 172.60 208.24 248.60 299.72 

71 130.76 158.31 189.61 225.55 193.67 253.14 

72 101.05 117.19 171.90 185.84 311.34 348.68 

73 130.26 167.89 186.65 231.77 167.56 244.90 

74 113.95 137.82 173.55 191.39 253.35 311.21 

75 108.32 132.68 170.30 207.15 259.30 317.84 

76 127.24 149.82 176.72 195.96 234.56 280.55 

77 108.21 132.38 170.43 187.15 270.10 328.65 

78 102.58 131.93 172.38 226.51 249.05 317.04 

79 105.12 133.54 192.45 251.23 223.54 293.44 

80 119.23 137.94 160.77 182.95 285.97 317.89 

81 106.73 134.75 185.04 235.27 223.06 293.84 

82 127.90 150.28 173.66 192.43 227.59 277.71 

83 118.47 142.52 162.79 190.44 265.12 312.64 

84 112.34 139.64 190.83 240.43 206.42 278.53 

85 112.02 139.97 166.58 211.26 248.96 306.42 

86 113.40 145.49 174.46 219.57 226.59 296.77 

87 117.36 153.15 171.03 224.48 216.81 292.28 

88 107.48 130.00 177.39 202.16 253.91 314.81 

89 116.87 144.85 177.76 197.15 227.76 295.46 

90 102.62 129.83 173.64 219.05 256.83 321.29 

91 132.26 165.75 186.10 226.84 183.44 248.20 

92 116.66 145.53 180.27 227.12 221.99 283.49 

93 118.67 147.80 174.80 194.71 222.91 293.50 

94 106.96 125.08 168.88 203.92 281.77 324.85 

95 121.57 152.26 177.17 201.19 218.88 286.17 

96 107.10 132.29 178.30 205.28 242.23 312.23 

97 124.98 151.55 161.41 188.17 250.34 301.76 

98 144.42 173.99 179.73 205.87 180.77 241.99 

99 113.76 142.47 174.36 198.14 236.32 304.03 

100 111.82 136.96 185.79 225.34 222.31 289.02 

101 118.94 147.54 160.93 188.91 247.23 310.88 

102 120.52 150.59 168.16 211.94 230.45 292.34 

103 112.27 134.90 172.52 191.48 264.89 316.28 

104 110.50 134.47 179.39 217.60 243.27 300.45 

105 108.86 131.46 175.06 197.80 264.91 322.23 

106 105.38 130.44 175.56 213.76 248.98 313.69 

107 100.86 126.16 176.44 224.74 266.79 328.91 

108 137.86 168.70 179.01 204.44 188.28 254.12 

109 112.96 134.38 179.05 202.83 244.80 300.10 

110 146.40 172.92 191.06 215.25 171.53 228.63 

111 133.29 161.08 178.94 202.07 195.95 263.39 

112 112.13 136.56 176.36 212.66 253.29 306.83 

113 112.07 141.27 180.71 220.82 217.99 288.03 

114 121.40 151.16 182.64 221.29 199.96 264.56 

115 130.97 160.24 184.38 225.38 193.31 246.37 

116 101.96 119.74 168.33 203.89 292.71 339.24 

117 131.08 157.41 180.32 204.41 206.36 264.20 

118 107.00 126.61 183.28 221.06 246.91 307.00 

119 114.62 141.94 174.13 206.74 233.25 302.13 

120 109.11 135.06 183.31 222.81 223.14 290.25 

121 106.97 137.69 171.73 211.77 237.46 313.65 

122 138.62 169.74 162.26 192.30 209.02 273.30 

123 123.40 152.62 168.72 211.98 227.90 287.55 

124 123.95 154.05 185.21 224.92 188.40 259.66 

125 100.97 124.92 182.99 235.75 239.76 306.35 

126 113.10 139.03 184.98 224.20 220.55 289.13 

127 131.00 161.47 188.77 229.57 187.59 242.68 
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128 104.45 130.78 174.70 215.45 248.93 309.91 

129 116.14 145.17 182.67 220.74 217.37 287.61 

130 119.59 143.56 177.61 200.25 224.88 288.67 

131 139.59 168.84 186.43 212.12 175.49 238.51 

132 101.07 127.38 177.86 227.41 260.52 322.35 

133 113.49 140.83 187.81 228.50 209.60 279.21 

134 123.47 150.70 177.77 214.50 221.05 276.41 

135 129.57 156.81 177.44 202.23 211.75 274.06 

136 113.90 137.60 185.45 213.09 225.00 289.65 

137 151.23 182.37 185.20 210.32 166.18 229.20 

138 109.05 137.35 182.31 222.73 241.16 306.61 

139 111.25 140.68 182.88 221.79 230.25 294.18 

140 119.68 151.28 172.65 204.08 216.32 291.78 

141 111.33 135.82 178.23 217.73 234.30 294.04 

142 129.24 154.75 176.48 198.12 219.97 276.14 

143 115.70 147.14 183.91 233.86 200.61 273.73 

144 133.68 169.69 194.57 245.77 166.55 230.67 

145 106.15 139.15 180.00 220.91 218.83 300.05 

146 105.37 123.99 170.08 205.25 274.75 328.35 

147 118.10 155.00 177.60 233.26 193.53 276.06 

148 125.58 150.07 188.84 229.81 197.75 251.16 

149 135.94 164.45 184.08 210.96 186.99 246.94 

150 104.12 124.58 169.63 204.70 274.30 329.46 

151 126.64 158.34 186.55 236.42 181.21 251.28 

152 111.67 135.75 181.82 222.37 228.22 291.62 

153 129.85 146.69 179.01 196.17 240.98 279.24 

154 129.12 160.75 179.37 225.28 192.42 257.94 

155 118.93 147.14 178.49 203.57 223.14 291.47 

156 123.62 154.94 183.44 220.45 194.34 264.52 

157 115.46 138.07 178.16 215.99 240.49 287.55 

158 142.28 172.84 178.38 201.38 178.61 246.30 

159 132.57 170.26 170.69 219.54 182.60 259.57 

160 134.76 169.72 176.13 202.65 190.19 260.80 

161 110.83 136.12 192.88 243.94 217.56 282.83 

162 103.09 118.83 171.20 186.36 307.64 342.80 

163 117.30 150.31 169.34 215.27 221.04 290.24 

164 134.78 166.99 172.47 203.11 205.06 271.89 

165 127.64 158.93 185.65 227.58 186.98 251.48 

166 116.50 146.59 191.48 234.36 192.69 263.23 

167 112.50 135.44 179.32 203.39 238.32 301.97 

168 117.43 139.12 182.66 210.58 227.24 282.80 

169 107.71 128.50 162.05 184.25 303.12 340.93 

170 126.09 157.91 166.31 194.73 221.03 292.49 

171 110.77 127.46 176.64 200.93 262.13 309.77 

172 121.91 154.19 190.60 231.74 194.20 267.03 

173 111.93 135.28 171.07 186.38 263.67 317.41 

174 114.30 140.12 171.24 193.14 243.84 305.55 

175 124.56 143.17 173.88 191.05 250.50 291.29 

176 117.73 140.49 175.37 198.99 242.57 294.25 

177 138.12 164.32 181.89 204.01 195.24 254.53 

178 98.23 117.15 172.21 205.04 303.78 347.61 

179 102.97 121.83 176.99 224.98 261.30 315.23 

180 138.15 174.29 179.45 223.88 185.93 253.26 

181 117.81 142.28 184.95 224.19 210.27 272.82 

182 111.68 135.20 174.22 196.36 254.10 311.13 

183 115.89 135.99 180.74 218.71 242.30 284.06 

184 104.81 123.76 175.46 211.93 285.40 329.53 

185 112.44 132.76 177.43 211.57 261.46 305.85 

186 112.63 133.06 180.89 219.72 239.74 291.32 

187 111.58 138.81 169.62 213.62 246.36 304.13 

188 100.55 116.56 171.81 185.89 313.20 350.22 

189 120.20 145.68 178.03 215.08 213.41 278.58 

190 121.14 155.67 167.54 213.37 215.88 292.09 

191 123.48 151.46 171.57 193.28 222.67 288.17 

192 106.22 128.97 168.46 198.06 269.61 327.15 
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193 110.94 134.72 180.65 216.55 250.46 303.02 

194 103.31 128.20 181.03 221.10 246.16 311.76 

195 117.42 147.06 183.95 222.36 216.35 284.42 

196 110.70 146.09 166.99 220.61 233.86 308.95 

197 108.89 135.16 172.39 209.54 241.38 312.29 

198 134.67 161.67 186.68 212.45 184.12 244.42 

199 122.52 155.03 163.82 193.10 232.96 303.74 

200 123.31 154.67 173.09 211.61 204.41 275.16 
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ANNEXURE   C 

CI of 200 Sample each size n=10 (Case II) 
SNo Text Lower Text Upper Video Lower Video Upper Image Lower Image Upper 

1 112.5025 139.6188 180.9357 209.9947 222.0762 294.2889 

2 132.1565 171.8114 176.3829 210.0216 181.4341 260.9476 

3 107.8549 126.0527 172.3538 192.8011 278.2256 323.4121 

4 97.28737 118.2201 171.5393 209.0049 300.528 347.8061 

5 119.0032 145.5677 174.4599 212.9213 221.1926 288.6421 

6 119.6648 152.1567 180.9075 220.362 202.5174 281.8964 

7 133.4725 167.5706 161.5407 193.2813 212.6052 277.958 

8 106.3945 132.0859 173.0844 191.4717 264.9768 331.8918 

9 114.2793 147.0991 177.7743 218.8427 220.1311 292.0491 

10 101.6652 129.7376 175.9887 218.6873 261.7236 330.2351 

11 117.9328 149.6625 183.0345 229.202 200.5343 266.216 

12 101.3133 120.485 177.9547 200.5548 273.9451 333.1438 

13 116.7251 155.6399 178.0277 220.7157 197.357 281.7325 

14 105.6572 129.1162 160.3586 185.6207 302.185 342.5367 

15 102.6085 130.8796 177.2882 206.6135 243.301 324.5688 

16 116.2565 150.0644 183.7047 226.8764 195.5426 274.7563 

17 104.1755 123.2273 181.0051 225.5034 251.9731 304.4761 

18 104.5469 133.0791 179.7977 223.6472 239.8835 312.0763 

19 113.4035 153.364 182.4263 231.3981 189.4269 274.5269 

20 137.7428 174.8995 173.485 211.0486 181.0419 258.6833 

21 104.8304 136.781 183.4532 229.554 222.7347 301.7651 

22 124.682 156.2853 164.5653 194.2808 238.3067 296.7146 

23 117.6546 150.5266 184.4309 230.7915 195.521 266.9823 

24 103.3036 130.3428 179.9946 235.0848 242.992 304.4074 

25 108.5566 133.2433 179.3298 208.9106 240.0204 303.3612 

26 108.2785 137.9636 191.7557 252.9432 222.619 286.0615 

27 111.4435 135.6584 170.8133 186.5734 262.7295 322.2601 

28 109.8958 133.7237 171.5627 192.8094 268.3515 323.0353 

29 117.0376 142.8189 167.4221 197.2665 248.2261 311.6299 

30 103.1887 130.268 183.2596 242.4131 227.2967 295.9827 

31 113.7117 144.0559 177.2317 221.3402 214.475 286.8212 

32 108.6669 134.6575 172.1115 192.8282 257.6001 321.4268 

33 116.9968 149.7776 169.2943 208.8191 218.1333 293.4088 

34 115.7656 148.8779 166.8516 212.5117 230.6757 304.8981 

35 105.8899 129.4305 172.0856 193.1804 275.9146 328.0331 

36 98.78647 125.9776 173.0555 213.7639 274.4069 336.545 

37 114.1647 153.3442 167.345 225.2402 219.7946 299.5632 

38 113.3935 145.5338 170.5726 211.5429 226.6755 300.2043 

39 123.1525 152.6558 180.143 205.89 206.9668 276.8079 

40 108.9226 135.9182 167.0473 203.9361 252.8565 318.1285 

41 94.78109 117.2568 178.463 232.0219 279.3064 333.9716 

42 113.0547 137.1217 178.6081 204.7991 239.4949 297.5753 

43 111.0507 142.4457 184.4639 229.9909 214.6993 289.1541 

44 104.0987 132.5776 171.2642 214.6111 243.4342 316.0932 

45 117.7712 154.7576 191.8136 250.4098 179.607 261.17 

46 108.0273 139.5723 176.8206 217.8769 229.442 308.9327 

47 113.0693 144.3429 174.0301 215.8397 221.1914 298.0877 

48 134.4277 164.3694 176.9454 198.8787 193.7765 263.5526 

49 110.2277 142.0148 179.8179 211.0823 222.3989 297.2529 

50 109.4672 143.8032 163.0289 213.979 235.2198 306.1044 

51 112.9665 140.5978 181.0044 207.8623 223.8664 292.0724 

52 127.6045 159.583 191.2084 238.1448 176.3396 239.5216 

53 104.4922 139.2542 165.9372 225.5766 243.4363 314.2153 

54 112.1048 136.4315 178.4944 206.9279 239.0231 297.442 

55 112.707 141.657 172.8391 213.6413 227.3741 299.1733 

56 101.7639 131.4424 190.2886 248.9992 210.958 294.0564 

57 116.2937 144.959 177.0841 205.3588 223.2077 291.9614 

58 100.6352 127.4147 161.2607 204.2833 296.4775 345.9437 

59 101.7613 121.8703 172.3789 209.2262 289.5168 333.6739 

60 93.31854 114.4549 175.6672 229.7062 277.6419 343.8712 

61 108.4735 137.9135 175.9495 216.0254 244.3709 314.3022 

62 97.85368 118.9428 171.6796 221.1267 287.9315 341.3232 
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63 119.3528 154.0918 167.9264 202.5278 219.4674 300.3561 

64 123.5925 159.1735 180.8238 232.5091 188.5559 267.6838 

65 121.0287 149.9641 179.6038 206.0375 217.7891 283.8648 

66 106.4229 140.6509 165.4635 217.2859 229.691 316.2784 

67 121.6842 148.5709 176.536 198.4615 223.3503 284.4004 

68 107.1758 133.173 176.0211 201.1831 250.487 317.4138 

69 117.8529 150.6682 187.9882 234.4153 192.1432 262.2635 

70 114.0986 138.9898 171.4805 209.3636 246.5689 301.7476 

71 129.5237 159.5445 188.6509 226.5084 191.1456 255.6659 

72 100.1975 118.0451 171.8944 185.8425 310.5186 349.5013 

73 128.1539 170.001 183.8726 234.5459 165.4989 246.967 

74 112.7568 139.0161 173.1246 191.8106 251.5786 312.9848 

75 106.9005 134.0995 168.8298 208.6236 257.5159 319.6272 

76 126.3709 150.6879 176.0532 196.6314 232.4573 282.6508 

77 107.3033 133.2811 169.9509 187.6264 267.6271 331.1282 

78 100.941 133.5688 169.1504 229.743 247.266 318.8223 

79 103.3659 135.2866 189.7995 253.8758 221.5567 295.4243 

80 118.2461 138.9255 160.0072 183.7118 285.9793 317.8764 

81 105.0789 136.4004 182.3798 237.9373 221.1902 295.7084 

82 127.3167 150.8695 173.0966 192.9996 225.2877 280.0133 

83 117.3727 143.6146 161.816 191.4196 264.0154 313.7467 

84 111.1262 140.8496 188.3426 242.918 203.8726 281.0866 

85 110.4382 141.5568 164.5645 213.2762 247.9363 307.4482 

86 111.5953 147.2998 171.925 222.1018 224.5882 298.7639 

87 115.1705 155.3432 168.4218 227.0897 214.7593 294.3302 

88 106.2111 131.2661 176.1948 203.3549 252.4467 316.2729 

89 115.834 145.8789 176.3625 198.5479 225.2968 297.9281 

90 101.4559 130.9953 171.5939 221.0973 253.754 324.3593 

91 130.4779 167.5326 184.7005 228.2409 181.154 250.484 

92 115.396 146.7969 178.6149 228.7789 218.7634 286.7163 

93 117.9274 148.5433 173.338 196.1644 220.197 296.2196 

94 105.9154 126.1265 167.785 205.0123 280.7667 325.8502 

95 119.9302 153.8944 176.0191 202.3343 216.9271 288.1204 

96 105.7466 133.6415 177.3202 206.2592 240.4651 313.994 

97 123.4758 153.0476 160.4645 189.1168 249.5679 302.5239 

98 143.2534 175.1605 178.4569 207.136 178.6118 244.1425 

99 112.9867 143.2411 173.0715 199.4294 233.3486 306.9992 

100 110.6316 138.1493 184.2426 226.8832 219.9981 291.3308 

101 117.6532 148.8222 159.9025 189.9333 245.2808 312.8312 

102 119.0967 152.0117 165.9236 214.1748 228.1585 294.6355 

103 110.9365 136.2283 172.0827 191.9236 263.6667 317.5054 

104 109.1383 135.8324 177.9972 218.9959 241.5299 302.183 

105 108.0657 132.2497 174.1478 198.716 262.8316 324.3086 

106 104.0505 131.7665 173.7124 215.6026 247.1579 315.5129 

107 99.54875 127.4673 174.2892 226.8904 264.2541 331.4424 

108 136.637 169.9269 177.7045 205.7468 185.7354 256.6656 

109 111.8287 135.5027 178.0552 203.8318 243.1506 301.7452 

110 145.5738 173.7484 189.6491 216.6588 169.0974 231.0597 

111 132.2655 162.0995 177.8587 203.1535 193.9084 265.4285 

112 110.5288 138.1531 175.1532 213.8681 251.8669 308.2521 

113 110.9403 142.4005 178.2127 223.3101 215.333 290.6819 

114 120.2631 152.2921 180.8275 223.1041 197.455 267.0683 

115 129.6357 161.5753 182.8615 226.9011 190.9967 248.6889 

116 101.0557 120.6438 167.1494 205.0728 291.5208 340.4316 

117 129.9248 158.558 179.7832 204.9454 204.4899 266.0657 

118 105.7336 127.8727 181.5886 222.7499 245.1186 308.7944 

119 113.3288 143.2347 172.1463 208.7279 231.0965 304.2803 

120 108.093 136.0751 181.241 224.8768 220.9618 292.4217 

121 105.2444 139.4157 169.8732 213.6228 235.3795 315.7308 

122 136.9557 171.4033 160.8921 193.6687 207.6163 274.7066 

123 122.1504 153.8653 166.551 214.1491 225.4448 289.9981 

124 122.8419 155.1536 182.8078 227.3192 185.8128 262.2422 

125 99.70152 126.1885 179.9936 238.7465 237.9428 308.1689 

126 111.5485 140.5842 183.4325 225.7504 218.3515 291.324 

127 129.3029 163.1657 187.4728 230.8761 185.528 244.7415 
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128 103.3323 131.8956 173.1128 217.0381 247.1662 311.6779 

129 114.8862 146.4198 180.9907 222.4157 214.7773 290.1951 

130 118.8749 144.2761 176.5123 201.3529 223.1046 290.4441 

131 138.3963 170.0363 184.5617 213.9877 173.3222 240.6787 

132 99.62565 128.8244 175.7908 229.4773 258.4013 324.4739 

133 111.9322 142.3953 185.9308 230.3726 207.8235 280.9824 

134 122.3692 151.7961 176.5784 215.6949 218.2109 279.252 

135 128.7016 157.6722 175.7999 203.8778 209.0222 276.7923 

136 112.8307 138.6694 184.0605 214.4809 222.9509 291.697 

137 149.7657 183.8338 183.7802 211.7355 164.2749 231.1092 

138 107.8751 138.5291 180.4376 224.5936 238.6345 309.1309 

139 109.8208 142.1098 181.2026 223.4656 227.8544 296.584 

140 118.2247 152.7289 170.3822 206.3409 214.1352 293.9634 

141 110.0752 137.0799 176.7099 219.2462 232.6888 295.6495 

142 127.9007 156.0903 175.8884 198.7099 218.2205 277.8915 

143 114.3328 148.5068 181.4102 236.3515 198.13 276.2131 

144 131.7717 171.6004 192.3412 248.0014 164.0839 233.1391 

145 104.5398 140.7624 177.6861 223.2159 216.4322 302.4524 

146 104.47 124.8887 168.545 206.7871 272.9205 330.1836 

147 116.2984 156.8052 174.386 236.4733 191.0548 278.5333 

148 124.033 151.6164 187.5675 231.087 196.4229 252.4811 

149 134.8634 165.529 182.7169 212.3166 184.3861 249.5506 

150 102.8558 125.8455 168.0124 206.3133 272.8902 330.8742 

151 125.2486 159.7288 183.7088 239.2591 179.211 253.2814 

152 110.5752 136.8422 179.8302 224.3573 225.8394 293.9977 

153 129.6543 146.8904 178.4509 196.7308 238.645 281.5744 

154 127.8518 162.0119 177.0669 227.5873 190.1802 260.1814 

155 117.8019 148.2678 177.4925 204.5629 220.7603 293.8481 

156 122.4298 156.1313 181.6233 222.2668 191.6167 267.2493 

157 114.07 139.4558 176.7261 217.4209 239.1659 288.8712 

158 141.2664 173.853 176.8435 202.9079 176.3973 248.5132 

159 130.4362 172.3929 168.117 222.1044 180.8877 261.2883 

160 132.8644 171.6159 174.6374 204.1507 188.0881 262.8969 

161 109.7245 137.229 190.5085 246.3098 215.027 285.3557 

162 102.3437 119.5781 171.2071 186.3528 307.0306 343.4032 

163 115.8665 151.7409 166.8963 217.7171 218.7386 292.5458 

164 133.2373 168.5281 170.6996 204.8804 203.0442 273.9077 

165 125.9633 160.6011 183.2076 230.0186 184.9568 253.5047 

166 115.3864 147.7065 189.0317 236.8081 190.4789 265.4336 

167 111.2776 136.6608 178.3354 204.3773 236.5786 303.7095 

168 116.1472 140.4064 181.7183 211.5185 226.201 283.8409 

169 106.7678 129.4426 161.3679 184.9314 301.7355 342.314 

170 124.6367 159.3601 164.6671 196.3782 219.115 294.4027 

171 109.7975 128.4284 175.9608 201.6023 261.4589 310.4398 

172 120.6427 155.4623 188.467 233.8666 191.5926 269.6411 

173 111.1079 136.0974 170.5417 186.9067 261.3276 319.7563 

174 113.0445 141.3792 170.6827 193.6963 242.1039 307.2931 

175 123.6469 144.0884 173.6048 191.3177 249.253 292.5336 

176 116.3674 141.8538 174.9314 199.4319 241.5215 295.2986 

177 137.1128 165.3278 180.5412 205.3599 193.0907 256.6776 

178 97.34554 118.0329 170.8858 206.3621 302.1018 349.2931 

179 101.7979 122.9972 174.4955 227.4812 259.8926 316.6379 

180 136.2239 176.2208 177.4457 225.8892 183.9656 255.22 

181 116.6495 143.4375 183.0356 226.1076 208.4037 274.6845 

182 110.3211 136.5583 173.6371 196.9454 252.8043 312.4312 

183 114.8908 136.9921 179.6202 219.8316 240.3142 286.0459 

184 103.4087 125.1564 174.5705 212.8136 285.218 329.7199 

185 111.5307 133.6676 176.3725 212.631 259.0846 308.2217 

186 111.5881 134.1007 179.2584 221.352 237.8675 293.1888 

187 110.1395 140.2489 167.3017 215.9429 244.8081 305.6851 

188 99.8415 117.2698 171.8125 185.8856 312.1827 351.2323 

189 119.1446 146.7326 176.3303 216.783 211.1309 280.8579 

190 119.3813 157.4293 165.3169 215.5944 213.7207 294.2584 

191 122.3186 152.6193 170.6861 194.1627 220.5516 290.2861 

192 104.9061 130.2859 167.0852 199.4431 268.4693 328.2909 
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193 109.9692 135.6914 179.3392 217.8561 247.9055 305.5764 

194 102.0151 129.4977 178.9765 223.1482 244.4347 313.4777 

195 115.9212 148.5581 182.438 223.87 213.8521 286.9141 

196 108.8774 147.9102 164.328 223.2739 231.0375 311.7662 

197 107.4867 136.5637 170.6027 211.3267 239.1731 314.5028 

198 133.9345 162.4037 185.2204 213.9091 181.8937 246.6481 

199 120.6932 156.8539 162.5758 194.3481 231.302 305.4011 

200 121.6709 156.3097 171.2976 213.3957 202.1978 277.3722 
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ANNEXURE D 

200 Sample each size n=10 (estimate on value Case I)) 
S.No. Mean(T) Mean(V) Mean (I) MSE(T) MSE(V) MSE (I) 

1 126.06 195.47 258.18 40.93 44.61 304.28 

2 151.98 193.20 221.19 82.81 58.51 375.05 

3 116.95 182.58 300.82 17.71 26.38 126.48 

4 107.75 190.27 324.17 23.15 80.34 133.73 

5 132.29 193.69 254.92 40.23 82.36 255.37 

6 135.91 200.63 242.21 57.13 85.26 357.26 

7 150.52 177.41 245.28 60.96 54.26 256.51 

8 119.24 182.28 298.43 36.16 19.66 254.32 

9 130.69 198.31 256.09 59.25 92.50 285.11 

10 115.70 197.34 295.98 42.87 99.79 268.01 

11 133.80 206.12 233.38 53.19 114.16 249.09 

12 110.90 189.25 303.54 20.10 26.83 202.10 

13 136.18 199.37 239.54 81.25 95.80 410.04 

14 117.39 172.99 322.36 28.97 37.52 101.20 

15 116.74 191.95 283.93 44.01 42.86 387.44 

16 133.16 205.29 235.15 63.44 96.79 355.90 

17 113.70 203.25 278.22 17.96 109.47 168.70 

18 118.81 201.72 275.98 45.20 104.48 297.62 

19 133.38 206.91 231.98 85.47 125.28 431.42 

20 156.32 192.27 219.86 75.67 70.89 355.72 

21 120.81 206.50 262.25 55.37 108.83 356.51 

22 140.48 179.42 267.51 53.33 47.91 198.43 

23 134.09 207.61 231.25 57.09 114.56 300.92 

24 116.82 207.54 273.70 38.76 169.45 217.10 

25 120.90 194.12 271.69 32.67 47.83 238.95 

26 123.12 222.35 254.34 47.69 210.03 225.43 

27 123.55 178.69 292.49 33.77 14.03 191.94 

28 121.81 182.19 295.69 31.03 26.88 174.10 

29 129.93 182.34 279.93 38.11 46.38 222.02 

30 116.73 212.84 261.64 38.89 186.98 276.96 

31 128.88 199.29 250.65 47.19 107.46 306.73 

32 121.66 182.47 289.51 36.48 25.87 237.46 

33 133.39 189.06 255.77 58.85 86.33 316.47 

34 132.32 189.68 267.79 59.27 113.58 319.38 

35 117.66 182.63 301.97 29.98 26.08 157.01 

36 112.38 193.41 305.48 39.22 92.69 222.06 

37 133.75 196.29 259.68 79.95 179.53 366.48 

38 129.46 191.06 263.44 54.36 90.63 311.41 

39 137.90 193.02 241.89 48.87 35.03 278.62 

40 122.42 185.49 285.49 40.68 76.05 232.69 

41 106.02 205.24 306.64 25.92 157.88 180.21 

42 125.09 191.70 268.54 30.92 38.72 195.83 

43 126.75 207.23 251.93 52.88 107.03 317.74 

44 118.34 192.94 279.76 44.38 100.91 303.46 

45 136.26 221.11 220.39 72.37 179.74 382.32 

46 123.80 197.35 269.19 55.64 87.71 355.76 

47 128.71 194.93 259.64 54.02 93.83 334.17 

48 149.40 187.91 228.66 52.30 22.22 269.04 

49 126.12 195.45 259.83 53.64 53.46 330.12 

50 126.64 188.50 270.66 63.69 141.16 301.33 

51 126.78 194.43 257.97 39.88 39.53 275.14 

52 143.59 214.68 207.93 53.55 119.83 233.16 

53 121.87 195.76 278.83 64.30 190.49 293.11 

54 124.27 192.71 268.23 31.58 46.15 203.44 

55 127.18 193.24 263.27 46.53 91.74 297.30 

56 116.60 219.64 252.51 48.63 173.33 401.87 

57 130.63 191.22 257.58 46.22 41.95 262.80 

58 114.02 182.77 321.21 37.67 103.06 146.22 

59 111.82 190.80 311.60 21.16 78.52 116.07 

60 103.89 202.69 310.76 24.10 154.59 253.94 

61 123.19 195.99 279.34 44.90 92.92 285.39 

62 108.40 196.40 314.63 23.49 134.83 161.35 
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63 136.72 185.23 259.91 66.91 60.73 378.53 

64 141.38 206.67 228.12 68.83 138.69 361.17 

65 135.50 192.82 250.83 45.28 37.26 249.44 

66 123.54 191.37 272.98 63.92 140.09 442.15 

67 135.13 187.50 253.88 38.83 29.54 216.41 

68 120.17 188.60 283.95 36.80 33.97 257.85 

69 134.26 211.20 227.20 58.59 117.44 283.75 

70 126.54 190.42 274.16 33.33 82.65 170.07 

71 144.53 207.58 223.41 49.41 84.03 230.22 

72 109.12 178.87 330.01 16.94 12.65 90.75 

73 149.08 209.21 206.23 92.17 132.51 389.23 

74 125.89 182.47 282.28 37.09 20.72 217.87 

75 120.50 188.73 288.57 38.61 88.39 222.98 

76 138.53 186.34 257.55 33.20 24.10 137.62 

77 120.29 178.79 299.38 38.03 18.19 223.08 

78 117.25 199.45 283.04 56.03 190.68 300.84 

79 119.33 221.84 258.49 52.56 224.87 317.92 

80 128.59 171.86 301.93 22.77 32.04 66.31 

81 120.74 210.16 258.45 51.10 164.20 326.00 

82 139.09 183.05 252.65 32.61 22.92 163.49 

83 130.49 176.62 288.88 37.63 49.75 146.97 

84 125.99 215.63 242.48 48.49 160.04 338.39 

85 126.00 188.92 277.69 50.85 129.88 214.85 

86 129.45 197.01 261.68 67.00 132.42 320.52 

87 135.26 197.76 254.54 83.37 185.87 370.72 

88 118.74 189.77 284.36 32.99 39.92 241.38 

89 130.86 187.46 261.61 50.95 24.47 298.25 

90 116.23 196.35 289.06 48.19 134.21 270.41 

91 149.01 206.47 215.82 73.00 108.04 272.90 

92 131.10 203.70 252.74 54.22 142.83 246.11 

93 133.24 184.75 258.21 55.21 25.80 324.25 

94 116.02 186.40 303.31 21.37 79.88 120.78 

95 136.91 189.18 252.52 61.28 37.55 294.62 

96 119.69 191.79 277.23 41.32 47.37 318.86 

97 138.26 174.79 276.05 45.95 46.58 172.08 

98 159.21 192.80 211.38 56.89 44.46 243.92 

99 128.11 186.25 270.17 53.61 36.79 298.34 

100 124.39 205.56 255.66 41.16 101.79 289.60 

101 133.24 174.92 279.06 53.24 50.93 263.69 

102 135.55 190.05 261.40 58.86 124.74 249.30 

103 123.58 182.00 290.59 33.34 23.40 171.81 

104 122.49 198.50 271.86 37.40 95.00 212.76 

105 120.16 186.43 293.57 33.24 33.66 213.80 

106 117.91 194.66 281.34 40.85 94.99 272.57 

107 113.51 200.59 297.85 41.66 151.78 251.18 

108 153.28 191.73 221.20 61.89 42.09 282.16 

109 123.67 190.94 272.45 29.86 36.79 199.05 

110 159.66 203.15 200.08 45.75 38.10 212.23 

111 147.18 190.51 229.67 50.25 34.80 295.99 

112 124.34 194.51 280.06 38.84 85.76 186.50 

113 126.67 200.76 253.01 55.46 104.70 319.24 

114 136.28 201.97 232.26 57.63 97.21 271.59 

115 145.61 204.88 219.84 55.79 109.37 183.23 

116 110.85 186.11 315.98 20.57 82.26 140.90 

117 144.24 192.36 235.28 45.12 37.75 217.72 

118 116.80 202.17 276.96 25.02 92.85 234.94 

119 128.28 190.44 267.69 48.59 69.21 308.75 

120 122.08 203.06 256.69 43.85 101.53 293.06 

121 122.33 191.75 275.56 61.44 104.31 377.78 

122 154.18 177.28 241.16 63.02 58.69 268.87 

123 138.01 190.35 257.72 55.57 121.76 231.56 

124 139.00 205.06 224.03 58.96 102.61 330.48 

125 112.95 209.37 273.06 37.34 181.13 288.63 

126 126.07 204.59 254.84 43.73 100.14 306.05 

127 146.23 209.17 215.13 60.43 108.34 197.54 
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128 117.61 195.08 279.42 45.10 108.05 241.96 

129 130.65 201.70 252.49 54.82 94.35 321.07 

130 131.58 188.93 256.77 37.36 33.37 264.76 

131 154.22 199.27 207.00 55.67 42.95 258.44 

132 114.23 202.63 291.44 45.06 159.76 248.81 

133 127.16 208.15 244.40 48.64 107.75 315.29 

134 137.08 196.14 248.73 48.24 87.80 199.44 

135 143.19 189.84 242.91 48.30 39.99 252.65 

136 125.75 199.27 257.32 36.58 49.71 272.05 

137 166.80 197.76 197.69 63.13 41.05 258.45 

138 123.20 202.52 273.88 52.12 106.32 278.73 

139 125.97 202.33 262.22 56.36 98.49 265.97 

140 135.48 188.36 254.05 64.99 64.29 370.61 

141 123.58 197.98 264.17 39.03 101.52 232.21 

142 142.00 187.30 248.06 42.33 30.48 205.28 

143 131.42 208.88 237.17 64.32 162.36 347.96 

144 151.69 220.17 198.61 84.40 170.59 267.51 

145 122.65 200.45 259.44 70.87 108.92 429.33 

146 114.68 187.67 301.55 22.57 80.52 187.00 

147 136.55 205.43 234.79 88.60 201.57 443.32 

148 137.82 209.33 224.45 39.05 109.25 185.66 

149 150.20 197.52 216.97 52.90 47.02 233.88 

150 114.35 187.16 301.88 27.26 80.06 197.97 

151 142.49 211.48 216.25 65.40 161.84 319.56 

152 123.71 202.09 259.92 37.72 107.00 261.58 

153 138.27 187.59 260.11 18.44 19.17 95.27 

154 144.93 202.33 225.18 65.09 137.16 279.30 

155 133.03 191.03 257.30 51.82 40.93 303.91 

156 139.28 201.95 229.43 63.86 89.13 320.53 

157 126.76 197.07 264.02 33.28 93.13 144.16 

158 157.56 189.88 212.46 60.78 34.43 298.15 

159 151.41 195.11 221.09 92.42 155.29 385.56 

160 152.24 189.39 225.49 79.56 45.77 324.47 

161 123.48 218.41 250.19 41.61 169.62 277.22 

162 110.96 178.78 325.22 16.12 14.95 80.46 

163 133.80 192.31 255.64 70.93 137.25 311.60 

164 150.88 187.79 238.48 67.51 61.10 290.62 

165 143.28 206.61 219.23 63.73 114.38 270.67 

166 131.55 212.92 227.96 58.93 119.70 323.81 

167 123.97 191.36 270.14 34.24 37.71 263.61 

168 128.28 196.62 255.02 30.62 50.74 200.94 

169 118.11 173.15 322.02 28.11 32.09 93.05 

170 142.00 180.52 256.76 65.92 52.58 332.29 

171 119.11 188.78 285.95 18.14 38.40 147.74 

172 138.05 211.17 230.62 67.79 110.13 345.17 

173 123.60 178.72 290.54 35.47 15.27 187.97 

174 127.21 182.19 274.70 43.37 31.19 247.81 

175 133.87 182.46 270.89 22.53 19.18 108.27 

176 129.11 187.18 268.41 33.72 36.31 173.75 

177 151.22 192.95 224.88 44.69 31.85 228.76 

178 107.69 188.62 325.70 23.29 70.17 125.00 

179 112.40 200.99 288.27 23.16 149.86 189.31 

180 156.22 201.67 219.59 84.98 128.45 294.98 

181 130.04 204.57 241.54 38.96 100.20 254.60 

182 123.44 185.29 282.62 36.02 31.90 211.65 

183 125.94 199.73 263.18 26.29 93.83 113.45 

184 114.28 193.69 307.47 23.37 86.57 126.73 

185 122.60 194.50 283.65 26.89 75.84 128.24 

186 122.84 200.31 265.53 27.17 98.12 173.16 

187 125.19 191.62 275.25 48.27 125.97 217.14 

188 108.56 178.85 331.71 16.69 12.90 89.18 

189 132.94 196.56 245.99 42.26 89.34 276.46 

190 138.41 190.46 253.99 77.60 136.73 377.96 

191 137.47 182.42 255.42 50.94 30.67 279.22 

192 117.60 183.26 298.38 33.69 57.02 215.45 
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193 122.83 198.60 276.74 36.79 83.87 179.82 

194 115.76 201.06 278.96 40.29 104.49 280.06 

195 132.24 203.15 250.38 57.18 96.00 301.57 

196 128.39 193.80 271.40 81.50 187.09 366.96 

197 122.03 190.96 276.84 44.91 89.82 327.25 

198 148.17 199.56 214.27 47.46 43.19 236.56 

199 138.77 178.46 268.35 68.76 55.81 326.04 

200 138.99 192.35 239.79 63.98 96.56 325.79 
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ANNEXURE E 

200 Samples each of size n=10 (estimates value (𝐶𝑎𝑠𝑒 𝐼𝐼)) 
S.No. Mean(T) Mean(V) Mean (I) MSE(T) MSE(V) MSE (I) 

1 126.06 195.47 258.18 47.85 54.95 339.36 

2 151.98 193.20 221.19 102.33 73.64 411.44 

3 116.95 182.58 300.82 21.55 27.21 132.88 

4 107.75 190.27 324.17 28.52 91.35 145.46 

5 132.29 193.69 254.92 45.92 96.27 296.06 

6 135.91 200.63 242.21 68.70 101.30 410.05 

7 150.52 177.41 245.28 75.66 65.56 277.94 

8 119.24 182.28 298.43 42.95 22.00 291.39 

9 130.69 198.31 256.09 70.10 109.76 336.59 

10 115.70 197.34 295.98 51.28 118.65 305.46 

11 133.80 206.12 233.38 65.52 138.71 280.75 

12 110.90 189.25 303.54 23.92 33.24 228.06 

13 136.18 199.37 239.54 98.55 118.59 463.30 

14 117.39 172.99 322.36 35.81 41.53 105.96 

15 116.74 191.95 283.93 52.01 55.96 429.80 

16 133.16 205.29 235.15 74.38 121.29 408.35 

17 113.70 203.25 278.22 23.62 128.86 179.39 

18 118.81 201.72 275.98 52.98 125.13 339.17 

19 133.38 206.91 231.98 103.92 156.07 471.29 

20 156.32 192.27 219.86 89.85 91.83 392.30 

21 120.81 206.50 262.25 66.43 138.31 406.46 

22 140.48 179.42 267.51 65.00 57.46 222.01 

23 134.09 207.61 231.25 70.32 139.87 332.33 

24 116.82 207.54 273.70 47.58 197.50 245.46 

25 120.90 194.12 271.69 39.66 56.94 261.09 

26 123.12 222.35 254.34 57.35 243.64 261.93 

27 123.55 178.69 292.49 38.16 16.16 230.63 

28 121.81 182.19 295.69 36.95 29.38 194.60 

29 129.93 182.34 279.93 43.25 57.96 261.61 

30 116.73 212.84 261.64 47.72 227.71 307.02 

31 128.88 199.29 250.65 59.92 126.61 340.61 

32 121.66 182.47 289.51 43.96 27.93 265.11 

33 133.39 189.06 255.77 69.93 101.66 368.75 

34 132.32 189.68 267.79 71.35 135.68 358.51 

35 117.66 182.63 301.97 36.06 28.96 176.77 

36 112.38 193.41 305.48 48.12 107.84 251.27 

37 133.75 196.29 259.68 99.90 218.13 414.09 

38 129.46 191.06 263.44 67.22 109.24 351.84 

39 137.90 193.02 241.89 56.65 43.14 317.43 

40 122.42 185.49 285.49 47.43 88.56 277.26 

41 106.02 205.24 306.64 32.87 186.68 194.47 

42 125.09 191.70 268.54 37.69 44.64 219.53 

43 126.75 207.23 251.93 64.14 134.89 360.76 

44 118.34 192.94 279.76 52.78 122.28 343.56 

45 136.26 221.11 220.39 89.02 223.44 432.93 

46 123.80 197.35 269.19 64.76 109.70 411.21 

47 128.71 194.93 259.64 63.65 113.76 384.80 

48 149.40 187.91 228.66 58.34 31.31 316.84 

49 126.12 195.45 259.83 65.76 63.61 364.63 

50 126.64 188.50 270.66 76.72 168.93 326.99 

51 126.78 194.43 257.97 49.69 46.94 302.74 

52 143.59 214.68 207.93 66.55 143.37 259.79 

53 121.87 195.76 278.83 78.64 231.47 326.01 

54 124.27 192.71 268.23 38.51 52.61 222.09 

55 127.18 193.24 263.27 54.54 108.34 335.48 

56 116.60 219.64 252.51 57.32 224.32 449.38 

57 130.63 191.22 257.58 53.47 52.03 307.62 

58 114.02 182.77 321.21 46.67 120.45 159.24 

59 111.82 190.80 311.60 26.32 88.36 126.89 

60 103.89 202.69 310.76 29.07 190.04 285.45 

61 123.19 195.99 279.34 56.40 104.52 318.25 

62 108.40 196.40 314.63 28.94 159.11 185.51 
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63 136.72 185.23 259.91 78.53 77.91 425.80 

64 141.38 206.67 228.12 82.39 173.85 407.46 

65 135.50 192.82 250.83 54.49 45.47 284.13 

66 123.54 191.37 272.98 76.24 174.77 487.91 

67 135.13 187.50 253.88 47.04 31.28 242.55 

68 120.17 188.60 283.95 43.98 41.20 291.49 

69 134.26 211.20 227.20 70.08 140.27 319.97 

70 126.54 190.42 274.16 40.32 93.39 198.14 

71 144.53 207.58 223.41 58.65 93.27 270.91 

72 109.12 178.87 330.01 20.73 12.66 98.89 

73 149.08 209.21 206.23 113.96 167.10 431.92 

74 125.89 182.47 282.28 44.87 22.72 245.39 

75 120.50 188.73 288.57 48.14 103.05 251.06 

76 138.53 186.34 257.55 38.48 27.56 163.95 

77 120.29 178.79 299.38 43.92 20.33 262.42 

78 117.25 199.45 283.04 69.28 238.93 333.21 

79 119.33 221.84 258.49 66.31 267.19 355.09 

80 128.59 171.86 301.93 27.83 36.57 66.21 

81 120.74 210.16 258.45 63.84 200.87 361.37 

82 139.09 183.05 252.65 36.10 25.78 194.90 

83 130.49 176.62 288.88 44.81 57.03 160.95 

84 125.99 215.63 242.48 57.49 193.83 387.99 

85 126.00 188.92 277.69 63.02 154.42 230.48 

86 129.45 197.01 261.68 82.96 163.85 358.06 

87 135.26 197.76 254.54 105.02 223.99 412.04 

88 118.74 189.77 284.36 40.85 48.01 265.11 

89 130.86 187.46 261.61 58.75 32.03 343.30 

90 116.23 196.35 289.06 56.78 159.48 324.42 

91 149.01 206.47 215.82 89.35 123.37 312.80 

92 131.10 203.70 252.74 64.17 163.76 300.50 

93 133.24 184.75 258.21 61.00 33.91 376.11 

94 116.02 186.40 303.31 26.58 90.19 132.27 

95 136.91 189.18 252.52 75.07 45.07 329.84 

96 119.69 191.79 277.23 50.64 54.50 351.84 

97 138.26 174.79 276.05 56.91 53.43 182.50 

98 159.21 192.80 211.38 66.25 53.53 279.46 

99 128.11 186.25 270.17 59.57 45.21 353.00 

100 124.39 205.56 255.66 49.28 118.32 331.13 

101 133.24 174.92 279.06 63.22 58.69 296.95 

102 135.55 190.05 261.40 70.50 151.51 287.59 

103 123.58 182.00 290.59 41.63 25.62 188.63 

104 122.49 198.50 271.86 46.37 109.39 239.41 

105 120.16 186.43 293.57 38.06 39.28 245.95 

106 117.91 194.66 281.34 49.99 114.20 304.07 

107 113.51 200.59 297.85 50.72 180.06 293.78 

108 153.28 191.73 221.20 72.12 51.17 327.41 

109 123.67 190.94 272.45 36.47 43.24 223.43 

110 159.66 203.15 200.08 51.66 47.48 249.85 

111 147.18 190.51 229.67 57.92 41.64 332.88 

112 124.34 194.51 280.06 49.66 97.54 206.90 

113 126.67 200.76 253.01 64.41 132.35 369.47 

114 136.28 201.97 232.26 66.76 116.31 315.36 

115 145.61 204.88 219.84 66.39 126.22 216.60 

116 110.85 186.11 315.98 24.97 93.59 155.68 

117 144.24 192.36 235.28 53.35 41.20 246.74 

118 116.80 202.17 276.96 31.90 110.26 263.86 

119 128.28 190.44 267.69 58.20 87.09 348.54 

120 122.08 203.06 256.69 50.96 123.91 332.32 

121 122.33 191.75 275.56 75.99 124.56 420.16 

122 154.18 177.28 241.16 77.22 69.91 292.92 

123 138.01 190.35 257.72 65.46 147.44 271.18 

124 139.00 205.06 224.03 67.94 128.93 380.14 

125 112.95 209.37 273.06 45.66 224.64 320.94 

126 126.07 204.59 254.84 54.86 116.54 346.53 

127 146.23 209.17 215.13 74.62 122.60 228.18 
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128 117.61 195.08 279.42 53.09 125.56 270.84 

129 130.65 201.70 252.49 64.71 111.67 370.15 

130 131.58 188.93 256.77 41.99 40.16 295.10 

131 154.22 199.27 207.00 65.15 56.35 295.25 

132 114.23 202.63 291.44 55.48 187.57 284.10 

133 127.16 208.15 244.40 60.39 128.53 348.31 

134 137.08 196.14 248.73 56.35 99.57 242.48 

135 143.19 189.84 242.91 54.62 51.30 298.89 

136 125.75 199.27 257.32 43.45 60.22 307.56 

137 166.80 197.76 197.69 75.53 50.86 290.69 

138 123.20 202.52 273.88 61.15 126.88 323.42 

139 125.97 202.33 262.22 67.85 116.24 307.41 

140 135.48 188.36 254.05 77.48 84.15 414.71 

141 123.58 197.98 264.17 47.46 117.75 257.97 

142 142.00 187.30 248.06 51.71 33.89 231.72 

143 131.42 208.88 237.17 76.00 196.44 396.77 

144 151.69 220.17 198.61 103.23 201.61 310.33 

145 122.65 200.45 259.44 85.39 134.90 481.54 

146 114.68 187.67 301.55 27.13 95.17 213.39 

147 136.55 205.43 234.79 106.78 250.86 498.00 

148 137.82 209.33 224.45 49.51 123.25 204.51 

149 150.20 197.52 216.97 61.20 57.02 276.34 

150 114.35 187.16 301.88 34.39 95.46 218.80 

151 142.49 211.48 216.25 77.37 200.82 357.04 

152 123.71 202.09 259.92 44.90 129.03 302.32 

153 138.27 187.59 260.11 19.33 21.75 119.93 

154 144.93 202.33 225.18 75.94 166.10 318.89 

155 133.03 191.03 257.30 60.40 47.69 347.63 

156 139.28 201.95 229.43 73.91 107.50 372.26 

157 126.76 197.07 264.02 41.94 107.77 160.78 

158 157.56 189.88 212.46 69.10 44.21 338.45 

159 151.41 195.11 221.09 114.56 189.68 420.67 

160 152.24 189.39 225.49 97.73 56.68 364.19 

161 123.48 218.41 250.19 49.23 202.64 321.88 

162 110.96 178.78 325.22 19.33 14.93 86.09 

163 133.80 192.31 255.64 83.75 168.08 354.51 

164 150.88 187.79 238.48 81.05 76.03 326.79 

165 143.28 206.61 219.23 78.08 142.60 305.79 

166 131.55 212.92 227.96 67.98 148.54 365.62 

167 123.97 191.36 270.14 41.93 44.13 293.27 

168 128.28 196.62 255.02 38.30 57.79 216.21 

169 118.11 173.15 322.02 33.46 36.13 107.16 

170 142.00 180.52 256.76 78.46 65.44 368.87 

171 119.11 188.78 285.95 22.59 42.79 156.13 

172 138.05 211.17 230.62 78.90 134.13 396.42 

173 123.60 178.72 290.54 40.64 17.43 222.17 

174 127.21 182.19 274.70 52.25 34.47 276.55 

175 133.87 182.46 270.89 27.19 20.42 121.90 

176 129.11 187.18 268.41 42.27 39.06 188.20 

177 151.22 192.95 224.88 51.81 40.09 263.13 

178 107.69 188.62 325.70 27.85 81.90 144.93 

179 112.40 200.99 288.27 29.25 182.70 209.55 

180 156.22 201.67 219.59 104.11 152.72 330.41 

181 130.04 204.57 241.54 46.70 120.73 285.89 

182 123.44 185.29 282.62 44.80 35.35 231.37 

183 125.94 199.73 263.18 31.79 105.23 136.10 

184 114.28 193.69 307.47 30.78 95.18 128.88 

185 122.60 194.50 283.65 31.89 85.56 157.13 

186 122.84 200.31 265.53 32.98 115.31 199.16 

187 125.19 191.62 275.25 59.00 153.97 241.18 

188 108.56 178.85 331.71 19.77 12.89 99.23 

189 132.94 196.56 245.99 49.53 106.49 316.40 

190 138.41 190.46 253.99 94.21 164.50 422.11 

191 137.47 182.42 255.42 59.75 35.87 316.46 

192 117.60 183.26 298.38 41.92 68.14 232.89 
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193 122.83 198.60 276.74 43.06 96.55 216.44 

194 115.76 201.06 278.96 49.15 126.97 310.22 

195 132.24 203.15 250.38 69.32 111.71 347.38 

196 128.39 193.80 271.40 99.15 226.12 424.12 

197 122.03 190.96 276.84 55.02 107.93 369.28 

198 148.17 199.56 214.27 52.74 53.56 272.88 

199 138.77 178.46 268.35 85.09 65.69 357.32 

200 138.99 192.35 239.79 78.08 115.33 367.76 

 

The population dataset and Python programming code which we have used in this paper for calculate the 

results of each occasion is available at: https://abdulalim90.blogspot.com/  
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Abstract 

 
The degree of reliability of the transportation tree-like networks is proposed to be estimated by the 

index of operational reliability, which is the relative volume of the product not delivered to the point 

for some time due to the failures of its elements. A method is proposed for calculating this index using 

a characteristic feature of the structure of transportation network – a tree-like structure and assumes 

the time invariance of failure and repair flows of its elements. On such structure, the Y-shaped 

structure-forming fragment is distinguished, the assessment of the reliability of which (in the 

accepted understanding) is carried out analytically using the concept of the state space. Each of Y-

shaped fragment is virtually replaced by one fictitious element, the destruction parameter of which is 

calculated from the condition of equality of the volumes of the product undelivered to the network 

output during such a replacement. The calculation of the operational index is reduced to a step-by-

step recurrent procedure using the results obtained in the previous step. 

 

Key words: transportation network, product, operational reliability, Y-shaped 

fragment, failure-repair process, virtual equivalence.       

 

 

 

 

 

It is difficult to point presently a field of production activity in which, to greater or lesser extent, 

transportation networks would not be used. With all their diversity, under the transportation 

network, in the general case, one can understand the aggregate of transport links (mains) along 

which the necessary movement of a certain “product” in space is carried out. 

Transportation networks are classified according to various criteria, in particular, according to 

their topology. This article discusses a class of tree-like networks designed to transport a product 

entering at some network inlets to its only outlet, i.e. performing, figuratively speaking, an 

“aggregation” function (Fig. 1). Examples of such networks, under varying degrees of idealization, 

are: oil or gas transportation systems from production sites to the main pipeline; sewer networks of 

large cities; a network of approach lines to the gravity hump of a railway sorting yard of the station; 

assembly conveyors of various flow-line productions and much more. One of the properties of a 

transportation network, like any technical object, is the reliability of its functioning. In the “classical” 

reliability theory, an object is usually estimated using a set of quantitative indexes such as “survival 

function”, “mean operating time between failures”, and others [1]. For most technical objects, such 

indexes most often correspond to the everyday insights about the reliability of the object’s 

functioning and are easily interpreted physically.  

115



 
Baranov, L.A., Ermolin, Y.A., Shubinsky, I.B. 
ON A RELIABILITY OF TREE-LIKE TRANSPORTATION NETWORKS 

RT&A, No 2 (62) 
Volume 16, June 2021  

 

 

 
Fig. 1. Tree-like transportation network. 

  

When it comes to transportation networks, these indexes sometimes lead to ambiguity in their 

interpretation and require additional explanations and clarifications [2-4]. Moreover, when 

analyzing the operation of transportation networks, it often turns out that such generally different 

concepts as “reliability” and “operational efficiency” are so interrelated that it is very difficult to 

separate them from each other. Therefore, the choice of a single quantitative index, to a certain 

extent, uniting these two concepts, as well as the development of an engineering methodology for 

its calculation, seems to be actual and important task. One of the possible solution to this problem 

may be the approach proposed in this article. 

For the uniqueness of further understanding, we will specially stipulate the terminology and 

assumptions accepted in this work: 

- topologically, the network is a simply connected labeled graph with several entrance nodes 

(inputs) and one outgoing (output); 

- each transport link of the network will be considered as an “element”; 

- regardless of the physical character, what the network is intended to transport will be called 

“product”; 

- the intensity of the product flow arriving into i-th inlet of the network will be called “product 

flow rate”; 

- the movement of the product along each element of the network is unidirectional; 

- in the process of functioning, any element of the network can be one of two possible states: 

“in operation” or “under repair”; 

- transition of any element from working state to repair and back occurs at random moment 

of continuous time; 

- flows of failures and repairs of the i-th element are stationary [5] with parameters i   and 

i , respectively. 

Consider the simplest Y-shaped transportation network (Fig. 2a)); to Fig. 2b) we will return 

later. 

 
Fig. 2. Y-shaped transportation network a) and its equivalent b). 
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The network consists of three elements (1, 2 and 3); into inputs 1 and 2 come product value per 

time unit 1q  and 2q . The purpose of the network is to transport the incoming product to the output 

of 3nd element ( 3q ). In the process of functioning, the network elements can fail with rates 21 ,  

and 3 , respectively, be repaired (with rates 21,  and 3 ), and re-enter in operation. As a result, 

a part of the product Q  that arrived at the network inlets during the time T is not delivered to its 

output. Let us evaluate Q , assuming that all listed technological parameters and parameters of 

the failure-restoration process are given. 

 

We depict the graph of states for Y-shaped network shown in Fig. 2a). For this purpose, let us 

number and describe all possible states of the network (there are 8 of them) and assign each of them 

its stationary possibility ip   (i = 70 ), namely: 

 

0: (all three elements in operation) - 0p ; 

1: (1st element under repair, 2nd and 3rd in operation) - 1p ; 

2: (2nd element under repair, 1st and 3rd in operation) - 2p ; 

3: (3rd element under repair, 1st and 2nd in operation) - 3p ; 

4: (1st and 2nd elements under repair, 3rd in operation) - 4p ; 

5: (1st and 3rd elements under repair, 2nd in operation) - 5p ; 

6: (2nd and 3rd elements under repair, 1st in operation) - 6p ; 

7: (all three elements are under repair) - 7p .  

 

Then, the state space graph for Y-shaped network will be shown in the following form (Fig. 3). 

 

 
Fig. 3. State space graph for Y-shaped network. 

  

Determination of the probability values ip  is realized in line with a common procedure   [5] 

and reduces to solving of the matrix equation: 

 𝐴 ⋅ �̃� = �̃�,         (1) 
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where (under preceding notations and taking account of the normalization condition 1
7

0

=
=i

ip ) A  

-  is the square matrix of size [8 8] having the form: 

 

 
 

B - is the row-matrix of free members [0 0 0 0 0 0 0 1], P - is the row-matrix of required stationary 

probabilities [ 0p 1p 2p 3p 4p 5p 6p 7p ], and “~” – is the transposition symbol. 

With every state i can associate a certain product volume iQ  undelivered to the network 

output at time T  due to the network elements failure. This volume is easily determined from Fig. 

2a) and equals to: for the state 0 → Δ𝑄0 = 0; 1 → Δ𝑄1 = 𝑞1𝑇; 2 → Δ𝑄2 = 𝑞2𝑇; 3 ÷ 7 → Δ𝑄3 ÷ Δ𝑄7 =

(𝑞1 + 𝑞2)𝑇. 

The undelivered product volume Δ𝑄 is calculated as expectation of the random variable Δ𝑄𝑖: 

 
=

=
7

0i

ii QpQ .        (2) 

We introduce a new index of operational reliability. 

As a quantitative measure (index) of the operational reliability of Y-shaped transportation network (Fig. 

2a))   we will be considering the relative part of the product undelivered to the output due to the failure of 

network elements, i.e. [6]: 

 
Q

Qp

Q

Q i

ii
=



=


=

7

0 ,        (3) 

where Q  is the product volume incoming at the network inputs during the time Т ; in the case 

under consideration TqqQ )( 21 += . 

As can be seen from (3) the value    is normalized and can vary from 0 to 1. The value 0=  

corresponds to a reliable, and 1=  to an unreliable network. Intermediate values   characterize 

the degree 0f reliability of this object (in considered sense). 

The index   is more informative than generally accepted indexes of the “classical” reliability 

theory (“survival function”, etc.) since its value depends not only on the technological parameters 

of the transportation network (“product flow rate” for inputs), but also from the location of the failed 

element in the object structure. 

For this class of tasks such an index is applicable to characterize a reliability of not only three-

element network considered above, but also networks containing any (usually n) number of 

elements. However, methods for calculating it for practical cases, when n can reach ten or even 

hundreds, causes significant difficulties: the number of possible network states is 
n2  [5], and, for 

large n, the calculation of their stationary probabilities becomes very resource-expendable even for 

modern computing technologies. It is possible to use topological calculation methods [17-19, etc.], 

which directly from the state graph of a complex system allow us to formalize the reliability 

indicators.  
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However, for the considered class of problems of analyzing systems with network structures 

and a specific reliability indicator, the use of known topological methods is also largely resource 

intensive. 

Overcome these difficulties allows an approach proposed further. This approach proceeds from 

the fact that the probabilities of simultaneous failure of two or more elements of Y-shaped network 

shown in Fig. 2a) are extremely low. It is important to note that this assumption is applies only to 

each element of Y-shaped fragment. The state graph of such system is shown in Fig. 4. 

 
 

Fig. 4. State graph for Y-shaped network corresponding to the simplifying assumption. 

  

The state numbers accepted in Fig. 4, their contents and notations of the assigned possibilities ip  (

30=i ) are explained below: 

 0: (all three elements in operation) - 0p ; 

 1: (1st element under repair, 2nd and 3rd in operation) - 1p ; 

 2: (2nd element under repair, 1st and 3rd in operation) - 2p ; 

 3: (3rd element under repair, 1st and 2nd in operation) - 3p . 

 In this case the solution of equation (3) simplifies and leads to following expressions for 

stationary possibilities [7]: 

 
321

0
1

1

 +++
=p ;           (4) 

 
321

1
1
1 



+++
=p  ;           (5) 

 
321

2
2
1 



+++
=p  ;           (6) 

 
321

3

2
1 



+++
=з  ,           (7) 

when dimensionless parameters are additionally introduced: 111 /  = ; 222 /  = ; 

333 /  = . 

 Each i-th state corresponds to the volume of the product undelivered to the network output 

that will be now (see Fig. 2a)): 0 → Δ𝑄0 = 0; 1 → Δ𝑄1 = 𝑞1𝑇; 2 → Δ𝑄2 = 𝑞2𝑇; 3 → Δ𝑄3 = (𝑞1 + 𝑞2)𝑇, 

and the expectation Q  is calculated as: 

 
=


+++

+++
==

3

0 321

232131

1

)()(

i

ii T
qq

QpQ



.      (8) 
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 The results of performed numerical calculations given in [3] allow us to speak that a 

calculation error is relative and is acceptable when replacing the exact formula (2) with approximate 

(8) amounting to the tenth parts of a percent. 

Let us carry out the equivalency operation symbolically shown in Fig. 2, i.e. let us replace the 

Y-shaped network with one element, choosing the parameter 123  that determines its “failure-

repair” process from the condition of equality of expectations Q  corresponding to Fig. 2a) and 

Fig. 2b). Applying the technique described in [8], we get: 

 
2112

232131

123
)1()1(

)()(

qq

qq






+++

+++
= .       (9) 

Considering that 1  and 2  are usually negligible in comparison with unity, we have with a 

high degree of accuracy finally: 

 
21

232131

123

)()(

qq

qq

+

+++
=


  .       (10) 

It can be shown [3] that the value 123  calculated by (10) numerically coincides with the 

quantitative measure of the reliability of Y-shaped network (see (3)) proposed in this article. Thus, 

the system in Fig. 2a) can be formally replaced by one equivalent fictitious element (Fig. 2b)), the 

only parameter 123  of which is unambiguously expressed through the parameters of the original 

Y-shaped network. 

The operation of equivalency can be applied not only to Y-shaped network, but also to any 

three-like transportation structure having an arbitrary number of elements. This possibility follows 

from the topological feature of such networks. 

Consider again the network shown in Fig. 1. It is easy to see that this tree-like transportation 

network is a certain connection (composition) of Y-shaped fragments. In this sense, such fragment 

of the network can be considered as a structure-forming fragment. Taking into account that each 

such fragment can be virtually replaced by one equivalent fictitious element, the following 

procedure is proposed for quantifying the reliability (in sense considered here) of the network as a 

whole.  

Determination of the operational reliability index is reduced to a recurrent step-by-step 

procedure for equivalent Y-shaped network fragments, at each stage of which the results of 

calculations at the previous step are used as input data. Each such step, starting from the inputs, 

leads to a new (virtual) network, in respect of which the procedure is repeated. The equivalence 

process ends when the original network is represented by only one fictitious Y-shaped fragment, the 

reliability index of which is determined in an elementary way (by analogy with formula (10). 

It is most convenient to demonstrate the application of this algorithm with a specific numerical 

example. As such an example, consider the network shown in Fig. 1, enumerating its elements and 

designating the parameters used in further calculations (Fig. 5a)). 

 

 
Fig. 5. Transportation network a) and its virtual transformations b), c), d). 
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We assume the values of the failure ( i ) and repair ( i ) rates for all elements of the original 

network proceeding only from convenience of considerations in calculations carrying out. Besides, 

we take into account that they mutual relations are typical for real objects [3]. These data are 

tabulated in Table 1. 

 

Table 1. Input data for the numerical example. 

Element 

number; i 
1 2 3 4 5 6 7 8 9 

i ; proper units 0,5 0,7 0,8 0,2 0,9 0,4 0,2 0,3 0,1 

𝜇𝑖; proper units 365 365 365 365 365 365 300 300 180 

𝜁𝑖 × 103 1,37 1,92 2,19 0,54 2,47 1,09 0,67 1,0 0,56 

 

In lower line of Table 1 the values of dimensionless parameter i  characterizing the “failure-

repair” process of i-th element of the considered network are given. In addition, we assign the 

product flow rates at network inputs (in proper units): 5,11 =q ; 5,12 =q ; 0,23 =q ; 0,24 =q ; 

0,35 =q . 

 

We proceed to the step-by-step procedure. 

 

Step 1. From Fig. 5a) it can be seen that from the network elements adjacent to the inputs, two 

Y-shaped fragments can be distinguished: I, including elements 1, 2 and 6, and II, including elements 

4, 5 and 8. In Fig. 5a) these fragments are conventionally enclosed in contours bounded by dashed 

lines. Let us carry out the equivalence of these fragments calculating, respectively, I  and II  

according to the formula (10): 

 
3
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)()( −=
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+++
=

qq

qq
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 ,      (11) 
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       (12) 

This makes it possible to replace the original network with its virtual analogue (Fig. 5b)). 

 

Step 2. On the network thus obtained, we carry out again the equivalence operation (contour 

III), and calculate III  using the results (11) and (12): 

 
3
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 .    (13) 

We turn to the network shown in Fig. 5c). 

 

Step 3. Similarly, we equivalent the system of elements III, II and 9 (contour IV). We calculate 

IV : 

 
3

54321

5493219 10502,3
))(())(( −=

++++

++++++
=

qqqqq

qqqqq IIIII

IV


  .    (14) 

 

Step 4. We pass to one virtual element (Fig. 5d)) which replaces the entire original network. 

 

However, as explained above, the value IV  numerically coincides with quantitative measure 
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of reliability (operational reliability index)   for the original network. Physically, for this example, 

the result obtained indicates that, on average, about 0,35 % of the product volume entering the 

network inputs is not delivered to the output due to the unreliability of its elements. 

Thus, the proposed method for determining the index of the operational reliability of the 

transportation network is solved in just four steps of the procedure of sequential virtual 

transformations (equivalence) of the object, at each of which simple intermediate calculations are 

performed. Let us note, by the way, that the solution of this problem by drawing up the Kolmogorov 

equations would lead to the need to determine the stationary probabilities of network states from a 

system of 512 interconnected algebraic equations. 

 

In conclusion we note that the operational index   can be useful in solving many practical 

problems, such as, for example, assessing a technical condition of the network at the current time, 

drawing up plans for medium- and long-term actions for the sequence of repairs and renovations of 

the network, developing alternate versions for its expansion and development (if necessary), and 

others. At the same time, considering the informational richness of index  , at least some of this 

kind of tasks can be posed and solved as optimization ones [9]. 

Finally, one more remark. The beginning of the article, as a limitation of the method under 

discussion, the assumption about the time invariance of failure and repair flows of all transportation 

network elements is indicated. Meanwhile, there are cases when for some elements this assumption 

clearly contradicts reality, and, thus, makes the application of the developed method incorrect. This 

difficulty can be circumvented by approximate “stationarization” non-stationary flows of events. 

The methodology of such stationarization has be developed and published both for special cases: 

seasonally changing [10-13] or linearly increasing in time failure rate [14], and for the case when 

network element “ages” according to an arbitrary but well-known law [15-16].     
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Abstract 

 

This paper intends to introduce a different ranking approach for obtaining the critical path of the 

fuzzy project network. In the network, each activity time duration is viewed by the fuzzy 

hexagonal number. This study proposes an advanced ranking approach by applying the centroid 

of the Hexagonal fuzzy number. The Hexagon is separated into two right angles and one polygon. 

By applying the right angle and polygon centroid formula, we can calculate the centroid of each 

plane and calculate the centroid of the centroid. It also focuses on the arithmetic operations in 

Hexagonal fuzzy numbers. The developed strategy has been described by a numerical illustration 

and is correlated with a few of the existing ranking approaches. 
 

Keywords: Fuzzy critical path, fuzzy triangular number, ranking function, 

centroid, the centroid of centroid, hexagonal fuzzy number. 
 

 

I. Introduction 
 

Construction is an essential planning tool and organizes the implementation of a specific project. 

The network diagram plays a critical aspect in the completion period of the formative project. The 

Critical Path Method (CPM) is a successful approach to scheduling and controlling large 

management and construction projects. The Critical Path Method was developed at the beginning 

of the 1960s; with the support of the critical path, the decision-maker will follow an acceptable 

technique of maximizing the project period and the possible tools to achieve the project's earliest 

completion and quality. 

 

The fuzzy set theory can always play significant role in dealing with the complexity of the 

activity’s durations in a project network in this type of problem.  

 

In 1965, Zadeh [8] recommended the fuzzy set concept to represent undefined terms. Jain [10, 11] 

recommended a ranking approach applying the notion of maximizing the fuzzy number of the 

order set in 1976.  
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Yager [12, 13] also suggested some ranking functions, where the hypothesis of normality or 

convexity is not assumed. In1981, FPERT [20] was suggested by Stefan Chanas and Kamburowski 

for project completion time estimation. They did not suggest FPERT as an alternative approach to 

probabilistic methods because there is no statistical correlation between them. Therefore, there was 

a need for developing the concept of ranking fuzzy numbers. Subsequently, Lee and Li [5] 

suggested fuzzy ranking depending on two distinctive factors: mean and distribution of fuzzy 

numbers in 1981. Cheng suggested a later coefficient of variance (CV index) in 1988 to enhance Lee 

and Li's concept [3]. In 2006, Abbasbandy et. al [17] introduced a ranking approach based on sign 

distance. Asady et. al [2] suggested a new ranking fuzzy number strategy by minimization of 

distance. There are some limitations to Asady's strategy. So, Abbasbandy and Hajjari [18] 

suggested the magnitude of fuzzy numbers in 2009 to enhance Asady's strategy. In 2013, 

Rajarajeswari and Sahaya Sudha [14, 15] suggested a new ranking function in linear fuzzy 

hexagonal numbers and applied it to the fuzzy linear programming problem. In 2015, 

Thamaraiselvi and Santhi [21] resolved the fuzzy transportation problem by applying the 

magnitude of Hexagonal fuzzy numbers. In 2016, Sudha and Revathi [1] proposed a new ranking 

on Hexagonal fuzzy numbers and utilized it to a fuzzy linear programming problem. Selvakumari 

and Sowmiya [19] proposed a methodology in 2017 for locating fuzzy critical paths utilizing 

Pascal's triangle graded mean integration when the period of every activity is expressed as a 

Linear Hexagonal fuzzy number. In 2017, Elumalai et al; introduced [6] to solve the fuzzy 

transportation problem by applying the Robust ranking approach. Rajendran et.al; proposed a new 

ranking in generalized hexagonal fuzzy numbers in 2018, and results compared with the 

magnitude of a fuzzy hexagonal number. In 2020, Leela-Apiradee et. al; introduced [9] Hexagonal 

fuzzy number cardinality, which is used to understand a technique for categorizing Hexagonal 

fuzzy numbers, and proposed a ranking approach Hexagonal fuzzy numbers, especially on their 

possible mean values. In 2020, Avishek et.al.[4] introduced a new ranking and defuzzification idea 

to transform a fuzzy hexagonal number into a crisp number determining its significance for 

solving decision-making problems. In 2020, Thirupathi et al. [22] Introduced a new raking 

approach depending on the fuzzy hexagonal number utilizing the centroid formula of triangle and 

rectangle and considering the distance from the origin to centroid centroided. It is considered as a 

ranking in Hexagonal fuzzy numbers. 

 

2. Basic Definitions 

 

2.1 Fuzzy Set [8] 
“A fuzzy set �̃� is defined on the universal set of real numbers; �̃� is a fuzzy number with the 

following its membership function. 

(i) 𝜇𝐴(𝑥):�̃�→ [0,1] is continuous 

(ii) 𝜇𝐴(𝑥) = 0 for all 𝑥  ∈ [−∞, 𝑝] ∪ [𝑠,∞] 

(iii) 𝜇𝐴(𝑥) is strictly increasing on [𝑝, 𝑞] and strictly decreasing on [𝑟, 𝑠] 

(iv) 𝜇𝐴(𝑥)=1 for all 𝑥 ∈ [𝑞, 𝑟] where 𝑝 ≤ 𝑞 ≤ 𝑟 ≤ 𝑠.” 

 

2.2 Fuzzy Number [8] 
“A Fuzzy set �̃� of the real line �̃� with membership function 𝜇𝐴(𝑥): �̃�→ [0,1] is called the fuzzy 

number, if 

(i) �̃� must be a normal and convex fuzzy set. 

(ii) The support of �̃� is finite.” 

 

2.3 Generalized Fuzzy Number [13] 
“A fuzzy set �̃� is known as a generalized fuzzy number on a universal set of real numbers if its 
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membership function has the following conditions: 

(i) 𝜇𝐴(𝑥): �̃�→ [0,1] is continuous 

(ii) 𝜇𝐴(𝑥) = 0 for all 𝑥  ∈ [−∞, 𝑝] ∪ [𝑠,∞] 

(iii) 𝜇𝐴(𝑥)is strictly increasing on [𝑝, 𝑞] and strictly decreasing on [𝑟, 𝑠] 

(iv) 𝜇𝐴(𝑥) = ω for all 𝑥 ∈ [𝑞, 𝑟] where 0<ω≤1.” 

 

2.4 Trapezoidal Fuzzy Number [14] 
“A fuzzy number �̃� is a Trapezoidal fuzzy number denoted by (𝑝, 𝑞, 𝑟, 𝑠), and its membership function is 

given below. Where 𝑝 ≤ 𝑞 ≤ 𝑟 ≤ 𝑠. 
 

𝜇𝐴(𝑥) =

{
 
 

 
 

𝑥−𝑝

𝑝−𝑞
, 𝑓𝑜𝑟 𝑝 ≤ 𝑥 ≤ 𝑞

1,           𝑓𝑜𝑟 𝑞 ≤ 𝑥 ≤ 𝑟
𝑠−𝑥

𝑠−𝑟
,   𝑓𝑜𝑟 𝑟 ≤ 𝑥 ≤ 𝑠

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑖𝑠𝑒"

                                                (1) 

 

2.5 Generalized Trapezoidal Fuzzy Number [14] 
“Generalized Fuzzy number �̃� = (𝑝, 𝑞, 𝑟, 𝑠, 𝜔)is said to be a generalized trapezoidal fuzzy number 

if its membership function is given by 

𝜇𝐴(𝑥) =

{
 
 

 
 𝜔 (

𝑥−𝑝

𝑝−𝑞
) , 𝑓𝑜𝑟 𝑝 ≤ 𝑥 ≤ 𝑞

𝜔,           𝑓𝑜𝑟 𝑞 ≤ 𝑥 ≤ 𝑟

𝜔 (
𝑠−𝑥

𝑠−𝑟
) ,   𝑓𝑜𝑟 𝑟 ≤ 𝑥 ≤ 𝑠

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒"

                                   (2) 

 

Generalized Trapezoidal fuzzy number diagram represented in Figure 1. 

 

 
             Figure 1: Graphical representation of GTFN 

 

2.6 Hexagonal Fuzzy Number [14] 
“A Fuzzy number �̃�𝐻 is a Hexagonal fuzzy number represented by �̃�𝐻 = (𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢)where 

, , , , ,a b c d e f are real numbers and its membership function 𝜇𝐴(𝑥)is given below 

𝜇𝐴𝐻(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

1

2
(
𝑥 − 𝑝

𝑞 − 𝑝
)    ,   𝑓𝑜𝑟  𝑝 ≤ 𝑥 ≤ 𝑞

1

2
+
1

2
(
𝑥 − 𝑞

𝑟 − 𝑞
)  ,   𝑓𝑜𝑟   𝑞 ≤ 𝑥 ≤ 𝑟

1  ,                             𝑓𝑜𝑟   𝑟 ≤ 𝑥 ≤ 𝑠

1 −
1

2
(
𝑥 − 𝑠

𝑡 − 𝑠
)  ,     𝑓𝑜𝑟  𝑠 ≤ 𝑥 ≤ 𝑡

1

2
(
𝑢 − 𝑥

𝑢 − 𝑡
) ,            𝑓𝑜𝑟  𝑡 ≤ 𝑥 ≤ 𝑢

0 ,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒"
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2.7 Generalized Hexagonal Fuzzy Number [16] 
“A generalized Hexagonal Fuzzy number represented by �̃�𝐻 = (𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝜔) where  

, , , , ,a b c d e f are real numbers and its membership function 𝜇𝐴𝐻(𝑥) is given by  

𝜇𝐴𝐻(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

1

2
(
𝑥 − 𝑝

𝑞 − 𝑝
)    ,   𝑓𝑜𝑟  𝑝 ≤ 𝑥 ≤ 𝑞

1

2
+
𝜔

2
(
𝑥 − 𝑞

𝑟 − 𝑞
)  ,   𝑓𝑜𝑟   𝑞 ≤ 𝑥 ≤ 𝑟

𝜔  ,                             𝑓𝑜𝑟   𝑟 ≤ 𝑥 ≤ 𝑠

1 −
𝜔

2
(
𝑥 − 𝑠

𝑡 − 𝑠
)  ,     𝑓𝑜𝑟  𝑠 ≤ 𝑥 ≤ 𝑡

1

2
(
𝑢 − 𝑥

𝑢 − 𝑡
) ,            𝑓𝑜𝑟  𝑡 ≤ 𝑥 ≤ 𝑢

0 ,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒"

     

 

Generalized Hexagonal Fuzzy Number diagram represented in Figure 2. 

 
 

         Figure2:  Generalized Hexagonal Fuzzy Number 

 

2.8 Ordering of Hexagonal Fuzzy Number [16] 
“Let �̃�𝐻 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6) and �̃�𝐻 = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6) be in fuzzy real number be the set of 

real Hexagonal fuzzy numbers 

(i) �̃�𝐻 ≃ �̃�𝐻 iff 𝑝𝑖 = 𝑞𝑖 ,  𝑖 = 1,2,3,4,5,6 

(ii) �̃�𝐻 ≤ �̃�𝐻 iff 𝑝𝑖 ≤ 𝑞𝑖 ,  𝑖 = 1,2,3,4,5,6 

(iii) �̃�𝐻 ≥ �̃�𝐻 iff 𝑝𝑖 ≥ 𝑞𝑖 , 𝑖 = 1,2,3,4,5,6” 

 

2.9 Ranking of Hexagonal Fuzzy Number [16] 
An effective approach for comparing fuzzy numbers is to use a ranking function ℛ: 𝐹(𝑅) ⟶ 𝑅, 

where 𝐹(𝑅) is a collection of fuzzy numbers that maps each fuzzy number into a real number, 

where a natural number order exists. For any two Hexagonal fuzzy numbers �̃�𝐻 =

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6) and �̃�𝐻 = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6) have the following comparison. 

(i) �̃�𝐻 = �̃�𝐻   ⇔  𝑅(�̃�𝐻) = 𝑅(�̃�𝐻) 

(ii) �̃�𝐻 ≤ �̃�𝐻   ⇔  𝑅(�̃�𝐻) ≤ 𝑅(�̃�𝐻) 

(iii) �̃�𝐻 ≥ Q  ⇔  𝑅(�̃�𝐻) ≥ 𝑅(�̃�𝐻)  

 

 

 

  

127



 
S. Adilakshmi, N. Ravi Shankar 
A NEW RANKING IN HEXAGONAL FUZZY NUMBER BY CENTROID OF 
CENTROIDS AND APPLICATION IN FUZZY CRITICAL PATH 

RT&A, No 2 (62) 
Volume 16, June 2021  

 

 

3. Proposal of a new ranking in Linear Hexagonal Fuzzy Number 

 
We suggest a successful method for calculating the rank of Hexagonal fuzzy numbers. The 

Proposal ranking in the Hexagonal fuzzy number diagram is represented in Figure 3.  

 

 

 
                                                 Figure3:  Proposed Ranking Method 

 

In Figure 3, the hexagonal is split into two right angles and one polygon. By applying the centroid 

formula of right angle and polygon, calculate the centroid of triangles and polygon, respectively. 

The circumcentre of the centroids of the fuzzy hexagonal number is taken into a balancing point of 

Hexagon in Figure 3. The circumcentre of the centroids of this three-plane figure is taken as the 

ranking of generalized Hexagonal fuzzy numbers. Let G1, G2, and G3 be the centroid of the three 

plane figures. 

 

G1 specify the centroid of the right angle with vertices  (𝑥1, 0),  (𝑥2,
𝜔

2
) , (𝑥2, 0). 

G2 specify the centroid of the triangle with vertices              

(𝑥2,0), (𝑥2,
𝜔

2
) , (𝑥3, 𝜔), (𝑥4, 𝜔), (𝑥5,

𝜔

2
) , (𝑥5, 0)

 
G3 specify the centroid of the right angle with vertices (𝑥5, 0), (𝑥5,

𝜔

2
) , (𝑥6, 0)

 The centroid of these three planes is; 

 

1 2
1

2
,

3 6

x x
G

+ 
=  
 

, 𝐺2 = (
2𝑥2+𝑥3+𝑥4+2𝑥5

6
,
𝜔

2
), 5 6

3

2
,

3 6

x x
G

+ 
=  
 

  respectively. 

The circumcentre of G1, G2, and G3 is 

𝐺𝐴𝐻 = (
2𝑥1 + 6𝑥2 + 𝑥3 + 𝑥4 + 6𝑥5 + 2𝑥6

18
,
5𝜔

18
) 

 

Therefore, the generalized Hexagonal fuzzy number �̃�𝐻 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝜔)  new ranking 

function is: 

𝑅(�̃�𝐻) = (�̅�0�̅�0) = (
2𝑥1 + 6𝑥2 + 𝑥3 + 𝑥4 + 6𝑥5 + 2𝑥6

18
) ∗

5𝜔

18
 

 

Here, we utilize 4 sets of Hexagonal fuzzy numbers. These are opted from ref [16] to analyze the 

suggested method with convinced current ranking methods. The sets and the outcome obtained by 

the suggested method are given in Table1. 
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Table1: Ranking order obtained results by the suggested method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Proposal ranking method is compared with some existing methods represented in Table 2. 

 
Table2: The comparison of different ranking methods 

 

 

 

Sets Hexagonal Fuzzy Numbers 𝓡(�̃�𝑯) Conclusion 

Example 1 

 

 

Set-1 

�̃�(1,2,3,4,5,6;0.8) 0.7777 

 

 

�̃� < �̃� < �̃� < �̃� 

�̃�(-1,0,2,4,5,6;0.8) 0.5679 

�̃� (-2, -1,0,2,4,6;0.8) 0.3456 

�̃�(-2, -1,0,1,2,3;0.8) 0.1111 

Example2 

 

 

Set-2 

�̃� (1,0,0.2,0.3,0.4,0.5;0.6) 0.017 

 

 

�̃�<�̃�<�̃�<�̃� 

�̃�(-1, -0.5,0,0.4,0.5,1;0.6) 0.003 

�̃� (-1, -0.6,0.3,0.2,0.5,1;0.6) -0.006 

�̃�(-1, -0.2, -0.1,0.2,0.3,1;0.6) 0.006 

Example 3 

 

Set-3 

�̃�(0.1,0.2,0.4,0.6,0.7,0.9;1) 0.12963 

𝐵 ̃>�̃� 

�̃�(0.2,0.4,0.6,0.7,0.8,0.9;1) 0.16512 

Example 4 

Set-4 
�̃�(0.2,0.3,0.5,0.6,0.7,0.9;0.7) 0.1  

Â >�̂� 
�̃�(0.1,0.2,0.4,0.5,0.6,0.9;0.7)    0.08 

Ranking 

method 
Set1 Set2 Set3 Set4 

Avishek 

method [4] 
�̃� < �̃� < �̃� < �̃� �̃�< �̃�< �̃�<�̃� �̃�>�̃� �̃�> �̃� 

Nagoor method 

[7] 
�̃� < �̃� < �̃� < �̃� �̃�< �̃�< �̃�<�̃� �̃�>�̃� �̃�>�̃� 

Rajendran 

method [16] 
�̃� < �̃� < �̃� < �̃� �̃�< �̃�< �̃�<�̃� �̃�>�̃� �̃�>�̃� 

Proposal 

method 
�̃� < �̃� < �̃� < �̃� Ĉ <�̂�<𝐵 ̂< Â �̃�>�̃� �̃�>�̃� 
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4 Fuzzy Critical by a new ranking in Hexagonal fuzzy number 
 

4.1 Analytical Example 

 
 This section, come out with numerical application of the proposal fuzzy set CPM-based 

methodology on an activity network. We consider a network with a set of fuzzy events �̃�= {1, 2, 3, 

4, 5, 6, 7} and the fuzzy activity time represented as a Hexagonal fuzzy number for each activity in 

table3. (All durations in days) Furthermore, the project network diagram is represented in 

Figure 4. 

 

Table 3:  Fuzzy project network information 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Fuzzy project network 

 

Hexagonal fuzzy number transformed into an activity duration by proposal method. This activity 

duration taken as the time between the nodes and fuzzy critical path is calculating by applying the 

traditional method. The expected time between activities represented in Table4 and the related 

diagram is represented in Figure5. 

Activity 
Hexagonal fuzzy 

numbers 

1-2 (3,7,11,15,19,24) 

1-3 (3,5,7,9,10,12) 

2-4 (11,14,17,21,25,30) 

3-4 (3,5,7,9,10,12) 

2-5 (5,7,10,13,17,21) 

3-6 (7,9,11,14,18,22) 

4-7 (7,9,11,14,18,22) 

5-7 (2,3,4,6,7,9 

6-7 (5,7,8,11,14,17) 
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Table 4: Expected time between activities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5. Expected time between activities 

 
 

The possible paths of the project network's total duration time are represented in Table5. 

 

Table 5. Possible paths of project network total duration time 

 

 

 

 

 
 

 

 

 

Activity 
Hexagonal Fuzzy 

Numbers 

Expected 

time 

1-2 (3,7,11,15,19,24) 3.64 

1-3 (3,5,7,9,10,12) 2.09 

2-4 (11,14,17,21,25,30) 5.46 

3-4 (3,5,7,9,10,12) 2.09 

2-5 (5,7,10,13,17,21) 3.37 

3-6 (7,9,11,14,18,22) 3.78 

4-7 (7,9,11,14,18,22) 3.78 

5-7 (2,3,4,6,7,9 1.41 

6-7 (5,7,8,11,14,17) 2.91 

Path Expected Time 

1-2-5-7 8.42 

1-2-4-7 12.88 

1-3-4-7 7.96 

1-3-6-7 8.78 
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In table 5, the maximum value is 12.88. 

Therefore, the project completion duration is 12.88, and the critical path is 1-2-4-7. 
 

5 Comparison with Existing methods 

 

Existing Method1[14] 

 
In 2013, Rajarajeswari and Sahaya Sudha suggested a revised ranking in Hexagonal fuzzy 

numbers. Their new ranking function in Hexagonal fuzzy number is; 

 

ℛ(�̃�𝐻) =
2𝑓1 + 3𝑓2 + 4𝑓3 + 4𝑓4 + 3𝑓5 + 2𝑓6

18
×
5

18
 

 

Existing Method2 [21] 

 
In 2015, Thamaraiselvi et. al. suggested the Magnitude of Hexagonal fuzzy numbers. The 

magnitude of Hexagonal fuzzy number is; 

 

𝑀𝑎𝑔(�̃�𝐻) =
2𝑓1 + 3𝑓2 + 4𝑓3 + 4𝑓4 + 3𝑓5 + 2𝑓6

18
 

 

Existing Method3 [1] 

In 2016, Sahaya Sudha and Revathi introduced an improved ranking in generalized Hexagonal 

fuzzy numbers. Their new ranking function is; 

 

ℛ(�̃�𝐻) =
2𝑓1 + 4𝑓2 + 9𝑓3 + 9𝑓4 + 4𝑓5 + 2𝑓6

6
×
11𝜔

6
 

 

Existing Method4 [16] 

In 2017, Rajendran et.al., suggested a revised ranking in generalized Hexagonal fuzzy numbers. In 

their method, the new ranking function is; 

 

ℛ(�̃�𝐻) =
2𝑓1 + 3𝑓2 + 4𝑓3 + 4𝑓4 + 3𝑓5 + 2𝑓6

18
×
5𝜔

18
 

Existing Method5 [22] 

In 2020, Thirupathi et.al., suggested a revised ranking function in generalized Hexagonal fuzzy 

numbers. The revised ranking function is; 

 

ℛ(�̃�𝐻) =
2𝑓1 + 4𝑓2 + 3𝑓3 + 3𝑓4 + 4𝑓5 + 2𝑓6

18
×
13𝜔

36
 

Existing Method6 [4] 
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In 2020, Avishek et.al., suggested a ranking in generalized Hexagonal fuzzy numbers. Their 

developed ranking function in Hexagonal fuzzy number is; 

 

ℛ(�̃�𝐻) =
4𝑓1 + 10𝑓2 + 16𝑓3 + 16𝑓4 + 10𝑓5 + 4𝑓6

12
×
5𝜔

6
 

Table 6 represents project completion time estimates using the developed model and existing 

methodologies. Figure 5 presented the fuzzy critical path and project completion time of some 

recent methods as well as the proposal method. 

 
Table 6:  Fuzzy Critical path compare with existing methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Fuzzy critical path compared with existing methods graph 
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Rajendran et.al method 1-2-4-7 12.01 

Magnitude of HFN 1-2-4-7 45.89 

Rajarajeswari and 

Sahaya Sudha 
1-2-4-7 12.73 

Thirupathi et.al 1-2-4-7 16.62 

Avishek et.al 1-2-4-7 128.74 

Proposal method 1-2-4-7 12.88 
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4. Conclusion 

 
In this paper, activity durations in the network represented by Hexagonal fuzzy numbers and 

suggested an advanced ranking function by Hexagonal fuzzy numbers with the centroid of 

centroid method. The new ranking function has been applied to calculate the critical path for the 

fuzzy project network. Numerous experiments have been conducted, and the results are correlated 

with some of the available methods. The attained results are similar to Rajendran, Rajarajeswari, 

and Tirupati methods, and completion time is less when compared to the magnitude of hexagonal 

fuzzy numbers and Avishek et al. method despite having the same critical path in all methods. The 

Avishek method gives the highest value in the comparison results and is not correlated with any 

existing method. So, the proposed method is better than the Avishek method. Moreover, the 

investigators can use the present concept on Hexagonal fuzzy numbers in numerous domains such 

as Engineering problems, Transportation problems, Neural networks, Cloud computing, image 

processing, mobile computing, etc. Further attention proceeded by constructing a new ranking 

function by various kinds of fuzzy numbers with project networks. 
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Abstract

In this paper, we introduce a new continuous probability distribution named as type II power Topp-
Leone Dagum distribution using the type II power Topp-Leone generated family studied by Rashad et al.,
[17]. We have obtained some reliability measures like reliability function, hazard rate function, reversed
hazard rate function, mean waiting time, mean past life time, mean deviation, second failure rate function
and mean residual life function. We have derived some statistical properties of the new probability
distribution including mean, variance, moments, moment generating function, characteristics function,
cumulant generating function, incomplete moments, inverted moments, central moments, conditional
moments, probability weighted moments and order statistics. For the probability proposed new probability
distribution. we have obtained some income inequality measures like Lorenz curve, Bonferroni index,
Zenga index and Generalized entropy. The maximum likelihood estimation method is used to estimate the
parameters of the probability distribution. Finally, the proposed generalized model is applied to life time
data sets to evaluate the model performance.

Keywords: Dagum distribution, Reliability function, Hazard rate function, Generalized entropy,
Lorenz curve, Maximum likelihood method.

I. Introduction

The life time distributions play a vital role in several research areas such as biological sciences,
medical sciences, environmental sciences, actuarial science, engineering, finance and among
others. The popular classical probability distributions do not provide greater flexibility for
life time data set, because the classical distribution have one or two parameters only. In this
situation, generalized family distribution commonly played a vital role many statistical research
areas. The main advantage of generalized family is obtained by adding one more parameters
through the classical probability distribution which gives more flexibility for generating a new
probability distribution. In this current scenario generating family of probability distributions
is attractive to many statisticians. The generating family of distributions have been investigated
by many authors. Here, we list some generating family like Marshall-Olkin-G (MO-G) family
introduced by Marshall and Olkin [16], Exponentiated-G (E-G) family introduced by Gupta et
al., [13], Quadratic rank transmuted-G (QRTM-G) family introduced by Shaw and Buckley [18],
gamma-G (G-G) family introduced by Zografos and Balakrishnan [21], Kumaraswamy-G (Kw-G)
family introduced by Cordeiro and de Castro [6], Topp-Leone-G (TL-G) family introduced by Ali
Al-Shomrani [3], Exponentiated extended-G (EE-G) family introduced by Elgarhy et al., [12] and
odd Dagum-G (OD-G) family introduced by Afify and Alizadeh [1].

Camilo Dagum introduced a Dagum distribution in 1977 for closely fitting empirical income
and wealth data. The Dagum distribution is classified into two types named type I specification
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(type I Dagum) and type II specification (type II Dagum), where type I specification deals with
three parameters while type two specification deals with four parameters. This Dagum distri-
bution has been extensively used in different areas like income and wealth data, meteorological
data, reliability and survival analysis. The Dagum distribution is alternative to heavy tailed distri-
butions such as generalized beta, Pareto and lognormal. The Dagum distribution is also known
as the inverse Burr XII distribution, especially in the actuarial literature. Domma [9] studied
characteristic of Dagum distribution that its hazard function can be monotonically decreasing, an
upside-down bathtub, or bathtub. This behavior attracted many of authors to study the model in
various fields. In fact Domma, et al., [10, 11] studied Dagum distribution with a reliability point
of view and used to analyze survival data. Kleiber and Kotz [14] and Kleiber [15] provided an
exhaustive review on the origin of the Dagum distribution and its applications. Recently, Domma
et al.,[10] studied about Dagum distribution for estimated parameters with censored samples. We
have focused the type I Dagum distribution in this research paper.

The probability density function (pdf) and cumulative distribution function (cdf) of Dagum
distribution are given respectively by

f (x; σ, θ, β) = σθβ x−θ−1(1 + σx−θ
)−β−1with x > 0, σ > 0, θ > 0 and β > 0. (1)

and

F(x; σ, θ, β) =
(
1 + σx−θ

)−βwith x > 0, σ > 0, θ > 0 and β > 0. (2)

where σ is scale parameter, θ and β are shape parameters. It is noted that if σ=1 the Dagum
distribution becomes Burr III distribution and if θ=1, the Dagum distribution becomes Log-Logistic
or Fisk distribution.

In this paper, we introduce a new generalization of type II power Topp-Leone Dagum distri-
bution using the type II power Topp-Leone generated family studied by Rashad et al., [17]. This
generated family introduces two new additional parameters and provides flexibility.

The contents of this paper are organized as follows: In Section 2, adopt type II power Topp-
Leone family proposed new generating probability distribution. In Section 3, we discuss some
reliability measures like reliability function, hazard rate function, reversed hazard rate function,
cumulative hazard function, second failure rate function, mean waiting time, mean residual life
function, mean past life time and average deviation. We have derived some statistical properties
of new probability distribution such as moments, moment generating function, characteristic
function, cumulant generating function, inverted rth moments, central moments, conditional
moments, probability weighted moments, order statistics are given in Section 3. In Section 4,
some income inequality measures like Lorenz and Bonferroni curve, Zenga index and Generalized
entropy are presented. In Section 5 estimation of the parameters of the type II power Topp-Leone
Dagum distribution is consider maximum likelihood estimation method. The real life time data
set is used for fitting type II power Topp-Leone Dagum distribution. The results are given in
Section 6. Finally, we conclude the article in Section 7.

II. Type II Power Topp-Leone Family

The type II power Topp-Leone family is introduced by Rashad et al., [17]. The probability density
function (pdf) and cumulative distribution function (cdf) of type II power Topp-Leone family of
distribution are respectively defined by

f (x; α, τ, ξ) = 2ατg(x; ξ) [1− G(x; ξ)]ατ−1 [2− [1− G(x; ξ)]τ ]α−1 [1− [1− G(x; ξ)]τ ] , xεR (3)

and

F(x; α, τ, ξ) = 1− [1− G(x; ξ)]ατ [2− [1− G(x; ξ)]τ ]α , xεR (4)
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where α>0, τ > 0, g(x; ξ) and G(x; ξ) are probability density function and cumulative
distribution function of any baseline distribution with parameter vector ξ . The type II power
Topp-Leone family of distributions is the generalization of the type II Topp-Leone-G family. It is
very important note that for TIIPTL-G, if τ = 0 the type II power Topp-Leone family becomes
a type II Topp-Leone family of distribution. Some of motivations behind the type II power
Topp-Leone family of distribution are to create different types of shapes for probability density
function and hazard rate function to increase the flexibility for generating of type II power
Topp-Leone distributions, skewed distribution transformed from the symmetrical distribution,
build heavy tailed distribution and type II power Topp-Leone family provide better fits compare
than other general families of distribution with baseline distribution.

I. Type II Power Topp-Leone Dagum Distribution

A random variable X is said to have type II power Topp-Leone Dagum distribution if the
probability density function and cumulative distribution function are respectively is given by

f (x; α, τ, σ, θ, β) =2ατσθβ x−θ−1(1 + σx−θ
)−β−1

[
1− (1 + σx−θ)−β

]ατ−1

×
[
2−

(
1− (1 + σx−θ)−β

)τ
]α−1 [

1−
(
1− (1 + σx−θ)−β

)τ
]

, xεR (5)

where, σ > 0, θ > 0, β > 0, α > 0 and τ > 0.

Note that, (x− y)r = ∑∞
p=0 (

r
p)(−1)pxr−pyp.

This binomial expansion is used to simply the probability density function of type II power Topp-
Leone Dagum distribution. After some simplifications we get pdf for type II power Topp-Leone
Dagum distribution and is given by

f (x; α, τ, σ, θ, β) = 2ατσθβ x−θ−1(1 + σx−θ
)−β(p+s−v+1)−1 (6)

where, ψ = (ατ−1
p )(α−1

q )(τq
s )(

1
t)(

τt
v )(−1)p+q+s+t+v(2)α−1−q

and the cdf is given by

F(x; α, τ, σ, θ, β) = 1−
[
1− (1 + σx−θ)−β

]ατ [
2−

(
1− (1 + σx−θ)−β

)τ
]α

, xεR (7)

where α, τ are parameters of type II power Topp-Leone family, σ is scale parameter of Dagum
distribution and θ, β are shape parameters of Dagum distribution. The following figures 1 to 4
shows the shape of pdf and cdf for different values of the parameters of type II power Topp-Leone
Dagum distribution.
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603290

Figure 1: Pdfs of type II power Topp-Leone Dagum distribution for fixed value of α = 4, τ = 1, σ = 6, θ = 2 and
different values of β.

603290

Figure 2: Pdfs of type II power Topp-Leone Dagum distribution for fixed value of τ = 0.5, σ = 2, θ = 1, β = 4 and
different values of α.
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603290

Figure 3: Cdfs of type II power Topp-Leone Dagum distribution for fixed value of α = 2, τ = 4, σ = 6, β = 7 and
different values of θ.

603290

Figure 4: Cdfs of type II power Topp-Leone Dagum distribution for fixed value of α = 4, τ = 2.5, σ = 8, θ = 2 and
different values of β.
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III. Reliability Measures

I. Reliability function

The reliability function of type II power Topp-Leone Dagum distribution is given by

R(x) = 1−
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]

(8)

II. Hazard rate function

The hazard rate function associated with type II power Topp-Leone Dagum distribution is given
by

h(x) =
δ

η
(9)

where

δ =2ατσθβ x−θ−1(1 + σx−θ
)−β−1

[
1− (1 + σx−θ)−β

]ατ−1 [
2−

(
1− (1 + σx−θ)−β

)τ
]α−1

×
[
1−

(
1− (1 + σx−θ)−β

)τ
]

η = 1−
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]

III. Reversed hazard rate function

The reversed hazard rate function of type II power Topp-Leone Dagum distribution is given by

r(x) =
δ

γ
(10)

where

δ =2ατσθβ x−θ−1(1 + σx−θ
)−β−1

[
1− (1 + σx−θ)−β

]ατ−1 [
2−

(
1− (1 + σx−θ)−β

)τ
]α−1

×
[
1−

(
1− (1 + σx−θ)−β

)τ
]

γ = 1−
(

1− (1 + σx−θ)−β
)ατ (

2−
(
1− (1 + σx−θ)−β

)τ
)α

IV. Cumulative hazard function

The cumulative hazard function of type II power Topp-Leone Dagum distribution is given by

H(x) = −log
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]

(11)

V. Second failure rate function

The second failure rate function of type II power Topp-Leone Dagum distribution is given by

h(x) = log

 1−
[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

1−
[
1−

(
1− (1 + σ(x + 1)−θ)−β

)ατ
] (

2−
(
1− (1 + σ(x + 1)−θ)−β

)τ
)α

 (12)
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VI. Mean waiting time

The mean waiting time is defined by

ϕ(x) = x−
[

1
F(x)

∫ x

0
x f (x)dx

]
(13)

ϕ(x) = x−
[

1
F(x)

∫ x

0
x

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx− x

]

The mean waiting time of type II power Topp-Leone Dagum distribution is given by

ϕ(x) = x−

 ∑∞
p,q,s,t,v=0 ψ2ατβσ

1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ ; y
)

1−
(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α

 (14)

VII. Mean residual life function

The mean residual life function plays a very important role in reliability and survival analysis.
The mean residual life function of a life time random variable X is given by

φ(x) =
1

s(x)

∫ ∞

x
x f (x)dx− x (15)

φ(x) =
1

1−
[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

×
∫ ∞

0
x

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx− x

The mean residual life function type II power Topp-Leone Dagum distribution is given by

φ(x) =
∑∞

p,q,s,t,v=0 ψ2ατβ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ

)
1−

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α] − x (16)

VIII. Mean past lifetime

The mean past lifetime of the component can be defined by

K(x) = E [x− X|X ≤ x] =

∫ x
0 F(t)dt

F(x)
= x−

∫ x
0 t f (t)dt

F(x)
(17)

K(x) = x−

∫ x
0 t
[
∑∞

p,q,s,t,v=0 ψ2ατσθβ t−θ−1(1 + σt−θ)−β(p+s−v+1)−1
]

dt[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

The mean past life time of type II power Topp-Leone Dagum distribution is given by

K(x) = x−
∑∞

p,q,s,t,v=0 ψ2ατβ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ ; y
)

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α] (18)
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603290

Figure 5: Reliability function of type II power Topp-Leone Dagum distribution for fixed value of α = 4.3, τ = 2.2, σ =
6, θ = 3 and different values of β.

603290

Figure 6: Hazard rate function of type II power Topp-Leone Dagum distribution for fixed value of α = 1, τ = 3, σ =
4, θ = 2 and different values of β.
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IX. Mean deviation

The mean deviation is defined as

π(x) = 2{µF(µ)−
∫ µ

0
x f (x)dx} (19)

π(x) = 2{µF(µ)−
∫ µ

0
x

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)

]
dx}

The mean deviation of type II power Topp-Leone Dagum distribution is given by

π(x) = 2{µF(µ)−
∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B

(
1− 1

θ
, β(p + s− v + 1) +

1
θ

)
} (20)

IV. Statistical Properties

I. Moments

The rth moment about the mean of a random variable X is given by

µ
′
r =

∫ ∞

−∞
xr f (x)dx, f or X is continuous. (21)

µ
′
r =

∫ ∞

0
xr

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

=
∞

∑
p,q,s,t,v=0

ψ2ατβσ
r
θ

∫ ∞

0

u−
r
θ

(1 + u)β(p+s−v+1)+1
du

The rth moment of type II power Topp-Leone Dagum distribution is given by

µ
′
r =

∞

∑
p,q,s,t,v=0

ψ2ατβσ
r
θ B

(
1− r

θ
, β(p + s− v + 1) +

r
θ

)
. where r = 1, 2, 3.., (22)

In particular

E(X) =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B

(
1− 1

θ
, β(p + s− v + 1) +

1
θ

)
(23)

E(X2) =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
2
θ B

(
1− 2

θ
, β(p + s− v + 1) +

2
θ

)

E(X3) =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
3
θ B

(
1− 3

θ
, β(p + s− v + 1) +

3
θ

)

E(X4) =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
4
θ B

(
1− 4

θ
, β(p + s− v + 1) +

4
θ

)
The variance is given by

V(x) =

[
∞

∑
p,q,s,t,v=0

ψ2ατβσ
2
θ B

(
1− 2

θ
, β(p + s− v + 1) +

2
θ

)]

−
[

∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B

(
1− 1

θ
, β(p + s− v + 1) +

1
θ

)]2

(24)
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II. Moment generating function

The moment generating function of the random variable X is defined by

MX(t) =
∫ ∞

−∞
etx f (x)dx, where etx =

∞

∑
r=0

(tx)r

r!

The moment generating function of type II power Topp-Leone Dagum distribution is given by

MX(t) =
∞

∑
r=0

tr

r!

[
∞

∑
p,q,s,t,v=0

ψ2ατβσ
r
θ B

(
1− r

θ
, β(p + s− v + 1) +

r
θ

)]
(25)

III. Characteristic function

The characteristic function of the random variable X is defined by

ΦX(t) =
∫ ∞

−∞
eitx f (x)dx, where eitx =

∞

∑
r=0

(itx)r

r!
; i2 = −1

The characteristic function of type II power Topp-Leone Dagum distribution is given by

ΦX(t) =
∞

∑
r=0

(it)r

r!

[
∞

∑
p,q,s,t,v=0

ψ2ατβσ
r
θ B

(
1− r

θ
, β(p + s− v + 1) +

r
θ

)]
(26)

IV. Cumulant generating function

Cumulant generating function is defined by

KX(t) = log MX(t)

The cumulant generating function of type II power Topp-Leone Dagum distribution is given by

KX(t) = log

[
∞

∑
r=0

tr

r!

[
∞

∑
p,q,s,t,v=0

ψ2ατβσ
r
θ B
(

1− r
θ

, β(p + s− v + 1) +
r
θ

)]]
(27)

V. Incomplete rth moment

Incomplete rth moment is defined by

mr(x) =
∫ x

0
xr f (x)dx (28)

mr(x) =
∫ x

0
xr

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

The incomplete rth moment of type II power Topp-Leone Dagum distribution is given by

mr(x) =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
r
θ B
(

1− r
θ

, β(p + s− v + 1) +
r
θ

; y
)

(29)
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VI. Inverted moments

The rth inverted moment is defined by

µ∗r =
∫ ∞

−∞
x−r f (x)dx (30)

µ∗r =
∫ ∞

0
x−r

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

The inverted rth moment of type II power Topp-Leone Dagum distribution is given by

µ∗r =
∞

∑
p,q,s,t,v=0

ψ2ατβσ−
r
θ B
(

1 +
r
θ

, β(p + s− v + 1)− r
θ

)
(31)

The rth inverted moment used to find harmonic mean. The harmonic mean of type II power
Topp-Leone Dagum distribution is given by

1
µ∗r

=
1[

∑∞
p,q,s,t,v=0 ψ2ατβσ−

r
θ B
(
1 + r

θ , β(p + s− v + 1)− r
θ

)] (32)

VII. Central moments

The rth central moment is defined by

µr =
∫ ∞

−∞
(x− µ

′
1)

r f (x)dx =
r

∑
m=0

(
r
m

)
(−1)m(µ

′
1)

mµ
′
r−m (33)

The rth central moment of type II power Topp-Leone Dagum distribution is given by

µr =
r

∑
m=0

(
r
m

)
(−1)m ×

[
∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B
(

1− 1
θ

, β(p + s− v + 1) +
1
θ

)]m

×
[

∞

∑
p,q,s,t,v=0

ψ2ατβσ
r−m

θ B
(

1− r−m
θ

, β(p + s− v + 1) +
r−m

θ

)]
(34)

VIII. Conditional moments

The nth conditional moment is defined by

E
(
Xn|X > x

)
=

1
S(x)

∫ ∞

x
xn f (x)dx (35)

E
(
Xn|X > x

)
=

1
S(x)

∫ ∞

x
xn

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

where S(x) = 1− R(x).
The nth conditional moment of type II power Topp-Leone Dagum distribution is given by

E
(
Xn|X > x

)
=

∑∞
p,q,s,t,v=0 ψ2ατβσ

n
θ B
(
1− n

θ , β(p + s− v + 1) + n
θ

)
1−

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α] . where n = 1, 2, 3..,

(36)
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In particular

E
(
X|X > x

)
=

∑∞
p,q,s,t,v=0 ψ2ατβσ

1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ

)
1−

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

E
(
X2|X > x

)
=

∑∞
p,q,s,t,v=0 ψ2ατβσ

2
θ B
(
1− 2

θ , β(p + s− v + 1) + 2
θ

)
1−

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

E
(
X3|X > x

)
=

∑∞
p,q,s,t,v=0 ψ2ατβσ

3
θ B
(
1− 3

θ , β(p + s− v + 1) + 3
θ

)
1−

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

E
(
X4|X > x

)
=

∑∞
p,q,s,t,v=0 ψ2ατβσ

4
θ B
(

1− 4
θ , β(p + s− v + 1) + 4

θ

)
1−

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

IX. Probability weighted moment

The probability weighted moment of the random variable X is defined by

τr,h = E
[

XrF(x)h
]
=
∫ ∞

−∞
xr f (x)F(x)hdx (37)

τr,h =
∫ ∞

0
xr

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]

×
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]h

dx

Using the binomial series

(x− y)r =
∞

∑
a=0

(−1)a
(

r
a

)
xr−aya, (1− y)r =

∞

∑
a=0

(
r
a

)
(−1)aya

We have [
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]h

=

∞

∑
a,b,c,d=0

(2)2(αa−c)(−1)a+b+c+d
(

h
a

)(
ατa

b

)(
αa
c

)(
τc
d

)
(1 + σx−θ)−βb−βd

Therefore, we have

τr,h =
∫ ∞

0
xr

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]

×
[

∞

∑
a,b,c,d=0

(2)αh−c(−1)a+b+c+d
(

h
a

)(
ατa

b

)(
αa
c

)(
τc
d

)
(1 + σx−θ)−βb−βd

]
dx

=
∞

∑
p,q,s,t,v,a,b,c,d=0

ψ2ατσθβ(2)2(αa−c)
(

h
a

)(
ατa

b

)(
αa
c

)(
τc
d

)
σ

r
θ

∫ ∞

0

u−
r
θ

(1 + u)β(p+s−v+b+d+1)+1
du
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The probability weighted moment of type II power Topp-Leone Dagum distribution is given by

τr,h =
∞

∑
p,q,s,t,v,a,b,c,d=0

ψ2ατβσ
r
θ B
(

1− r
θ

, β(p + s− v + b + d + 1) +
r
θ

)
(38)

where η = (2)αh−c(−1)a+b+c+d
(

h
a

)(
ατa

b

)(
αa
c

)(
τc
d

)

X. Order statistics

The pdf of the jth order statistics for type II power Topp-Leone Dagum distribution X(j) is given
by

fX(j)
(x) =

n!
(j− 1)(n− j)!

×
[

2ατσθβ x−θ−1(1 + σx−θ
)−β−1

(
1− (1 + σx−θ)−β

)ατ−1

(
2−

(
1− (1 + σx−θ)−β

)τ
)α−1 (

1−
(
1− (1 + σx−θ)−β

)τ
)]

×
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]j−1

×
[
1−

(
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α)]n−1

(39)

The pdf of the smallest order statistics X(1) is given by

fX(1)
(x) =n

[
1−

(
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α)]n−1

×
[

2ατσθβ x−θ−1(1 + σx−θ
)−β−1

(
1− (1 + σx−θ)−β

)ατ−1

(
2−

(
1− (1 + σx−θ)−β

)τ
)α−1 (

1−
(
1− (1 + σx−θ)−β

)τ
)]

(40)

The pdf of the largest order statistics X(n) is given by

fX(n)
(x) =n

[(
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α)]n−1

×
[

2ατσθβ x−θ−1(1 + σx−θ
)−β−1

(
1− (1 + σx−θ)−β

)ατ−1

(
2−

(
1− (1 + σx−θ)−β

)τ
)α−1 (

1−
(
1− (1 + σx−θ)−β

)τ
)]

(41)

and the pdf of the median order statistics is given by

fm+1:n(x) =
(2m + 1)

m!m!
[F(x)]m [1− F(x)]m f(X)(x)

fm+1:n(x) =
(2m + 1)

m!m!

[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]m

×
[
1−

(
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α)]m

×
[

2ατσθβ x−θ−1(1 + σx−θ
)−β−1

(
1− (1 + σx−θ)−β

)ατ−1

(
2−

(
1− (1 + σx−θ)−β

)τ
)α−1 (

1−
(
1− (1 + σx−θ)−β

)τ
)]

(42)
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The joint distribution of the ith and jth order statistics for 1 ≤ i < j ≤ n is given by

fi:j;n(xi, xj) = C [F(xi)]
i−1 [F(xj)− F(xi)

]j−i−1
[1− F(xi)]

n−j f (xi) f (xj)

where

C =
n!

(i− 1)!(j− i− 1)!(n− j)!

fi:j;n(xi, xj) =
n!

(i− 1)!(j− i− 1)!(n− j)!

[
1−Wατ

(i) (2−Wτ
(i))

α
]i−1

×
[(

1−Wατ
(j)(2−Wτ

(j))
α
)
−
(

1−Wατ
(j)(2−Wτ

(j))
α
)]j−i−1

×
[
1−

(
1−Wατ

(j)

)
(2−Wτ

(j))
α
]n−j

×
[
2ατσθβ x−θ−1

i (1 + σx−θ)−β−1Wατ−1
(i) (2−Wτ

(i))
α−1(1−Wτ

(i))
]

×
[
2ατσθβ x−θ−1

i (1 + σx−θ)−β−1Wατ−1
(j) (2−Wτ

(j))
α−1(1−Wτ

(j))
]

(43)

where W(i) =
(

1− (1 + σx−θ
i )−β

)
, W(j) =

(
1− (1 + σx−θ

j )−β
)

The joint distribution of minimum and maximum of order statistics is given by

f1:n;n(x1, xn) = n(n− 1)
[

F(x(n))− F(x(1))
]n−2

f (x1) f (xn)

f1:n;n(x1, xn) =n(n− 1)
[(

1−Wατ
(n)(2−Wτ

(n))
α
)
−
(

1−Wατ
(1)(2−Wτ

(1))
α
)]n−2

×
[
2ατσθβ x−θ−1

1 (1 + σx−θ
1 )−β−1Wατ−1

(1) (2−Wτ
(1))

α−1(1−Wτ
(1))
]

×
[
2ατσθβ x−θ−1

n (1 + σx−θ
n )−β−1Wατ−1

(n) (2−Wτ
(n))

α−1(1−Wτ
(n))
]

(44)

where W(i) =
(

1− (1 + σx−θ
i )−β

)
, W(j) =

(
1− (1 + σx−θ

j )−β
)

V. Income inequality measures

I. Lorenz curve

The Lorenz curve is defined by

L(x) =
1
µ

∫ x

0
x f (x)dx (45)

L(x) =
1
µ

∫ x

0
x

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

The Lorenz curves of type II power Topp-Leone Dagum distribution is given by

L(x) =
∑∞

p,q,s,t,v=0 ψ2ατβσ
1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ ; y
)

∑∞
p,q,s,t,v=0 ψ2ατβσ

1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ

) (46)
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II. Bonferroni index

Bonferroni index is defined by

B(x) =
L(x)
F(x)

(47)

The Bonferroni index of type II power Topp-Leone Dagum distribution is given by

B(x) =
ω

ϑ
(48)

where

ω =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B
(

1− 1
θ

, β(p + s− v + 1) +
1
θ

; y
)

ϑ =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B
(

1− 1
θ

, β(p + s− v + 1) +
1
θ

)
×
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]

III. Generalized entropy

The generalized entropy is defined by

GE(w, δ) =
1

δ(δ− 1)µδ

[∫ ∞

0
xδ f (x)dx

]
− 1 (49)

where µ is the mean of distribution.

GE(w, δ) =
1

δ(δ− 1)µδ

∫ ∞

0
xδ

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβ x−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx− 1

The Generalized entropy of type II power Topp-Leone Dagum distribution is given by

GE(w, δ) =
∑∞

p,q,s,t,v=0 ψ2ατβσ
δ
θ B
(

1− δ
θ , β(p + s− v + 1) + δ

θ

)
δ(δ− 1)

[
∑∞

p,q,s,t,v=0 ψ2ατβσ
1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ

)]δ
− 1 (50)

IV. Zenga index

Zenga index is defined by

Z = 1−
µ̄(x)

µ+
(x)

(51)

where

µ̄(x) =
1

F(x)

∫ x

0
x f (x)dx

µ+
(x) =

1
1− F(x)

∫ ∞

0
x f (x)dx

Consider,

µ̄(x) =
1

F(x)

∫ x

0
x f (x)dx
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µ̄x =
1[

1−
(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

×
∫ x

0
x

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβx−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

µ̄x =
∑∞

p,q,s,t,v=0 ψ2ατβσ
1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ ; y
)

[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

Consider,

µ+
(x) =

1
1− F(x)

∫ ∞

0
x f (x)dx

µ+
x =

1[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

×
∫ ∞

0
x

[
∞

∑
p,q,s,t,v=0

ψ2ατσθβx−θ−1(1 + σx−θ)−β(p+s−v+1)−1

]
dx

µ+
x =

∑∞
p,q,s,t,v=0 ψ2ατβσ

1
θ B
(

1− 1
θ , β(p + s− v + 1) + 1

θ

)
[
1−

(
1− (1 + σx−θ)−β

)ατ
(

2−
(
1− (1 + σx−θ)−β

)τ
)α]

The Zenga index of type II power Topp-Leone Dagum distribution is given by

Z = 1− A
B

(52)

where

A =
∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B
(

1− 1
θ

, β(p + s− v + 1) +
1
θ

; y
)

×
[
1−

(
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α)]

B =
[
1−

(
1− (1 + σx−θ)−β

)ατ (
2−

(
1− (1 + σx−θ)−β

)τ
)α]

∞

∑
p,q,s,t,v=0

ψ2ατβσ
1
θ B
(

1− 1
θ

, β(p + s− v + 1) +
1
θ

)

VI. Parameter Estimation

Let x1, x1, ..., xn be a random sample from the type II power Topp-Leone Dagum distribution then
the likelihood function is given by

L(θ) =
n

∏
i=1

[
2ατσθβ x−θ−1(1 + σx−θ

)−β−1
(

1− (1 + σx−θ)−β
)ατ−1

(
2−

(
1− (1 + σx−θ)−β

)τ
)α−1 (

1−
(
1− (1 + σx−θ)−β

)τ
)]

(53)

151



Sakthivel and Dhivakar
TYPE II POWER TOPP-LEONE DAGUM DISTRIBUTION

RT&A, No 2 (62)
Volume 16, June 2021

The log likelihood function is given by

L(θ) =nlog2 + nlogα + nlogτ + nlogσ + nlogθ + nlogβ + (−θ − 1)
n

∑
i=1

logxi

+ (−β− 1)
n

∑
i=1

log(1 + σx−θ
i ) + (ατ − 1)

n

∑
i=1

log
(

1− (1 + σx−θ
i )−β

)
+ (α− 1)

n

∑
i=1

log
(

2−
(

1− (1 + σx−θ
i )−β

)τ)
+

n

∑
i=1

log
(

1−
(

1− (1 + σx−θ
i )−β

)τ)
Taking the partial derivatives of the log-likelihood function with respect to parameters α, τ, σ, θ
and β and then equate to zero.

∂logL
∂α

= 0,
∂logL

∂τ
= 0,

∂logL
∂σ

= 0,
∂logL

∂θ
= 0 and

∂logL
∂β

= 0.

That is

∂logL
∂α

=
n
α
+ α

n

∑
i=1

log
(

1− (1 + σx−θ
i )
)
+

n

∑
i=1

log
(

2−
(

1− (1 + σx−θ
i )−β

)τ)
= 0 (54)

∂logL
∂τ

=
n
τ
+ α

n

∑
i=1

log
(

1− (1 + σx−θ
i )−β

)

−
n

∑
i=1

(α− 1)
(

1− (1 + σx−θ
i )−β

)τ
log
(

1− (1 + σx−θ
i )−β

)
(

2−
(

1− (1 + σx−θ
i )−β

)τ)
−

n

∑
i=1

(
1− (1 + σx−θ

i )−β
)τ

log
(

1− (1 + σx−θ
i )−β

)
(

1−
(

1− (1 + σx−θ
i )−β

)τ) = 0 (55)

∂logL
∂σ

=
n
σ
+

n

∑
i=1

(−β− 1)x−θ
i

(1 + σx−θ
i )

−
n

∑
i=1

(ατ − 1)x−θ
i(

1− (1 + σx−θ
i )−β

)
−

n

∑
i=1

(α− 1)τ
(

1− (1 + σx−θ
i )−β

)τ−1
β(1 + σx−θ

i )−β−1x−θ
i(

2−
(

1− (1 + σx−θ
i )−β

)τ)
−

n

∑
i=1

τ
(

1− (1 + σx−θ
i )−β

)τ−1
β(1 + σx−θ

i )−β−1x−θ
i(

1−
(

1− (1 + σx−θ
i )−β

)τ) = 0 (56)

∂logL
∂θ

=
n
θ
−

n

∑
i=1

logxi +
n

∑
i=1

(−β− 1)σx−θ
i logxi

(1 + σx−θ
i )

−
n

∑
i=1

(ατ − 1)σx−θ
i logxi(

1− (1 + σx−θ
i )
)

−
n

∑
i=1

(α− 1)βτ
(

1− (1 + σx−θ
i )−β

)τ−1
(1 + σx−θ

i )−β−1σx−θ
i logxi(

2−
(

1− (1 + σx−θ
i )−β

)τ)
−

n

∑
i=1

βτ
(

1− (1 + σx−θ
i )−β

)τ−1
(1 + σx−θ

i )−β−1σx−θ
i logxi(

1−
(

1− (1 + σx−θ
i )−β

)τ) = 0 (57)
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and

∂logL
∂β

=
n
β
−

n

∑
i=1

log
(

1 + σx−θ
i

)

+
n

∑
i=1

τ(α− 1)
(

1− (1 + σx−θ
i )−β

)τ−1
(1 + σx−θ

i )−βlog
(

1 + σx−θ
i

)
(

2−
(

1− (1 + σx−θ
i )−β

)τ)
+

n

∑
i=1

τ
(

1− (1 + σx−θ
i )−β

)τ−1
(1 + σx−θ

i )−βlog
(

1 + σx−θ
i

)
(

1−
(

1− (1 + σx−θ
i )−β

)τ) = 0 (58)

The above mentioned five non-linear equations are very difficult to solve analytically. In this
situation we can use to iteration techniques like Newton-Raphson, bisection and regular falsi
method to compute numerical solution. However, we used R software for estimate the parameters
of the proposed distribution.

VII. Applications

In this section, we consider two real data sets for type II power Topp Leone-Dagum distribution.
This first data set represent the survival times (days) of 40 patients suffering from leukemia and
is studied by Abouammoh et al., [2] and Bhatti et al., [5]. The second data set related to actuarial
science data (Mortality death). This data describes 280 observations on the age of death (in years)
of retired women with temporary disabilities who died during 2004 and which are incorporated
in the Mexican insurance public system. This data set recently studied by Balakrishnan et al., [4]
and Tahir et al., [19].

I. Data set 1: survival time data

The survival time data set is analysed using the R software. The following tables Table 1 to 3
explain about summary of statistics, estimated parameters values and statistical model selection
for survival time data.

We compared statistical models namely type II power Topp-Leone Dagum distribution (TI-
IPTLDD) with Dagum distribution (DD), modified Burr III distribution (MBIIID), Burr III distri-
bution (BIIID), log-logistic distribution (LLD), modified Frechet distribution (MFD) and Frechet
distribution (FD). The statistical model selection based on the minimum value of statistic informa-
tion theoretic criterion, such as Akaike information criterion (AIC), Bayesian information criterion
(BIC), consistent Akaike information criterion (CAIC), and -2log-likelihood was carried out. The
type II power Topp-Leone Dagum distribution provides better fit and flexibility compared to
other competitive statistical models based on these statistics measures.

Table 1: Summary of statistics

n Mean Median Minimum Maximum Q3 Q3

40 1137 1222.0 115.0 1852.0 802.5 1852.0
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Table 2: The value of estimated parameters

Model Estimated value of the parameters

TIIPTLD-D α=47.1760, τ=6.7544, σ=51.2247, θ=0.4767, β=3.8028
D-D α=124635.5, β=1.199734, γ=5.0000
MBIII-D α=124637.2, β=1.7052, γ=121473.2
BIII-D α=2503.6088, β=1.1982.
LL-D β=0.2235.
MF-D β=0.9013, θ=7111.323, λ=0.0021.
F-D β=1.1984, θ=685.7135

Table 3: Statistical model selection

Model -2LL AIC AICC BIC

TIIPTLD-D -614.164 624.164 625.9287 632.6084
D-D 651.2760 659.2761 660.4189 666.0316
MBIII-D 638.7774 644.773 645.444 649.844
BIII-D 651.2590 655.2589 655.5832 658.6367
LL-D 825.6310 827.6309 827.7362 829.3198
MF-BIII 701.9472 707.9472 708.6139 713.0138
F-D 651.2778 655.2778 655.6022 658.6556

II. Data set 2: Actuarial science data

The actuarial science data set carried out using the R software. The following Tables 4 to 6
explain about summary of statistics, estimated parameters values and statistical model selection
for actuarial science data.

We compared statistical models namely type II power Topp-Leone Dagum distribution (TI-
IPTLDD) with Dagum distribution (D). The statistical model selection based on the minimum
value of statistic information theoretic criterion, such as Akaike information criterion (AIC),
Bayesian information criterion (BIC), consistent Akaike information criterion (CAIC) and 2log-
likelihood. The type II power Topp-Leone Dagum distribution provides better fit and flexibility
compare than Dagum distribution based on statistics measures.

Table 4: Summary of statistics

n Mean Median Minimum Maximum Q3 Q3

280 47.79 49.00 22.00 86.00 40.00 55.25

Table 5: The value of estimated parameters

Model Estimated value of the parameters

TIIPTLD-D α=37.3031, τ=0.6554, σ=26.2491, θ=1.5575, β=25.4281
D-D σ=1282.2665, β=3.9888, γ=2183.6861
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Table 6: Statistical model selection

Model -2LL AIC AICC BIC

TIIPTLD-D 2113.836 2123.836 2124.055 2142.01
D-D 2203.86 2209.860 2209.947 2220.764

VIII. Conclusion

In this article, we introduced new generating probability distribution called type II power Topp-
Leone Dagum distribution. Many of reliability measures are investigated including reliability
function, hazard rate function, reversed hazard rate function, mean waiting time, mean past
life time, mean deviation, second failure rate function and mean residual life function. We
have obtained different statistical properties such as moments, moment generating function,
characteristic function, cumulant generating function, inverted moments, central moments,
conditional moments, probability weighted moments and order statistics. We derived some of
income inequality measures like Lorenz curve, Bonferroni index, Zenga index and Generalized
entropy for proposed new probability distribution. The parameters of proposed new probability
distributions are estimated by method of maximum likelihood. Finally, we fitted the type II power
Topp-Leone Dagum distribution for real life time data sets and showed that TIIPTLD-D provide
better fit these two data set.
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Abstract

A review of the Smith’s regeneration idea development is proposed. As a generalization of this idea the
main definitions and results of decomposable semi-regenerative processes are reminded. Their applications
for investigation of various queueing and reliability systems are considered.

Keywords: Decomposable semi-regenerative processes, Stochastic models, time-dependent and
steady state probabilities.

1. Introduction, Motivation, and Abbreviations

The main idea of this paper is to give a review of the Smith’s regeneration notion development.
Definition and main results of decomposable semi-regenerative processes (DSRPr) will be under our
attention. Applications of these processes to investigation of some real-world queueing and
reliability systems makes up an essential part of the paper.

As a generalization of classical independence the regeneration idea has been proposed by
W. Smith in 1955. The regenerative approach allows not only to calculate the regenerative process
(RPr) state time-dependent probabilities (t.d.p.’s) in terms of its state probabilities at the separate
regeneration period (RP), but also to prove its stationary regime existence and find the steady state
probabilities (s.s.p.’s).

However, if the process behavior in the separate regeneration period is enough complex
and its distribution can not be analytically represented, the more detailed investigation of the
process could be obtained with the help of semi-regenerative processes (SRPr’s), which joins the
regeneration approach with the Markov type dependency. The next step in the generalization of
the regeneration idea consists in finding some new regeneration points of time into regeneration
period and construction of so called embedded regenerative process (ERPr). This idea can be
developed for construction of decomposable semi-regenerative processes (DSRPr’s).

These ideas have been applied for investigation of several stochastic systems such as: priority
queueing systems (QS’s), one-server QS with recurrent input and service processes, polling
systems, complex hierarchical systems, etc. In this paper we remind the results of some of these
investigations. Recently the ERPr has been used for investigation of a double-redundant system
with general distributions of its component life- and repair times and of a k-out-of-n system.
These models also will be in our focus.

Along the paper the following general notations are used:
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• P{·}, E[·] — symbols of probability and expectation, symbols Pi{·}, Ei[·] are used for
conditional probability and expectation, given initial state of the process is i;

• the vectors are marked with arrows and are understood as column vectors, and transposition
of vectors and matrices is indicated by a prime;

• the representatives of any sequence of independent identically distributed random variables
Ai (i = 1, 2, . . . ) are denoted by appropriate letter without indexes A and their common
cumulative distribution functions (c.d.f.’s) are denoted by the same letter with an argument
A(x) = P{A ≤ x};

• The moment generating functions (MGF’s) of r.v.’s (the Laplace-Stiltjes transforms (LST’s) of their
c.d.f.’s) are denoted by appropriate small letters with tilde ã(s) = E

[
e−sA] = ∫ ∞

0 e−sx A(dx).

The paper is organized as follows. In the next section the main ideas of the regenerative
approach and its developments will be reminded. All other sections are devoted to applications
of above methods to investigations of the real world systems which have been considered early
and recently that have been proposed without proofs. The paper ends with Conclusion where
some further possible investigations are pointed out.

In the paper the following abbreviations are used.

• RPr — regenerative process,

• SRPr — semi-regenerative process,

• ERPr — embedded semi-regenerative process,

• DSRPr — decomposable semi-regenerative process,

• RT — regeneration time,

• SRT — semi-regeneration time,

• ERT — embedded regeneration time,

• RP —regeneration period,

• SRP —semi-regeneration period,

• ESRP — embedded semi-regeneration period,

• RS — regeneration state,

• SRS — semi-regeneration state,

• ESRS — embedded semi-regeneration state,

• SMM — semi-Markov matrix,

• ESMM — embedded semi-Markov matrix,

• RF — regeneration function,

• ERF — embedded regeneration function,

• MRM — Markov renewal matrix,

• EMRM — embedded Markov renewal matrix,

• ERK — embedded renewal kernel,

• QS — queueing system,
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• NoC — number of calls,

• PP — poling process,

• IP — idle period,

• BP — busy period,

• MGF — moment generating ff-unction

• LT — Laplace transform,

• LST — Laplace-Stiltjes transform,

• i.i.d. — independent identically distributed,

• r.v. —random variable,

• c.d.f. — cumulative distribution function,

• t.d.p. — time-dependent probability,

• s.s.p. — steady state probability

2. On regenerative approach

Here the main results of regenerative and semi-regenerative processes are reminded. The so-called
decomposable semi-regenerative processes are also under our attention. We omit very known
strong definitions and represent the main results, which will be used in the paper.

2.1. Regenerative process

As a generalization of classical independence the regeneration idea has been proposed by W. Smith
in 1955 [1]. Consider a stochastic process X = {X(t) : t ≥ 0} with filtration FX

t . The process X
is called the regenerative one if there exist a sequence of points of time, regeneration times (RT) Sn,
in which the process forgets its past,

P{X(Sn + t) ∈ Γ |FX
Sn
} = P{X(Sn + t) ∈ Γ} = P{X(S1 + t) ∈ Γ}.

The intervals [Sn−1, Sn) and their length Tn = Sn − Sn−1 is called regeneration periods (RP).
Note, that the functional elements Wn = {X(Sn + t), t ≤ Tn} are independent. They are called
regeneration cycles (RC).

The regenerative approach allows to calculate the regenerative process (RPr) state probabilities
π(t; Γ) = P{X(t) ∈ Γ} in terms of its state probabilities at the separate regeneration period
π(1)(t, Γ) = P{X(Sn−1 + t) ∈ Γ, t < Tn} in the form

π(t; Γ) =
t∫

0

H(du)π(1)(t− u, Γ), (1)

where F(t) = P{Tn ≤ t} and

H(t) = E

[
∑
n≥1

1{Sn≤t}

]
= ∑

n≥1
P{Sn ≤ t} = ∑

n≥1
F∗n(t).

is the renewal function (RF) of the process, where symbol “?′′ means a convolution, The RF satisfies
the Winner-Hopf equation

H(t) = F(t) + F ? H(t) ≡ F(t) +
t∫

0

F(du)H(t− u). (2)
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This approach allows not only to obtain the representation (1), but also to prove the existence
of the stationary probabilities and give its close form representation in terms of the process
distribution at separate regeneration periods. Namely it holds

π(Γ) = lim
t→∞

π(t; Γ) =
1

E[T]

∞∫
0

π(1)(t, Γ)dt. (3)

2.2. Semi–regenerative process

As a generalization to the Markov’s dependency, an idea of semi-Markov chains has been proposed
by E. Cinlar (1969) [2] and J Jakod (1971) [3]. This idea leaded further to the constructions
of semi-Markov processes (SMPr) (see, for example [3], [4]). The joining of these notions with
the regeneration idea leaded to introduction of semi-regenerative processes (SRPr’s), which firstly
appeared under different titles: as semi-Markov processes with additional trajectories in 1966 (Klimov
[5]), regenerative processes with several types of regeneration poins in 1971 (Rykov & Yastrebenetsky
[6]) before it became the name SRPr due to E. Nummeline [7].

The difference of the SRPr from the RPr consists in the assumption that in its semi-regeneration
points of time Sn the future of the process does not depend of its past but depends on its present
state belonging to some set E of regeneration states (RS’s),

P{X(Sn + t) ∈ Γ |FX
Sn
} = P{X(Sn + t) ∈ Γ |X(Sn)} = P{X(S1 + t) ∈ Γ |X(S1)}.

The main characteristic of the SRP is its semi-Markov matrix (SMM) Q(t) = [Qij(t)]ij∈E with
components

Qij(t) = P{X(Sn) = j, Tn ≤ t, |X(Sn−1) = i}.

For SRPr with denumerable RS’s E that starts in RT with an initial distribution α = {αi, i ∈ E}
the formula (1) takes the form

π(t; Γ) = ∑
i∈E

αi

δijπ
(1)
j (t) +

t∫
0

Hij(du)π(1)
j (t− u, Γ)

 . (4)

Here π
(1)
j (t, Γ) = P{X(Sn+1 + t) ∈ Γ, t < Tn |X(Sn + 0) = j} is the process state probability

distribution on a separate semi-regeneration period (SRP) of type j, and H(t) = [Hij(t)] is its
Markov renewal matrix (MRM) with

Hij(t) = E

[
∑
n≥1

1{Sn≤t, X(Sn)=j} |X(0) = i

]
=

[
∑
n≥1

Q∗n(t)

]
ij

.

these functions satisfy the Winner-Hopf equation, in which symbol “?′′ means the matrix-
functional convolution,

H(t) = Q(t) + Q ? H(t). (5)

The corresponding limit theorem takes the form

π(Γ) = lim
t→∞

π(t, Γ) =
1
m

∞∫
0

∑
j∈E

ᾱjπ
(1)
j (t, Γ)dt, (6)

where ᾱ = {ᾱi (i ∈ E)} represents the invariant probabilities of the embedded Markov chain
Y = {Yn = X(Sn), n = 1, 2, . . . }, and m = ∑i∈E ᾱiEi[T] is the expected stationary regeneration
period.
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2.3. Decomposable semi-regenerative process

If the process behavior at the separate regeneration period Tn is too complex and its distribution
can not be analytically represented, sometimes it is possible to find some embedded regeneration
points of time S(1)

k (k = 1, 2, . . . ) into this period, in which the process forgets its past up to the

present state X(1)(S(1)
k ) conditionally to its behavior at the regeneration period Tn. This subset

of the process state is called embedded semi-regeneration states (ESRS’s) and denoted by E(1). This
process is called an embedded regeneration process (ERPr). Spreading out this procedure for all
regeneration periods of the main process leads to construction of decomposable semi-regenerative
process (DSRPr). This procedure can be extended to several embedding levels. The strong
definitions and details can be found in V. Rykov (1975) [8] (see also [9], and [10]).

While analyzing the DSRPr, the role of the ordinary MRM plays the embedded Markov renewal
matrix (EMRM) H(t) = [Hij(t)], which is given by its components

H(1)
ij (t) = Ei

[
∑
k≥0

1{[0, t), j}

(
S(1)

k , X(S(1)
k )
)

1
{S(1)

k <T}

]
.

This matrix study depends on the type of the embedded regeneration points construction. There
are different scenarios of their construction. If they arise as min[S(1)

k , T], then unlike equations
(2), and (5) for EMRM holds the following equation,

H(1)(t) = Q(1)(t) + H(1) ? Q(1)(t)−Q(t). (7)

Here Q(t) and Q(1)(t) are the SMM of the external and internal embedded periods and the
symbol ? denotes as before the matrix-functional convolution.

In most practical situations, both internal and external regeneration points of time coincide
with the times of the regeneration states destinations. At that the external regeneration points of
time are the moments, when the process exits the subset of the embedded regeneration states.
In this case, the transition matrix for the embedded regeneration points of time Q(1)(t) is a
sub-matrix of the matrix Q(t) with components from the subset of the embedded states E(1) and
therefore it is a degenerative one. In this case the equation for EMRM has the form

H(1)(t) = Q(1)(t) + Q(1) ? H(1)(t).

Its solution is
H(1)(t) = (I −Q(1)(t))−1Q(1)(t) = ∑

n≥1
Q(1)∗n(t).

It is bounded for all t and approaches the expected number of visits to subset of states E(1) when
t → ∞. Naturally when the both scenarios are applicable, the solutions of the last equation
coincide with the solution of equation (7).

Similarly to (4) different characteristics of the DSRPr of the first level can be expressed in
terms of its corresponding characteristics of the second level. Particularly, for the one-dimensional
distributions π

(1)
i (t, Γ) the following representation holds

π
(1)
i (t, Γ) = H(1)

i ? π(2)(t, Γ).

Here
π
(2)
i (t, Γ) = P

{
X
(

S(1)
k−1 + t

)
∈ Γ, t < T(1)

k | X(1)(S(1)
k−1) = i

}
are the process state probabilities in ERPr and EMRM H(1)(t) satisfies the equation (7). These
relations make possible to recover the process distribution by its distribution on a separate
minimal periods of embedded regeneration. The limit theorem for SRPr’s allows to calculate
its stationary distributions, and the system of embedded regeneration periods make possible to
calculate them in terms of distributions on smallest regeneration period.

In the next sections several applications of the DSRPr’s for investigation of some real word
QS’s and reliability models are considered.
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3. M/GI/1/∞ Queueing System

We apply the DSRPr to investigation of the main processes in M|G|1|∞ QS. Many authors deals
with this system. A.Ya. Khinchin [11] found the s.s.p.’s of this system in 1932. D. Kendall [12] in
1953 studied this system with the help of method of embedded Markov chains. G. Klimov [5]
uses the method of probabilistic interpretation of generating functions (GF). In next section we
propose the results, given by V. Rykov in [10].

3.1. Number of calls as a regenerative process

Consider a M|GI|1|∞ QS with Poisson input L(t) and recurrent service process, where service
times are i.i.d. r.v.’s Bn with common c.d.f. B(t) = P{Bn ≤ t}. Denote by X = {X(t), t ≥ 0} the
number of calls (NoC) process in the system. Evidently, it is DSRPr, and its RP’s R consists of idle
period (IP) ∆ and busy period (BP) Π, R = ∆ + Π (see figure 1), while its RT’s are Sn = ∑1≤i≤n Ri.

Figure 1: The structure of a regeneration period

The RP in turns consists of

• service time B1 of the first arrived in free system call and

• random number L(B1) BP’s, generated by this call.

Therefore, the BP satisfies to the following stochastic equation

Π = B1 + ∑
0≤i≤L(B1)

Πi, (8)

and thus its MGF satisfied to the Kendall equation

π(s) = β(s + λ− λπ(s)). (9)

while the MGF of the RP equals

τ(s) = E
[
e−sR

]
= E

[
e−s(∆+Π)

]
=

λπ(s)
λ + s

. (10)

If the system is idle in initial time, then the process behavior X(t) in any time t can be
represented in terms of its behavior at separate RP XR(t) as follows

X(t) = ∑
n≥0

1{Sn≤t<Sn+1}XR(t− Sn).

In terms of MGF Laplace transform (LT) of NoC p(s, z) the last expression takes the form

p(s, z) ≡
∞∫

0

e−stE
[
zX(t)

]
=

∞∫
0

e−su ∑
n≥1

dP{Sn ≤ u}
∞∫

u

e−s(t−u)E
[
zXR(t−u)

]
dt =

= pR(s, z)
s + λ

s + λ− λπ(s)
. (11)
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Here pR(s, z) =
∞∫
0

e−stE
[
zXR(t)

]
, and

∞∫
0

e−st ∑
n≥1

dP{Sn ≤ t} ≡
∞∫

0

e−stdH(t) = h̃(s) =
1

1− τ(s)
=

s + λ

s + λ− λπ(s)
.

is the Laplace-Stilties Transform (LST) of the RF H(t), generated by RT’s Sn.

3.2. NoC on a separate RP

The process XR(t) behavior on a separate RP in terms of its behavior on separate BP XΠ(t) has
the form

XR(t) =

{
0 for t < ∆,
XΠ(t− ∆) for ∆ ≤ t < Π.

From here one can find the LT of the MGF of the process XR(t)

pR(s, z) =
∞∫

0

e−st

e−λt +

t∫
0

λeλvEzXΠ(t−v)dv

 dt =
1 + λpΠ(1, s, z)

s + λ
.

Jointly with (11) this gives a well known formula for LT MGF of NoC process for M|GI|1|∞ QS
in terms of appropriate characteristic at separate BP,

p(s, z) = pR(s, z)
s + λ

s + λ− λπ(s)
=

1 + λpΠ(1, s, z)
s + λ− λπ(s)

. (12)

For the NoC process on a separate BP, opening with only one call, when S(Π)
0 = 0, X(S(Π)

0 ) = 1,
it holds

XΠ(t) = X(S(Π)
n−1) + L(t− S(Π)

n−1), for S(Π)
n−1 ≤ t < S(Π)

n ,

where L(t) is an input Poisson process and a sequence of embedded RT’s S(Π)
n is given recursively

S(Π)
1 = B1, S(Π)

n+1 = S(Π)
n + 1

{X(S(Π)
n )>0}

Bn.

For the LT of NoC MGF on a separate BP pΠ(1, s, z) by calculation with the help of conditional
expectation formula we get

pΠ(1, s, z) =
∞∫

0

e−stE
[
zXΠ(t)

]
= [z + hΠ(1, s, z)]

1− β(s + λ− λz)
s + λ− λz

. (13)

Here h(Π)(1, s, z) denotes LT of ERF, generated by the sequence S(Π)
n , jointly with the MGF of the

process in these times

h(Π)(1, s, z) = E

[
∑
n≥1

e−sSΠ
n zX(SΠ

n )1{X(SΠ
n )>0}

]
.

Due to the expression for NoC at the end of service times

X(SΠ
n ) =

{
X(SΠ

n−1)− 1 + L(SΠ
n − SΠ

n−1) for X(SΠ
n−1) ≥ 1,

0 for X(SΠ
n−1) = 0.

This function satisfies to the equation (details of its derivations see in [10])

h(Π)(1, s, z) = β(s + λ− λz) + z−1h(Π)(1, s, z)β(s + λ− λz)− π(s).
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Solution of this equation is

h(1, s, z) = z
β(s + λ− λz)− π(s)

z− β(s + λ− λz)
, (14)

and its substitution in (13) for LT MGF of NoC at separate BP gives

pΠ(1, s, z) = z
π(s)− z

β(s + λ− λz)− z
× 1− β(s + λ− λz)

s + λ− λz
. (15)

Thus, the last expression jointly with (12) allow to find the LT of the non-stationary MGF of the
NoC process.

3.3. Stationary regime

For MGF of NoC process in stationary regime from (12) and taking into account that from (9) it
follows that π1 = −π′(0) = b1/(1− ρ) we obtain the very known Pollachek-Khinchin formula
for stationary queue,

P(z) = lim
s→0

sp(s, z) = (1− ρ)
(1− z)β(λ− λz)

β(λ− λz)− z
.

4. Priority queueing systems Mr/GIr/1/∞

Priority QS arise in many applications. Such systems studied by many authors and by different
methods: Klimov (1966) [5], Jaiswell (1968) [13], Gnedenko and all (1973) [14]), Klimov, Mishkoi
(1979) [15]. The DSRPr method firstly has been applied for such systems investigation by V. Rykov
in [8]. Here we shortly remind these results.

4.1. System description.

Consider a single-server QS Mr/GIr/1/∞ with r independent Poisson inputs~L(t) = (L1(t), . . . Lr(t))
intensities λk (k = 1, r, with common intensity Λ = ∑1≤k≤r λk. Service times are i.i.d. r.v.
Bk (k = 1, r) with common for each type of calls c.d.f. Bk(t) = P{Bk ≤ t}. The calls are served
with priority discipline in such a manner that the calls of k-th type has a priority before calls of
the (k + 1)− st, k = 1, r− 1. There are different types of priorities:

• head-of-the-line;

• preemptive. In this case there are several sub-cases:

– preemptive resume priority,

– preemptive repeat priority (with new independent realization of interrupted service
times),

– preemptive repeat priority (with the same realization of first represented service time),

– preemptive loss priority.

Denote by

• ~x = (x1, x2, . . . , xr) vector, k-th component of which means the number k-th type calls in the
system;

• E the set of the system states;

• ~X(t) = (X1(t), . . . , Xr(t)) is the NoC process.
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It is evident that under given assumption the process ~X(t) is an DSRPr, and its main RP is the
same as for the M/GI/1/∞ QS and consists from an idle ∆ and a busy Π periods (see figure 1).
Denote by

p(s,~z) =
∞∫

0

e−stE
[
~z~X(t)

]
dt

LT of the process ~X(t) MGF. Because the RP structure for the system Mr/GIr/1/∞ is the same
as for the system M/GI/1/∞, LT of NoC process MGF coincide with analogous for the system
M/GI/1/∞ (12),

p(s,~z) = pR(s,~z)
s + λ

s + λ− λπ(s)
=

1 + λpΠ(1, s,~z)
s + λ− λπ(s)

. (16)

However now Π = Πr is a BP, during which all calls are served. This period consists of
k-periods Πk, during which all calls of k-th and above priority are served and k-cycles during which
only one call k-th type and all calls higher priority are served.

4.2. Structure of NoC process in Mr/GIr/1/∞ QS.

The structure of these periods is shown in the figures 2 and 3

Figure 2: The structure of k-period

Figure 3: The structure of k-cycle

Thus, for calculation of appropriate LT of the MGF pΠ(1, s,~z) NoC at separate BP of the
system and the MGF π(s) of BP introduce the following notations

•
σk = ∑

1≤i≤k
λi, vk = ∑

k≤i≤r
(λi − λizi), Vk = s + vk = σk(1− πk(s + vk));

• the LT MGF of NoC process at separate k-period

pk(~z, s) =
∞∫

0

e−stE
[
~z~X(t)1Πk≤t

]
dt;
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• the LT MGF of NoC process at separate k-cycle

pγk (~z, s) =
∞∫

0

e−stE
[
~z~X(t)1Γk≤t

]
dt;

• the MGF of k-period by πk(s) = E
[
e−sΠk

]
;

• the MGF of k-cycle by γk(s) = E
[
e−sΓk

]
.

With these notations using the considered above structure of embedded k-periods and k-cycles
with the help of DSRP methods in [8] (see also [10]) the following recursive relation for the MGF
LT of NoC of Mr/GIr/1/∞-priority system QS has been obtained

σpΠ(~z, s) = ∑
1≤i≤r

λizi + σi−1πi−1(s + vi)− σiπi(s + vi+1)

zi − γi(s + vi)
pγi (~z, s). (17)

Here the LT of NoC process MGF on a separate k-cycle pγi (~z, s) for different type of priorities
satisfies to the recursive relations

pγk (~z, s) = zk
1− βk(s + v1)

s + v1
+ ∑

1≤i≤k−1

βk(Vi)− βk(Vi+1)

zi − γi(s + vi)
pγi (~z, s). (18)

This provides an algorithm for calculating of all basic characteristics of the system. For details see
[8] and [10].

5. Polling Systems

Next important application of DSRP are the polling systems that have a wide sphere of appli-
cations. There is vast bibliography on this topic including monographs of Takagi (1986) [16],
Borst (1996) [17], Vishnevsky, Semenova (2012) [18] and reviews of Takagi (1997) [19], Vishnevsky,
Semenova (2006, 2021) [20], [21]. A general description of the polling model one can find in
Fricker & Jabi (1994) [22], where also a stability conditions for the system were presented. Most
of polling systems investigations deal with the system stationary regime at point of times when
server attends users. Here by following [23] we show the possibility of the DSRP theory to be
applied for the poling process (PP) investigation in continuous time.

5.1. The system description

Following to Fricker and Jabi (1994) [22], consider the following model (see Fig 4).
There are r users and a single server. Calls from k-th user (k-calls) form Poisson input

of intensity λk. Therefore, ~L(t) = (L1(t), . . . Lk(t)) is the vector flow with summary intensity
Λ = ∑1≤k≤r λk. Service times are supposed to be i.i.d. r.v. Bk (k = 1, r) with common for k-calls
c.d.f. Bk(t) = P{Bk ≤ t}. Beside for switching from i-th user to the j-th one some random times
Cij with c.d.f. Cij(t) = P{Cij ≤ t} are needed. Note that for up-to-date telecommunication
systems the service time has the same order as the switching time, therefore it is important to
take into account the switching times. Thus, in order to optimize the system behavior it is useful
to introduce some delay for service in such manner that the service of k-calls begins only after
their number attains some level, say lk.

The service consists of several, say n ≥ r, stages that are determined by the polling table —
function f ,

f : {1, 2, . . . , n} → {1, 2, . . . , r},

where f (j) = k denotes that at the j-th stage the k-th user is served and the full round over all
users are accomplished during n stages that composes a cycle of service. Note that for given
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Figure 4: The Polling model

polling table the switching time Cj means switching times C f (j), f (j+1) from f (j)-th user to f (j + 1)
one with c.d.f. Cj(t).

There are different service disciplines δ(j) that could be used at different stages. Some of them
are:

• l-limited service discipline, for which it is served fix, say lk number of f (j) = k-calls, especially
only one call if lk = 1;

• gated service discipline, for which all f (j)-calls that are present at the very beginning of the
stage are served during it;

• exhaustive service discipline for which the service of f (j)-th user is continued until the queue
become empty.

It is supposed that
Assumption 1. All r.v.’s have at least two finite moments.
Assumption 2. the stability conditions for the system are fulfilled.

5.2. Structure of the Polling Process

For the Polling System investigation denote by ~x = (x1, x2, . . . , xr) the states of the polling
system, where xk is a number of k-calls, by E the set of all states, and consider a random
process ~X(t) = {(X1(t), . . . , Xr(t)) : t ≥ 0} with the states space E to which we will refer as a
polling process (PP). It is evident that under given assumption the process ~X(t) is a DSRPr, and
the structure of its main RP’s are the same as for the M|GI|1|∞ QS (see figure 1). However,
the structure of its embedded busy periods now are different and in the following figures are
represented (see Fig’s 5, 6, 7). The BP consists of random number N service cycles Gj, each
of which consists of n stages of Aj (j = 1, n) that also have enough complex structure, which
depends on the service discipline at the stage.

5.3. Stochastic relations for Polling Process

Denote by p(~x, t) = P{~X(t) = ~x} probability distribution of the PP ~X(t). From our assumptions
it follows that the PP is usual multi-dimensional service process for Mr/GIr/1/∞ QS with r
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Figure 5: The structure of a busy period

Figure 6: The structure of a service cycle

Figure 7: The structure of a service stage

types of calls, and therefore LT of the PP MGF accordingly to previous section has the form

p(s,~z) ≡
∞∫

0

e−stE
[
~z~X(t)

]
=

1 + ~Λ′~pΠ(s,~z)
s + Λ− ~Λ′~π(s)

, (19)

where
~Λ′~pΠ(s,~z) = ∑

1≤k≤r
λk pΠ(~e, s,~z), ~Λ′~π(s) = ∑

1≤k≤r
λkπk(s).

Here

pΠ(~ek, s,~z) =
∞∫

0

e−stE~ek

[
~z~XΠ(t)

]
is the LT MGF PP on a separate BP Π, opening with a single k-call, and πk(s) = Eek

[
e−sΠ] is a

MGF of a service cycle G, opening with a single k-call.
Therefore to find LT MGF PP p(s,~z) it is necessary to investigate appropriate functions at

separate BP pΠ(~ek, s,~z) and MGF πk(s) of the service cycle Π), opening with a single k-call and a
number of calls in its end.
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To calculate these functions consider the stochastic relations that associate the process behavior
in any point of times and in points of times at separate embedded periods of regeneration, busy,
cycles and stages of service which were denoted by

• ~XR(t) = {~XR(t), t ≤ R} is the PP at separate RP;

• ~XΠ(t) = {~XΠ(t), t ≤ Π} is the PP at separate BP;

• ~XG(t) = {~XG(t), t ≤ G} is the PP at separate Service Cycle; and

• ~Xj(t) = {~Xj(t), t ≤ Aj} is the PP at separate Service Stage.

Using the structure of the embedded RPr’s the LT of the MGF of the PP in any time can
be represented in terms of appropriate characteristics within the separate service stages. Using
the process behavior at different separate stages the LT of MGF of the PP at them also can be
calculated in closed form for any poling table and different service disciplines. The details can be
found in [23].

6. GI/GI/1/∞ Queueing System

The GI/GI/1/∞ QS is a very interesting model both from theoretical and application point of
views. The detailed study of this system one can find in the book of Cohen (1969) [24]. In this
section we remind the results about application of DSRP method for investigation of one-server
queueing system with recurrent input and generally distributed service time that has been done
by Rykov (1983, 1984) [25], [26].

6.1. System description

Consider a GI/GI/1/∞ QS with recurrent arrival and service processes. The system is a
regenerative one, its RT’s are the arrival times that find the system empty. For simplicity it is
supposed that in the initial time t = 0 a new call arrive in the empty system Denote by

• An — inter-arrival times (i.i.d. r.v.),

• Bn — their service times (i.i.d. r.v.),

• Rk — k-th RP duration,

• Πk — k-th BP duration,

• νk — number of calls, served during k-th BP,

• Nk — number of call, which open k-th RP,

• Sk — arrival times in empty system (RT’s),

• S(o)
n,k — service completion times at separate k-th RP,

• S(i)
n,k — arrival times within separate k-th RP,

The above values are calculated recursively:

N0 = 0, Nk = Nk−1 + νk, νk = min{n : n > Nk−1, S(o)
n,k < S(i)

n,k},

S(o)
n,k = ∑

Nk<i≤n
Bi, S(i)

n,k = ∑
Nk<i≤n

Ai.

Πk = S(o)
νk ,k, Rk = S(i)

νk ,k, S0 = 0, Sk = S[k− 1] + Rk.
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6.2. Main processes

The main processes of the GI/GI/1/∞ QS are:

• Number of calls (NoC) in the system X(t),

• Virtual waiting time (VWT) V(t),

• Actual waiting time (AWT) Wn.

The first two processes are strongly (in sense of Smith) regenerative, which regeneration times
Sk are the times of new calls arrivals in empty system. The discrete time AWT process is also
regenerative sequence with respect to numbers Nk of calls arrived into empty system.

The structure of RP’s for this system is the same as for the system M/GI/1/∞. However
behavior of the main processes at RP’s is enough complex, and for their investigation we’ll use the
construction ERP’s. The structure of regeneration and busy periods at the figure 8 are presented.

Figure 8: Structure of the RP for the GI/GI/1/∞-system

Denote by

• F(t) = P{Rn ≤ t} RP c.d.f.;

• f (s) = E[e−sRn ] =
∞∫
0

estF(dt) the RP MGF;

• P(z, t) = E[zX(t)] MGF of the N0C process X;

• p(z, s) =
∞∫
0

e−stP(z, t)dt its LT;

• P(R)(z, t) = E
[
zX(t) 1{t < R}

]
process X(t) MGF on a separate RP;

• p(z, s) =
∞∫
0

e−stP(R)(z, t)dt its LT;

• V(x, t) = P{V(t) < x} process V(t) distribution;

• v(x, s) =
∞∫
0

e−stV(x, t)dt its MGF;

• V(R)(x, t) = P{V(t) < x, t < R} process V(t) distribution on a separate RP;

• v(R)(x, s) =
∞∫
0

e−stV(R)(x, t)dt its MGF within a separate RP;
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• H(t) = ∑
n≥1

P{Sn ≤ t} = ∑
n≥1

F(∗n)(t) the main processes RF.

According to the RPr’s theory for LT the NoC and VWT processes it holds

p(z, s) = p(R)(z, s)(1 + h(s)) =
p(R)(z, s)
1− f (s)

;

v(x, s) = s(R)(x, s)(1 + h(s)) =
v(R)(x, s)
1− f (s)

;

Analogous expressions take place for AWT process {Wn} with respect to discrete RPr {Nk},
which discrete RF is

hk = E

[
∑
n≥0

1k(Nn)

]
= ∑

n≥0
P{Nn = k} = ∑

n≥0
g∗n(k),

where g(k) = P{N1 = k} is the distribution of the number of calls served at separate RP, and
g∗n(k) means the discrete n-th convolution of functions g at point k.

Therefore, to investigate the processes in any time point one should investigate them on a
separate RP’s. Because they are identically distributed it is enough to consider them at the first
RP. To do that denote by N = N1 = ν1 the number of calls served during the first RP and consider
two-dimensional Random Walk Yn = (S(i)

n , S(o)
n ). For simplicity here and further the index of the

RP number is omitted. It is evident that

N = min{n : S(o)
n < S(i)

n }, Π = S(o)
N , R = S(i)

N .

6.3. Busy, idle periods and number of calls, served at BP

Denote by (R2
+, R2

+) the positive quadrant of an Euclid plane (t1, t2). Put

R2
< = {(t1, t2) : t1 < t2}, R2

≥ = {(t1, t2) : t1 ≥ t2},

and introduce the sequence of measures

π1(C) = P{(A, B) ∈ C} =
∫

R2
+

1C(t1, t2)A(dt1)B(dt2),

πn(C) = P{S(i)
j < S(o)

j : j = 1, n− 1, (S(i)
n , S(o)

n ) ∈ C}.

For C ∈ R2
≥ the value πn(C) is the probability of the event {N = n, (R, Π) ∈ C},

πn(C) = P{N = n, (R, Π) ∈ C}.

So the parametric measure
π̃(z, C) = ∑

n≥1
πn(C)zn

is the MGF of the number of calls served during RP jointly with RP and BP lengths. Many system
characteristics can be expressed in terms of measure π̃(z, C):

• For C1
x = {(t1, t2) : t2 − t1 ≥ x} the value 1− π̃(1, C1

x) is server idle time distribution,

1− π̃(1, C1
x) = P{∆ = R−Π ≤ x};

• For C2
x = {(t1, t2) ∈ R2

≥ : t1 < x} the value π̃(1, C2
x) is the RP length distribution,

π̃(1, C2
x) = P{R ≤ x};
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• For C3
x = {(t1, t2) ∈ R2

≥ : t2 < x} the value π̃(1, C3
x) is the BP length distribution

π̃(1, C3
x) = P{Π ≤ x};

• For C0
x = {(t1, t2) ∈ R2

≥ : t2 > x > t1} one has

π̃(1, C0
x) = P{Π ≤ x < R}.

In order to study the parametric measure π̃(z, C) introduce a measure q(c) and a kernel
Q(ω, C) for ω ∈ R2

+, C ∈ R2
+ with e1 = (1, 0), e2 = (0, 1) as follows:

q(C) =
∫

R2
+

1C(t1, t2)A(dt1)B(dt2) = π1(C);

Q(ω, C) =
∫

R2
+

1C(ω + t1e1, ω + t2e2)A(dt1)B(dt2).

The following Theorem has been proved in Rykov (1983) [25].

Theorem 1. For ρ = a−1b < 1 the function π̃(z, C) is

(i) a probability measure on R2
+ and a MGF with respect to z, i.e. π̃(1, R2

+) = 1;

(ii) it satisfies to the equation
π̃(z, C) = z(q(C) + π̃oQ(C)), (20)

where an operation π̃oQ(C)) means integration under the set R2
<:

π̃oQ(C)) =
∫

R2
<

π̃(z, dω)Q(ω, C).

�

It is possible to show that Q(., .) generates a continuous operator with the norm ‖Q‖ = 1, and
so for z < 1 the equation (20) has a unique solution that could be represented in the form

π̃(z, C) = zqo ∑
k≥0

zkQ(ok) = zqoG(z, C),

where
G(z, ω, C) = ∑

k≥0
zkQok(ω, C). (21)

Unfortunately, the condition ‖Q‖ = 1 does not allow directly to find the solution of this equation
for z = 1 and does not guarantee its uniqueness. Nevertheless, the following theorem holds:

Theorem 2. (Rykov (1983) [25].) For ρ = a−1b < 1 the kernel

G(z, ω, C) = Eω

[
∑
n≥0

zn1
{S(i)

k <S(o)
k , k=1, n−1, (S(i)

n , S(o)
n )∈C}

]

exists and is finite for any bounded sets C ∈ R2
+ and |z| ≤ 1. Moreover, the representation (21)

holds.
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6.4. Investigation of the main processes on a separate BP

For investigation of VWT process on a separate BP consider the arrival epochs Si
n as ERT’s and

introduce an ERK

U(ω, C) = Eω

[
∑

n<N
1C(V(S(i)

n ), S(i)
n )

]
,

that satisfies to the ERE

U(ω, C) = Q(1)(ω, C) + U ∗Q(1)(ω, C)−Q(ω, C).

Here Q and Q(1) are transition probability kernels of corresponding semi-Markov chains:

Q(1)(ω, C) = Eω1C(V(A), A) =
∫

R2
+

1C(x + u− v, v)B(du)A(dv);

Q(ω, C) = Eω1C(V(R), R) = P{(0, R) ∈ C}.

In the special case ω = 0, ERK can be directly calculated

U(C) = E

[
∑

n<N
1C(V(Si

n), Si
n)

]
= E

[
∑

n<N
1C(So

n − Si
n), Si

n)

]
=

= ∑
n≥0

∫
R2
<

πn(du, dv)1C(v− u, u) =
∫

R2
<

π̃(1, du, dv)1C(v− u, u). (22)

Therefore the DSRP theory leads to the following result.

Theorem 3. (Rykov (1984), [26]) C.d.f. V(R)(x, t) of VWT process for the GI/GI/1/∞ QS on a
separate RP is determined by the expression

V(R)(x, t) = (1− A(t))(1− B(x + t)) +

+
∫

u<t, v<t−u+x

U(dv, du)(1− A(t− u))(1− B(t− u + x− v)), (23)

where ERK satisfies the expression (22).

Analogous argumentation allow to calculate the distribution of an AWT process on a separate
RP. A little bit more complex argumentation that include ERT’s of the second level is used for
calculation of NoC distribution on a separate RP.

The above theorems proofs and detailed investigation of the GI|GI|1|∞ QS with the DSRPr’s
methods one can find in Rykov (1983, 1984) [25], [26].

In further two sections some recent applications of DSRP will be proposed.

7. Reliability of a double redundant renewable system

Consider a homogeneous cold double redundant repairable system with generally distributed
life- and repair times, which, according to modified Kendall’s notations [12], will be denoted as
< GI2/GI/1 >. The system consists of two identical units which can be in two possible states:
operational and failed. The system fails when both units are in a failed state. For the repairable
system, different strategies of renovation are possible. In this section we consider a strategy when
after the system failure it continues to operate in the previous regime, and after the repair of a
failed unit, it returns into the state one, where a new system cycle begins, where one unit starts
working while the other one being to repair (see figure 9).
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7.1. The problem setup: assumption and notations

Denote by Ai (i = 1, 2, . . . ) lifetimes of the system units, by Bi (i = 1, 2, . . . ), their repair times,
and suppose that all these r.v. are mutually independent and identically distributed for each
sequence. Thus, denote by A(t) = P{Ai ≤ t} and B(t) = P{Bi ≤ t} the corresponding c.d.f.
Suppose that the instantaneous failures and repairs are impossible and their mean times are finite:

A(0) = B(0) = 0, a =
∫ ∞

0
(1− A(x))dx < ∞, b =

∫ ∞

0
(1− B(x))dx < ∞,

and in the initial time t = 0 both units are in good state.
Denote by E = {i = 0, 1, 2} the set of system states, where i means the number of failed units,

and introduce a random process X = {X(t), t ≥ 0}, where

X(t) = number of failed units at time t.

Denote by F the time between system failures, and by by F1 the time to first system failure
(see Figure 9). Their c.d.f. are: F(t) = P{F ≤ t} and F1(t) = P{F1 ≤ t}. We are interesting in
calculation of:

• the reliability function R(t) = P{F > t] = 1− F(t);

• the distribution of the time to the first system failure F1(t);

• the system t.d.p. πj(t) = P{X(t) = j} (j = 0, 1, 2);

• the s.s.p. πj = lim
t→∞

πj(t) ≡ lim
t→∞

P{X(t) = j}, (j = 0, 1, 2);

• the availability coefficient Kav. = π0 + π1 = 1− π2.

The following notations will be used next:

• a modified LT:

ãB(s) =
∫ ∞

0
e−sxB(x)dA(x), b̃A(s) =

∫ ∞

0
e−sx A(x)dB(x); (24)

• the modified mean values:

aB = − d
ds

ãB(s)
∣∣
s=0 =

∫ ∞

0
xB(x)dA(x), bA = − d

ds
b̃A(s)

∣∣
s=0 =

∫ ∞

0
xA(x)dB(x); (25)

• the probabilities P{B ≤ A} and P{B ≥ A} associated with these transformations through
the relations:

p ≡ P{B ≤ A} = ãB(0), q = 1− p ≡ P{B > A} = b̃A(0).

Note the property of transformations (24)

ã1−B(s) = ã(s)− ãB(s), (26)

7.2. Reliability Function

Process X is a regenerative one. A trajectory of this process is illustrated on Figure 9. Here, F
means the time between system failures. The variable G specifies the length of a RP according
to a defined renovation policy. The following lemma holds for the LSTs of the time F between
failures and the time to the first failure F1.

Lemma 1. The LST f̃ (s) = E
[
e−sF] of the time F between failures and the LST f̃1(s) = E

[
e−sF1

]
of the time to the first failure F1 are of the form:

f̃ (s) =
ã(s)− ãB(s)

1− ãB(s)
, f̃1(s) = ã(s)

ã(s)− ãB(s)
1− ãB(s)

. (27)
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F

G

Figure 9: Trajectory of the process X.

Proof. From the Figure 9 can be seen that the system lifetime F satisfies the following stochastic
equation:

F =

{
A + F if B < A,
A if B > A.

(28)

Applying the LT to this equation and taking into account notations (24), one can obtain

f̃ (s) = E
[
e−sF

]
=

∞∫
0

e−stdF(t) = f̃ (s)ãB(s) + ã1−B(s). (29)

From here the first relation in of (27) follows. The second one directly follows from the stochastic
relation F1 = A + F. �

The main result of this subsection is the following theorem:

Theorem 4. The LT R̃(s) of the system reliability function R(t) = 1− F(t) is

R̃(s) =
1− ã(s)

s(1− ãB(s))
. (30)

Proof. Taking into account that the LT of any c.d.f. is connected with its LST by the relation
F̃(s) = s−1 f̃ (s), the proof follows directly from (27). �

The expected system life time between failures E[F] and mean time to the first failure E[F1]
are obtained in the form:

E[F] =
a
q

, E[F1] = a +
a
q

.

7.3. Time dependent system state probabilities

For calculation of the system state t.d.p.’s the renewal theory is used. In our case, the process X
is a RPr with a delay (see Figure 9) and its RT’s are

S0 = 0, S1 = A1, S2 = S1 + G1, . . . , Sk+1 = Sk + Gk, . . . .
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Here, RP’s Gi (i = 1, 2, . . . ) are the time intervals between two successive returns of the process
X into state 1 after a system failure, when one of the system units begins to operate and the other
one begins to repair. Thus, the process X state t.d.p.’s πj(t) = P{X(t) = j} (j = 0, 1, 2) can be

represented in terms of its distribution on a separate RP π
(1)
j (t) = P[X(t) = j, t < G] (j = 0, 1, 2)

and the renewal function H(t) as follows:

πi(t) = π
(1,1)
i (t) +

t∫
0

dH(u)π(1)
j (t− u). (31)

Here the distribution of the process X at the first RP is of the form

π
(1,1)
j (t) = P[X(t) = j, t < A1] = δj0(1− A(t)). (32)

In terms of the c.d.f. G(t) = P{Gi ≤ t} of r.v.’s Gi, the RF H(t) is determined as follows:

H(t) = ∑
k≥1

P

[(
∑

1≤i≤k
Gi

)
≤ t

]
= ∑

k≥1
G∗k(t). (33)

Consider, first of all, the RP distribution.

Lemma 2. The LST of the RP is of the form:

g̃(s) = E[e−sG] =
b̃A(s)

1− ãB(s)
. (34)

Proof. The RP is the time between two successive visits of the process to state 1 from the state
2, when two events begin simultaneously: operating of one unit and the repair the other one.
Figure 9 shows that r.v. G satisfies the following stochastic equation:

G =

{
A + G if A > B,
B if A ≤ B.

(35)

Applying LST to this stochastic equation leads to the equation

g̃(s) = E
[
e−sG

]
=

∞∫
0

e−stdG(t) =
∞∫

0

dA(x)
[

B(x)e−sx g̃(s) +
∫

y>x
e−sydB(y)

]
=

= g̃(s)
∞∫

0

e−sxB(x)dA(x) +
∫ ∞

0
e−sy A(y)dB(y) = g̃(s)ãB(s) + b̃A(s), (36)

which implies the expression (34) for the LST of the RP. �
By differentiation due to properties of ãB(0) and b̃A(0) one can obtain the mean length of the

RP as:
E[G] =

aB + bA
q

.

Lemma 3. The LST of the system RF is given by

h̃(s) =
b̃A(s)

1− (ãB(s) + b̃A(s))
. (37)

Proof. From the renewal theory, it is well known (and follows from (33)) that the LST of the
RF H(t) is defined as h̃(s) = g̃(s)(1− g̃(s))−1. Thus, substitution of the expression (34) for g̃(s)
into this one leads to (37). �
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Theorem 5. The LT’s π̃j(s) of the process X state t.d.p’s. πj(t) (j = 0, 1, 2) are of the form:

π̃j(s) = δj0
1− ã(s)

s
+

b̃a(s)
1− (ãB(s) + b̃A(s))

π̃
(1)
j (s), (j = 0, 1, 2), (38)

where π̃
(1)
j (s) (j = 0, 1, 2) are the LTs of the t.d.p.’s π

(1)
j (t) (j = 0, 1, 2) in a separate RP. These

probabilities will be calculated in he next subsection.

Proof. Applying LT to equation (31) and taking into account equation (32), one can obtain

π̃j(s) = δj0
1− ã(s)

s
+ h̃(s)π̃(1)

j (s). (39)

A substitution into this equality of the expression (37) for h̃(s) leads to (38). �

7.4. The state probabilities on a separate RP

Now, we calculate of the process state t.d.p.’s on a separate RP. The probability π
(1)
2 (t) can be

calculated easy for the main level RP.

Lemma 4. The LT of the second t.d.p. π
(1)
2 (t) in the main RP is given by

π̃
(1)
2 (s) =

ã(s)− (ãB(s) + b̃A(s))
s(1− ãB(s))

. (40)

Proof. Due to representation of the RP by formula (35), and as it is shown in Figure 9, the
event {X(t) = 2, t < G} occurs if and only if either the event {A1 ≤ t ≤ B1} occurs or the events
{t > u = A1 > B1} and {X(t− u) = 2, t− u < G} occur. Thus, it holds

π
(1)
2 (t) = P[J(t) = 2, t < G] = P[A ≤ t < B] +

t∫
0

dA(u)B(u)π(1)
2 (t− u).

From this equation it follows the LST

π̃
(1)
2 (s) =

∞∫
0

e−st A(t)(1− B(t))dt + ãB(s)π
(1)
2 (s),

and

π̃
(1)
2 (s) =

1
1− ãB(s)

∞∫
0

e−st A(t)(1− B(t))dt.

Calculating the integral in the last expressions by partial integration we get (40). �

Since the calculation of the probabilities π
(1)
j (j = 0, 1) is not a trivial task, we intend to apply

the theory of DSRP [6, 9, 10]. For this consider the process X as an ERPr at the time interval F,
which ERT’s are the random number ν = min{n : An < Bn} of time epochs

S(1)
1 = A11{A1>B1}, S(1)

2 = S(1)
1 + A21{A1>B1, A2>B2}, . . .

up to the time, when the event {An ≤ Bn} happens for first time. It means that the time interval
G(1) between ERT’s has a distribution G(1)(t) = A(t) and these epochs lie within the time interval
F, which is determined by the equation (28).

According to this theory, the process distribution within the basic RP (RP of the first level)
π
(1)
i (t), similar to the equation (31), can be presented in terms of distributions in ERP’s (RP’s of

the second level) π
(2)
j (t) and ERF H(1)(t) in the following way:
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π
(1)
j (t) = π

(2)
j (t) +

∞∫
0

dH(1)(u)π(2)
j (t− u), j = 0, 1, (41)

where
π
(2)
j (t) = P{X(t) = j, t < G(2)}, j = 0, 1

is the process t.d.p.’s on a separate RP of the second level, and the ERF H(1)(t) satisfies the
equation

H(1)(t) = A(t) +
t∫

0

dH(1)(u)A(t− u)− F(t), (42)

where F(t) is the CDF of the time between system failures determined by its LST (27).
Similar to the basic case, the solution of equations (41) and (42) can be represented in terms of

their LTs and LSTs:

π̃
(2)
j (s) =

∞∫
0

e−stπ
(2)
j (t)dt, h̃(1)(s) =

∞∫
0

e−stdH(1)(t).

The next lemma specifies connections between process distributions in the first and in the second
level regeneration cycles in terms of their LTs.

Lemma 5. The LT’s of the process t.d.p.’s of the first and in the second level RP’s satisfy the
relation

π̃
(1)
j (s) = π̃

(2)
j (s)

ãB(s)
1− ãB(s)

j = 0, 1. (43)

Proof. Applying LT to equation (41), we get

π̃
(1)
j (s) = (1 + h̃(1)(s))π̃(2)

j (s). (44)

Due to (42), the LST h̃(1)(s) of the embedded renewal function H(1)(t) is of the form

h̃(1)(s) = ã(s) + h̃(1)(s)ã(s)− f̃ (s),

which leads in turn to

h̃(1)(s) =
ã(s)− f̃ (s)

1− ã(s)
.

Substitution of this relation into equation (44) and taking into account the expressions for f̃ (s)
from (27) we get the result (40) that completes the proof. �

We have to calculate now only the π̃
(2)
j (s) (j = 0, 1).

Lemma 6. In notations (24), the LT’s of the second level system state probabilities are:

π̃
(2)
0 (s) =

1
s
(ã(s)− (ãB(s) + b̃A(s)));

π̃
(2)
1 (s) =

1
s
[1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))]. (45)

Proof. For probabilities π̃
(2)
j (t) (j = 0, 1) from Figure 9, it follows that

• The event {X(t) = 0, t < G(1) occurs if and only if {B ≤ t < A};

• The event {X(t) = 1, t < G(1)} occurs if and only if {t < B ≤ A}, or if {t < A ≤ B}.
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Hence, the respective probabilities are

π
(2)
0 (t) = P{B < t < A} = B(t)(1− A(t)),

π
(2)
1 (t) = P{t < B < A}+ P{t < A < B}. (46)

Calculation LT’s of these expressions by partial integration in terms of notations (24) leads to (45),
that ends the proof. The details of calculation one can find in [28]. �

By combining all these results in [28], the process t.d.p. have been found. They are too
cumbersome and are omitted here. We show here only the system s.s.p.’s. By using a Tauber
theorem

πj = lim
t→∞

πj(t) = lim
s→0

sπ̃j(s) (47)

in [28] for the process s.s.p.’s the following results have been obtained.

Theorem 6. The system state stationary probabilities are:

π0 = 1− b
aB + bA

, π1 =
a + b

aB + bA
− 1, π2 = 1− a

aB + bA
. (48)

For a Markov model < M2|M|1 >, when A(t) = 1 − e−αt, B(t) = 1 − e−βt this result
coincides with those calculated by direct approach using Birth and Death process for the Markov
case.

8. k-out-of-n system

In this section we apply the theory of DSRP to study of k-out-of-n : F model, which has
applications in many real-world phenomena. There are many papers devoted to investigations of
this model. A detailed review of previous investigations of the model one can find in [29]. Some
special applications of this model to engineering problems in oil and gs industry one can find
in [35] and [36].

8.1. Stating the problem. Notations

Consider k-out-of-n : F system, which can be considered as a reparable n-components reliability
system in parallel that fails when k of its components fail. It is supposed that the life times of the
systems’ components are i.i.d. r.v.’s with common exponential distribution of parameter α. Failed
components are repaired by a single facility. Repair times are i.i.d. r.v. Bi (i = 1, 2, . . . ) with the
common c.d.f. B(t) = P{Bi ≤ t}.

For the system study introduce the following notations:

• E = {0, 1, . . . k} is the system set of states, where j means number of failed components and
k is the system failure state;

• λi = (n− i)α intensity of one of components failure, when the system is in the state i;

• define the random process X = {X(t), t ≥ 0} by the relation

X(t) = j, if in time epoch t the system is in the state j ∈ E;

• system (and the process) t.d.s. probabilities πj(t) = P{X(t) = j};

• the process s.s.p. πj = lim
t→∞

P{X(t) = j};

• the time T to the system failure, T = inf{t : X(t) = k};

• reliability function R(t) = P{T > t}.
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For repairable k-out-of-n : F system there exist at least two possible scenarios of the system
repair after its fail:

• Partial repair regime, when after the system failure it continues to work in previous regime
and after the repair of repaired component it passes to the state k− 1;

• Full repair regime, when after the system failure the repair of whole system begins, after
which the system becomes as a new one, and comes to the state 0. After each system
failure the full repair duration are i.i.d. r.v. Gi (i = 1, 2, . . . ) with the common c.d.f.
G(t) = P{Gi ≤ t}.

Suppose that in the very beginning all system components are in good (UP) state, which
means that the initial state of the process is zero, X(0) = 0. It is also supposed that immediate
components failures and repairs are impossible and mean failure and repair times are finite,

B(0) = G(0) = 0,
∞∫

0

(1− B(t))dt < ∞,
∞∫

0

(1− G(t))dt < ∞. (49)

Further in the section the system t.d.p. πj(t), reliability function R(t), and the system s.s.p. πj
are calculated.

8.2. Partial repair regime.

Consider firstly partial repair regime, when after the system failure the repair of previously failed
component is continued and after its end the system goes to the state k− 1. In this case we will
consider the process X as a semi-regenerative one (see figure 10). Its regeneration times Sn of
the type j are the times of repair end when system occurs in state j, X(Sn + 0) = j, SRP’s are
Tn = Sn − Sn−1, and the RS’s is E1 = {j : (j = 0, k− 1)}.

( )J t
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...
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Figure 10: Trajectory of the process J for system with partial repair

The SMP X behavior is determined by its SMM Q(t) = [Qij(t)]ij∈E1 with transition probabili-
ties

Qij(t) = P{X(Sn + 0) = j Tn ≤ t |X(Sn−1 + 0) = i}.
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For its calculation denote by

pij(t) =
(

n− i
j− i

)
(1− e−αt)j−ie−(n−j)αt

the probability that during time t the process passes from the state i to the state j. Let

Pik(t) = ∑
j≥k

pij(t) = 1− ∑
i≤j≤k−1

pij(t)

be the probability that starting from state i, the process leaves the subset of states E1 during time
t. Note that the last probability is the lifetime c.d.f. of the non-reparable k-out-of-n : F system
starting from the state i. To simplify further calculations, we represent these probabilities by
Newton’s binomial formula by using for simplicity the substitution λi = (n− i)α as

pij(t) =
(

n− i
j− i

)
e−λjt

j−i

∑
m=0

(−1)m
(

j− i
m

)
e−αmt. (50)

and

Pik(t) = 1− ∑
i≤j≤k−1

(
n− i
j− i

)
e−λjt

j−i

∑
m=0

(−1)m
(

j− i
m

)
e−αmt. (51)

Using these notations for the SMM in [29] the following lemma has been proved.

Lemma 7. The differentials of the process X SMMs components are:

Q0j(dt) =

t∫
0

λ0e−λ0u du p1j+1(t− u)B(dt− u), j = 0, k− 2;

Q0k−1(dt) =

t∫
0

λ0e−λ0u du P1k(t− u)B(dt− u);

Qij(dt) = pij+1(t)B(dt), (i = 1, k− 2, j = i− 1, k− 2);

Qik−1(dt) = Pik(t)B(dt). (52)

Their LST q̃ij(s) =
∫ ∞

0 e−stQij(dt) are:

q̃0j(s) =
λ0

s + λ0

(
n− 1

j

) j

∑
m=0

(−1)m
(

j
m

)
b̃(s + λj+1−m), j = 0, k− 2;

q̃0k−1(s) =
λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
b̃(s + λj−m);

q̃ij(s) =

(
n− i

j− i + 1

) j−i+1

∑
m=0

(−1)m
(

j− i + 1
m

)
b̃(s + λj+1−m);

q̃ik−1(s) = ∑
j≥k

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
b̃(s + λj−m), (53)

Remind now that the state t.d.p.’s of the process X are determined not only by its SMM but
also by the initial distribution~α(0) = {α(0)i : i ∈ E}. Thus, denoting by ~π(t) = {πj(t) : j ∈ E}
the vector of the process state probabilities, where

πj(t) = P{X(t) = j} (j ∈ E),

and by Π(t) = [πij(t)]ij∈E the probability transition matrix of the process X, where

πij(t) = P{X(t) = j |X(0) = i)} (i, j ∈ E)
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in matrix form it means that ~π(t) =~α(0)Π(t).
On the other side, according to the theory of SRPr, the process transition probabilities Π(t) in

terms of appropriate transition probabilities Π(1)(t) = [π
(1)
ij (t)]ij∈E where

π
(1)
ij (t) = P{X(Sn−1 + t) = j, t ≤ Tn |X(Sn−1 + 0) = i)} (i ∈ E1, j ∈ E)

are the transition probabilities on separate RP’s can be represented in the form

Π(t) = Π(1)(t) + H ? Π(1)(t). (54)

here the MRM H(t) =
[
Hij(t)

]
ij∈E1

with

Hij(t) = E

[
∑
n≥1

1{Sn≤t, J(Sn)=j} |X(0) = i

]

satisfies to the equations
H(t) = Q(t) + Q ? H(t). (55)

The above results show that the best way for the system state t.d.p. representation and the
equations for MRM solution is its representation in terms of LS and LST. Therefore passing to LT

Π̃(s) =
∞∫

0

e−stΠ(t)dt, Π̃(1)(s) =
∞∫

0

e−stΠ(1)(t)dt,

and LST

q̃(s) =
∞∫

0

e−stQ(dt), h̃(s) =
∞∫

0

e−stH(dt)

from equations (54) and (55) one can obtain the following results:

Π̃(s) = Π̃(1)(s) + h̃(s) · Π̃(1)(s) (56)

and
h̃(s) = q̃(s) + q̃(s) · h̃(s). (57)

At least the process t.d.p. on separate RP’s given in the following lemma (its proof can be
found in [29]):

Lemma 8. The process state t.d.p. on a separate SRP are:

π
(1)
00 (t) = e−λ0t;

π
(1)
0j (t) =

t∫
0

λ0e−λ0u p1j(t− u)(1− B(t− u))du (j = 1, k− 1);

π
(1)
0k (t) =

t∫
0

λ0e−λ0uP1k(t− u)(1− B(t− u))du;

π
(1)
ij (t) = pij(t)(1− B(t)) (1 ≤ i ≤ j ≤ k− 1);

π
(1)
ik (t) = Pik(t)(1− B(t)) (i = 1, k− 1). (58)
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Their LT π̃
(1)
ij (s) are:

π̃
(1)
00 (s) =

1
s + λ0

;

π̃
(1)
0j (s) =

λ0

s + λ0

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
1− b̃(s + λj−m)

s + λj−m
(j = 1, k− 1);

π̃
(1)
0k (s) =

λ0

s + λ0
∑
j≥k

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
1− b̃(s + λj−m)

s + λj−m
;

π̃
(1)
ij (s) =

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
1− b̃(s + λj−m)

s + λj−m
, (1 ≤ i ≤ j ≤ k− 1);

π̃
(1)
ik (s) = ∑

j≥k

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
1− b̃(s + λj−m)

s + λj−m
. (59)

By joining the above results the following theorem follows

Theorem 7. The LT of the process X state t.d.p. in matrix form given by the equality

Π̃(s) = (I − q̃(s))−1Π̃(1)(s), (60)

where components π̃
(1)
ij (s) of the matrix Π̃(1)(s) are given by formulas (59) in lemma 8, and

components q̃l j(s) of matrix q̃(s) given by the formula (52) from lemma 7. �

The s.s.p.’s of the process could be calculated by passing to limits as t→ ∞ in the last equality.
But it would be preferable to use the limit theorem for transition probabilities of SRPr’s.

Theorem 8. The stationary regime of the considered system under partial repair regime exists
and its s.s.p.’s equal

πj =
1
m ∑

0≤l≤j∧(k−1)
αlπ̃

(1)
l j (0) (j = 0, k), (61)

where m = λ−1
0 (α0 + λ0b), π̃

(1)
ij (0) can be found from the formulas (59) of lemma 8, and

~α = {αl : l ∈ E} is the invariant probability measure of the embedded Markov chain that satisfies
the system of equations

~α′ =~α′ q̃(0), ∑
l∈E

αl = 1.

�

8.3. Full repair regime.

For study of the system behavior under the full repair regime we will consider the main process
X as a regenerative one, whose regeneration points of time Sn (n = 1, 2, . . . ), S0 = 0 are the times
when the system fully repaired after its failure. The regeneration periods Θn = Sn − Sn−1 of
the process X consist of two terms: the system life times (times to the system failure after its
repair) Fn and the system repair times after its failure Gn : Θn = Fn + Gn (see figure 11). Denote
by F(t) = P{Fn ≤ t} and Γ(t) = P{Θn ≤ t} the common distribution function of r.v.’s Fn and
Θn (n = 1, 2, . . . ).

From the RPr’s theory in sense of Smith it follows that the process t.d.p. πj(t) = P{X(t) = j}
can be represented in terms of corresponding process t.d.p. π

(Θ)
j (t) = P{X(t) = j, t < Θ} at

separate RP Θ as follows

πj(t) = π
(Θ)
j (t) +

t∫
0

π
(Θ)
j (t− u)H(du). (62)
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Figure 11: The main process as a regenerative one.

Here H(t) is the appropriate RF, which is generated by the distribution Γ(t) = P{Θn ≤ t} of r.v’s.
Θn, and can be calculated as

H(t) = ∑
n≥1

P{Sn ≤ t} = ∑
n≥1

Γ(∗n)(t). (63)

Its LST equals

h̃(s) =
∞∫

0

e−stH(dt) =
γ̃(s)

1− γ̃(s)
, (64)

where γ̃(s) is the LST of the c.d.f. Γ(t).
Thus, for the process analysis we need firstly to calculate the RP Θn distribution and the

process distribution π
(Θ)
j (t) on them. Remind that the r.v. Θn is the sum of two independent r.v.’s

Fn and Gn, the distributions of the second one is supposed to be known and the distribution of
the first one will be done jointly with its LST later in lemma 10 (see Corollary 1 from it).

Let us turn now to calculation of the process t.d.p.’s π
(Θ)
j (t) on a separate RP. The process

behavior on the separate RP’s Θn = Fn + Gn can be divided into two parts: as a process behavior
at separate system lifetime Fn and its behavior during the repair time Gn,

{X(Sn−1 + t) = j, t ≤ θn} =
{

X(Sn−1 + t) = j for t ≤ Fn (j 6= k),
k for Fn < t ≤ Θn.

(65)

Thus, the process t.d.p.’s on at a separate RP are given in the following lemma.

Lemma 9. The process state t.d.p.’s at the separate RP Θ in terms of according probabilities on
separate system life times F are

π
(Θ)
j (t) = (1− δjk)π

(F)
j (t) + δjkP{F ≤ t < Θ} (66)

and have LT

π̃
(Θ)
j (s) = (1− δjk)π̃

(F)
j (s) + δjk f̃ (s)

1− g̃(s)
s

. (67)
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Proof. The proof follows directly from the relation (65) and details can be found in[29]. �
The last equality shows that we need in the system lifetime F distribution and the process

distribution on it. For this, we turn to the process X analysis on separate system lifetime. Since
the process behavior on the system lifetimes Fn is rather complicated, the process X behavior
within any of them will be considered as an ESRP X(1)

n = {X(1)
n (t) : t ≥ 0} with

X(1)
n (t) = X(Sn−1 + t), t ≤ Fn.

Its ESRT S(1)
l of the type j are the times of any repair ends (inside a separate system lifetime Fn)

that find the system in state j. They are the same as for the SRP in the subsection 8.2 except the
fact that right now the process X(1)

n is considered on a separate system lifetime and therefore never
occurs in state k− 1 after the repair ends. Thus there are only k− 1 ERS’s, E(1) = {0, 1, . . . , k− 2}.

To study the process behavior on separate system lifetime denote by

• T(1)
l = S(1)

l − S(1)
l−1, l = 1, 2, . . . the intervals between ESRT’s of the ESRP X(1) (the times

between repair ends);

• Q(1)(t) = [Q(1)
ij (t)]ij∈E(1) ESMM, which components are the process transition probabilities

between ESRT,

Q(1)
ij (t) = P{X(1)(S(1)

l + 0) = j, T(1)
l ≤ t |X(1)(S(1)

l−1 + 0) = i};

• H(1)(t) = [H(1)
ij (t)]ij∈E(1) EMRM, which components are the conditional ERF’s on a separate

lifetime period

H(1)
ij (t) = E

[
∑
l≥1

1
{X(1)(S(1)

l +0)=j, S(1)
l ≤t}

|X(1)(S(1)
0 ) = i

]
.

We start with calculation of the ESMM Q(1)(t) = [Q(1)
ij (t)]ij∈E(1) of the ESRP X(1). For this

note that its components coincide with those from subsection 8.2 except the fact that now the
process X(1) never falls in state k− 1 after the repair end. Thus they are defined only for j ≤ k− 2
and in terms of notations (50, 51) are represented in differential forms in lemma 7 by formulas
(52, 53). Now, since the set of ERS’s is a proper subset of the process states, the ESMM is a
degenerative matrix in contrast to the matrix of the previous section. Hence, we are ready to
represent some useful characteristics of the model. Introduce:

• the vector-function ~F(dt) = [Fik(dt)], components of which are the differentials of the c.d.f.’s
of the absorbing state k destination time by the ESRP starting from state i (i = 0, k− 2);

• the vector-function ~Q(1)(t) = [Q(1)
ik (t)], components of which are differentials f the c.d.f.’s of

the absorbing state k destination time by the ESRPr starting from state i along a monotone
trajectory.

The components of the last one analogous to lemma 7, satisfy to the expressions

Q(1)
0k (dt) =

t∫
0

λ0e−λ0u du P1k(t− u)B(dt− u),

Q(1)
ik (dt) = Pik(t)B(dt). (68)

Their LST q̃(1)ij (s) are

q̃(1)0k (s) =
λ0

s + λ0
∑

j≥k−1

(
n− 1
j− 1

) j−1

∑
m=0

(−1)m
(

j− 1
m

)
b̃(s + λj−m);

q̃(1)ik (s) = ∑
j≥k−1

(
n− i
j− i

) j−i

∑
m=0

(−1)m
(

j− i
m

)
b̃(s + λj−m). (69)
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For the vector ~F(t) the following representation holds.

Lemma 10. The vector ~F(t) satisfies to the equation

~F(dt) = ~Q(1)(dt) + Q(1) ? ~F(dt), (70)

whose unique solution in terms of LST is

~̃f (s) = (I − q̃(1)(s))−1~̃q(1)(s). (71)

Proof. The first equation is obtained with the help of the complete probability formula and its
solution in terms of LST is evident. �

From this lemma some useful corollaries follow.

Corollary 1. The first component F0k(t) of vector ~F(t) is c.d.f. of time to the first (and between)

failures for system starting from state 0. The first component f̃0k(s) of vector ~̃f (s) is the MGF of
the respective times. For simplicity we will denote them without indexes as it was done before
f̃ (s) ≡ f̃0k(s). �

Corollary 2. Since the process regeneration cycle Θ equals to the sum of two independent r.v.’s:
time to the system failure and its repair time its MGF is

τ(s) ≡ E
[
e−sΘ

]
= f̃ (s)g̃(s). (72)

�

Now the expression (64) leads to the following corollary.

Corollary 3. The LST h̃(s) of the RF H(t) of the system operating in the full repair regime equals
to

h̃(s) =
f̃ (s)g̃(s)

1− f̃ (s)g̃(s)
. (73)

�
Taking into account that

R(t) = 1− F(t) = 1−
t∫

0

f (u)du

one can obtain the following corollary

Corollary 4. The LT of the reliability function of the system is

R̃(s) =
1
s
(1− f̃ (s)). (74)

�

To study the process behavior during a separate system lifetime cycle we consider

• the matrix Π(F)(t) = [Π(F)
ij (t)]ij∈E(1) , which components are the transition probabilities of

the process on a separate life-cycle,

Π(F)
ij (t) = P{X(1)

n (t) = j, t < Fn |X(1)
n (0) = i};

• the matrix Π(1)(t) = [Π(1)
ij (t)]ij∈E(1) , which components are the transition probabilities of

the process on a separate ESRP (between successive repair ends),

Π(1)
ij (t) = P{X(1)

n (S(1)
l−1 + t) = j, t < T(1)

l |X(1)
n (S(1)

l−1 + 0) = i}.
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In terms of these notations and according to the DSRP theory the following representations
take place (symbol ? here means matrix-functional convolution)

Π(F)(t) = Π(1)(t) + H(1) ? Π(1)(t). (75)

In terms of the LT of matrices Π(F)(t), Π(1)(t) and LST of matrix H(1)(t) this equation take the
form

Π̃(F)(s) = Π̃(1)(s) + h̃(1)(s) · Π̃(1)(s). (76)

In our case
H(1)(dt) = Q(1)(dt) + Q(1) ∗ H(1)(dt),

and therefore
h̃(1)(s) = (I − q̃(1)(s))−1q̃(1)(s).

From here it follows

I + h̃(1)(s) = I + ∑
l≥1

q̃(1)∗l(s) = (I − q̃(1)(s))−1,

and
Π̃(F)(s) = Π̃(1)(s) + h̃(1)(s) · Π̃(1)(s) = (I − q̃(1)(s))−1 · Π̃(1)(s). (77)

The system state transition probabilities on a separate embedded repair time Π(1)(t) coincide
for the embedded set of states E(1) with the corresponding probabilities as in the section 8.2 and
represented in the formula (58) in lemma 8. The above results can be summing as follows.

Theorem 9. The LT π̃j(s) of the process X starting from the state zero state t.d.p.’s equals to

π̃j(s) =
1

1− f̃ (s)g̃(s)

{
π̃
(F)
j (s) for j = 1, k− 1,

f̃ (s) 1−g̃(s)
s for j = k,

(78)

where f̃ (s) is defined by the first component of the vector ~̃f (s) from corollary 1, which is
represented by formula (71). The LT of time-dependent process state probabilities on a separate
process lifetime period π̃

(F)
j (s) is the first row of matrix Π̃(F)(s), which can be calculated from

(76, 59).

Remark 1. Since any main RP begins with the state 0, for calculation of the process state t.d.p.’s
as well as s.s.p.’s we need only in probabilities with the initial zero state.

Remark 2. The representation of the final results in the initial system information in general are
too cumbersome and it needs additional study for concrete situations.

From this theorem by using the Smith’s key renewal theorem one can obtain the stationary
process probabilities.

Theorem 10. The s.s.p. πj of the process X, starting from any state, equals to

πj =
1

E[F] + E[G]

{
π̃
(F)
j (0) for j = 1, k− 1,

E[G] for j = k,
(79)

where E[F] = − f̃ ′(0) is the expected system lifetime. It can be found from the formula (71), and
the values π̃

(F)
j (0) are the components of first row of matrix Π̃(F)(0), which can be calculated

from (76, 59).
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9. Conclusion

A review of the Smith’s regeneration idea development is proposed in this paper. It is shown
that the DSRPr can be used as a useful method for study of different stochastic models. Several
previous and two recent results of application this method are demonstrated. For all considered
systems the state t.d.p.’s and the s.s.p.’s are represented in terms of respective probabilities on a
separate ERP. Some other applications for complex hierarchical system investigations can be find
in [30], [31], [32].

The proposed approach allows to obtain analytical expressions of main quality of service
characteristics for various complex stochastic models. Presence of analytical results allows to
propose more detailed analysis of such systems. Especially these results can be used for further
investigation of output systems characteristics sensitivity to the shape of the input distributions
that determine the system behavior. Some of these investigations can be found in series of our
papers. Review of these one can see for example in [33] and [34].
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Abstract

A single server classical queueing model with Markovian Arrival Process(MAP), phase-type(PH)
distributed service time and rest of the random variables are distributed exponentially is investigated. By
making use of matrix analytic method, the resultant QBD process is examined in the stationary state. The
practical applicability, objectives and the uniqueness of our model have been provided. The busy period
analysis has been done and the distribution function for the waiting time has also been obtained. Some
performance measures are enlisted. At last, some graphical and numerical exemplifications are furnished.

Keywords: Markovian Arrival Process, Setup process, Phase type distribution, Feedback, Vaca-
tion, Balking of customers, Renege of customers, Breakdown, Repair

I. Introduction

As far as the theory of point processes is concerned, the Markovian Arrival Process(MAP)
is one of the most adaptable modelling tools. With an objective to formulate the incoming
processes which may not be compulsorily renewal processes, a different thought notably, Versatile
Markovian Point Processes(VMPP) has been introduced by Neuts [20]. The new terminologies,
specifically Batch MAP and MAP had been coined by Lucantoni et al. [16] for the purpose of easy
understanding of VMPP. The concept of MAP has been extensively discussed by Chakravarthy
[3] in the “Encyclopaedia of Operations Research and Management Science". The parameter matrices
(D0, D1) characterizes the MAP and these matrices are of dimension m. In particular, the change
overs which are related to no arrivals are taken care by D0, whereas the change overs related to
arrivals are taken care by D1.

The generator matrix of the resultant CTMC is given as D = D0 + D1. The invariant probability
matrix of the MAP which is a particular style of semi-Markov process is as follows:∫ t

0
eD0xD1dx = [I − eD0t](−D0)

−1D1.

Suppose π indicates probability vector for the matrix D = D0 + D1 in the stable state with the
condition that πD = 0 and πe = 1. Then, λ = πD1em provides the average count of arrival for
each section of time in the steady state form of the MAP and is named as the fundamental rate.
The PH-distributions and QBD process have been intensively examined by Latouche et al. [13].

The two researchers who have discussed about different types of vacations namely, single
and multiple for a queueing model are Levy and Yechiali [14]. Keilson and Servi [10] have
initiated the notion of Bernoulli vacation. A queueing system with multi-server, exponentially
distributed vacation times had been examined by Levy and Yechiali [15]. By making use of one of
the analysing techniques namely, the partial generating function, the size of the system had been
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computed by them. Takács [24] was the first who introduced the concept of Bernoulli feedback.
He has derived distribution for queue size for a stationary process.

Chakravarthy and Agnihothri [4] have analysed a non-Markovian queueing system in which
service times are PH-distributed with back up server. The phase type nature of the duration of
time in which the server is busy and the sojourn time(system and queue) have been shown by
them. A cost model has also been developed by them for the purpose of finding the amicable
threshold values. Chang et al. [5] have done an analysis of non-Markovian system where the
arrivals come in groups with setup times and finite buffer by employing embedded Markov-chain
technique. They have also derived the stationary distributions for the length of the waiting line at
various instants.

Rajadurai et al. [23] have studied a non-Markovian retrial model where arrivals occur in
groups with unreliable server, two stages of service and vacation. The probability generating
function for the system size at different states have been obtained by them. Jain et al. [7] have
examined the non-Markovian system where arrivals come in groups with breakdown, feedback
and setup. By employing supplementary variable technique, they have established invariant
distribution function of the queue length. They have also determined the staying time in the
waiting line.

A Markovian queueing system with single server, feedback, vacation and impatient customers
has been examined by Marichamy et al. [19]. They have employed probability generating
function technique to study the invariant probability distribution. A multiserver Markovian
retrial queueing system with impatient customers has been examined by Luh et al. [17] by using
Matrix-Analytic Method. They have provided an analytic solution for their model. They have
also employed eigen vector approach for analyzing their system.

Rakesh Kumar et al. [11] have done an analysis in transient and steady state for a queueing
model with balking, reneging and two heterogeneous servers. They have provided various
performance measures and have discussed about some particular cases. Bouchentouf et al. [2]
have done an economic analysis of a batch arrival multiserver Markovian queueing model with
feedback, multiple vacation and impatient customers. They have derived the steady state solution
by using probability generating functions. A Markovian queueing system with multiserver and
impatient customers along with the provision of additional removable servers has been examined
by Jain et al. [6]. They have obtained equilibrium queue size distribution by employing recursive
approach.

Ke et al. [9] have investigated the multiserver Markovian retrial system with balking and
vacation. By using the Matrix-Geometric Method, the formulae for evaluating invariant probabili-
ties and rate matrix have been derived by them. They have constructed cost function and have
performed optimization tasks by employing various numerical methods. Rakesh Kumar et al. [12]
have done a transient analysis of a queueing model with correlated inputs and reneging. They
have studied the model with the aid of Runge-Kutta method. Bouchentouf et al. [1] have analysed
a model with single server, feedback, multiple vacation and balking. They have obtained steady
state probabilities and have developed the model for cost analysis. A non-Markovian retrial
model with feedback, Bernoulli vacation and unreliable server has been investigated by Pavai
Madheswari et al. [18]. The ergodicity condition for their model has been obtained by them. They
have also obtained joint distribution function for various states of the server, system and orbit
size. We have utilized the matrix-analytic method for our discussion and it has been introduced
by Neuts[21]. The logarithmic reduction algorithm has been utilized to compute the rate matrix
and it was described by Latouche et al. [13].

Consider a nationalized bank which has more than one serving counter. We may consider
any one of those counters. Suppose the server in the counter deals with money transaction in the
following ways(phases).

• Demand Draft(DD)

• Challan

• withdrawal/deposit forms
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Figure 1: Schematic representation of our model

The arriving customer may demand money transaction in any of these ways. At the time of
customer’s entry, suppose the server is available, then the customer get the service at once.
Otherwise, the customer joins the waiting line. Before each transaction, the server will perform
some preparatory work(like refreshing the computer, selecting respective computer page for
different modes of transaction, etc.). After offering the service, the server can either go for
vacation(like attending telephone calls, cross checking the transaction amount, discussing with
the adjacent servers, etc.) or may continue to serve the subsequent customers. Similarly, after
receiving service, if the customer is not satisfied(like incorrect beneficiary name in the demand
draft, deposited/withdrawn extra amount, etc.,), then the customer joins the queue to get the
service again. Otherwise, they exit the bank permanently. During the busy period, the server
may experience breakdown(like loss of internet connection, internal technical errors, virus attack
to the system, etc.). After being repaired, the server will start to provide service to the customer
who faced service interruption and is waiting in the anterior end of the queue. In the course
of breakdown period, the customer in the queue may depart that particular counter(reneging).
Moreover, in the course of vacation period of the server, the incoming customer may balk that
particular counter. Our model has been formulated so that it will be on a par with the above
circumstance.

The rest of our work is organized as follows: the description of our system is provided in
Section II. Section III is devoted to the mathematical formulation of our model. The invariant
analysis of our model has been presented in Section IV. The analysis of the active period of our
system has been done in Section V. The analysis of the sojourn period of our model has been
done in Section VI. Section VII contains a few performance measures of the system. Finally, in
Section VIII, some illustrative examples are furnished via., tabular and graphical work.
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II. Model Description

A queueing system with single server where the customers reach the system as specified by
the MAP whose parameters matrices of dimension n are D0 and D1 has been considered. The
duration of the service offered by the server is considered to be PH-distributed with notation (α, T)
which is of order m, where T0 + Te = 0. At the end of providing service, the server may choose
to undergo vacation with p1 as its probability or commence service to the succeeding customer
with q1 as its probability, where p1 + q1 = 1. The server always choose to avail vacation provided
the system size is zero. The setup process begins at the completion of vacation period with the
constraint that there must be a minimum of single customer in the space for the customer’s to
wait. Or else, the server carry on with his vacation upto a minimal of single customer waiting in
the system for service while coming back from vacation. After the completion of setup process,
the server commences service to the customer. Similarly, to the end of service completion, suppose
a customer is fulfilled, he exits the service station forever with p2 as its probability. Otherwise, the
customer joins the anterior part of the waiting line with q2 as its probability to acquire the service
afresh. During the busy period, the server may get breakdown. As a result, the customer who is
obtaining service at that time has to join the anterior end of the waiting line. At the completion of
repair process, the server commences service to the customer, if any in the waiting line. Or else,
the server undergoes vacation. During the customer’s arrival, if the server is in vacation, then the
customer may balk the system with b as its probability. Further, in the course of breakdown period
of the server, the customer in the waiting line may renege due to their impatience. The vacation
times, setup times, breakdown times, repair times and the reneging times are all supposed to
follow exponential distribution with parameters η, τ, σ, δ abd r respectively.

III. The Generator Matrix

In this section, the generator matrix of the system under study is constructed. Our work starts
with the definition of the desired successive notations.

Notations:

∗ N(t): Size of the system at epoch t

∗ In: n× n identity matrix

∗ 0: The zero matrix of needed dimension

∗ er: r× 1 vector with all its entities to be 1

∗ e=e3n+mn

∗ e1=e2n

∗ e1(1): 2n× 1 vector in which initial n entries are 1 and rest of the entries are zero

∗ e2(2): 2n× 1 vector with n + 1 to 2n entries to be 1 and leftover entries to be zero

∗ e(1): (3n + mn)× 1 vector with first n entries to be 1 and leftover entries to be zero

∗ e(2): (3n + mn)× 1 vector with n + 1 to 2n entries to be 1 and leftover entries to be zero

∗ e(3): (3n + mn)× 1 vector with 2n + 1 to 2n + mn entries to be 1 and leftover entries to be
zero

∗ e(4): (3n +mn)× 1 vector with 2n +mn + 1 to 3n +mn entries to be 1 and rest of the entries
to be zero

∗ ⊗: Symbol for Kronecker multiplication
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∗ ⊕: Symbol for Kronecker addition

∗ Y(t) - Server’s nature at instant t,
where

Y(t) =


0, server undergoes vacation

1, server is in setup process

2, server is offering service

3, server is in breakdown

∗ S(t): Service phase of the server at epoch t

∗ M(t): Phase of the MAP at epoch t

∗ λ: Fundamental rate of arrival and is mentioned by λ = ßD1e in which ß is the probability
vector of the matrix D = D0 + D1 in the steady state

∗ γ: The rate at which the server offers service, where γ = [α(−T)−1e]−1

Clearly, {(N(t),Y(t),S(t),M(t)): t ≥ 0} is a Continuous Time Markov Chain (CTMC) with suc-
ceeding state space:

Ω = U(0) ∪
⋃
j≥1

U(j)

where

U(0) = {(0, 0, k) : 1 ≤ k ≤ n} ∪ {(0, 3, k) : 1 ≤ k ≤ n}

and

U(j) = {(j, i, k) : i = 0, 1; 1 ≤ k ≤ n} ∪ {(j, 2, l, k) : 1 ≤ l ≤ m, 1 ≤ k ≤ n}
∪ {(j, 3, k) : 1 ≤ k ≤ n}

The generator matrix of our Markov chain is as below:

Q =



B00 B01 0 0 0 0 0 · · ·
B10 C1 C0 0 0 0 0 · · ·
0 C2 C1 C0 0 0 0 · · ·
0 0 C2 C1 C0 0 0 · · ·
0 0 0 C2 C1 C0 0 · · ·

· · · · · · · · · . . . . . . . . . · · · · · ·


where

B00 =

[
D0 + bD1 0

δIn D0 − δIn

]
, B01 =

[
(1− b)D1 0 0 0

0 0 0 D1

]
,

B10 =


0 0
0 0

p2T0 ⊗ In 0
0 rIn

 , C2 =


0 0 0 0
0 0 0 0

p1 p2T0 ⊗ In 0 q1 p2T0α⊗ In 0
0 0 0 rIn

 ,

C0 =


(1− b)D1 0 0 0

0 D1 0 0
0 0 Im ⊗ D1 0
0 0 0 D1

 ,

C1 =


D0 − η In + bD1 η In 0 0

0 D0 − τ In α⊗ τ In 0
p1q2T0 ⊗ In 0 (q1q2T0α + T)⊕ (D0 − σIn) em ⊗ σIn

0 0 α⊗ δIn D0 − (r + δ)In

 .
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IV. System Analysis

I. Stability Condition

Define C = C0 + C1 + C2 which results that C is a generator matrix and hence, we could compute
it’s invariant vector which is indicated by Ψ and it abides

ΨC = 0; Ψe = 1

where Ψ = (ψ0, ψ1, ψ2, ψ3).
The vector Ψ, partitioned as Ψ = (ψ0, ψ1, ψ2, ψ3) is determined by solving the successive equations:

ψ0[D− η In] + ψ2[p1T0 ⊗ In] = 0,

ψ0[η In] + ψ1[D− τ In] = 0,

ψ1[α⊗ τ In] + ψ2[(q1T0α + T)⊕ (D− σIn)] + ψ3[α⊗ δIn] = 0,

ψ2[em ⊗ σIn)] + ψ3[D− δIn] = 0

subject to

ψ0en + ψ1en + ψ2emn + ψ3en = 1.

The necessary and sufficient condition stablility is ΨA0e < ΨA2e
i.e.,

ψ0[(1− b)D1en] + ψ1[D1en] + ψ2[em ⊗ D1en] + ψ3[D1en] < ψ2[p2T0 ⊗ en] + ψ3[ren].

II. The Invariant Probability Vector

In the steady state, let the probability vector of the generator Q be specified by x and it is of
infinitesimal dimension.
This probability vector is further subdivided in the following fashion: x = (x0, x1, x2, ...), where
the dimension of x0 and xi are 2n and 3n + mn respectively, for i ≥ 1.
Since x is an invariant vector of Q, the subsequent constraints will be abide by it:

xQ = 0, xe = 1.

Once the stableness is attained, the steady-state probability vector x may be determined by solving
the subsequent equations.

xi+1 = x1Ri, i ≥ 1

where R is the least non-negative solution of the equation

R2C2 + RC1 + C0 = 0

and the remaining vectors namely, x0 and x1 can be determined by solving the subsequent
equations:

x0B00 + x1B10 = 0,

x0B01 + x1[C1 + RC2] = 0

with the normalizing condition

x0e2n + x1[I − R]−1e3n+mn = 1.

The rate matrix R may be computed by using “Logarithmic Reduction Algorithm" given by
Latouche et al. [13].
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V. Busy Period Analysis

The time duration between the advent of the customer to the system no customers and the epoch
at which the system size becomes zero for the first time is defined as the active period. Thus, the
first passage time from level 1 to 0 and the active period are the same.

Likewise, the first return time to level 0 with minimum one visit to a state in any other level
may be defined as the busy cycle. Initially, the idea of the fundamental period is proposed to
analyze the active period. The first passage time from the level i to i− 1,(i ≥ 2) may be defined as
the fundamental period for the QBD process. A distinct argumentation has to be carried out for
the boundary states viz., i = 0, and 1.

NOTATIONS:

∗ Gjj′(k, x) - The probability of the QBD process entering the level i − 1 by performing
precisely k changeovers to the left and also by entering the state (i, j′) with the constraint
that it started in the state (i, j) at instant t = 0.

∗ G̃jj′(z, s) = ∑∞
k=1 zk ∫ ∞

0 e−sxdGjj′(k, x) : |z| ≤ 1, Re(s) ≥ 0

∗ G̃(z, s)− The matrix (G̃jj′(z, s))

∗ G = (Gjj′) = G̃(1, 0)- The matrix which takes care of the first passage times for the states
other than the boundary state.

∗ G(1,0)
jj′ (k, x) - The probability of the QBD process get into the level 0 by doing exactly k

change overs to the left with the condition that it commenced in the level 1 at instant t = 0.

∗ G(0,0)
jj′ (k, x) - The first return time to the level 0.

∗ E1j, E2j - The expected first passage time and the expected number of customers who
acquired service in the interval of first passage time between the levels i and i− 1 respectively,
with the constraint that the process is in the state (i, j) at the instant t = 0.

∗ ~E1, ~E2 - The column vectors with E1j and E2j as their entries respectively.

∗ ~E
(1,0)
1 , ~E(1,0)

2 - The vectors providing the expected first passage time from level 1 to level 0
and the expected number of service completion in that interval respectively.

∗ ~E
(0,0)
1 , ~E(0,0)

2 - The vectors providing the expected first return time to level 0 and the expected
number of service completion in that interval respectively.

It is evident that the matrix G̃(z, s) abides the subsequent equation:

G̃(z, s) = z[sI − A1]
−1 A2 + [sI − A1]

−1 A0G̃2(z, s)

If the rate matrix R is obtained, the determination of the matrix G may be done by utilizing the
successive result

“G = −[A1 + RA2]
−1 A2”.

Likewise, the matrix G may be determined by using the logarithmic reduction algorithm(Latouche
et al. [13]).

The succeeding equations which are fulfilled by G̃(1,0)(z, s) and G̃(0,0)(z, s) are for the boundary
states viz., 1 and 0 respectively.

G̃(1,0)(z, s) = z[sI − A1]
−1B10 + [sI − A1]

−1 A0G̃(z, s)G̃(1,0)(z, s)

G̃(0,0)(z, s) = [sI − B00]
−1B01G̃(1,0)(z, s).
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Since the matrices G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are all stochastic, the subsequent moments may
be readily computed. At z = 1 and s = 0,

~E1 = − ∂

∂s
{G̃(z, s)} = −[A0(G + I) + A1]

−1e,

~E2 =
∂

∂z
{G̃(z, s)} = −[A0(G + I) + A1]

−1 A2e,

~E1
(1,0)

= − ∂

∂s
{G̃(1,0)(z, s)} = −[A1 + A0G]−1[A0 ~E1 + e],

~E2
(1,0)

=
∂

∂z
{G̃(1,0)(z, s)} = −[A1 + A0G]−1[B10e + A0 ~E2],

~E1
(0,0)

= − ∂

∂s
{G̃(0,0)(z, s)} = −B−1

00 [e + B01 ~E1
(1,0)

],

~E2
(0,0)

=
∂

∂z
{G̃(0,0)(z, s)} = −B−1

00 B01 ~E2
(1,0)

.

VI. Waiting time analysis

With the aid of analysis of first passage time, the distribution function for the waiting time of an
arriving customer has been derived in this section.

Let W(t), where t ≥ 0 be a vector of dimension 1× m which indicates the waiting time
distribution of an arriving tagged customer in the queue. While taking a multi-server model with
Bernoulli vacation under study, we could see that W(0+) = 0, because each arriving customer has
to hold up for the completion of either vacation period or service period. Let (∗) ∪ {0, 1, 2, · · · }
indicates the state space of an absorbing CTMC. The service for the arriving tagged customer will
commence from their arrival into the absorbing state (∗). For this absorbing Markov chain, the
transition matrix is as follows:

Q̃ =



0 0 0 0 0 0 · · ·
H0 F0 0 0 0 0 · · ·
H1 F10 F 0 0 0 · · ·
0 0 F2 F 0 0 · · ·
0 0 0 F2 F 0 · · ·
0 0 0 0 F2 F · · ·

· · · · · · · · · . . . . . . . . . · · ·


where

H0 =

[
η
δ

]
, F0 =

[
−η 0
0 −δ

]
, H1 =


0
0

q1 p2T0

0

 , F10 =


0 0
0 0

p1 p2T0 0
0 r

 ,

F =


−η η 0 0
0 −τ τα 0

p1q2T0 0 q1q2T0α + T − σIm σem
0 0 δα −(δ + r)

 , F2 =


0 0 0 0
0 0 0 0

p1 p2T0 0 q1 p2T0α 0
0 0 0 r

 .

With an objective to derive the arriving tagged customer’s waiting time distribution W(t), where
(t ≥ 0), we begin with the process of finding the system size probability vector in the steady state
at the arrival instant and it is indicated by z(0) = (z0(0), z1(0), z2(0), ...). As the arrival process
obeys the Markovian property, the system size probability vector in the steady state at the arrival
epoch is as follows:

z0(0) = x0[I2 ⊗
D1en

λ
, ]
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zi(0) = xi[I3+m ⊗
D1en

λ
], for i ≥ 1

where λ indicates the fundamental arrival rate of the MAP.
Define z(t) = (z∗(t), z0(t), z1(t), · · · ),
where
zi(t), i ≥ 1 - 1× (3 + m) vector,
z0(t) - a 1× 2 vector
and their components provide the probability of the CTMC whose generator matrix is Q̃ being
in the respective state of level i at epoch t. Since z∗(t) specifies the probability of the tagged
customer being in the absorbing state at epoch t, we get W(t) = z∗(t), where t ≥ 0.
The differential equation ź(t) = z(t)Q̃, where t ≥ 0 reduces to

ź∗(t) = z1(t)H1

ź0(t) = z0(t)F0 + z1(t)F10

źi(t) = zi(t)F + zi+1(t)F2, i ≥ 1

where ´ specifies the derivative with respect to t.
Let us compute the Laplace Stieltjes Transform(LST) for W(t) with the aid of technique indi-

cated by Neuts et al. [21]. By commencing the process at the state i with zi(0), i ≥ 1 as initial
probability vector, the row vector ω(s) specifies the LST of the first passage time to level 1. As
indicated in [21], we get,

ω(s) =
∞

∑
i=1

zi(0)[(sI − F)−1F2]
i−1. (1)

Let the LST of the absorbing time to the state (∗) with the constraint that the process commences
at level i = 0, 1, 2 be specified by φ(i, s). Just as in [21], we have

φ(0, s) = [sI − F0]
−1H0, (2)

φ(1, s) = [sI − F]−1F10φ(0, s) + [sI − F]−1H1. (3)

Thus, we may simply observe that the LST for the distribution of waiting time is as below:

W̄(s) = z0(0) φ(0, s) + ω(s) φ(1, s). (4)

I. Average waiting time

The average waiting time is provided as

EW = −z0(0)φ́(0, 0)− ώ(0)e3+m −ω(0)φ́(1, 0)em. (5)

The expected time to enter into the absorbing state (∗) given that the system is in the level i = 0
is provided by the foremost term of the preceding equation. In the same way, if the system is in
level i ≥ 1, then the mean time for accessing the state (∗) is provided by the end two terms of the
preceding equation.
By differentiating (2) and (3), and setting s = 0, we obtain,

φ́(0, 0) = (−1)[−F0]
−2H0, (6)

φ́(1, 0) = (−1)[−F]−2F10φ(0, 0) + [−F]−1F10φ́(0, 0)− [−F]−2H1. (7)

With the help of (6) along with the vector z(0) = (z0(0), z1(0), z2(0), · · · ), we may readily compute
the first term of (5). From (1), we get

ω(0) =
∞

∑
i=1

zi(0)Vi−1, (8)
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where V = [−F]−1F2. Since the matrix V is stochastic, we get

ω(0)e3+m = 1− z0(0)e2. (9)

With the help of (7) and (9) along with the vector z(0) = (z0(0), z1(0), z2(0), · · · ), we may readily
compute the final term of (5).
By differentiating (1) and making s = 0, we get

ώ(0) = (−1)
∞

∑
i=1

z1+i(0)
i−1

∑
j=0

V j[−F]−1Vi−j. (10)

As V is stochastic, we get

(−1)ώ(0)e3+m = (−1)
∞

∑
i=1

z1+i(0)
i−1

∑
j=0

V j[−F]−1e3+m. (11)

With the help of the method mentioned in Kao et al. [8]. and Neuts et al. [22], let us evaluate
the value of (−1)ώ(0)e3+m. We begin with the construction of a matrix V2 which is such that
V2 is stochastic, generalized inverse of I −V and I −V + V2 is non-singular. The matrix V2 can
be assumed to be V2 = e1+m1+m2+m1m2 v0 in which v0 is the stationary probability vector of V.
Further, with the help of the property VV2 = V2V = V2, we have

i−1

∑
j=0

V j(I −V + V2) = I −Vi + iV2, for i ≥ 1. (12)

By using (14) in (13), we obtain,

(−1)ώ(0)e3+m = {x1[I − R]−1[I3+m ⊗
D1en

λ
]−ω(0) + x1R[I − R]−2[I3+m ⊗

D1en

λ
]V2}

× [I −V + V2]
−1[−F]−1e3+m. (13)

Hence, all the terms of (5) have been found out and so we may readily obtain the average period
of waiting.

VII. Performance Measures

∗ Probability of server is on vacation:

Pvacation = x0e1(1) + x1(I − R)−1 e(1)

∗ Probability of server is in setup process:

Psetup = x1(I − R)−1e(2)

∗ Probability of server is busy:

Pbusy = x1(I − R)−1e(3)

∗ Probability of server is in breakdown:

Pbreakdown = x0e1(2) + x1(I − R)−1e(4)

∗ The mean system:

Esystem = x1(I − R)−2e

∗ The mean system size when the server is undergoing vacation:

Ev = x1(I − R)−2e(1)
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∗ Expected system size during setup process:

Es = x1(I − R)−2e(2)

∗ Average system size when the server is busy:

Eb = x1(I − R)−2e(3)

∗ Expected system size during breakdown:

Ebd = x1(I − R)−2e(4)

VIII. Numerical Illustrations

The comprehensive aim of this section is to explore the performance of our system through
numerical and graphical exemplifications. For the arrival patterns, we took the following
distinctive MAP representations so that their mean is 1, and Chakravarthy [3] suggested these
values.

Erlang of order 2-(A-Erl):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]

Exponential-(A-Exp):

D0 =
[
−1
]

, D1 =
[
1
]

Hyperexponential-(A-Hyp-Exp):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
It is evident that they have zero correlation because of the renewal character of these three arrival
processes.

MAP - Negative Correlation-(A-MAP-NC):

D0 =

−1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 , D1 =

 0 0 0
0.01002 0 0.99220
223.4925 0 2.2575


The successive PH - distributions have been taken for service times suggested by Chakravarthy
[3] as well.

Erlang of order 2-(S-Erl):

α = (1, 0), T =

[
−2 2
0 −2

]

Exponential-(S-Exp):

α = (1), T =
[
−1
]
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Hyperexponential-(S-Hyp-Exp):

α = (0.8, 0.2), T =

[
−2.8 0

0 −0.28

]

Illustration 1

From the Tables 1-4, we study the impact of the repair rate δ against the probability of server
being busy. Fix λ = 1, γ = 6, σ = 3, η = 6, τ = 5, r = 1, b = 0.6, p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5, q1 = 0.5.
For 1 - limited vacation(1-Lv): p1 = 1, q1 = 0.
From Tables 1-4, we derive the succeeding observations.

∗ As the repair rate(δ) maximizes, the probability of server being busy also increases for
distinct feasible groupings of service and arrival times.

∗ While correlating the tabulated values for distinct arrival patterns, the probability of server
being busy maximizes more rapidly for A-Hyp-Exp and gradually for A-MAP-NC. In the
same way, the probability of server being busy increases gradually for S-Hyp-Exp and
rapidly for S-Erl.

∗ Also, the probability of server being busy maximizes slowly for Bv and quickly for 1-Lv for
distinct arrangements of arrival and service patterns.

Illustration 2

From the Tables 5-8, we study the impact of the service rate γ on the expected waiting time(EW).
We fix λ = 1, δ = 1, σ = 3, η = 6, τ = 5, r = 1, b = 0.6, p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5; q1 = 0.5.
For 1 - limited vacation(1-Lv): p1 = 1; q1 = 0.
From Tables 5-8, we get the subsequent interpretation.

∗ While raising the service rate, EW minimizes for distinct possible combinations of service
and arrival patterns.

∗ While correlating the values of distinct arrival patterns, EW decreases more quickly in
the case of A-Hyp-Exp whereas slowly for A-Erl. Similarly, EW decreases gradually for
S-Hyp-Exp and more quickly in the case of S-Erl.

∗ Further, the average waiting time decreases rapidly for 1-Lv and slowly in the case of Bv.

Illustration 3

From the 2D graphs 2-13, we view the effect of the vacation rate η on average system size (Esystem).
Fix λ = 1, δ = 1, σ = 3, γ = 6, τ = 5, r = 1, b = 0.6, p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5, q1 = 0.5.
For 1 - limited vacation(1 - Lv): p1 = 1, q1 = 0.

From Figures 2-13, we could see that while raising the vacation rate (η), the rate of decrement
of Esystem is high in the case of A-Hyp-Exp and low for A-Erl. Also, it is high in the case of S-Erl
and low in the case of S-Hyp-Exp. Further, we may view that Esystem decreases quickly in the
case of 1 - Lv and slowly in the case of Bv.
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Table 1: Repair rate vs. Probability of server being busy - A-Exp

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.16152 0.17895 0.18126 0.20038 0.10756 0.11959
3.0 0.17270 0.19495 0.19591 0.22133 0.11197 0.12588
4.0 0.17896 0.20409 0.20422 0.23354 0.11437 0.12930
5.0 0.18299 0.21001 0.20961 0.24155 0.11589 0.13147
6.0 0.18581 0.21417 0.21340 0.24721 0.11695 0.13296
7.0 0.18791 0.21725 0.21622 0.25142 0.11773 0.13406

Illustration 4

From the 2D graphs 14-25, we study the impact of the breakdown rate(σ) on the mean period of
waiting(EW). Fix λ = 1, δ = 1, η = 6, γ = 6, τ = 5, r = 1, b = 0.6,
p2 = 0.5, q2 = 0.5.
For Bernoulli vacation(Bv): p1 = 0.5, q1 = 0.5.
For 1 - limited vacation(1 - Lv): p1 = 1, q1 = 0.

From Figures 14-25, we may view that while raising the breakdown rate (σ), the speed of
increment of EW is maximum for A-Hyp-Exp and minimum for A-Erl. Also, it is high in the case
of S-Erl and low in the case of S-Hyp-Exp. Further, we may view that EW increases quickly in the
case of 1 - Lv and slowly in the case of Bv.

Illustration 5:

From the 3D graphs 26-37, we analyse the impact of the setup rate (τ) and the rate of service pro-
vided by the server(γ) on the probability of server is availing vacation(Pvacation). Fix λ = 1, δ = 1,
η = 6, σ = 3, r = 1, b = 0.6, p1 = 0.5, q1 = 0.5, p2 = 0.5, q2 = 0.5.

A quick view of Figures 26-37 reveals the fact that Pvacation increases while maximizing both
the setup rate and the rate of service offered by the server for various arrangement of arrival and
service patterns. Further, it maximizes rapidly for A-MAP-NC and gradually for A-Hyp-Exp. In
the same way, the rate of increment is high for S-Erl and low for S-Hyp-Exp.

Illustration 6:

From the 3D graphs 38-49, we observe the consequences of the customer’s reneging rate(r) and
the server’s vacation rate(η) on the Average system size(Esystem). Fix λ = 1, δ = 1, γ = 6,
σ = 3, τ = 5, b = 0.6, p1 = 0.5, q1 = 0.5, p2 = 0.5, q2 = 0.5 .

A quick view of Figures 38-49 reveals the point that Esystem reduces while maximizing both
the reneging rate and the vacation rate of the customer and the server respectively for distinct
groupings of arrival and service times. Further, it minimizes quickly for A-Hyp-Exp and slowly
for A-Erl. In the same way, the rate of decrement of Esystem is high in the case of S-Erl and low in
the case of S-Hyp-Exp.
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Table 2: Repair rate vs. Probability of server being busy - A-Erl

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.15626 0.17639 0.17582 0.19840 0.103440 0.11650
3.0 0.16632 0.19163 0.18908 0.21864 0.107370 0.12228
4.0 0.17192 0.20028 0.19653 0.23038 0.109510 0.12541
5.0 0.17552 0.20587 0.20135 0.23805 0.110870 0.12739
6.0 0.17805 0.20978 0.20474 0.24347 0.111830 0.12876
7.0 0.17993 0.21269 0.20727 0.24750 0.112530 0.12977

Table 3: Repair rate vs. Probability of server being busy - A-Hyp-Exp

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.18240 0.18781 0.20235 0.20704 0.12405 0.13085
3.0 0.19805 0.20641 0.22252 0.23028 0.13007 0.13901
4.0 0.20676 0.21714 0.23403 0.24396 0.13318 0.14345
5.0 0.21229 0.22412 0.24145 0.25296 0.13506 0.14625
6.0 0.21610 0.22902 0.24664 0.25934 0.13632 0.14817
7.0 0.21890 0.23265 0.25046 0.26410 0.13723 0.14957

Table 4: Repair rate vs. Probability of server being busy - A-MAP-NC

SERVICE

δ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

2.0 0.15122 0.17400 0.17037 0.19642 0.099946 0.11412
3.0 0.16029 0.18861 0.18240 0.21606 0.103440 0.11950
4.0 0.16540 0.19691 0.18923 0.22745 0.105400 0.12244
5.0 0.16873 0.20229 0.19369 0.23490 0.106680 0.12432
6.0 0.17110 0.20607 0.19685 0.24017 0.107590 0.12563
7.0 0.17287 0.20887 0.19922 0.24409 0.108280 0.12659
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Table 5: Service rate vs. Average waiting time-A-Exp

SERVICE

γ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 2.4993 8.3702 2.9533 11.000 1.4773 4.0849
8.0 2.0203 6.1915 2.3009 7.4783 1.2958 3.4923
9.0 1.7030 4.9497 1.8916 5.7077 1.1625 3.0774
10.0 1.4788 4.1511 1.6132 4.6482 1.06040 2.7703
11.0 1.3129 3.5965 1.4130 3.9461 0.97959 2.5337
12.0 1.1857 3.1900 1.2627 3.4485 0.91410 2.3457

Table 6: Service rate vs. Average waiting time-A-Erl

SERVICE

γ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 1.87310 6.2099 2.20200 8.1571 1.12500 3.0281
8.0 1.51780 4.5819 1.71990 5.5304 0.98996 2.5852
9.0 1.28300 3.6557 1.41810 4.2119 0.89072 2.2755

10.0 1.11750 3.0610 1.21320 3.4243 0.81472 2.0465
11.0 0.99508 2.6488 1.06610 2.9033 0.75462 1.8703
12.0 0.90133 2.3471 0.95583 2.5346 0.70591 1.7305

Table 7: Service rate vs. Average waiting time-A-Hyp-Exp

SERVICE

γ S-Exp S-Erl S-Hyp-Exp

Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 7.0763 25.198 8.5479 33.276 3.8226 12.076
8.0 5.5843 18.612 6.5041 22.603 3.2673 10.278
9.0 4.5926 14.841 5.2154 17.213 2.8615 9.0147

10.0 3.8918 12.403 4.3372 13.972 2.5526 8.0765
11.0 3.3742 10.703 3.7059 11.814 2.3102 7.3514
12.0 2.9785 9.4514 3.2334 10.279 2.1151 6.7739

Table 8: Service rate vs. Average waiting time-A-MAP-NC

SERVICE

γ S-Exp S-Erl S-Hyp-Exp
Bv 1-Lv Bv 1-Lv Bv 1-Lv

7.0 2.4453 8.3500 2.8876 11.014 1.45970 4.0420
8.0 1.9814 6.1528 2.2527 7.4498 1.28680 3.4530
9.0 1.6761 4.9065 1.8574 5.6667 1.16010 3.0422
10.0 1.4616 4.1086 1.5902 4.6048 1.06330 2.7393
11.0 1.3035 3.5567 1.3989 3.9042 0.98690 2.5066
12.0 1.1826 3.1538 1.2559 3.4097 0.92503 2.3221
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Figure 2: Vacation rate vs. Esystem - M/M/1
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Figure 3: Vacation rate vs. Esystem - M/Ek/1
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Figure 4: Vacation rate vs. Esystem - M/Hk/1
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Figure 5: Vacation rate vs. Esystem - EK/M/1
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Figure 6: Vacation rate vs. Esystem - Ek/Ek/1
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Figure 7: Vacation rate vs. Esystem - Ek/Hk/1
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Figure 8: Vacation rate vs. Esystem - Hk/M/1
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Figure 9: Vacation rate vs. Esystem - Hk/Ek/1
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Figure 10: Vacation rate vs. Esystem - Hk/Hk/1
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Figure 11: Vacation rate vs. Esystem - MAP-NC/M/1
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Figure 12: Vacation rate vs. Esystem - MAP-NC/Ek/1
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Figure 13: Vacation rate vs. Esystem - MAP-NC/Hk/1
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Figure 14: Breakdown rate vs. Mean period of waiting - M/M/1
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Figure 15: Breakdown rate vs. Mean period of waiting - M/Ek/1
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Figure 16: Breakdown rate vs. Mean period of waiting - M/Hk/1
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Figure 17: Breakdown rate vs. Mean period of waiting - Ek/M/1
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Figure 18: Breakdown rate vs. Mean period of waiting - Ek/Ek/1
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Figure 19: Breakdown rate vs. Mean period of waiting - Ek/Hk/1
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Figure 20: Breakdown rate vs. Mean period of waiting - Hk/M/1
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Figure 21: Breakdown rate vs. Mean period of waiting - Hk/Ek/1

3 3.5 4 4.5 5

5

10

15

Breakdown rate (σ)

M
ea

n
pe

ri
od

of
w

ai
ti

ng

Bv
1 - Lv

Figure 22: Breakdown rate vs. Mean period of waiting - Hk/Hk/1
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Figure 23: Breakdown rate vs. Mean period of waiting - MAP-NC/M/1
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Figure 24: Breakdown rate vs. Mean period of waiting - MAP-NC/Ek/1
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Figure 25: Breakdown rate vs. Mean period of waiting - MAP-NC/Hk/1
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Figure 26: (Setup and Service rate of the Server) vs. Pvacation
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Figure 27: (Setup and Service rate of the Server) vs. Pvacation
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Figure 28: (Setup and Service rate of the Server) vs. Pvacation
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Figure 29: (Setup and Service rate of the Server) vs. Pvacation
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Figure 30: (Setup and Service rate of the Server) vs. Pvacation
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Figure 32: (Setup and Service rate of the Server) vs. Pvacation
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Figure 33: (Setup and Service rate of the Server) vs. Pvacation
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Figure 38: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 39: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 40: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 41: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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Figure 45: (Vacation rate and Reneging rate of the server and customer resp.) vs. Esystem
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IX. Conclusion

Our article deals with a classical queueing model with MAP arrival, single server, PH-service
together with vacation, setup time, breakdown, repair, feedback, balking and reneging. The
stability condition for our system has been obtained. In addition, the active period of model under
study has been explored. The consequences of the vacation rate(η) and the breakdown rate(σ)
upon average size of the system and expected waiting time respectively for two different types of
vacation, namely 1-limited and Bernoulli vacation have been visualized with the aid of 2D graphs.
Further, the impact of both the setup(τ) and service rate(γ) of the server upon probability that
the server is undergoing vacation has been pictured with the support of 3D graphs. Also, the
consequences of both reneging rate(r) and vacation rate (η) on the average size of the system has
been pictured with the support of 3D graphs. In addition, one can perform the cost analysis for
our model and can also extend the work by considering BMAP for arrival process.
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Abstract 

 

Many software reliability growth models (SRGMs) have been introduced since 1970s. Most of the 

models consider that the faults are independent and debugging method is perfect. In this paper, 

we present a new SRGM under the assumption that the faults are mutually dependent i.e. 

repairing a detected fault may introduce new faults or it may simultaneously correct some future 

faults without any additional effort. The model is validated on two real datasets that are widely 

used in many studies to demonstrate its applicability. The comparisons with eight established 

models in terms of Mean Square Error (MSE), Variance, Predictive Ratio Risk (PRR) and R2 

have been presented. 

 

Keywords: Software Reliability, SRGM, Software Testing, Debugging, Fault 

Prediction, Project Management. 

 

 

I. Introduction 
 

Today we are very much dependent on software systems in many facets of our life. The demand of 

highly reliable software has rapidly increased. Software development is a time consuming and 

intensive job that involves many people, process and technology. Thus software systems are error 

prone. Reliability is an end-user quality feature related to the system-usage. Software reliability 

can be defined as the probability that no failure occurs up to a specified time interval. Unlike 

hardware, it is not possible to measure or quantify software reliability directly. With the help of 

probabilistic and statistical methods, different approaches have been developed for measuring 

software reliability. However, use of software reliability growth models (SRGMs) is a popular and 

traditional way to describe the failure patterns and predict the reliability. The SRGMs are 

represented in abstract forms that include many parameters based on certain assumptions. In the 

last four decades, a sufficient number of SRGMs have been suggested at regular intervals [1][2]. 

They are broadly divided into two groups: times between failure models and fault count models 

[3][4]. The models that recognize MTBF (mean time between failures) as input are referred to as 

times between failures models and the models that use failure rate are referred to as fault count 

models. Examples of some times between failure models are The Jelinski-Mornada de-

eutrophication model (in short J-M model), Littlewood-Verral model etc. The J-M model, known as 

one of the earliest models, assumes that the failure rate is constant between failures and reduces in 

fixed step-size following the repair of each fault [5]. The Littlewood-Verral model which is an 
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updated version of the J-M model considers that the times between failures follow an exponential 

distribution [6]. Most of the SRGMs fall under the category of fault count models such as follows. 

Goel-Okumoto model (or G-O model) is a Non Homogeneous Poisson process (NHPP) with an 

exponentially decaying rate function [7]. Musa Okumoto model represents the cumulative number 

of failures over time in terms of a logarithmic function [8]. Yamada et. al. proposed the delayed S-

Shaped model to describe the increase-decrease failure rate pattern considering the learning 

process of the testers’ skills [9]. Ohba suggested the Inflection S-shaped model with the concept of 

mutual fault dependency (i.e. some faults are discoverable only after the detection of some specific 

faults) [10]. Yamada et. al. [11] also suggested a two variant Imperfect Debugging Model by 

modifying G-O model that incorporates the linear fault introduction rate. H.Pham et. al. suggested 

PNZ model by considering fault introduction rate is a linear function of testing time [12] and PZ 

model by considering fault introduction rate is an exponential function of testing time [13]. Recent 

studies in reliability modelling include different approaches of machine learning techniques or 

deal with the issue of uncertainties due to random operating environment. Jaiswal and Malhotra 

[14] tested different ML techniques for software reliability prediction on different datasets 

collected from industrial projects and compared the results. They concluded that adaptive neuro 

fuzzy inference system (ANFIS) is the most effective method compared to others in predicting 

software reliability. Chang et. al. [15] proposed a testing-coverage model considering the 

uncertainty of operating environment. Pham [16] discussed two NHPP models with and without 

considering the uncertainty factor based on a log-log distribution function. 

 

Till date, near about 200 software reliability growth models have been suggested [4] and most 

of them are based on the assumption that the faults are independent. This assumption is not true in 

real testing environment. The paper presents a model that considers the issue of dependent faults. 

 

II. Proposed Model 
 

A generalized failure intensity function of a software reliability growth model under the 

assumption that the fault detection rate is proportional to the number of remaining faults is given 

by [17]: 

dm(t)

dt
= b(t)[a − m(t)]                                                               (1) 

where, 

▪ m(t) :  The mean value function  (Expected number of faults detected by time t). 

▪ a : Total expected number of faults that exist in the system. 

▪ b(t) : Time dependent fault detection rate per fault. 

 

In practice, it is seen that faults are dependent. Sometimes repairing one fault introduces new 

faults. Sometimes repairing one fault removes some future faults without any extra effort. 

Therefore, number of fault detections differs with the number of fault removals. Let us consider 

that p is the fault removal rate per detected fault. Therefore, number of faults removed at time t is 

pm(t) and number of remaining faults will be (a − pm(t)). From (1), we can write,  

    
dm(t)

dt
= b(t)[a − pm(t)]                where, p>0;                      (2) 

If p<1 then it means imperfect debugging with high fault introduction rate. If p>1then it 

indicates the one to many mapping between fault detection and fault removal. P =1 represents 

perfect debugging with one to one mapping. The solution of eqn. (2) for the mean value function 

m(t) with the initial condition m(0) = 0, is given by: 
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m(t) = 
a

p
(1 − e−p ∫ b(t)dt

t
0 )                                                          (3) 

We also assume that the fault detection rate per fault will increase with time. Initially the 

testing team takes time to understand the behavior of the system; hence, fault detection rate is 

relatively slow. As testing progresses the team gradually becomes familiar with the system leading 

to higher fault detection rate. In this paper, we consider the following function of b(t): 

b(t) = b(1+ct)                                                                         (4) 

c -is a parameter that reflects the change in fault detection rate with time and b is a constant. 

Replacing the value of (4) in eqn. (3), 

m(t) = 
a

p
(1 − e−pb(t+ct2/2))                                                              (5) 

This is the mean value function of the proposed model. Now we can derive the failure 

intensity function from (5),   

 (t) =  
dm(t)

dt
 = ab(ct + 1)e−pb(t+

ct2

2
))                                                     (6)   

 

III. Analysis of the Model 

 
We evaluate the performance of the proposed model on two different datasets (DS1 and DS2) and 

compare the results with the following eight existing models (Table 1). 

 

Table 1. Software Reliability Models 

Model m(t) 

Goel-Okumoto Model [7] a(1−e−bt) 

Delayed S-Shaped [9] a(1−(1 + bt)e−bt) 

Inflection S-shaped [10] 
a(1 − e−bt)

1 + βe−bt
 

Yamada Imperfect Model-1 [11] 
ab

α + b
(eαt − e−bt) 

Yamada Imperfect Model-2 [11] a(1 − e−bt) (1 −
α

b
) + αat 

P-N-Z Model [12] 
a(1 − e−bt) (1 −

α

b
) + αat

1 + βe−bt
 

Testing Coverage Model [15] N (1 − (
β

β + (at)b
)

α

) 

Loglog Fault-detection Rate Model [16] N(1−e−(atb
−1) ) 

Proposed Model 
a

p
(1 − e−pb(t+ct2/2)) 

 

A. Comparison Criteria 
 

None of the SRGMs is reliable to get accurate results in all circumstances and thus be selected a 

priori. It is necessary to compare multiple models and then select the one that match the failure 

data most accurately. There are many standard criteria known as “Goodness of Fit” criteria 

available for model comparison and selection [18-20]. In this study, we have used the following 

four criteria. 

▪ MSE: The mean square error (MSE) is a calculation of how far the estimated values vary 

from the actual observations, and is defined as [18][19]: 
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MSE =  
∑ (mi − m(ti))2n

i=1

n − k
 

▪ Variance: The variance is the standard deviation of the differences between actual and 

predicted data. It is defined as [18][19]: 

Variance = √
∑ (mi − m(ti) − Bias)2n

i=1

n − 1
               

where, Bias =
∑ (m(ti) − mi)

n
i=1

n
 

▪ PRR: The predictive-ratio risk (PRR) measures the per estimate model deviation from the 

actual data and is defined as [18][19]: 

PRR = ∑ (
(m(ti) − mi)

m(ti)
)

2n

i=1

 

▪ R2: It measures how well a model fits the data. It is also known as the “coefficient of 

determination” and defined as [18][19]: 

R2 = 1 −
∑ (mi − m(ti))2n

i=1

∑ (mi − ∑
mj

n

n
j=1 )n

i=1

2 

The smaller values of MSE, Variance, PRR and AIC criteria indicate fewer numbers of fitting 

errors and better performance [20] whereas the value of R2 is expected to be 1 for an ideal model.  

 

B. Dataset Description 
 

The basic approach of the SRGMs is to predict the future faults by analyzing the past failure data. 

The performance of an SRGM greatly depends on the type of datasets. We consider two datasets 

from Tandem Technical Report-96.1 [21][22] in our experiment. The Tandem report contains four 

failure datasets related to the four different releases of Tandem Computer Project. Table 2 presents 

a failure dataset (DS1) of release 1 having 100 software faults collected over the 20 weeks of testing 

and the 10000 hours of execution. Table 3 provides the dataset (DS2) of Release 4 having 42 faults 

collected over the 19 weeks of testing and the 11305 hours CPU execution. 

Table 2. DS1: Tandem computers failure data − Release 1 

Test Week CPU hrs Cumulative Faults Test Week CPU hrs Cumulative Faults 

1 519 16 11 6539 81 

2 968 24 12 7083 86 

3 1430 27 13 7487 90 

4 1893 33 14 7846 93 

5 2490 41 15 8205 96 

6 3058 49 16 8564 98 

7 3625 54 17 8923 99 

8 4422 58 18 9282 100 

9 5218 69 19 9641 100 

10 5823 75 20 10000 100 

 
 

Table 3. DS2: Tandem computers failure data − Release 4 
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Test Week CPU hrs Cumulative Faults Test Week CPU hrs Cumulative Faults 

1 254 1 11 7621 32 

2 788 3 12 8783 32 

3 1054 8 13 9604 36 

4 1393 9 14 10064 38 

5 2216 11 15 10560 39 

6 2880 16 16 11008 39 

7 3593 19 17 11237 41 

8 4281 25 18 11243 42 

9 5180 27 19 11305 42 

10 6003 29 - - - 

 

C. Parameter Estimation 
 

The parameters of all the 9-models mentioned in Table 1, have been estimated using the least 

square estimation (LSE) technique and time weeks. The resultant values of the parameters have 

been provided in Table 4 for the datasets DS-1 and DS-2 respectively. 

Table 4. Parameter Estimation using LSE 

Model DS1 DS2 

Goel-Okumoto a = 130.2, b = 0.083 a = 89.63, b = 0.037 

Delayed S-Shaped a = 104, b = 0.265 a = 47.23, b = 0.207 

Inflection S-shaped a =110.829, b =0.172, β =1.205 a =43.36, b =0.279, β = 6.459 

Yamada Imperfect Model-1 a =130.2, b =0.083, 𝛼 =4.25*10-4 a =87.94, b =0.037, 𝛼= 0.0001 

Yamada Imperfect Model-2 a =130.2, b =0.083, 𝛼 =1.283*10-4 a =87.69, b =0.038, 𝛼=0.0001 

P-N-Z Model a =116.324, b = 0.14, 𝛼 = 0.001,      

β = 0.787 

a =31.44, b = 0.353, α= 0.023,   β 

= 7.275 

Testing Coverage Model  N = 119.205, a = 13.798*10-3,         

b = 1.111, α = 65.069, β = 7.337 

N = 44.398, a = 0.04, b =1.672, 

α = 25.908, β = 5.356 

Loglog Fault-detection Model N =105.109, a =1.095, b = 0.947 N = 48.72, a = 1.051, b = 1.237 

Proposed Model a = 100.926, b = 0.087, p = 0.937,    

c = 0.092 

a = 41.598, b = 0.027, p = 0.967, 

c = 0.659 

 

D. Results and Comparison 
 

The criteria values (MSE, Variance, PRR and R2) of all the models have been provided in Table 5 

and 6. For both the datasets, the proposed model provides highest R2, lowest Variance and PRR 

and second lowest MSE values. The findings clearly indicate that the proposed model fits better 

than many existing models studied in the paper. Figure 1 and 2 display two curves representing 

the deviation of the measured faults according to the proposed model from the actual observed 

faults for DS-1 and DS-2 respectively. 

 

Table 5. Model Comparison for DS1 
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Model MSE Variance PRR R2 

Goel-Okumoto 12.915 3.511 0.203 0.986 

Delayed S-Shaped 28.065 5.772 1.084 0.969 

Inflection S-shaped 10.564 3.177 0.305 0.989 

Yamada Imperfect Model-1 13.787 3.514 0.204 0.986 

Yamada Imperfect Model-2 13.688 3.504 0.203 0.986 

P-N-Z Model 12.662 3.315 0.277 0.988 

Testing Coverage Model 14.577 3.445 0.3 0.987 

Loglog Fault-detection Rate Model 8.437 2.861 0.238 0.991 

Proposed Model 10.688 3.064 0.295 0.990 

Table 6. Model Comparison for DS2 

Model MSE Variance PRR R2 

Goel-Okumoto 5.1 2.527 6.726 0.976 

Delayed S-Shaped 1.095 1.017 0.126 0.995 

Inflection S-shaped 1.117 0.999 0.8 0.995 

Yamada Imperfect Model-1 5.380 2.222 6.324 0.976 

Yamada Imperfect Model-2 5.410 2.519 6.816 0.976 

Testing Coverage Model 1.50 1.340 0.111 0.995 

Loglog Fault-detection Rate Model 3.75 1.951 5.235 0.983 

P-N-Z Model 1.086 0.973 0.424 0.995 

Proposed Model 1.150 0.983 0.340 0.995 

 

 

 
 

Figure 1: Expected faults vs. observed faults for DS1 

 

 

 

0

20

40

60

80

100

120

0 5 10 15 20

Observed Faults

Expected Faults

227



 
M.A. Haque and N. Ahmad 
AN SRGM CONSIDERING MUTUAL FAULT DEPENDENCY 

RT&A, No 2(62) 
Volume 16, June 2021  

 

Figure 2: Expected faults vs. observed faults for DS2 

 

IV. Conclusion 
 

The paper presents a new software reliability growth model addressing the issue of mapping 

between fault detection and fault removal processes. The proposed model incorporates a time 

dependent fault detection rate function. The model has been tested with two actual failure datasets 

and compared with eight established models using four different criteria. The results are very 

promising. However, there are some scopes for possible improvements. We only tested the model 

with two datasets, which is insufficient to claim any superiority about the model performance. 

Moreover, the datasets are relatively old. Future work will focus on broader validation of the 

proposed model based on more recent datasets considering different comparison criteria. 
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Abstract

Early failures are generally observed due to latent defects within a product caused by faulty components,
faulty assembly, transportation damage and installation damage. Also early life (infant mortality) failures
tend to exhibit a decreasing failure rate over time. Such type of problems can be modelled either by
a complex distribution having more than one parameter or by finite mixture of some distribution. In
this article a single parameter continuous compounded distribution is proposed to model such type of
problems. Some important properties of the proposed distribution such as distribution function, survival
function, hazard function and cumulative hazard function, entropies, stochastic ordering are derived.
The maximum likelihood estimate of the parameter is obtained which is not in closed form, thus iteration
procedure is used to obtain the estimate of parameter. The moments of the proposed distribution does
not exist. Some real data sets are used to see the performance of proposed distribution with comparison
of some other competent distributions of decreasing hazard using Likelihood, AIC, AICc, BIC and KS
statistics.

Keywords: Entropy, Hazard function, KS, MLE, Order Statistics, Quantile function.

I. Introduction

Normal, exponential, gamma and weibull distributions are the basic distributions that demon-
strated in a number of theoretical results in the distributions theory. Particularly, exponential
distribution is an invariable example for a number of theoretical concepts in reliability studies.
It is characterized as constant hazard rate. In case of necessity for an increasing/decreasing
failure rate model ordinarily the choice falls on weibull distribution. Lindley distribution is an
increasing hazard rate distribution and has its own importance as a life testing distribution. The
lindley distribution is one parameter distribution that is a mixture of exponential and gamma
distributions and was proposed by Lindley [16]. The lindley distribution is used to explain the
lifetime phenomenon such as engineering, biology, medicine, ecology and finance. Ghitany et al.
[10]. Lindley distribution has generated little attention in excess of the exponential distribution
because of its decreasing mean residual life function and increasing hazard rate however expo-
nential distribution has constant mean residual life function and hazard rate.
Adamidis & Loukas [1] introduced a two-parameter exponential-geometric distribution with
decreasing hazard rate and Barreto-Souza et al. [5] introduced a decreasing failure rate model,
compounding exponential and poisson-lindley distribution (EPL) and the probability density
function is given as

fepl(x; β, θ) =
βθ2(1 + θ)2e−βx

(1 + 3θ + θ2)

(3 + θ − e−βx)

(1 + θ − e−βx)3 ; x > 0, β > 0, θ > 0 (1)
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Another idea was proposed by Kuş [15] and Tahmasbi & Rezaei [27]. They introduced the
exponential Poisson (EP) and exponential logarithmic (EL) distributions and the pdf is given by

fep(x; β, λ) =
λβ

1− e−λ
e−λ−βx+λe−βx

; x > 0, β > 0, λ > 0 (2)

fel(x; β, p) =
1

− log p
β(1− p)e−βx

1− (1− p)e−βx ; x > 0, β > 0, p ∈ (0, 1) (3)

Chahkandi & Ganjali [8] introduced a class of distributions, which is exponential power series
distributions (EPS), where compounding procedure follows the same way that was previously
given by Adamidis & Loukas [1]. Weibull [29] a Swedish mathematician describe the weibull
distribution that is usefull for increasing as well as decresing hazard and the pdf is defined as

fw(x; β, α) = αβαxα−1e−βx; x > 0, β > 0, α > 0 (4)

Natural mixing of exponential populations, giving rise to a decreasing hazard rate distribution,
were first introduce by Proschan [23]. Subsequently other distributions with decreasing hazard
rates of practical interest were discussed by Cozzolino [7]. The distributions with decreasing
failure rate (DFR) are discussed in the works of Lomax [18], Barlow et al. [4], Barlow & Marshall
[2, 3], Marshall & Proschan [19], Dahiya & Gurland [9], Saunders & Myhre [25], Nassar [21],
Gleser [12], Gurland & Sethuraman [13]. Keeping these ideas in view, in this study, an attempt
has been made to develop a new lifetime distribution by compounding exponential and lindley
distribution and named as compounded exponential-lindley (CEL) distribution. The distributional
properties, estimation of parameters, Fisher information, entropies, stochastic ordering, quantile
function, order statistics and simulation study for the proposed distribution have been discussed
in detail.

II. Proposed Distribution

Let X1, X2, ..., Xn be a random sample from following exponential distribution with scale parame-
ter λ > 0 and the probability density function (pdf) is in the form

f (x|λ) = λe−λx; x > 0, λ > 0 (5)

The parameter λ > 0 of the above distribution takes continuous value and hazard of the
distribution is constant. Now we assume the parameter λ is a random variable follows lindley
distribution with pdf given as

φ(λ; θ) =
θ2

(θ + 1)
(1 + λ)e−θλ; θ > 0, λ > 0 (6)

Now the pdf of the proposed distribution CEL is given by

g(x; θ) =

∞∫
0

f (x|λ)φ(λ; θ)dλ =
θ2

(θ + 1)

∞∫
0

(λ + λ2)e−λ(x+θ)dλ

=
θ2

(θ + 1)
(x + θ + 2)
(x + θ)3 ; x > 0, θ > 0 (7)
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Figure 1: Probability density function of CEL distribution

and the cumulative distribution function (cdf) of CEL is obtained as

G(x; θ) =
x [x(θ + 1) + θ(θ + 2)]

(θ + 1)(x + θ)2 ; x > 0, θ > 0 (8)
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Figure 2: Cumulative distribution function of CEL distribution

From the figure 1 and 2, it is clear that the distribution is early failure distribution for smaller
value of θ. The survival or reliability function S(x) of CEL having pdf (7), is given as

S(x) =
θ2(x + θ + 1)
(θ + 1)(x + θ)2 (9)
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Figure 3: Survival function of CEL distribution
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The hazard function is defined as

h(x) =
g(x)

1− G(x)
=

g(x)
S(x)

=
(x + θ + 2)

(x + θ)(x + θ + 1)
(10)
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Figure 4: Hazard rate function of CEL distribution

According to Glaser [11], g(t) is density function, g′(t) is the first order derivative and
η(t) = − g′(t)

g(t) . If η′(t) > 0 ∀ t > 0, then the distribution has increasing failure rate (IFR) and if
η′(t) < 0 ∀ t > 0, then the distribution has decreasing failure rate (DFR). For the proposed
CEL distribution

η(t) =
2t + 3θ + 3

(t + θ)(t + θ + 2)
(11)

Differentiating η(t) with respect to t we get

η′(t) = − 2
(t + θ)(t + θ + 2)

− 4
(t + θ)2(t + θ + 2)

− 2(θ − 1)
(t + θ)(t + θ + 2)2

− 2(θ − 1)

[(t + θ)(t + θ + 2)]2
(12)

Now from the equation (12) we have η′(t) < 0 for all t > 0, hence distribution has DFR. Also the
hazard function of the CEL distribution is

h(x) =
(x + θ + 2)

(x + θ)(x + θ + 1)
=

2
(x + θ)

− 1
(x + θ + 1)

After differentiating (10) with respect to x we get

h′(x) = − 2
(x + θ)2 +

1
(x + θ + 1)2

lim
x→0

h′(x) = − 2
θ2 +

1
(θ + 1)2 < 0 ∀ θ > 0 (13)

Therefore h′(0) < 0 ∀ θ > 0, Hence CEL distribution is a distribution of monotonic decreasing
hazard with increasing time.
Now Cumulative hazard function H(t) is defined as

H(t) =
t∫

0

h(x)dx = log

[(
θ + 1

t + θ + 1

)(
t + θ

θ

)2
]

(14)
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Theorem 1. The moments of the CEL(θ) distribution does not exists.

Proof: Suppose the random variable X comes from CEL(θ) then the rth moment is given by

E(Xr) =

∞∫
0

xrg(x)dx =
θ2

θ + 1

∞∫
0

xr x + θ + 2
(x + θ)3 dx

Now

1
θ + 1

∞∫
0

xr(
1 + x

θ

)2 dx +
2

θ(θ + 1)

∞∫
0

xr(
1 + x

θ

)3 dx

Let x
θ = z; dx = θdz; x → 0, z→ 0, and x → ∞, z→ ∞ above integral become

θr+1

θ + 1

∞∫
0

zr

(1 + z)2 dz +
2θr+1

θ(θ + 1)

∞∫
0

zr

(1 + z)3 dz

using Beta integral of second kind i.e
∞∫
0

xm−1

(1+x)m+n dx = B(m, n) ; m > 0; n > 0, we get

E(Xr) =
θr+1

θ + 1
B(r + 1, 1− r) +

2θr+1

θ(θ + 1)
B(r + 1, 2− r)

=
θr+1

θ + 1

[
B(r + 1, 1− r) +

2
θ

B(r + 1, 2− r)
]

(15)

Here range is −1 < r < 1. But range of r should be r ≥ 1. Hence E(Xr) does not exists. Therefore
mean, variance, SD as well as higher order moments does not edxists for CEL(θ).

Theorem 2. The moment generating function of CEL(θ) does not exists.

Proof: Let X be the random variable from NWEL(θ) distribution then the moment generating
function (mgf) is given by

E(etx) =

∞∫
0

etxg(x)dx =
θ2

θ + 1

∞∫
0

etx x + θ + 2
(x + θ)3 dx

=
θ2

θ + 1

 ∞∫
0

etx

(x + θ)2 dx +

∞∫
0

2etx

(x + θ)3 dx

 (16)

Now
∞∫

0

etx

(x + θ)2 dx =

[
etx

−(x + θ)

]∞

0
+ t

∞∫
0

etx

(x + θ)
dx

=
1
θ
+ lim

ε→∞

t
ε∫

0

etx

(x + θ)
dx

 (17)

Now applying L’Hospital rules we get

lim
x→∞

etx

(x + θ)
= lim

x→∞

tetx

1
= ∞

Hence integrand is divergent, as well as the function is not integrable over R we conclude thta
E(etx) does not exists. The characteristic function of CEL distribution is defined as

Φx(t) =
∞∫

0

eitxg(x)dx =
1

θ + 1

∞

∑
k=0

(−1)k (k + 1)!
(it)k+1

[
1 +

2
θ
(k + 2)

]
(18)
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III. Entropies

An entropy is a measure of randomness occured in any system. Entropy is an important property
of probability distributions and it measures the uncertainty in a probability distribution.

I. Rényi Entropye

An entropy is a measure of variation of the uncertainty, Rényi [24] gave an expression of the
Entropy function defined by

e(η) =
1

1− η
log

 ∞∫
0

gη(x)dx


where 0 < η < 1, Substituting the value of g(x) from (7)

e(η) =
1

1− η
log

 ∞∫
0

(
θ2

(θ + 1)
(x + θ + 2)
(x + θ)3

)η

dx


=

1
1− η

log

( θ2

θ + 1

)η ∞∫
0

{
1

(x + θ)2 +
2

(x + θ)3

}
dx


Now applying Binomial expansion (a + b)n =

n
∑

k=0
(n

k)akbn−k we get

1
1− η

log

( θ2

θ + 1

)η ∞∫
0

η

∑
k=0

(
η

k

)(
1

x + θ

)2k ( 2
(x + θ)3

)η−k
dx


after simlification we get the Renyi entropy as

e(η) =
η

1− η
log
(

θ2

θ + 1

)
+

1
1− η

log

[
η

∑
k=0

(
η

k

)
2η−k

(3η − k− 1)θ(3η−k−1)

]
(19)

where 0 < η < 1, θ > 0, x > 0

II. Tsallis Entropy

This is introduced by Tsallis [28] as a basis for generalizing the standard statistical mechanics

Sλ =
1

1− λ

1−
∞∫

0

gλ(x)dx


=

1
1− λ

1−
(

θ2

(θ + 1)

)λ ∞∫
0

(
(x + θ + 2)
(x + θ)3

)λ

dx


Now applying Binomial expansion (a+ b)n =

n
∑

k=0
(n

k)akbn−k and simplifying we get Tsallis Entropy

as in (20).

e(η) =
1

1− λ

[
1−

(
θ2

θ + 1

)λ λ

∑
k=0

(
λ

k

)
2λ−k

(3λ− k− 1)θ(3λ−k−1)

]
(20)
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IV. Quantile Function

The quantile function for CEL distribution is defined in the form xq = Q(u) = G−1(u) where
Q(u) is the quantile function of G(x) in the range 0 < u < 1. Taking G(x) is the cdf of CEL
distribution and inverting it as above will give us the quantile function as follows

G(x) =
x [x(θ + 1) + θ(θ + 2)]

(θ + 1)(x + θ)2 = u (21)

Simplifying equation (21) above gives the following:(
x

x + θ

)2
+

xθ(θ + 2)
(x + θ)2 = u

Now let x
x+θ = z we get from above

z2 +

(
θ + 2
θ + 1

)
z(1− z) = u

z2 − z(θ + 2) + u(θ + 1) = 0 (22)

This is a quadratic equation and after solving we get the solution for x as

z =
x

x + θ
=

(θ + 2)±
√
(θ + 2)2 − 4u(θ + 1)

2

Q(u) = θ

[
2

−θ ±
√
(θ + 2)2 − 4u(θ + 1)

− 1

]
(23)

where u is a uniform variate on the unit interval (0,1).
The median of X from the CEL distribution is simply obtained by setting u = 0.5 and this
substitution of u = 0.5 in the above equation (23) gives.

Median = θ

[
2

−θ +
√
(θ + 1)2 + 1

− 1

]
(24)

Bowley’s measure of skewness based on quartiles is defined as:

SK =
Q( 3

4 )− 2Q( 1
2 ) + Q( 1

4 )

Q( 3
4 )−Q( 1

4 )
(25)

and [20] presented the Moors’ kurtosis based on octiles by

KT =
Q( 7

8 )−Q( 5
8 )−Q( 3

8 ) + Q( 1
8 )

Q( 6
8 )−Q( 1

8 )
(26)

where Q(.) is calculated by using the quantile function from equation (23).

V. Stochastic Orderings

Stochastic ordering of a continuous random variable is an important tool to judging their
comparative behaviour. A random variable X is said to be smaller than a random variable Y.
(i) Stochastic order X ≤st Y if FX(x) ≥ FY(x) for all x.
(ii) Hazard rate order X ≤hr Y if hX(x) ≥ hY(x) for all x.
(iii) Mean residual life order X ≤mrl Y if mX(x) ≥ mY(x) for all x.
(iv) Likelihood ratio order X ≤lr Y if fX(x)

fY(x) decreases in x.
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The following results by Shaked & Shanthikumar [26] are well known for introducing stochastic
ordering of distributions

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

i.e X ≤st Y

with the help of following theorem we claim that CEL distribution is ordered with respect to
strongest likelihood ratio ordering

Theorem 3. Let X ∼ CEL(θ1) distribution and Y ∼ CEL(θ2) distribution. If θ1 > θ2 then X ≤lr Y
and therefore X ≤hr Y, X ≤mrl Y and X ≤st Y.

Proof: We have

fX(x)
fY(x)

=
θ2

1(θ2 + 1)
θ2

2(θ1 + 1)

(
x + θ1 + 2
x + θ2 + 2

)(
x + θ2

x + θ1

)3
; x > 0

Now taking log both side we get

log
[

fX(x)
fY(x)

]
= log

[
θ2

1(θ2 + 1)
θ2

2(θ1 + 1)

]
+ log

(
x + θ1 + 2
x + θ2 + 2

)
+ 3 log

(
x + θ2

x + θ1

)
By differentiating both side we get

d
dx

log
fX(x)
fY(x)

=
θ2 − θ1

(2 + θ1 + x)(2 + θ2 + x)
+

3(θ2 − θ1)

(x + θ1)(x + θ2)

Thus for θ1 > θ2, d
dx log fX(x)

fY(x) < 0.This means that X ≤lr Y and hence X ≤hr Y, X ≤mrl Y and
X ≤st Y.

VI. Distribution of order statistics

Let X1, X2, ..., Xm be a random sample of size m from CEL distribution and let X1;m ≤ X2;m ≤
... ≤ Xm;m represent the corresponding order statistics. The pdf of Xm;m i.e rth order statistics is
given by

g(r:m)(x) =
m!

(r− 1)!(m− r)!
Gr−1(x) [1− G(x)]m−r g(x)

= Z
m−r

∑
l=0

(
m− r

l

)
(−1)lGr+l−1(x)g(x) (27)

where Z = m!
(r−1)!(m−r)! and g(x) and G(x) are pdf and cdf of CEL distribution defined in (7) and

(8) respectively.
Substituting for G(x) and g(x) in (27) and applying the general binomial expansion, we have

g(r:m)(x) = Z
m−r

∑
l=0

(
m− r

l

)
(−1)l

[
x [x(θ + 1) + θ(θ + 2)]

(θ + 1)(x + θ)2

]r+l−1 θ2

(θ + 1)
(x + θ + 2)
(x + θ)3

= Z
m−r

∑
l=0

(r+l−1)

∑
k=0

(
m− r

l

)(
r + l − 1

k

)
Cl;k

x2r+2l−k−2(x + θ + 2)
(x + θ)2r+2l+1 (28)

where Cl;k = (−1)l
(

θ2

(θ+1)

)k+1 (
θ+2

θ

)k
.

Hence, the pdf of the minimum order statistic X(1) and maximum order statistic X(n) of the CEL
distribution are respectively given by, respectively given by

g(1:m)(x) = Z
m−1

∑
l=0

l

∑
k=0

(
m− 1

l

)(
l

k

)
Cl;k

x2l−k(x + θ + 2)
(x + θ)2l+3 (29)
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VII. Estimation of the Parameter of CEL Distribution

Suppose X = (X1, X2, X3, ..., Xn) be an independently and identically distributed (iid) random
variables of size n with pdf (7) from CEL(θ). Then, the likelihood function based on observed
sample X = (x1, x2, x3, ..., xn) is defined as

L(θ; x) =
(

θ2

θ + 1

)n n

∏
i=0

xi + θ + 2
(xi + θ)3 (30)

The log-likelihood function corresponding to (30) is given by

log L = 2n log θ − n log(θ + 1) +
n

∑
i=0
{log(xi + θ + 2)− 3 log(xi + θ)} (31)

Hence, the log-likelihood equation for estimating θ is

2n
θ
− n

(θ + 1)
+

n

∑
i=0

{
1

(xi + θ + 2)
− 3

(xi + θ)

}
= 0 (32)

Above equation is not solvable analytically for θ. Thus numerical iteration technique is used to
get its numerical solution. Fisher Information matrix can be estimated by

I(θ̂) =
[
−∂2

∂θ2 log L
]

θ=θ̂

∂2

∂θ2 log L = −2n
θ2 +

n
(θ + 1)2 +

n

∑
i=0

{
3

(xi + θ)2 −
1

(xi + θ + 2)2

}
(33)

For large samples, we can obtain the confidence intervals based on Fisher information matrix
I−1(θ̂) which provides the estimated asymptotic variance for the parameter θ. Thus, a two-sided
100(1− α)% confidence interval of θ and it is defined as θ̂ ± Zα/2

√
varθ̂. Where Zα/2 denotes

the upper α-th percentile of the standard normal distribution.

VIII. Simulation study

In this section we evaluate the performance of the MLEs of the model parameter for the CEL
distribution. We generate random variables from CEL(θ) and then obtain m.l.e. of the parameter
θ, Now for θ = 1.5, 2, 2.5, 3 we generate the sample size 20, 30, 50, 90, 150, 200. The program is
replicated N= 2,500 times to get the maximum likelihood estimate of θ. The simulation results
are reported in Table (1).
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Table 1: Simulation results for different values of θ

θ=1.5

n Bias MSE Var. Est.
20 0.07273 0.25756 0.26034 1.57273
30 0.06864 0.16356 0.16447 1.56864
50 0.03938 0.09339 0.09211 1.53938
90 0.01632 0.04662 0.04854 1.51632
150 0.01270 0.02856 0.02858 1.51270
200 0.01126 0.02597 0.02152 1.51126

θ=2

20 0.11554 0.53363 0.50319 2.11554
30 0.07354 0.29175 0.30196 2.07354
50 0.04340 0.16161 0.16965 2.04340
90 0.01612 0.08701 0.08982 2.01612
150 0.01415 0.05453 0.05321 2.01415
200 0.00896 0.03761 0.03949 2.00896

θ=2.5

20 0.15021 0.82604 0.81882 2.65021
30 0.11545 0.50885 0.50463 2.61544
50 0.06234 0.27557 0.27921 2.56234
90 0.02329 0.14411 0.14678 2.52329
150 0.02114 0.08766 0.08675 2.52114
200 -0.00545 0.06452 0.06337 2.49455

θ=2.5

20 0.21267 1.23999 1.25054 3.21267
30 0.16488 0.82261 0.77061 3.16488
50 0.09941 0.40727 0.42342 3.09941
90 0.06733 0.22374 0.22481 3.06733
150 0.03938 0.12947 0.13061 3.03938
200 0.03598 0.09335 0.09728 3.03598

It is clearly observed from the Table (1) that the values of bias and mean square error (MSE)
of the parameter estimates decreases as the sample size n increases. It indicates the consistency of
the estimator.

IX. Goodness of fit

The application of goodness of fit of proposed CEL distribution has been discussed with two real
data sets. First data set presents the results of a life-test experiment in which specimens of a type
of electrical insulating fluid were subject to a constant voltage stress (34 KV/minutes), this data
set is reported by Nelson [22] and other data is represents 30 failure times of the air conditioning
system of an airplane has been reported in a paper by Linhart & Zucchini [17] and has also
been analyzed by Barreto-Souza & Bakouch [6] and so on. For comparing the suitability of the
model, we have considered following criterion’s; namely AIC (Akaike Information Criterion), BIC
(Bayesian information criterion), AICc (Corrected Akaike information criterion) and KS statistics
with associated p-value of the fitted distributions are presented in Table (2) and Table (3).The AIC,
BIC, AICc and KS Statistics are computed using the following formulae

AIC = −2loglik + 2k, BIC = −2loglik + k log n

AICc = AIC +
2k2 + 2k
n− k− 1

, D = sup
x
|Fn(x)− F0(x)|

where k= the number of parameters, n= the sample size, and the Fn(x)=empirical distribution
function and F0(x) is the theoretical cumulativedistribution function.
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Table 2: MLE’s, - 2ln L, AIC, KS and p-values of the fitted distributions for the 1st dataset.

Distribution Estimate -2LL AIC BIC AICc KS p-value
CEL(θ) 7.0385 137.98 139.98 140.92 140.21 0.1131 0.9458

EPL(β, θ) (0.0334, 0.5521) 136.18 140.18 142.06 140.93 0.1500 0.7312
EL(β, p) (0.0393, 0.0982) 135.98 139.98 141.87 140.73 0.1382 0.8137
EP(β, λ) (0.0409, 2.2112) 136.89 140.89 142.78 141.64 0.1611 0.6497

Weibull(β, θ) (0.0818, 0.7708) 136.77 140.77 142.66 141.52 0.1613 0.6482
Gamma(β, θ) (0.0480, 0.6897) 137.23 141.23 143.12 141.98 0.1846 0.4802
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Figure 5: Fitted pdfs of 1st data set
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Figure 6: Fitted cdfs and ecdf of 1st data set
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Figure 7: p-p and q-q plot for the 1st data set.

Here we notice that all of the considered models fit the data at 5% level of significance but
the proposed distribution has minimum KS and maximum p-value among all the fitted models.
Therefore, we may say that proposed CEL distribution is the most acceptable model for the
present data set among the other considered models. For better visualization of the fitted models
the estimated pdfs, cdfs, pp and qq plots are shown in Figure 5, Figure 6, Figure 7 for the first
data set.

Table 3: MLE’s, - 2ln L, AIC, KS and p-values of the fitted distributions for the 2nd dataset.

Distribution Estimate -2LL AIC BIC AICc KS p-value
CEL(θ) 30.267 307.17 309.17 310.57 309.31 0.1061 0.8695

EPL(β, θ) (0.0101, 0.9193) 302.87 306.87 309.68 307.32 0.1282 0.7076
EL(β, p) (0.0111, 0.1932) 302.83 306.83 309.63 307.28 0.1291 0.6986
EP(β, θ) (0.0105, 1.8243) 303.22 307.22 310.02 307.66 0.1468 0.5375

Weibull(β, θ) (0.0183, 0.8536) 307.87 310.68 308.32 303.87 0.1534 0.4806
Gamma(β, θ) (0.0136, 0.8119) 304.33 308.33 311.13 308.78 0.1694 0.3556
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Figure 8: Fitted pdfs of 2nd data set
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Figure 9: Fitted cdfs of 2nd data set
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Figure 10: p-p and q-q plot for the 2nd data set.

For the second data set also all the considered models fit well. Here also, the value of KS
statistics is the minimum for CEL distribution with the maximum p-value. From the above
discussion on two real data sets we see that all the considered six decreasing failure models fit
to the two data sets. The fitted models the estimated pdfs, cdfs, pp and qq plots are shown in
Figure 8, Figure 9, Figure 10 for the second data set.

X. Applications on infant mortality data

Since the CEL distribution is an early failure distribution then this may be suitable for the data of
infant deaths. In this study an attemt has been made to apply CEL distribution for the data of
infant deaths taken from the fourth round of National Family Health Survey (NFHS-4) for the
most poupulous state of India i.e. Uttar Pradesh conducted in 2015-16 (IIPS and ICF, 2017)[14].
The data on infant deaths for four categories have been extacted and CEL distribution with other
compitent distributions considered here have been applied. The fitting, estimate of parameters, KS
distance and its p-value are provided in table 4-7. The p-value reveals that the CEL distribution is
most appropriate among all considered distributions.
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Table 4: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
deaths of mothers aged 20-25)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 104 90.61 83.12 80.71 76.30 72.18 143.00
1-2 17 30.67 33.66 36.74 34.29 36.55 16.75
2-3 2 15.03 17.46 18.91 19.43 21.51 4.39
3-4 10 98.83 10.35 10.69 12.09 13.18 1.28
4-5 5 5.79 6.66 6.49 7.90 8.26 0.39
5-6 7 4.07 4.53 4.16 5.32 5.26 0.12
6-7 7 3.02 3.19 2.78 3.64 3.39 0.04
7-8 2 2.33 2.31 1.92 2.52 2.21 0.01
8-9 3 1.85 1.71 1.36 1.76 1.45 0.00

9-10 4 1.50 1.28 0.98 1.24 0.95 0.00
10-11 2 1.24 0.97 0.71 0.87 0.63 0.00
11-12 3 1.05 0.74 0.53 0.62 0.42 0.00
Total 166 166.00 166.00 166.00 166.00 166.00 166.00

Estimates of
parameter

θ = 1.4410
θ = 0.6102
β = 0.2399

λ = 2.4852
β = 0.2700

p = 0.2378
β = 0.3399

α = 0.8961
β = 0.5304

α = 0.4745
β = 0.9554

K-S Distance 0.0807 0.1257 0.1403 0.1668 0.1917 0.2478
p-value 0.2206 0.0094 0.0025 0.0002 0.0000 0.0000

Table 5: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
deaths of mothers aged 25-30)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 94 86.94 84.05 84.79 76.14 75.60 104.47
1-2 17 22.52 24.63 27.91 28.19 30.36 22.28
2-3 8 9.93 11.02 11.38 14.02 14.74 6.86
3-4 3 5.51 6.01 5.43 7.72 7.55 2.24
4-5 3 3.48 3.67 2.91 4.45 3.99 0.75
5-6 0 2.40 2.41 1.69 2.64 2.15 0.26
6-7 3 1.74 1.66 1.05 1.58 1.18 0.09
7-8 2 1.33 1.18 0.68 0.96 0.66 0.03
8-9 4 1.04 0.86 0.46 0.58 0.37 0.01

9-10 1 0.84 0.64 0.31 0.36 0.21 0.00
10-11 2 0.69 0.48 0.22 0.22 0.12 0.00
11-12 0 0.57 0.37 0.16 0.13 0.07 0.00
Total 137 137.00 137.00 137.00 137.00 137.00 137.00

Estimates
of parameter

θ = 1.0624
θ = 0.3689
β = 0.2355

λ = 3.4829
β = 0.3033

p = 0.2501
β = 0.4879

α = 0.8868
β = 0.7795

α = 0.7081
β = 0.9833

K-S Distance 0.0515 0.0726 0.0672 0.1304 0.1342 0.1150
p-value 0.8509 0.4507 0.5508 0.0171 0.0128 0.0492
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Table 6: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
deaths in year 2003)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 76 66.35 64.10 60.46 55.41 55.08 98.89
1-2 9 18.33 19.84 23.23 20.33 21.54 7.25
2-3 3 8.28 9.03 10.54 11.09 11.82 1.43
3-4 2 4.65 4.99 5.42 6.87 7.05 0.32
4-5 1 2.97 3.09 3.06 4.54 4.41 0.07
5-6 2 2.05 2.07 1.86 3.11 2.84 0.02
6-7 3 1.50 1.46 1.19 2.18 1.87 0.00
7-8 1 1.14 1.07 0.80 1.55 1.25 0.00
8-9 3 0.90 0.81 0.55 1.11 0.85 0.00

9-10 2 0.72 0.63 0.39 0.81 0.59 0.00
10-11 3 0.60 0.50 0.28 0.59 0.41 0.00
11-12 3 0.50 0.40 0.20 0.43 0.29 0.00
Total 108 108.00 108.00 108.00 108.00 108.00 108.00

Estimates of
parameter

θ = 1.1394
θ = 0.2528
β = 0.1512

λ = 3.1272
β = 0.2785

p = 0.1183
β = 0.3040

α = 0.7880
β = 0.6433

α = 0.7081
β = 0.9833

K-S Distance 0.0894 0.1102 0.1439 0.1907 0.1937 0.2119
p-value 0.3392 0.1361 0.0204 0.0006 0.0005 0.0000

Table 7: Comperison of Goodness of fit for CEL, EPL, EP, EL, Weibull and Gamma on infant mortality data (Infant
death in year 2004)

Age at
Infant Death

Observed
frequencies

Expected
frequencies

of CEL

Expected
frequencies

of EPL

Expected
frequencies

of EP

Expected
frequencies

of EL

Expected
frequencies
of Weibull

Expected
frequencies
of Gamma

0-1 54 46.83 42.23 42.22 38.71 36.31 75.22
1-2 15 17.27 18.87 20.22 19.41 20.56 10.87
2-3 3 8.79 11.02 10.77 11.40 12.59 3.25
3-4 2 5.28 6.01 6.28 7.21 7.89 1.08
4-5 1 3.51 3.67 4.11 4.74 5.00 0.37
5-6 2 2.49 2.41 2.82 3.19 3.20 0.13
6-7 4 1.86 1.66 2.00 2.18 2.06 0.05
7-8 2 1.44 1.18 1.45 1.51 1.33 0.02
8-9 2 1.15 0.86 1.07 1.05 0.87 0.01

9-10 2 0.94 0.64 0.08 0.73 0.57 0.00
10-11 2 0.78 0.48 0.60 0.56 0.37 0.00
11-12 2 0.66 0.37 0.46 0.36 0.24 0.00
Total 91 91.00 91.00 91.00 91.00 91.00 91.00

Estimates of
parameter

θ = 1.6062
θ = 0.7679
β = 0.2496

λ = 2.6031
β = 0.2382

p = 0.3311
β = 0.3477

α = 0.9427
β = 0.4853

α = 0.5032
β = 1.0726

K-S Distance 0.0788 0.1293 0.1294 0.1680 0.1943 0.2332
p-value 0.6064 0.0876 0.0871 0.0102 0.0017 0.0000
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XI. Conclusions

A single parameter lifetime distribution CEL(θ) has been introduced. The CEL(θ) distribution is
mean free distribution and has decreasing hazard. The moment generating function, rth oreder
moments does not exists thus mean, variance, cumulant generating function, mean deviation
about mean and median, Bonferroni, Gini index, mean residual life function (MRLF) also does
not exists. The beauty of CEL distribution is that, this is a single parameter decreasing hazard
distribution and explains the phenomenon better than other two parameter models. Although
the moments do not exist, but Figure 1 indicates that, the distribution is highly positively skewed
distribution. As the value of θ is increasing the density of the distribution becomes flatten. Hence,
we can easily conclude that the proposed CEL distribution may be considered as a suitable
model for the case of decreasing failure rate scenario with a hope to get better model in various
disciplines such as medical, engineering, and social sciences.
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Abstract 

 The paper deals with the reliability and cost-benefit analysis of a two non-identical unit system with 

two types of failure. The units are named as unit-1 and unit-2 and they are arranged in a parallel 

configuration. Unit-1 can fail due to hardware or due to human error failure whereas unit-2 fails due to 

normal cause. A single repairman is considered with the system for all types of failure in the units and 

unit-1 gets priority in repair over the unit-2. The repair time distributions of unit-1 are taken as general 

with different c.d.fs and the repair time distribution of unit-2 is taken as exponential. Failure time 

distribution of unit-1 due to human error is taken exponential. Whereas the random variable denoting the 

failure time of unit-1 due to hardware failure and random variable denoting the failure time of unit-2 are 

assumed to be correlated random variables having their joint distribution as bivariate exponential 

(B.V.E.). 

Keywords: Transition probabilities, mean sojourn time, bi-variate exponential distribution, 

regenerative point, reliability, MTSF, availability, expected busy period of repairman, net 

expected profit. 

I. Introduction 

 

Reliability is an important concept in the planning design and operation stages of various complex 

systems. Gupta et al. (2014) analysed a two non-identical unit parallel system with two independent 

repairmen-skilled and ordinary. A failed unit is first attended by skilled repairman to perform first phase 

repair and then it goes for second phase repair by ordinary repairman. Both types of repair discipline are 

FCFS. Chaudhary et al. (2015) analysed a two non-identical unit parallel system model assuming that an 

administrative delay occurs in getting the repairman available with the system whenever needed. Upon 

failure of a unit, the other operating unit shares the load of failed unit. Chopra and Ram (2017) analysed a 

two non-identical unit parallel system with two types of failures: common cause failure and partial 
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failure. The repairman is not always available with the system to repair a failed unit. Whenever a unit 

fails, the repairman is called to come at the system and he takes some significant time to reach at the 

system. This time is known as waiting time of repairman during which the failed unit waits for repair. 

Chandra et al. (2020) performed the reliability and cost benefit analysis of the two identical and non-

identical unit parallel system models by using Semi – Markov Process in regenerative point. A study of 

comparison is made between the reliability characteristics for both the system models under study. In 

these papers, the authors did not consider the concept of human error failure. In all the above system 

models the authors have considered single cause of failure in a unit i.e. normal cause.  

Mahmoud and Moshref (2010) analysed a two-unit cold standby system by considering two 

cause of failure in a unit namely-Due to hardware and Due to human error. It has also been assumed that 

an operating unit goes for preventive maintenance (PM) to increase the system effectiveness. All the 

distributions of random variables involved in the system model are taken to follow arbitrary 

distributions. Kumar and Malik (2011) carried out the profit analysis of a computer system model with 

software and hardware failure subject to maximum operation time (MOT) and maximum repair time 

(MRT). An operating unit goes for preventive maintenance (PM) after completing MOT, if it is not failed 

during this time. Further if a failed unit is not repaired during MRT, it is replaced by new one. The 

priority to software replacement is given over hardware repair. Singh et al. (2016) analysed a two-unit 

warm standby system with two types of repairman. The first type of repairman, usually called regular 

repairman who is always remains available with the system to attend a failed unit. If he might not be able 

to do some complex repairs within some tolerable (patience) time, an expert repairman is called from the 

outside to complete the repair of the failed unit and he takes some significant time to reach at the system. 

Further an operating unit may fail either due to hardware or due to human error. In all the above system 

models the common assumptions considered is that the failure and repair times of the units are taken to 

uncorrelated random variables.  

Gupta and co-workers [2008,2018] analysed two unit parallel and standby system models under 

different sets of assumptions by taking the failure and repair times as correlated random variables having 

their joint distribution as bivariate exponential. They have considered only single type of failure in an 

operating unit. Some authors including [1999, 2013] analysed two-unit parallel system models by taking 

the joint distribution of life times of the units working in parallel as bivariate exponential. They have also 

considered the single type of failure in an operating unit. The objective of the present paper is to study a 

two non-identical unit parallel system subject to two causes of failure in an operating unit-Due to 

hardware and Due to human error. Human failure is defined as a failure to perform a prescribed task 

which could result in damage to the equipment and property. There exist a number of causes for human 

error; e.g., lack of good job environments, poor training or skill of the operating personnel and so on. On 

the other hand, hardware failure occurs due to flaws in design, poor quality control and poor 

maintenance.  

The life time of the units working in parallel form are taken to be correlated random variables 

having their joint distribution as bivariate exponential with different parameters as the form of joint p.d.f. 

given below. 

( ) ( )1 1 2 2x x
1 2 1 2 0 1 2 1 2 1 2 1 2f (x ,x ) 1 r e I 2 rx x ; x ,x , , 0; 0 r 1

− −
=   −         

where,          ( )
2k

0 2
k 0

(z / 2)
I z

(k!)



=

=
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is the modified Bessel function of type-I and order zero. 

 By using regenerative point technique, the following measures of system effectiveness are 

obtained- 

i. Transient-state and steady-state transition probabilities. 

ii. Mean sojourn time in various regenerative states. 

iii. Reliability and mean time to system failure (MTSF). 

iv. Point-wise and steady-state availabilities of the system as well as expected up time of the system 

during time interval (0, t). 

v. The expected busy period of repairman in time interval (0, t). 

vi. Net expected profit earned by the system in time interval (0, t) and in steady-state. 

II. System Description and Assumptions 

1. The system comprises of two non-identical units-unit-1 and unit-2. Initially, both the units are 

operative in parallel configuration. 

2. Each unit has two modes-Normal (N) and Total failure (F). 

3. Unit-1 can fail either due to hardware or human error. Whereas unit-2 can fail only due to its normal 

cause. 

4. The system failure occurs when both the units are totally failed. 

5. A single repairman is always available to repair the failed unit-1 either due to hardware or human 

error and the failed unit-2. The unit-1 gets priority in repair over the unit-2. 

6. Failure time of unit-1 due to human error is taken exponential distribution whereas the failure time of 

unit-1 due to hardware and failure time of unit-2 due to normal cause are assumed to be correlated 

random variables having their joint distribution as bivariate exponential (B.V.E.) with density function 

as follows- 

( ) ( )1 1 2 2x x
1 2 1 2 0 1 2 1 2 1 2 1 2f (x ,x ) 1 r e I 2 rx x ; x ,x , , 0; 0 r 1

− −
=   −         

where, ( )
2k

0 2
k 0

(z / 2)
I z

(k!)



=

=  

7. The repair time distribution of unit-1 failed either due to hardware or due to human error are taken as 

general with different c.d.fs whereas the repair time distribution of unit-2 failed due to normal cause 

is taken as exponential. 

8. A repaired unit always works as good as new. 

III. Notations and States of the System 

We define the following symbols for generating the various states of the system- 

1
o1N , 2

o2N     :    Unit-1 and Unit-2 in normal (N) mode and operative. 

1
r1 F

        
       :   Unit-1 is in failure (F) mode and repair which is failed due to hardware 

failure. 

 1
r2F               : Unit-1 is in failure (F) mode and repair which is failed due to human 

error. 

   2 2
r wrF ,F           :   Unit-2 is in failure (F) mode and under repair/waits for repair.           

249



 
Pradeep Chaudhary, Lavi Tyagi 

A TWO NON-IDENTICAL UNIT PARALLEL SYSTEM SUBJECT TO 

TWO TYPES OF FAILURE AND CORRELATED LIFE TIMES 
RT&A, No 2(62) 

Volume 16, June 2021 

 

 

 

Considering the above symbols in view of assumptions stated in section-2, the possible states of 

the system are shown in the transition diagram represented by Figure. 1. It is to be noted that the 

epochs of transitions into the state 4S  from 1S , 5S  from 2S  are non-regenerative, whereas all the other 

entrance epochs into the states of the systems are regenerative.  

The other notations used are defined as follows: 

E      :            Set of regenerative states. 

( )iX i 1,2=      : Random variables representing the failure time of uni1-1 in N-mode and 

unit-2 respectively for i=1,2.  

 
( )1 2f x , x   : Joint p.d.f. of ( )1 2x , x . 

( ) ( )1 1 2 2x x
1 2 1 2 0 1 2 1 2f (x ,x ) 1 r e I 2 rx x

− −
=   −    

; 1 2 1 2x , x , , 0 ; 0 r 1      

where,

 

( )
2k

0 2
k 0

(z / 2)
I z

(k!)



=

=  

( )ig x  : Marginal p.d.f. of iX x=       

     ( ) ( )i 1 r x
i i1 r e

− −
=  −  

( )1 1 2 2k x X x=   :  Conditional p.d.f. of 1 2X X x= . 

( ) ( )1 1 2x rx
1 0 1 2 1e I 2 rxx

−  +
=      

( )2 2 1k x X x=   : Conditional p.d.f. of 2 1X X x= . 

  ( ) ( )2 2 1x rx
2 0 1 2 2e I 2 rxx

−  +
=     

( )iK x|    : Conditional c.d.f. of i jX X x, i j ; i, j 1, 2=  = . 

    :          Constant failure rate of unit-1 due to Human error. 

    :         Constant repair rate of unit-2 due to normal cause. 

( ) ( )1 2G ,G    :          c.d.f. of repair time of unit-1 failed due to hardware failure and unit-1 

   failed due to human error. 

 ( ) ( )
k

ij ijq ( ),q   : p.d.f. of transition time from state iS  to jS and iS  to jS  via kS . 

 (k)
ij ijp ,p  : Steady-state transition probabilities from state iS  to jS  and iS  to jS   

    via kS . 

 (k)

ij x ij x
p ,p
 

 : Steady-state transition probabilities from state iS  to jS  and iS  to jS  via 

kS  when it is known that the unit has worked for time x before its failure. 

   : †Symbol for Laplace Transform i.e. ( ) ( )st
ij ijq s e q t dt −=   
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  :  Symbol for Laplace Stieltjes Transform i.e. ( ) ( )st
ij ijQ s e dQ t−=   

      ©  :  Symbol for ordinary convolution i.e.   

 ( ) ( ) ( ) ( )
t

0

A t ©B t A u B t u du= −
 

†The limits of integration are 0 to   whenever they are not mentioned. 

  TRANSITION DIAGRAM 
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1 2
r1 o2F ,N  

1 2
r2 wrF ,F  1 2

o1 rN ,F  
1 2
r1 wrF ,F  

 

IV. Transition Probabilities and Sojourn Times 

 Let ( )X t be the state of the system at epoch t, then ( ) X t ; t 0 constitutes a continuous 

parametric Markov-Chain with state space 0 5E {S toS }= .The various measures of system effectiveness are 

obtained in terms of steady-state transition probabilities and mean sojourn times in various states. First 

we obtain the direct conditional and unconditional transition probabilities in terms of  

1
1

1


 =

 +  +
,    2

2
2 1


 =

 + 
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as follows-

  

( ) ( ) ( ) 

( ) ( )
1 21 r 1 r t 1

01 1
1 2

(1 r)
p 1 r e dt

1 r 1 r

− + − + −  −
=  − =

+ − + −  

Similarly, 

( ) ( )
02

1 2

p
1 r 1 r


=
 + − + −

,  
( )

( ) ( )
2

03
1 2

1 r
p

1 r 1 r

 −
=
 + − + −

 

( )20 2 2p G 1 r=  −   ,   ( ) ( )
5

2 223p 1 G 1 r= −  −    

( )43 1p dG t 1= = ,  ( )53 2p dG t 1= =  

( ) ( )1 210 X
p dG u K u x


=     

 

Similarly, 

( ) ( )(4)
1 213 X

p G u dK u x


=   

( ) ( )

( )

( )1 2 2 1

j

y rx rx 11 2( )u
1 130 X 2

j 0u

rxy
p e e dy du 1 e

j!

 
−  + − −− +


=

       =   = −
    +

 
 

( )2 1rx 1
134 X

p e
− −


=  ,   ( )2 1rx 1

135 X
p 1 e

− −



  = −
  +

 

The unconditional transition probabilities with correlation coefficient from some of the above conditional 

transition probabilities can be obtained as follows: 

( )10 110 Xp p g x dx=  1 (1 r)x
110 xp { (1 r)e }dx

− −
=  −  

Similarly,  

( ) ( )
1

4 4 (1 r)x
113 13 x

p p { (1 r) e }dx
− −

=  − , 
( )

( )
1

30
1

1 r
p 1

1 r

  −  
= − 

 + −   
   

( )

( )
1

34
1

1 r
p

1 r

 −
=

− 
,    

( )

( )
1

35
1

1 r
p 1

1 r

  −  
= − 

 + −   
 

It can be easily verified that, 

01 02 03p p p 1+ + = ,  ( )4

10 13p p 1+ = ,  ( )5

20 23p p 1+ =   

30 34 35p p p 1+ + = ,  43 53p p 1= =             (1-5)  

 

V. Mean Sojourn Times 

 The mean sojourn time i  in state iS  is defined as the expected time taken by the system in state 

iS  before transiting into any other state. If random variable iU  denotes the sojourn time in state iS  then, 

 
 i iP U t dt =   

Therefore, its values for various regenerative states are as follows- 

( ) ( ) 

( ) ( )
1 21 r 1 r t

0
1 2

1
e dt

1 r 1 r

− + − + −
 = =

+ − + −                     (6) 
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( ) ( ) ( ) ( ) ( )

( )
2 1

j

u rx 1 2
1 2 1 21X 2

j 0t

rxu
G t K t x dt G t e du dt

j!

 
−  +

=

  
  = = 
 
 

    

So that, 

( ) ( ) ( )1 1 r x
1 1 11x 1xg x dx 1 r e dx

− −
 =  =   −       (7)  

( ) ( )2 1 r t
2 2G t e dt

− −
 =                   (8) 

 2 1rx(1 )
13 X

1
1 e

− − = −
+

  

So that,   

( )1
3

1

1 r1
1

(1 r )

 − 
 = − 

+ −  
                                  (9) 

( )4 1G t dt =                                                                                                                                            (10) 

( )5 2G t dt =                                                                                                                                              (11) 

VI. Analysis of Characteristics 

a) Reliability and MTSF 

  Let ( )iR t  be the probability that the system operates during (0, t) given that at t=0 system starts from

iS E . To obtain it we assume the failed states 4S  and 5S  as absorbing. By simple probabilistic 

arguments, the value of ( )0R t  in terms of its Laplace Transform (L.T.) is given by 

 ( ) 0 01 1 02 2 03 3
0

01 10 02 20 03 30

Z q Z q Z q Z
R s

1 q q q q q q

      


     

+ + +
=

− − −
          (12)  

We have omitted the argument’s from *
ijq (s)  and *

iZ (s) for brevity. *
iZ (s);i = 0,1,2,3  are the L. T. of 

 ( ) ( ) ( ) 1 21 r 1 r t

0Z t e
− + − + −

=  , ( ) ( ) ( ) ( )1 1 2 1Z t G t K t x g x dx=  |   

( ) ( ) ( )2 1 r t
2 2Z t e G t

− −
= ,  ( ) ( ) ( ) ( )t

3 1 2Z t e K t x g x dx
− +

=  |  

Taking the Inverse Laplace Transform of (12), one can get the reliability of the system when system 

initially starts from state 0S . 

The MTSF is given by, 

( ) ( ) ( ) 0 01 1 02 2 03 3
0 0 0

s 0
01 10 02 20 03 30

p p p
E T R t dt lim R s

1 p p p p p p



→

 +  +  + 
= = =

− − −                 (13) 

b)   Availability Analysis 

  Let ( )iA t  be the probability that the system is up at epoch t, when initially it starts operation from 

state iS E . Using the regenerative point technique and the tools of Laplace transform, one can obtain the 

value of ( )0 A t  in terms of its Laplace transforms i.e. ( )*
0A s given as follows- 

 ( )
( )

( )
1

0
1

N s
A s

D s

 =                  (14) 
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where, 

( ) ( ) ( ) ( )4 5

1 34 43 35 53 0 01 1 02 2 01 02 03 313 23N s 1 q q q q Z q Z q Z q q q q q Z
               = − − + + + + +

    

 

and 

( ) ( ) ( ) ( )4 5

1 34 43 35 53 01 10 02 20 30 01 02 0313 23D s 1 q q q q 1 q q q q q q q q q q
              = − − − − − + +

    
               (15) 

where, iZ (t) , i=0,1,2,3 are same as given in section VI(a).   

The steady-state availability of the system is given by 

( ) ( )0 0 0
s 0t

A A tli sm lim A s

→→
= =                                    (16) 

We observe that 

  ( )1D 0 0=            

Therefore, by using L. Hospital’s rule the steady state availability is given by 

   
( )

( )0

1 1
0

1 1
s

N s N
A

D s
lim

D→
= =

 
                             (17) 

where,  

( ) ( )1 30 0 01 1 02 2 01 10 02 20 3N p p p 1 p p p p=  +  +  + − −      

and  

( ) ( ) ( ) 1 30 0 01 1 14 4 02 2 25 5 01 10 02 20 3 34 4 35 5D p p p p p 1 p p p p p p  =  +  +  +  +  + − −  +  +  

        

(18) 

The expected up time of the system in interval (0, t) is given by 

( ) ( )
t

up 0

0

t A u du =     

So that,    ( )
( )0

up

A s
s

s


 =                                      (19) 

 c) Busy Period Analysis 

Let ( )1
iB t , ( )2

iB t and ( )3
iB t  be the respective probabilities that the repairman is busy in the repair of 

unit-1 failed due to hardware, unit-1 failed due to human error and unit-2 failed due to normal cause at 

epoch t, when initially the system starts operation from state iS E . Using the regenerative point 

technique and the tools of L. T., one can obtain the values of above three probabilities in terms of their    

L. T. i.e. ( )1
iB s , ( )2

iB s and ( )3
iB s as follows- 

( )
( )

( )
21

i
1

N s
B s

D s

 = , ( )
( )

( )
32

i
1

N s
B s

D s

 =         and ( )
( )

( )
43

i
1

N s
B s

D s

 =      (20-22) 

where, 

 ( ) ( ) ( )4 5

2 01 34 43 35 53 1 14 4 34 01 02 03 413 23N (s) q 1 q q q q Z q Z q q q q q q Z
               = − − + + + +

      

( ) ( )(4) (5)
3 02 34 43 35 53 2 25 5 35 01 02 03 513 23N (s) q 1 q q q q Z q Z q q q q q q Z

              = − − + + + +
   

 
( )4 (5)

4 01 02 03 313 23N (s) q q q q q Z
     = + +

    

and ( )1D s  is same as defined by the expression (15) of section VI(b). 
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Also *
4Z  and *

5Z are the L. T. of 

 
( ) ( )4 1Z t G t= , ( ) ( )5 2Z t G t=  

The steady state results for the above three probabilities are given by- 

 
( )1

o 0 2 1
s 0

B limsB s N D

→
= = , 2

o 3 1B N D=  and 
3
0 4 1B N D=      (23-25) 

 
( ) ( )2 30 01 1 14 4 34 01 10 02 20 4N p p p p 1 p p p p =  +  + − −    

 
( ) ( )3 30 02 2 25 5 35 01 10 02 20 5N p p p p 1 p p p p =  +  + − −    

  4 01 10 02 20 3N 1 p p p p= − − 
 

and 1D is same as given in the expression (18) of section VI(b). 

The expected busy period in repair of unit-1 failed due to hardware, unit-1 failed due to human error and 

unit-2 failed due to normal cause during time interval (0, t) are respectively given by- 

 

( ) ( )
t

1 1
b 0

0

t B u du =  , ( ) ( )
t

2 2
b 0

0

t B u du =       and ( ) ( )
t

3 3
b 0

0

t B u du =   

So that, 

 
( ) ( )1 1

b 0s B s s  =  ( ) ( )2 2
b 0s B s s  =       and

 
  ( ) ( )3 3

b 0s B s s  =      (26-28) 

d)  Profit Function Analysis 

The net expected total cost incurred in time interval (0, t) is given by 

( )P t = Expected total revenue in (0, t) - Expected cost of repair in (0, t) 

( ) ( ) ( ) ( )1 2 3
0 up 1 b 2 b 2 bK t K t K t K t=  −  −  −                             (29) 

Where, 0K  is the revenue per- unit up time by the system during its operation. 1K , 2K  and 3K
 
are 

the amounts paid to the repairman per-unit of time when he is busy in repair of unit-1 failed due to 

hardware, unit-1 failed due to human error and unit-2 failed due to normal cause respectively. 

The expected total profit incurred in unit interval of time is 1 2 3
0 0 1 0 2 0 2 0P K A K B K B K B= − − −  

VII. Particular Case 

 When the repair time of unit-1 failed due to hardware and human error also follow exponential with 

p.d.fs as follows- 

 1t
1 1g (t) e

−
=  ,                               2t

2 2g (t) e
−

=   

The Laplace Transform of above density function are as given below- 

 1
1 1

1

g (s) G (s)
s

 
= =

+ 
,                  2

2 2
2

g (s) G (s)
s

 
= =

+ 
 

Here, 1G (s) and 2G (s) are the Laplace-Stieltjes Transforms of the c.d.fs 1G (t)  and 2G (t) corresponding to 

the p.d.fs 1g (t) and 2g (t) . 

In view of above, the changed values of transition probabilities and mean sojourn times. 

 2
10

2

(1 r)
p 1

(1 r )

 −
= −

− 
,  (4) 2

13
2

(1 r)
p

(1 r )

 −
=

− 
,   2

20
2 2

p
(1 r)


=
 − + 

  

 (5) 2
23

2 2

(1 r)
p

(1 r)

 −
=
 − + 

,  1
2 1

1

(1 r)
 =

 − + 
,  2

2 2

1

(1 r)
 =

 − + 
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VIII. Graphical Study of Behaviour and Conclusions 

 For a more clear view of the behaviour of system characteristics with respect to the various 

parameters involved, we plot curves for MTSF and profit function in Fig. 2 and Fig. 3 w.r.t. 1α  for three 

different values of correlation coefficient r =0.25, 0.35 and 0.45 and two different values of repair 

parameter 1θ =0.7 and 0.9 while the other parameters are kept fixed as λ = 0.09,  2α = 0.045,  β = 0.8,  

2θ = 0.7 .From the curves of Fig. 2, we observe that MTSF increases uniformly as the values of r  and 1θ  

increase and it decreases with the increase in 1 . Further, to achieve MTSF at least 94 units we conclude 

from smooth curves that the value of 1α  must be less than 0.118, 0.190 and 0.332 respectively for r = 0.25

, 0.35 , 0.45 when 1θ = 0.9 . Whereas from dotted curves we conclude that the value of 1α  must be less 

than 0.100, 0.171, 0.294 for r = 0.25 , 0.35  and 0.45  when 1θ = 0.7 . 

 Similarly, Fig. 3 reveals the variations in profit (P) w.r.t.   for varying values of r  and 1θ , when 

the values of other parameters are kept fixed as λ = 0.09,  2α = 0.045,  β = 0.8,  2θ = 0.7 , 0K = 160 , 

1K = 400 , 2K = 250  and 3K = 350 . Here also the same trends in respect of 1α , r  and 1θ are observed as 

in case of MTSF.  Moreover, we conclude from the smooth curves that the system is profitable only if 1α  

is less than 0.581, 0.700 and 0.850 respectively for r = 0.25 , 0.35 , 0.45 when 1θ = 0.9 . From dotted curves, 

we conclude that the system is profitable only if 1α  is less than 0.520, 0.612 and 0.759 respectively for

r = 0.25 , 0.35  and 0.45  when 1θ = 0.7 . 

Behaviour of MTSF w.r.t. 1α  for different values of r and 1θ  
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Behaviour of PROFIT (P) w.r.t. 1α  for different values of r and 1θ  
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Abstract 

 

The present paper studies and compared some reliability characteristics of series-parallel systems 

containing five units each under partial and complete failure. Four different system configurations are 

considered in this paper. It is assumed that both the failure and repair rates of each system configuration 

follow exponential distribution. The steady-state availability, busy period of repairman due to partial 

and complete failure, profit function, mean time to failure (MTTF) have been derived, examined and 

compared. The system configurations are compared analytically in terms of their availability and mean 

time to failure (MTTF). Cost-benefit measure has been evaluated for all the system configurations. The 

computed results are presented in tables and figures. From the analysis, system configuration II is 

observed to be the optimal configuration. 

 

Keywords: Reliability, availability, standby, partial, complete failure, configuration, 

cost benefit. 

 

I. Introduction 
 

In reliability analysis, the performance evaluation of repairable systems is a matter of great 

importance. Maintaining the reliability of the system is indispensable. System performance can be 

measure through some reliability characteristics such as availability, mean time to failure, profit and 

benefit-cost analysis. The system availability of some engineering systems depends on the system 

structure, preventive maintenance, redundancy and also on the component availability. To affirm 

system failure and high system performance of complex systems, it is necessary to have a system 

component of higher availability. Generally, increasing redundant units or using units with high 

availability can also enhance system performance. Performance of systems increases significantly 

through redundancy optimization, using components with high availability, system’s structural 

design and maintenance through repair and preventive maintenance.  

To achieve high system reliability and availability, the system must be maintained at the 

highest order. To achieve this end, numerous researchers have designed different types of 

mathematical models to study and compare their reliability, availability and mean time to failure. 

For instance, Singh and Abdul Kareem [8] discussed the cost assessment of complex repairable 

systems consisting two subsystems in series configuration using Gumbel Hougaard family copula. 

Berk et al [2] have discussed the reliability assessment of safety-critical sensor information. Sanusi et 

al [12] have recently studied the performance evaluation of an industrial configured as series-parallel 

system. Wang et al [16] have presented the reliability analysis of two-dissimilar unit warm standby 

repairable system with priority in use. Singh and Ayagi [15] discussed the study of availability of 

standby complex system under waiting repair and human failure using Gumbel-Hougaard family 

copula distribution.  
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Harish Garg [4] discussed the study of the multi objective non-linear programming problem 

for reliability (GSA) and the results have been compared with the results computed by practice 

swarm optimization (PSO) methodology. Malik and Tewari [10] analyzed the performance of a 

system and maintenance priorities decision for the water flow system of a coal-based thermal power 

plant. Kumar et al [1] have recently studied the reliability analysis of a redundant system with ‘FCFS’ 

repair policy subject to weather conditions. Niwas and Garg [11] presented an approach for 

analyzing the reliability and profit of an industrial system based on the cost-free warranty repair 

policy. More recently, Sanusi and Yusuf [13] have presented the study of cost analysis of 2-out-of-4 

system connected to two-unit parallel supporting device for operation. Mortazavi et al. [9] have 

evaluated the MTBF and other reliability parameters for a 2-out-of-3: G redundant repairable 

systems with common cause failures considering fuzzy rates for failures and repair via a case study 

of a centrifugal water pumping system.  Saini et al [14] have investigated microprocessor systems 

using RAMD approach. Yang et al [19] discussed the reliability assessment of system with 

inconsistent priors and multi-level data. Gahlot et al. [5] investigated the performance assessment of 

serial system with different types of failure and repair policy. Zhang [23] dealt with the reliability 

analysis of computer networks based on intelligent cloud computing methods. Zhao et al [24] have 

discussed the reliability analysis of aero-engine compressor rotor system considering cruise 

characteristics. Ibrahim et al [6] have studied the reliability assessment of complex system consisting 

two subsystems connected in series configuration using Gumbel-Hougaard family copula 

distribution. Kakkar et al [7] have examined availability analysis of two parallel unit system under 

the provision of maintenance. Yusuf et al [22] have analyzed some reliability characteristics of a 

linear consecutive 2-out-of-4system connected to 2-out-of-4 supporting device for operation.  

Some research works in the field of reliability and performance analysis of systems with 

standby components/units have shown that optimality among the systems under considerations is 

not unique and it depends on the value of some parameters.  Some studies such as Wang and Learn 

[17], Wang et al. [18], EL-Sherbeny [3] and Yen and Wang [20] did take into the effect of cost benefit 

such as cost/availability and cost/mean time to failure on system reliability. Wang and Learn [17], 

Wang et al. [18], EL-Sherbeny [3] and Yen and Wang [20] have studied cost benefit analysis of 

various standby systems in which the optimality among configurations in the study depends only 

on particular parameter using cost/MTTF and depends on the other parameter using 

cost/availability. The present paper is motivated by the work of Wang and Learn [17], Wang et al. 

[18], EL-Sherbeny [3] and Yen and Wang [20] to study reliability of four 30MW power plant systems 

consisting of five units each arranged in series parallel and to determine the unique optimal system 

among the systems under study. 

The contributions of this paper are as follow: 

(i) To develop the explicit expressions for availability, busy period of repairman due partial 

and complete failure, mean time to failure and profit function. 

(ii) To perform analytical comparison between the systems in order to rank them in terms 

of their availability and mean time to failure. 

(iii) To study and compare the four systems in terms of their profit and cost benefit. 

(iv) To determine the optimal system among the systems with cold standby. 

The structure of this paper is organized as follows. Section 2 gives the description of the 

systems considered and their reliability block diagrams. Section 3 deals with the formulation of the 

models. Comparison between the systems analytically in terms of their availability and mean time 

to failure and numerically in terms of their profit and cost benefit are presented in Section 4. 

Conclusions are given in Sections 5. 

 

II. Description of the System Configurations 

The present study considers  power plant arranged in the following four series parallel 

configurations as shown in Figures 1-4 below: System configuration I is a series parallel system 
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which has three  primary units and two  cold standby components. System 

configuration II is a series parallel system having two   primary components and three   

cold standby components. System configuration III is a series parallel system with three   

primary units and two   cold standby units. System configuration IV is a series parallel system 

which consists of three subsystems with two subsystems arranged in parallel and serial to the other 

subsystem with two   primary components and three   cold standby components. It is 

assumed that all switchover time are instantaneous and switching is perfect. It is also assumed that 

the switch from standby to operation is perfect. Each of the primary units fails independently of the 

state of the others and has an exponential failure time with parameter 0  and is replace with cold 

standby unit if available while the failed unit is immediately sent for repairs and the time to repair 

is exponential with parameter 0 . All failures are assumed to be repairable. System failure occurs 

when all units in the same subsystem have failed. A failure is partial if the system has not failed 

completely otherwise the failure is complete (system failure). 
 

 
 

 

 

 

 

Figure 1: Reliability block diagram of System Configuration I  

 
 
 
 

 
 
 

 

 

Figure 2: Reliability block diagram of System Configuration II  

 
  

  
 
 

 
 
 

 
Figure 3: Reliability block diagram of System Configuration III  

 
 
 
 
 
 

 

 

 

 

Figure 4: Reliability block diagram of Configuration IV    
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III. Reliability Models Formulation 

      Formulation of System Configuration I 

Mean time to failure (MTTF) Analysis of System Configuration I 
 

Let the probability that the system is in state i  at time t  be ( )ih t and   

 1 2 11( ) ( ), ( ),..., ( )H t h t h t h t=   be the probability row vector time t  with initial conditions 

1, 0
(0)

0, 1,2,3,...,11
k

k
h

k

=
= 

=
                                                                        

        The differential-difference equations derived from system configuration I are given by: 

      

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 1 0 2 0 10

1 0 0 1 0 0 0 3 0 5 0 9

2 0 0 2 0 0 0 3 0 4 0 11

3 0 0 3 0 1 0 2 0 6 0 7 0 8

0 0

3

3

3

3 2

ji i

d
h t h t h t h t h t

dt

d
h t h t h t h t h t h t

dt

d
h t h t h t h t h t h t

dt

d
h t h t h t h t h t h t h t

dt

d
h t h t h t

dt

   

     

     

      

 


= − + + + 


= − + + + + +




= − + + + + + 



= − + + + + + + 

= − +


            (1) 

       4,5,6,...,11i =  and 0,1,2,3j =  

Equation (1) can be written in matrix form as: 

      ( ) ( )1H t M H t =                                                                                                                                    (2)                                                                                               

Where  

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0 0

0 0

0 0

1

0 0

0 0

0 0

0 0

0 0

0 0

3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

M

   

    

    

     

 

 

 

 

 

 

 

 

−


−
−

−

−

−
=

−

−

−

−

−

−





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



     

 

 

To compute the MTTF of system configuration I, the procedure requires deleting rows and 

columns of absorbing states of matrix 
1M and take the transpose to produce a new matrix, 

1Q  as 

adopted in Wang and Kuo [17], Wang et al [16] and Wang et al [18]. The time expected to reach 

262



 
Ibrahim Yusuf, Abdullahi Sanusi 
OPTIMAL SYSTEM FOR FIVE UNITS SERIAL SYSTEMS 
UNDER PARTIAL AND COMPLETE FAILURE 

RT&A, № 2 (62) 
Volume 16, June 2021  

 

the absorbing state is calculated from: 

       ( ) ( )( )1

1 10 1,1,1,1
T

MTTF H Q −= −                                                                                                         (3)                                                                     

         Thus, the MTTF expression for system configuration I is: 

      
( )

2 2

0 0 0 0
1 2 2

0 0 0 0 0

2 11 17

2 15 27
MTTF

   

    

+ +
=

+ +
                                                                                      (4)                                                                

        Where ( )  0 1,0,0,0H = and 

0 0 0

0 0 0

1

0 0 0

0 0 1

3 0

0

0

0

Q

  

  

  

  

− 
 

− =
 −
 

− 

 

 

Availability and Busy period of System Configuration I 
To compute the availability of system configuration I, the differential difference equation given in 

(2) are expressed in the form: 

   

0 0 0 00

0 0 0 0 01

0 0 0 0 02
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0 0 0 0 0 0 0 0 0 0
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The steady state availability (i.e. the sum of the probabilities of all the operational states), busy period 

due to partial failure and complete failure are respectively given by: 

 

( ) ( ) ( ) ( ) ( )1 0 1 2 3VA h h h h =  +  +  +                                                                                            (5)                                                               

( ) ( ) ( )1 1 2 3hB h h h=  +  +                                                                                                                    (6) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 4 5 6 7 8 9 10 11hB h h h h h h h h=  +  +  +  +  +  +  +                                  (7) 

 

All the derivatives of state probabilities are set equal to zero in the steady state, therefore equation 

(2) becomes: 

( )1 0
T

M H t =                                                                                                                                               (8) 

Which is  
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Using the following normalizing condition: 

( )
11

0

1n

n

h
=

 =                                                                                                                                               (9) 

To compute the state probabilities ( )ih t 0,1,2,...,11i = , (9) is substituted in the last of (8) to give: 
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

   

    

    

     

 

 

 

 

 

 

 

 

−


−
 −


−

−

−

−

−

−

−

−

−

0

1

2

3

4

5

6

7

8

9

10

11

0

0

0

0

0

0

0

0

0

0

0

1

h

h

h

h

h

h

h

h

h

h

h

h

   
   
   
   
   
   

    
    
    

=    
    
    
    
    
    
    
    

   
  

(10) 

Solving (10) using MATLAB package to obtain ( )ih t , the expressions for the steady-state 

availability, busy period due to partial failure and complete failure given in (5) to (7) are 

respectively given by: 

( )
3 2 2

0 0 0 0 0
1 3 2 2 3

0 0 0 0 0 0

2

3 5 3
VA

    

     

+ +
 =

+ + +
                                                                                            (11) 

( )
2 2

0 0 0 0
1 3 2 2 3

0 0 0 0 0 0

2

3 5 3
hB

   

     

+
 =

+ + +
                                                                                             (12) 

( )
3 2 2

0 0 0 0 0
2 3 2 2 3

0 0 0 0 0 0

3 4

3 5 3
hB

    

     

+ +
 =

+ + +
                                                                                             (13) 
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Profit Analysis of System Configuration I 

The units are exposed to corrective maintenance due to partial and complete failure, while the 

repairman is busy performing maintenance action to the failed units. Let 0K , 1K  and 2K  be the 

revenue generated when the system is in working state and no income when in failed state, cost of 

each repair due to partial and complete failure respectively. The expected total profit of system 

configuration I per unit time incurred to the system in the steady-state is given by: 

Profit =total revenue generated – cost incurred by the repair man due to partial failure – cost incurred 

due to complete failure. 

( )1 0 1 1 1 2 2V h hPF K A K B K B= − +                                                                                                        (14) 

 

Formulation of System Configuration II 

Mean time to failure (MTTF) Analysis of System Configuration II 

Let  0 1 2 10( ) ( ), ( ), ( ),..., ( )H t h t h t h t h t=    be the probability row vector at time . The initial 

condition is given by: 
1, 0

(0)
0, 1,2,3,...,10

j

j
h

j

=
= 

=
 

The corresponding set of differential-difference equations for system configuration II are expressed 

as: 

( ) ( )2H t M H t =                                                                                                                                 (15) 

Where:

( )

( )

( )

( )

( )

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

2 0 0 0 0 0 0

0 0

0 0

0

0 0

0 0

2 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 2 2 0 0 0 0

0 0 0 2 2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

M

  

    

    

    

     

     

 

 



 

 

−


− +
 − +


− +
 − +

= − +

−

−

−

−

−









 
 
 
 
 
 
 
 
 



 

Using similar procedure presented in subsection 3.1.1, the expression for the mean time to failure 

 of system configuration II is obtained through: 

( )( )( )1

2 20 1,1,1,1,1,1
T

MTTF H Q−= −                                                                                                    (16) 

Thus, 

( )

5 4 3 2 2 3 4 5

0 0 0 0 0 0 0 0 0 0
2 2 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0

4 29 97 119 211 100

4 25 76 112 64
MTTF

         

        

+ + + + +
=

+ + + +
                                          (17) 

Where ( )  0 1,0,0,0,0,0H = and 
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( )

( )

( )

( )

( )

0 0 0

0 0 0 0

0 0 0 0 0

2

0 0 0 0

0 0 0 0 0

0 0 0 0

2 0 0 0

2 0 0 0

0 2 0

0 0 2 0

0 0 2 2

0 0 0 2 2

Q

  

   

    

   

    

   

− 
 

− + 
 − +

=  
− + 

 − +
 
 − + 

 

 Availability and Busy period Analysis of System Configuration II 

To compute the availability of system configuration II, the differential-difference equations given 

in (14) are expressed in the form: 

( )

( )

( )

( )

( )

0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0

7

8

9

10

2 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 2 2 0 0 0 0

0 0 0 2 2 0 0 0

0 0 0 0 0 0

h

h

h

h

h

h

h

h

h

h

h

  

    

    

    

     

     

 

 − 
  − + 
  − +
 

 − + 
  − +
 

 = − + 
  −
 

 
 
 

 
 
 

0

1

2

3

4

5

6

0 0 7

0 8

0 0 9

0 0 10

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

h

h

h

h

h

h

h

h

h

h

h

 



 

 

  
  
  
  
  
  
  
  
  
  
  

−  
  

−
  
  −
  

−  

 

The steady state availability (the proportion of the time the system is functioning or equivalently the 

sum of the probabilities of operational state), busy period due to partial failure and complete failure 

are given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 1 2 3 4 5VA h h h h h h =  +  +  +  +  +                                                   (18) 

( ) ( ) ( ) ( ) ( )3 1 2 3 4 5hB h h h h h=  +  +  +  +                                                                               (19) 

( ) ( ) ( ) ( ) ( ) ( )4 6 7 8 9 10hB h h h h h =  +  +  +  +                                                                      (20) 

In the steady state, the derivatives of states probabilities become zero and therefore (15) becomes: 

( )2 0
T

M H t =                                                                                                                         (21) 

 In matrix form, we have: 

 

( )

( )

( )

( )

( )

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0

0

0 0

0 0

2 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 2 2 0 0 0 0

0 0 0 2 2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

  

    

    

    

     

     

 

 



 

 

−


− +
 − +


− +
 − +


− +
 −

−

−

−

−

0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0

0

0

0

0

0

0

h

h

h

h

h

h

h

h

h

h

h

   
   
   
   
   
   
   
   

=   
   

    
    
    
    
    
    

  

 

Using the following normalizing condition 
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( )
10

0

1n

n

h
=

 =                                                                                                                           (22) 

To obtain the state probabilities ( )ih t 0,1,2,...,10i = , we substitute (22) in (21) to get  

( )

( )

( )

( )

( )

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0

0

0 0

0 0

2 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 2 2 0 0 0 0

0 0 0 2 2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

  

    

    

    

     

     

 

 



 

 

−


− +
 − +


− +
 − +


− +
 −

−

−

−

−

0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0

(23)0

0

0

0

0

1

h

h

h

h

h

h

h

h

h

h

h

   
   
   
   
   
   
   
   

=   
   

    
    
    
    
    
    

  

 

Solving (23) using MATLAB package to obtain ( )ih t , the explicit expressions for the steady-state 

availability, busy period due to partial failure and complete failure are given by:  

 

( )
4 3 2 2 3

0 0 0 0 0 0 0
2 4 3 2 2 3 4

0 0 0 0 0 0 0 0

2 2

2 3 3 2
VA

      

       

+ + +
 =

+ + + +
                                                                            (24) 

( )
3 2 2 3

0 0 0 0 0 0
3 4 3 2 2 3 4

0 0 0 0 0 0 0 0

2 2

2 3 3 2
hB

     

       

+ +
 =

+ + + +
                                                                            (25) 

( )
4 2 2 3

0 0 0 0 0
4 4 3 2 2 3 4

0 0 0 0 0 0 0 0

2

2 3 3 2
hB

    

       

+ +
 =

+ + + +
                                                                             (26) 

 

 Profit Analysis of System Configuration II 

Using similar procedure presented in subsection 3.1.3, the explicit expression for profit function of 

system configuration II is given by: 

( )2 0 2 1 3 2 4V h hPF K A K B K B= − +                                                                                                         (27) 

 

 Formulation of System Configuration III 

 Mean time to failure of Analysis System Configuration III 

Let  0 1 8( ) ( ), ( ),..., ( )H t h t h t h t=   be the probability row vector at time  with initial conditions 

1, 0
(0)

0, 1,2,3,...,8
n

n
h

n

=
= 

=
 

The corresponding set of differential-difference equations for system configuration III are expressed 

as: 

( ) ( )3H t M H t =                                                                                                                                  (28)                                                                                                                                                                                                                                           

Where  
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( )

( )

( )

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3 0 0

0 0

0 0

0 0

0 0

3 0 0 0 0 0 0

3 0 0 0 0 0

2 0 3 0 0 0 0

0 0 3 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 0 0 0

M

  

    

    

    

 

 

 

 

 

− 
 

− + 
 − +
 

− + 
 = −
 

− 
 −
 

− 
 

− 

 

 

Using similar procedure presented in subsection 3.1.1, the explicit expression for the mean time to 

failure  of System Configuration III is obtained through:                 

( ) ( )( )1

3 30 1,1,1,1
T

MTTF H Q−= −                                                                                                       (29) 

Thus,  

( )

3 2 2 3

0 0 0 0 0 0
3 2 2 2

0 0 0 0 0

11 41 57

8 45 81
MTTF

     

    

+ + +
=

+ +
                                                                                       (30) 

Where ( )  0 1,0,0,0H = and 
( )

( )

( )

0 0 0

0 0 0 0

3

0 0 0

0 0 0

3 2 0

3 0

0 3 0

0 0 3

Q

  

   

  

  

− 
 

− + =
 − +
  − + 

 

 

Availability and Busy period Analysis of System Configuration III 

To compute the availability of system configuration III, the differential difference equations given 

in (28) are expressed in the form: 

0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

3 0 0 0 0 0 0

0 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 0 0 0

h

h y

h y

h y

h

h

h

h

h

  

  

  

  

 

 

 

 

 

 −   
    −   
    −
   
 −   

    = −
   
 −   

   −
  
 −  

   −   

0

1

2

3

4

5

6

7

8

h

h

h

h

h

h

h

h

h

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The steady state availability (the proportion of the time the system is functioning), busy period due 

to partial failure and complete failure are given by: 

( ) ( ) ( ) ( ) ( )3 0 1 2 3VA h h h h =  +  +  +                                                                                        (31) 

( ) ( ) ( )5 1 2 3hB h h h=  +  +                                                                                                                (32) 

( ) ( ) ( ) ( ) ( ) ( )6 4 5 6 7 8hB h h h h h =  +  +  +  +                                                                       (33) 

In the steady state, the derivatives of states probabilities become zero and therefore (28) becomes: 

( )3 0
T

M H t =                                                                                                                                           (34) 
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In matrix form, we have: 

0 0 0 0

0 0 0 0 1

0 0 0 0 2

0 0 0 0 3

0 0 4

0 0 5

0 0 6

0 0 7

0 0 8

3 0 0 0 0 0 0 0

0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 0 0 0

h

y h

y h

y h

h

h

h

h

h

  

  

  

  

 

 

 

 

 

−  
  

−  
  −
  

−  
  − =
  

−  
  −
  

−  
  

−  

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using the following normalizing condition 

( )
8

0

1n

n

h
=

 =                                                                                                                                             (35) 

To obtain the state probabilities ( )ih t 0,1,2,...,8i = , (35) is substituted in (34) to give:  

     

00 0 0

10 0 0 0

20 0 0 0

30 0 0 0

40 0

50 0

60 0

70 0

8

3 0 0 0 0 0 0 0

0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

1 1 1 1 1 1 1 1 1

p

py

py

py

p

p

p

p

p

  

  

  

  

 

 

 

 

−   
  

−   
  −
  

−   
   =−
  

−   
  −
  

−   
  

   1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      (36) 

Solving (36) using MATLAB package to obtain ( )ih t ,the explicit expressions for the steady-state 

availability, busy period due to partial failure and complete failure are given by:  

( )
3 2 2

0 0 0 0 0
3 3 2 2 3

0 0 0 0 0 0

3

3 9 3
VA

    

     

+ +
 =

+ + +
                                                                                          (37) 

( )
2 2

0 0 0 0
5 3 2 2 3

0 0 0 0 0 0

3

3 9 3
hB

   

     

+
 =

+ + +
                                                                                           (38) 

( )
3 2

0 0 0
6 3 2 2 3

0 0 0 0 0 0

3 8

3 9 3
hB

  

     

+
 =

+ + +
                                                                                           (39) 

 

Profit analysis of System Configuration III 

Using similar procedure presented in subsection 3.1.3, the explicit expression for profit function of 

configuration III is given by: 

( )3 0 3 1 5 2 6V h hPF K A K B K B= − +                                                                                                       (40) 

 

Formulation of System Configuration IV 

Mean time to failure of Analysis System Configuration IV 

Define  0 1 2 8( ) ( ), ( ), ( ),..., ( )H t h t h t h t h t=   to be the probability row vector at time  with initial 
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conditions: 

1, 0
(0)

0, 1,2,3,...,8
n

n
h

n

=
= 

=
. 

The corresponding set of differential-difference equations for system configuration IV is expressed 

as: 

 ( ) ( )4H t M H t =                                                                                                                                  (41)                                                                                                                                                                   

Where: 

 

( )

( )

( )

0 0 0

0 0 0 0 0

0 0

0 0 0 0 0

4 0 0

0 0 0 0 0

0 0

0 0

0 0

2 0 0 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

M

  

    

 

    

 

    

 

 

 

− 
 

− + 
 −
 

− + 
 = −
 

− + 
 −
 

− 
 

− 

 

Using similar procedure presented in subsection 3.1.1, the explicit expression for the mean time to 

failure  of System Configuration IV is obtained through:                  

( )( )( )1

4 40 1,1,1,1
T

MTTF H Q−= −                                                                                                     (42) 

Thus,  
3 2 2 3

0 0 0 0 0 0
4 3 2 2 3

0 0 0 0 0 0

5 12 15

5 12 16
MTTF

     

     

+ + +
=

+ + +
                                                                                      (43) 

Where ( )  0 1,0,0,0H = and 
( )

( )

( )

0 0

0 0 0 0

4

0 0 0 0

0 0 0

2 0 0

2 0

0 2

0 0 2

Q

 

   

   

  

− 
 

− + =
 − +
  − + 

 

 

 Availability and Busy period Analysis of System Configuration IV 

To compute the availability of system configuration IV, the differential difference equations given 

in (41) are expressed in the form: 

 

( )

( )

( )

0 0 0 0

1 0 0 0 0 0

2 0 0

3 0 0 0 0 0

4 0 0

5 0 0 0 0 0

6 0 0

7 0 0

8 0 0

2 0 0 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

h

h

h

h

h

h

h

h

h

  

    

 

    

 

    

 

 

 

 −   
   − +  
   −
  
 − +  

   = −
  
 − +  

   −
  
 −  

   −   

0

1

2

3

4

5

6

7

8

h

h

h

h

h

h

h

h

h
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The steady state availability (the proportion of the time the system is functioning or equivalently the 

sum of the probabilities of operational states), busy period due to partial failure and complete failure 

are given by: 

( ) ( ) ( ) ( ) ( )4 0 1 3 5VA h h h h =  +  +  +                                                                                        (44) 

( ) ( ) ( )7 1 3 5hB h h h=  +  +                                                                                                                 (45) 

( ) ( ) ( ) ( ) ( ) ( )8 2 4 6 7 8hB h h h h h =  +  +  +  +                                                                         (46) 

In the steady state, the derivatives of states probabilities become zero and therefore (41) becomes: 

( )4 0
T

M H t =                                                                                                                                            (47) 

These can be expressed in matrix form as:  

 

( )

( )

( )

0 0 0 0

0 0 0 0 0 1

0 0 2

0 0 0 0 0 3

0 0 4

0 0 0 0 0 5

0 0 6

0 0 7

0 0 8

2 0 0 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

h

h

h

h

h

h

h

h

h

  

    

 

    

 

    

 

 

 

−  
  

− +  
  −
  

− +  
  −
  

− +  
  −
  

− 
 

−  

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 =
 
 
 
 

  
  

 

 

Using the following normalizing condition 

( )
8

0

1n

n

h
=

 =                                                                                                                                              (48) 

To obtained the state probabilities ( )ih t 0,1,2,...,8i = using (48) in the last row of (47) we get:  

( )

( )

( )

0 0 0 0

0 0 0 0 0 1

0 0 2

0 0 0 0 0 3

0 0 4

0 0 0 0 0 5

0 0 6

0 0 7

0 8

2 0 0 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

h

h

h

h

h

h

h

h

h

  

    

 

    

 

    

 

 



−  
  

− +  
  −
  

− +  
  −
  

− +  
  −
  

−  
 

−  

0

0

0

0

(49)0

0

0

0

1

 
 
 
 
 
 
 =
 
 
 
 
 

  
 

  

Explicit expressions for the steady-state availability, busy period due to partial failure and complete 

failure are given by: 

 
4 3 2 2 3

0 0 0 0 0 0 0
4 4 3 2 2 3 4

0 0 0 0 0 0 0 02 2 2 2
VA

      

       

+ + +
=

+ + + +
                                                                                  (50) 

3 2 2

0 0 0 0
7 4 3 2 2 3 4

0 0 0 0 0 0 0 0

2

2 2 2 2
hB

   

       

+
=

+ + + +
                                                                                   (51) 

3 2 2 3 4

0 0 0 0 0 0 0
8 4 3 2 2 3 4

0 0 0 0 0 0 0 0

2

2 2 2 2
hB

      

       

+ + +
=

+ + + +
                                                                                  (52) 

 

Profit analysis of System Configuration IV 
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Using similar procedure presented in subsection 3.1.3, the explicit expression for profit function of 

system configuration IV is given by: 

( )4 0 4 1 7 2 8V h hPF K A K B K B= − +                                                                                                         (53) 

 

 

IV. Discussion 

I. Comparison between the System Configurations 

Analytical Comparisons 
Here, the configurations are compared analytically in terms of their availability and mean time to 

failure to determine the optimal configuration by taking the difference between the configurations 

0 0, 0    using MAPLE software package. 

( )
( )( )

4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0

2 1 3 2 2 3 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 5 3
0

3 5 3 2 3 3 2
V VA A

         

             

+ + + +
− = 

+ + + + + + +
           (54) 

2 1 0 0, 0V VA A       

( )
( )( )

2 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0

2 3 4 3 2 2 3 4 3 2 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 14 13 6
0

2 3 3 2 3 9 3
V VA A

         

             

+ + + +
− = 

+ + + + + + +
           (55) 

2 3 0 0, 0V VA A       

( )
( )( )

2 5 4 3 2 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0

2 4 4 3 2 2 3 4 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2
0

2 3 3 2 2 2 2 2
V VA A

           

               

+ + + + +
− = 

+ + + + + + + +

(56) 

2 4 0 0, 0V VA A       

( )
( )( )

5 4 3 2 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0

3 4 3 2 2 3 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 6 5 4
0

3 9 3 2 2 2 2
V VA A

           

             

− − − − −
− = 

+ + + + + + +
           (57) 

( ) ( )3 4V VA A      if and only if ( )5 4 3 2 2 3 4 5

0 0 0 0 0 0 0 0 0 04 6 5 4          + + + +  for some 

0 0   

( )
( )( )

2 2 2

0 0 0 0 0 0

3 1 3 2 2 3 3 2 2 3

0 0 0 0 0 0 0 0 0 0 0 0

2
0

3 9 3 3 5 3
V VA A

     

           

− −
− = 

+ + + + + +
                             (58) 

( ) ( )3 1V VA A      if and only if  ( )2 2

0 0 0 02    +  for some 0 0   

( )
( )( )

2 3 2 2 3

0 0 0 0 0 0 0 0

4 1 4 3 2 2 3 4 2 2

0 0 0 0 0 0 0 0 0 0 0 0

2 2
0

2 2 2 2 2 3
V VA A

       

           

+ + +
− = 

+ + + + + +
                           (59) 

4 1 0 0, 0V VA A       

Using availability models of all the system configurations, it is clear from (54) – (59) that  

2 3 4 1V V V VA A A A    

Thus, the optimal system configuration is configuration II 

( )( )

7 6 5 2 4 3 3 4 2 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 2 2 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0

8 110 643 2125 4421 5870 4589 1617
0 (60)

2 15 27 4 25 76 112 64
MTTF MTTF

             

            

+ + + + + + +
− = 

+ + + + + +

2 1 0 0, 0MTTF MTTF       
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( )( )

7 6 5 2 4 3 3 4 2 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 2 4 3 2 2 3 4 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0

28 343 1890 6041 12303 16138 12585 4452
0 (61)

4 25 76 112 64 8 45 81
MTTF MTTF

             

            

+ + + + + + +
− = 

+ + + + + +

   

2 3 0 0, 0MTTF MTTF       

( )( )

8 7 6 2 5 3 4 4 3 5 2 6 7 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 4 2 3 2 2 3 4 3 2 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 45 245 839 1942 3088 3284 2128 640
0 (62)

5 12 16 4 25 76 112 64
MTTF MTTF

               

              

+ + + + + + + +
− = 

+ + + + + + +

2 4 0 0, 0MTTF MTTF       

( )( )

5 4 3 2 2 2 4 5

0 0 0 0 0 0 0 0 0 0
3 1 2 2 2 2 2

0 0 0 0 0 0 0 0 0

2 21 96 233 306 162
0

2 15 27 8 45 81
MTTF MTTF

         

        

+ + + + +
− = 

+ + + +
                  (63)      

3 1 0 0, 0MTTF MTTF                                  

( )( )

6 5 4 2 3 3 2 4 5 6

0 0 0 0 0 0 0 0 0 0 0 0
3 4 2 3 2 2 3 2 2

0 0 0 0 0 0 0 0 0 0 0

8 23 8 112 307 305
0

5 12 16 8 45 81
MTTF MTTF

           

          

+ + + − − −
− = 

+ + + + +
      (64) 

3 4MTTF MTTF   if and only if 

( ) ( )6 5 4 2 3 3 2 4 5 6

0 0 0 0 0 0 0 0 0 0 0 08 23 8 112 307 305           + + +  + +  for some 0 0, 0    

( )( )

4 3 2 2 3 3 3 4

0 0 0 0 0 0 0 0 0 0
4 1 3 2 2 3 2 2

0 0 0 0 0 0 0 0 0 0

4 30 96 8 169 133
0

5 12 16 2 15 27
MTTF MTTF

         

         

+ + + + +
− = 

+ + + + +
                     (65) 

4 1 0 0, 0MTTF MTTF       

 

Similarly, using mean time to failure models of all the system configurations, it is clear from 

(60) – (65) that  

2 3 4 1MTTF MTTF MTTF MTTF    

Thus, the optimal system configuration is configuration II 

 

 

II.  Numerical examples 
The purpose of this section is to rank the system configurations in terms of their availability and 

mean time to failure using MATLAB software package. The results are summarized in tables below 

 
          Table 1: Ranking between the systems configurations in terms of their availability and mean time to failure. 

Case Parameter 

Range  

Results Constant 

Value 

 

 

1 

00 0.3   

00.3 0.6   

00.6 0.9   

00.9 1.2   

( ) ( ) ( ) ( )2 4 1 3A A A A        

( ) ( ) ( ) ( )2 4 1 3A A A A        

( ) ( ) ( ) ( )2 4 1 3A A A A        

( ) ( ) ( ) ( )2 4 1 3A A A A        

 

 

 

0 0.6 =  

0 100000C =  

1 500C =  

2 1000C =  

 

 

2 

 

00 0.3   

00.3 0.6   

00.6 0.9   

00.9 1.2   

2 3 4 1MTTF MTTF MTTF MTTF    

2 4 3 1MTTF MTTF MTTF MTTF    

2 4 3 1MTTF MTTF MTTF MTTF    

2 4 3 1MTTF MTTF MTTF MTTF    

 

 

3 

00 0.3   

00.3 0.6   

( ) ( ) ( ) ( )2 3 4 1A A A A        

( ) ( ) ( ) ( )2 3 4 1A A A A        
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00.6 0.9   

00.9 1.2   

( ) ( ) ( ) ( )2 3 4 1A A A A        

( ) ( ) ( ) ( )2 3 4 1A A A A        

0 0.01 =  

0 100000C =  

1 500C =  

2 1000C =  

 

 

4 

 

00 0.3   

00.3 0.6   

00.6 0.9   

00.9 1.2   

2 3 4 1MTTF MTTF MTTF MTTF  =  

2 3 4 1MTTF MTTF MTTF MTTF  =  

2 3 4 1MTTF MTTF MTTF MTTF  =  

2 3 4 1MTTF MTTF MTTF MTTF  =  

 

 Profit Comparison 
In this section, numerically comparison with respect to the profit functions for all configurations are 

discussed. For consistency, we fix the following set of parameters values throughout the simulations:

0 0.6 = , 0 0.01 = , 0 100,000K = , 1 500K =  and 2 1,000K =  

 

 
Figure 5: Profit Comparison for all configuration using 0  

 

 
Figure 6: Profit Comparison for all configuration using 0  
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Figures 5 and 6 depict the trends of profit for all the system configurations against the repair and 

failure rates 0  and 0 respectively. In both figures, it is seen that as repair rate 0  increases, the 

profit increases, while with increase in failure rate 0 , the profit decreases. This means that 

preventive and major maintenance is significant in maximizing the system profit. It is also evident 

from these Figures that Configuration II has the highest profit as compared to the other three 

configurations. 

 

Cost Benefit Comparison 
In this section, the system configurations are compared based on their cost benefit, where the benefit 

is either availability or mean time to failure. Numerical values of Wang el al. (2006) parameter values 

are used to compare the configurations. 

1 48,000,000C = , 2 39,000,000C = , 3 42,000,000C =  and 4 39,000,000C =  

 

 
Figure 7: /k kC A  Comparison for all configuration using 0  

 

 

 
Figure 8: /k kC MTTF  Comparison for all configuration using 0  
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Figure 9: /k kC A  Comparison for all configuration using 0  

 

 
Figure 10: /k kC MTTF  Comparison for all configuration using 0  

 

Figures 7-10 present the trends of cost benefit /k kC A  and /k kC MTTF for all configurations 

against the repair and failure rates 0  and 0 respectively. It is observed from Figures 7 and 8 that  

/k kC A  and /k kC MTTF increases as 0   increases for any system configuration. It is also 

observed from these figures that the optimal system configuration is configuration II. On the other 

hand, Figures 9 and 10 display the effects of /k kC A  and /k kC MTTF for all the system 

configurations against the repair rate 0 . These figures revealed that /k kC A  and /k kC MTTF

decreases as 0   increases for any system configuration. Also, from these figures, it is clear that the 

optimal configuration is configuration II. 
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V. CONCLUSION 
 

In this paper, we have constructed four different standby serial systems each consisting of five units. 

The expressions for the system characteristics such as system availability, busy period of repairman 

due to partial and complete failure as well as profit functions for all the configurations have been 

obtained and validated by performing numerical experiments. Analysis of the effect of various 

system parameters on profit function and availability was performed. These are the main 

contributions of this study. On the basis of the numerical results obtained in Figures 5 – 10 and Tables 

1-4 for a particular case, it is evident that the optimal system configuration is configuration II. This 

is supported from analytical comparison presented in terms of the availability and mean time to 

failure models obtained in which configuration II is the optimal configuration for all 0 0, 0    

contrary to some studies where the optimality among the system configuration is not uniform as it 

depends on some system parameters.  
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Abstract 

 
We derive the exact probability density functions (pdf) of a product of 𝑛  independent Maxwell 

distributed random variables. The distribution functions are derived by using an inverse Mellin 

transform technique from statistics, and are given in terms of a special function of mathematical 

physics, the Meijer G-function.  

 

Keywords: Product Distribution, Maxwell Distribution, Mellin transform technique, Meijer 

G-function, probability density function.  

 
 

1  Introduction 
  

 Engineering, Physics, Economics, Order statistics, Classification, Ranking, Selection, Number 

theory, Genetics, Biology, Medicine, Hydrology, Psychology, these all applied problems depend on the 

distribution of product of random variables[1][2].  

 As an example of use of the product of random variables in physics, Sornette [27] mentions: 

“…To mimic system size limitation, Takayasu, Sato, and Takayasu introduced a threshold 𝑥𝑐 

…and found a stretched exponential truncating the power-law pdf beyond 𝑥𝑐 . Frisch and Sornette 

recently developed a theory of extreme deviations generalizing the central limit theorem which, when 

applied to multiplication of random variables, predicts the generic presence of stretched exponential 

pdfs. The problem thus boils down to determining the tail of the pdf for a product of random variables 

…” 

Several authors have studied the product distributions for independent random variables come 

from the same family or different families, see [21] for t and Rayleigh families, [4] for Pareto and 

Kumaraswamy families, [6] for the t and Bessel families, and [22] for the independent generalized 

gamma-ratio family. In this paper, we find analytically the probability distributions of the product 

∏𝑛𝑖=1 𝑋𝑖, when 𝑋𝑖 is a Maxwell random variable with probability density function (p.d.f)  

 𝑓𝑋𝑖(𝑥𝑖) = √
2

𝜋

𝑥𝑖
2

𝑏𝑖
3 𝑒

−𝑥𝑖
2

2(𝑏𝑖)
2
,    𝑥𝑖 ≥ 0. (1) 

 The functions are derived by using an inverse Mellin transform technique from statistics and given in 

terms of the Meijer G-function.  
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2  Basic Definitions 
  

2.1  Mellin integral transform 

 The Mellin integral transform of 𝑓(𝑥) is defined only for 𝑥 ≥ 0, as:  

 𝑀{𝑓(𝑥)/𝑠} = 𝐸[𝑥𝑠−1] = ∫
∞

0
𝑥𝑠−1𝑓(𝑥)𝑑𝑥 (2) 

 The inverse transform is:  

 𝑓(𝑥) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑥−𝑠𝑀{𝑓(𝑥)/𝑠}𝑑𝑠 (3) 

 The path of integration is any line parallel to the imaginary axis and lying within the strip of analyticity 

of 𝑀{𝑓(𝑥)/𝑠}. 

 

 The Mellin integral transform of the density function 𝑓(𝑥) of the product 𝑋 = 𝑋1. 𝑋2. . . 𝑋𝑛 of 

𝑛 independent random variables 𝑋𝑖 with the density function 𝑓𝑋𝑖(𝑥𝑖) is defined as:  

 𝑀{𝑓𝑋(𝑥)/𝑠} = ∏
𝑛
𝑖=1 𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠} (4) 

 Using the inverse transform formula we obtain the density function of the product distribution as:  

 𝑓𝑋(𝑥) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑥−𝑠∏𝑛𝑖=1 𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠}𝑑𝑠 (5) 

  

2.2  Meijer G-function 

 The Meijer G-function is defined by the contour integral:  

 𝐺𝑝𝑞
𝑚𝑛 (𝑧|

𝑎1, … , 𝑎𝑝
𝑏1, … , 𝑏𝑞

) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑧−𝑠

∏𝑚𝑖=1Γ(𝑠+𝑏𝑖)∏
𝑛
𝑖=1Γ(1−𝑎𝑖−𝑠)

∏
𝑝
𝑖=𝑛+1

Γ(𝑠+𝑎𝑖)∏
𝑞
𝑖=𝑚+1

Γ(1−𝑏𝑖−𝑠)
𝑑𝑠 (6) 

 where 𝑧, {𝑎𝑖}𝑖 , 𝑎𝑛𝑑{𝑏𝑖}𝑖  are in general, complex-valued. The contour is chosen so that it separates the 

poles of the gamma products in the numerator. The Meijer G-function has been implemented in some 

commercial mathematics software packages. 

 

3  Product of n Independent Maxwell Random Variables 
 

Theorem 1: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to 

(1). Then for 𝑥 > 0 the probability density function p.d.f. of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝑓𝑋(𝑥) = 2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
𝐺0𝑛
𝑛0 (𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
1, … ,1

) (7) 

 

ProofConsider a product of 𝑛 independent random variables  

 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 (8) 

 where 𝑋𝑖 is a Maxwell distributed random variable with probability density function according to (1), 

The Mellin integral transform of 𝑓𝑋𝑖(𝑥𝑖) is:  

 

𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠} = ∫
∞

0
𝑥𝑖
𝑠−1𝑓𝑋𝑖(𝑥𝑖)𝑑𝑥𝑖

=
1

𝑏𝑖
3√

2

𝜋
∫
∞

0
𝑥𝑖
𝑠+1𝑒

−𝑥𝑖
2

2(𝑏𝑖)
2
𝑑𝑥𝑖

= √
2

𝜋
2𝑠/2

1

𝑏𝑖
(𝑏𝑖
−2)−

𝑠

2Γ(1 + 𝑠/2)

 (9) 

 Where we have used the definition of the gamma function  

 Γ(𝑡) = ∫
∞

0
𝑥𝑡−1𝑒−𝑥 (10) 

 The Mellin integral transform of 𝑓𝑋(𝑥)  

 

𝑀{𝑓𝑋(𝑥)/𝑠} = ∏𝑛𝑖=1 𝑀{𝑓𝑋𝑖(𝑥𝑖)/𝑠}

= ∏𝑛𝑖=1 [√
2

𝜋
2𝑠/2

1

𝑏𝑖
(𝑏𝑖
−2)−

𝑠

2Γ(1 + 𝑠/2)]
 

 We can find the pdf of 𝑋 as the inverse Mellin transform  
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𝑓𝑋(𝑥) =
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝑥−𝑠[∏𝑛𝑖=1 [√

2

𝜋
2𝑠/2

1

𝑏𝑖
(𝑏𝑖
−2)−

𝑠

2Γ(1 + 𝑠/2)]]𝑑𝑠

=
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
(𝑥2)−

𝑠

2(√
2

𝜋
)𝑛(2−𝑛)−

𝑠

2
1

∏𝑛𝑖=1𝑏𝑖
(∏𝑛𝑖=1 (𝑏𝑖)

−2)−
𝑠

2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)2

𝑑𝑠

2

= 2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
(𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2)−
𝑠

2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)
𝑑𝑠

2

 (11) 

 Finally using the definition of the Meijer G-function we get  

 𝑓𝑋(𝑥) = 2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
𝐺0𝑛
𝑛0 (𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
1, … ,1

) (12) 

 

Corollary 1: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according 

to (1). Then for 𝑡 > 0 the cumulative distribution function c.d.f. of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝐹𝑋(𝑡) = 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑡

2
𝐺1𝑛+1
𝑛1 (𝑡22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2

1,… ,1, −
1

2

) (13) 

 Proof The cumulative distribution function 𝐹𝑋(𝑡) = ∫
𝑡

0
𝑓𝑋(𝑥)𝑑𝑥  is obtained by integrating (7) with 

respect to 𝑥 inside the contour integral by using:  

 ∫
𝑡

0
𝑥−𝑠𝑑𝑥 =

𝑡1−𝑠

1−𝑠
= 𝑡1−𝑠

1

2
(
2

1−𝑠
) = 𝑡1−𝑠

1

2
(
1

2
−
𝑠

2
)−1 (14) 

 And  

 
1

2
−
𝑠

2
=
(
1

2
−
𝑠

2
)Γ(

1

2
−
𝑠

2
)

Γ(
1

2
−
𝑠

2
)

 

 Then we get  

 ∫
𝑡

0
𝑥−𝑠𝑑𝑥 = 𝑡1−𝑠

1

2

Γ(
1

2
−
𝑠

2
)

Γ(
3

2
−
𝑠

2
)
 

 Let 𝛽𝑛 = 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
  

 𝐹𝑋(𝑡) = 𝑡𝛽𝑛
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
1

2
(𝑡2)−

𝑠

2(2−𝑛∏𝑛𝑖=1 𝑏𝑖
−2)−𝑠/2

Γ(
1

2
−
𝑠

2
)∏𝑛𝑖=1 (Γ(1+

𝑠

2
))

Γ(
3

2
−
𝑠

2
)

 (15) 

 Finally using the definition of the Meijer G-function we obtain  

 𝐹𝑋(𝑡) = 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑡

2
𝐺1𝑛+1
𝑛1 (𝑡22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2

1,… ,1, −
1

2

) 

 

Corollary 2:  Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according 

to (1). Then for 𝑟 > 0, 𝛼 > 0 the moment of order 𝑟 of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝐸[𝑋𝑟] = 2(√
2

𝜋
)𝑛

𝛼𝑟+1

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2
−
𝑟

2

1,… ,1, −
𝑟

2
−
1

2

) (16) 

 Proof  

 

𝐸[𝑋𝑟] = ∫
+∞

−∞
𝑥𝑟𝑓𝑋(𝑥)𝑑𝑥

= ∫
+∞

𝛼
𝑥𝑟𝑓𝑋(𝑥)𝑑𝑥

= 𝛽𝑛
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
∫
∞

𝛼
𝑥𝑟−𝑠(2−𝑛∏𝑛𝑖=1 𝑏𝑖

−2)−𝑠/2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)𝑑𝑥

𝑑𝑠

2

 

 We have  

 ∫
∞

𝛼
𝑥−𝑠+𝑟𝑑𝑥 =

𝛼1+𝑟−𝑠

𝑠−𝑟−1
 (17) 

 Then  

 𝐸[𝑋𝑟] = 𝛽𝑛
1

2𝑗𝜋
∫
𝑐+𝑗∞

𝑐−𝑗∞
𝛼1+𝑟

𝑠−𝑟−1
(2−𝑛∏𝑛𝑖=1 𝑏𝑖

−2𝛼2)−𝑠/2∏𝑛𝑖=1 Γ(1 +
𝑠

2
)
𝑑𝑠

2
 (18) 

 Also we have  
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1

𝑠−𝑟−1
= −

1

2

Γ(
−𝑠

2
+
𝑟

2
+
1

2
)

Γ(
−𝑠

2
+
𝑟

2
+
3

2
)
 (19) 

 Finally using (19) and the definition of the Meijer G-function we obtain  

 

𝐸[𝑋𝑟] = 𝛽𝑛
1

2𝑗𝜋
𝛼𝑟+1(−

1

2
) ∫

𝑐+𝑗∞

𝑐−𝑗∞
(2−𝑛∏𝑛𝑖=1 𝑏𝑖

−2𝛼2)−
𝑠

2
Γ(−

𝑠

2
+
𝑟

2
+
1

2
)

Γ(−
𝑠

2
+
𝑟

2
+
3

2
)
∏𝑛𝑖=1 Γ(1 +

𝑠

2
)

= 2(√
2

𝜋
)𝑛

𝛼𝑟+1

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2
−
𝑟

2

1,… ,1, −
𝑟

2
−
1

2

)

 (20) 

 Corollary 3: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to (1). 

Then for 𝛼 > 0 the expected value of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as: For 𝑟 = 1  

 𝐸[𝑋] = 2(√
2

𝜋
)𝑛

𝛼2

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
0
1, … ,1, −1

) (21) 

 Corollary 4: Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to (1). 

Then for 𝛼 > 0 the expected value of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 

𝜎2 = 2(√
2

𝜋
)𝑛

𝛼3

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
−
1

2

1,… ,1, −
3

2

)

−[2(√
2

𝜋
)𝑛

𝛼2

∏𝑛𝑖=1𝑏𝑖

1

2
𝐺1𝑛+1
𝑛1 (𝛼22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|
0
1, … ,1, −1

)]2

 (22) 

 Proof. By definition the variance of 𝑋/𝑌 is:  

 𝜎2 = 𝐸[𝑍2] − 𝐸[𝑍]2 (23) 

 

Corollary 5:Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to 

(1). Then for 𝑥 > 0 the survival function of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 𝑆𝑋(𝑥) =

(

 

1 if𝑥 ≤ 0

1 − 2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑥

2
𝐺1𝑛+1
𝑛1 (𝑥22−𝑛∏𝑛𝑖=1 𝑏𝑖

−2|

1

2

1,… ,1, −
1

2

) if𝑥 > 0
 (24) 

 Proof By definition of the survival function  

 𝑆𝑋(𝑥) = 1 − 𝐹𝑋(𝑥) (25) 

 

Corollary 6:Suppose 𝑋𝑖, 𝑖 = 1, . . , 𝑛 are independent random variables distributed according to 

(1). Then for 𝑥 > 0 the hazard function of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 can be expressed as:  

 ℎ𝑋(𝑥) =

(

 
 

0 if𝑥 ≤ 0

2(√
2

𝜋
)𝑛

1

∏𝑛𝑖=1𝑏𝑖
𝐺0𝑛
𝑛0(𝑥22−𝑛∏𝑛𝑖=1𝑏𝑖

−2|
1,…,1

)

1−2(√
2

𝑛
)𝑛

1

∏𝑛𝑖=1𝑏𝑖

𝑥

2
𝐺1𝑛+1
𝑛1 (𝑥22−𝑛∏𝑛𝑖=1𝑏𝑖

−2|

1

2

1,…,1,−
1

2

)

if𝑥 > 0 (26) 

 

 

4  Examples and special cases 
  

4.1  Product of two independent Maxwell random variables 

   

    1.  Probability density function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random 

variables with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the probability density function of 𝑋 is  

 𝑓𝑋(𝑥) = (

0 𝑖𝑓𝑥 ≤ 0

2

𝜋
𝐺02
20 (

𝑥2

16
|
1,1

) 𝑖𝑓𝑥 > 0
 (27) 

  

282



Noura Obeid, Seifedine Kadry 
PRODUCT OF N INDEPENDENT MAXWELL RANDOM VARIABLES 

RT&A, No 2(62) 
Volume 16, June 2021 

 

    2.  Cumulative distribution function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell 

random variables with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the cumulative distribution 

function of 𝑋 is 

For 𝑡 > 0  

 𝐹𝑋(𝑡) =

(

 
 

0 𝑖𝑓𝑡 ≤ 0

𝑡

𝜋
𝐺13
21 (

𝑡2

16
|

1

2

1,1, −
1

2

) 𝑖𝑓𝑡 > 0
 (28) 

  

    3.  Moment of order "r": Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables 

with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the moment of order r of 𝑋 is 

For 𝛼 > 0  

 𝐸[𝑋𝑟] = −
𝛼𝑟+1

𝜋
𝐺13
21 (

𝛼2

16
|

1

2
−
𝑟

2

1,1, −
𝑟

2
−
1

2

) (29) 

  

    4.  Expected value: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables with 

scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Expected value of 𝑋 is  

 𝐸[𝑋] = −
𝛼2

𝜋
𝐺13
21 (

𝛼2

16
|
0
1,1, −1

) (30) 

  

    5.  Variance: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables with scale 

parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Variance of 𝑋 is  

 
𝜎2 = −

𝛼3

𝜋
𝐺13
21 (

𝛼2

16
|
−
1

2

1,1, −
3

2

)

−[−
𝛼2

𝜋
𝐺13
21 (

𝛼2

16
|
0
1,1, −1

)]2

 (31) 

  

    6.  Survival function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables 

with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Survival function of 𝑋 is  

 𝑆𝑋(𝑡) =

(

 

1 if𝑡 ≤ 0

1 −
𝑡

𝜋
𝐺13
21 (

𝑡2

16
|

1

2

1,1, −
1

2

) if𝑡 > 0
 (32) 

  

    7.  Hazard function: Suppose 𝑋𝑖, 𝑖 = 1,2 are independent Maxwell random variables 

with scale parameters 𝑏1 = 1, 𝑏2 = 2 respectively, the Hazard function of 𝑋 is 

For 𝑡 > 0  

 ℎ𝑋(𝑥) =

(

 
 

0 𝑖𝑓𝑥 ≤ 0
2

𝜋
𝐺02
20(

𝑥2

16
|
1,1

)

1−
𝑥

𝜋
𝐺13
21(

𝑥2

16
|

1

2

1,1,−
1

2

)

𝑖𝑓𝑥 > 0 (33) 
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Figure  1:  Plot of the probability density function for two independent Maxwell random variables  

for 𝑏1 = 1, 𝑏2 = 2. 

 

 
Figure  2:  Plot of the cumulative distribution function for two independent Maxwell random 

variables  for 𝑏1 = 1, 𝑏2 = 2. 

    

 
 

Figure  3:  Plot of the hazard function for two independent Maxwell  

random variables  for 𝑏1 = 1, 𝑏2 = 2. 
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5  Applications 
 

The air molecules surrounding us are not all traveling at the same speed, even if the air is all at 

a single temperature. Some of the air molecules will be moving extremely fast, some will be moving 

with moderate speeds, and some of the air molecules will hardly be moving at all. Because of this, we 

can’t ask questions like "What is the speed of an air molecule in a gas?" since a molecule in a gas could 

have any one of a huge number of possible speeds. 

So instead of asking about any one particular gas molecule, we ask questions like, "What is the 

distribution of speeds in a gas at a certain temperature?" In the mid to late 1800s, James Clerk Maxwell 

and Ludwig Boltzmann figured out the answer to this question. Their result is referred to as the 

Maxwell-Boltzmann distribution, because it shows how the speeds of molecules are distributed for an 

ideal gas. The Maxwell-Boltzmann distribution is often represented with the following graph.  

 
Figure  4: Maxwell-Boltzmann distribution 

   

 The y-axis of the Maxwell-Boltzmann graph can be thought of as giving the number of 

molecules per unit speed. So, if the graph is higher in a given region, it means that there are more gas 

molecules moving with those speeds.  

 Let take the following example: we are interested to find the distribution 𝑋 =

𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10, where 𝑋𝑖 are independent Maxwell random variables with scale parameters 

𝑏𝑖,𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 3, 𝑏4 = 4, 𝑏5 = 5, 𝑏6 = 6, 𝑏7 = 7, 𝑏8 = 8, 𝑏9 = 9, 𝑏10 = 10. 

So the speeds of molecules are distributed for an ideal gas with respect to the probability density 

function of 𝑋  

 𝑓𝑋(𝑥) = 2(√
2

𝜋
)10

1

(12345678910)
𝐺010
100 (𝑥22−10(

1

13168189440000
)|
1,1,1,1,1,1,1,1,1,1

) (34) 
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Figure  5:  Plot of n=10 independent Maxwell rondom variables  for 𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 3, 𝑏4 =
4, 𝑏5 = 5, 𝑏6 = 6, 𝑏7 = 7, 𝑏8 = 8, 𝑏9 = 9, 𝑏10 = 10. 

 

6  Monte Carlo simulation: 
  

Monte Carlo simulations are used to model the probability of different outcomes in a process 

that cannot easily be predicted due to the intervention of random variables. It is a technique used to 

understand the impact of risk and uncertainty in prediction and forecasting models. 

A Monte Carlo simulation can be used to tackle a range of problems in virtually every field such 

as finance, engineering, supply chain, and science. It is also referred to as a multiple probability 

simulation.  

 
 

Figure  6:  Monte Carlo simulation for the product of two independent maxwell  

random variables for scale parameters 𝑏1 = 1, 𝑏2 = 2. 
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7  Conclusion 
  

This paper has derived the analytical expressions of the PDF, CDF, the moment of order 𝑟, the 

survival function, and the hazard function, for the distribution of 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 when 𝑋𝑖 are Maxwell 

random variables distributed independently of each other, we have illustrated our results for 𝑛 = 2 as 

a special case, then we have discussed an application of the distribution of product 𝑋 = ∏𝑛𝑖=1 𝑋𝑖 , finally, 

we have confirmed our result using Monte Carlo simulation.  

 

References  
 

[1]   S. Nadarajah, D. Choi, Arnold and StraussвЂ™s bivariate exponential distribution products and 

ratios,  New Zealand Journal of Mathematics, 35 (2006), 189-199.  

[2]   M. Shakil, B. M. G. Kibria, Exact distribution of the ratio of gamma and Rayleigh random variables,  

Pakistan Journal of Statistics and Operation Research, 2 (2006), 87-98.  

[3]   M. M. Ali, M. Pal, and J. Woo, On the ratio of inverted gamma variates,  Austrian Journal of Statistic, 

36 (2007), 153-159. 

[4]  L. Idrizi, On the product and ratio of Pareto and Kumaraswamy random variables, Mathematical 

Theory and Modeling, 4 ( 2014), 136-146. 

[5]   S. Park, On the distribution functions of ratios involving Gaussian random variables, ETRI Journal, 

32 (2010), 6.  

[6]   S. Nadarajah and S. Kotz, On the product and ratio of t and Bessel random variables, Bulletin of the 

Institute of Mathematics Academia Sinica, 2 (2007), 55-66. 

[7]   T. Pham-Gia, N. Turkkan, Operations on the generalized-fvariables and applications, Statistics, 36 

(2002), 195-209. 

[8]   G. Beylkin, L. MonzГіn, and I. Satkauskas, On computing distributions of products of non-negative 

independent random variables, Applied and Computational Harmonic Analysis, 46 (2019), 400-416. 

[9]   P. J. Korhonen, S. C. Narula, The probability distribution of the ratio of the absolute values of two 

normal variables, Journal of Statistical Computation and Simulation, 33 (1989), 173-182. 

[10]  G. Marsaglia, Ratios of normal variables and ratios of sums of uniform variables, Journal of the 

American Statistical Association, 60 (1965), 193-204. 

[11]  S. J. Press, The t-ratio distribution,  Journal of the American Statistical Association, 64 (1969), 242-252. 

[12]  A. P. Basu and R. H. Lochner, On the distribution of the ratio of two random variables having 

generalized life distributions, Technometrics, 13 (1971), 281-287. 

[13]  D. L. Hawkins and C.-P. Han, Bivariate distributions of some ratios of independent noncentral chi-

square random variables, Communications in Statistics - Theory and Methods, 15 (1986), 261-277. 

[14]  S. B. Provost, On the distribution of the ratio of powers of sums of gamma random variables, 

Pakistan Journal Statistics, 5 (1989), 157-174. 

[15]  T. Pham-Gia, Distributions of the ratios of independent beta variables and applications, 

Communications in StatisticsвЂ”Theory and Methods, 29 (2000), 2693-2715. 

[16]  S. Nadarajah and A. K. Gupta, On the ratio of logistic random variables, Computational Statistics and 

Data Analysis, 50 (2006), 1206-1219. 

[17]  S. Nadarajah and S. Kotz, On the ratio of frГ©chet random variables, Quality and Quantity, 40 (2006), 

861-868. 

[18]  S. Nadarajah, The linear combination, product and ratio of Laplace random variables, Statistics, 41 

(2007), 535-545. 

[19] K. Therrar and S. Khaled, The exact distribution of the ratio of two independent hypoexponential 

random variables, British Journal of Mathematics and Computer Science, 4 (2014), 2665-2675. 

 

287



Noura Obeid, Seifedine Kadry 
PRODUCT OF N INDEPENDENT MAXWELL RANDOM VARIABLES 

RT&A, No 2(62) 
Volume 16, June 2021 

 

[20]  L. Joshi and K. Modi, On the distribution of ratio of gamma and three parameter exponentiated 

exponential random variables, Indian Journal of Statistics and Application, 3 (2014), 772-783. 

[21]  K. Modi and L. Joshi, On the distribution of product and ratio of t and Rayleigh random variables, 

Journal of the Calcutta Mathematical Society, 8 (2012), 53-60. 

[22]  C. A. Coelho and J. T. Mexia, On the distribution of the product and ratio of independent 

generalized gamma-ratio, Sankhya: The Indian Journal of Statistics, 69 (2007), 221-255. 

[23]  A. Asgharzadeh, S. Nadarajah, and F. Sharafi, Weibull lindley distributions, Statistical Journal, 16 

(2018), 87-113. 

[24]  A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,  Integrals and Series, Gordon and Breach 

Science Publishers, Amsterdam, Netherlands, 2 (1986). 

[25]  F. Brian and K. Adem, Some results on the gamma function for negative integers, Applied 

Mathematics and Information Sciences, 6 (2012), 173-176. 

[26]  I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, Cambridge, 

MA, USA, 6 (2000). 

[27]  D. Sornette Multiplicative processes and power law, Physical Review E, 57 (1998), 4811-4813. 

[28]  N. Obeid, S. Kadry, On the product and quotient of pareto and rayleigh random variables, PJS 

Headquarters Lahore, (2019). 

 

 

288



 
Haneefa Kausar, Ahmad Yusuf Adhami, Ahmadur Rahman 
QUADRATIC FRACTIONAL BI-LEVEL FUZZY PROBABILISTIC 
PROGRAMMING PROBLEM 

RT&A, No 2 (62) 
Volume 16, March 2021  

 

 
 

Quadratic Fractional Bi-level Fuzzy Probabilistic 

Programming Problem When 𝒃𝒊 Follows Exponential 

Distribution 

 
1Haneefa Kausar, 2Ahmad Yusuf Adhami, 3*Ahmadur Rahman 

• 

Department of Statistics and Operations Research, 

Aligarh Muslim University, Aligarh, UP, India. 
Email: 1haneefakausar445@gmail.com, 

 2yusufstats@gmail.com, 

 3*ahmadur.st@gmail.com 
*Corresponding Author 

 

 

Abstract 

 
Some of the actual life decisions are made in decentralized manner under uncertainty. This paper 

formulates a quadratic fractional bi-level (QFBL) programming problem with probabilistic 

constraints in both first (leader) and second level (follower) having two parameter exponential 

random variables with known probability distributions and fuzziness is considered as triangular 

and trapezoidal fuzzy number. These fuzzy numbers of the membership functions related with the 

proportional probability density function has been used to introduce a defuzzification approach 

for finding the crisp values of fuzzy numbers. In the proposed model the problem is first converted 

into an equivalent deterministic quadratic fractional fuzzy bi level programming model by 

applying chance constrained programming technique. Secondly, in the suggested model, each 

objective function of the bi-level quadratic fractional programming problem has its own non-

linear membership function. The fuzzy goal programming (FGP) approach is used to find a 

compromise solution for the BLQFP problem. Finally, to demonstrate the applicability and 

performance of the proposed approach an illustrative numerical example is given. 

 

Keywords: Bi-level programming, Quadratic programming, Fractional 

programming, Two parameter exponential distribution, Fuzzy chance 

constrained programming, Fuzzy goal programming. 

 

I. Introduction 
 

In actual life decision-making situations, decision-makers are frequently confronted with different 

kinds of vagueness, the most important of which are randomness and fuzziness. There are two 

common approaches to dealing with such uncertainties: probability theoretical approach and 

fuzzy set theoretical approach. Chance constrained programming is a well-defined approach 

described by Charnes and Cooper [1] for dealing with problems involving probabilistic data 

(CCP). Gardening, capability planning, banking, forestry, army, manufacture control and 

arrangement, sports, broadcastings, transport, and eco-friendly management planning are just a 

few of the fields where it is commonly used. 

Quadratic programming (QP) is a technique of solving certain mathematical optimization 

problems involving quadratic function. Specially a quadratic programming minimized or 

maximized a multivariate quadratic function subject to linear constraint on the variables. 
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Quadratic programming is a type of nonlinear programming of the several. A wide range of 

applications of quadratic programming is portfolio selection, electrical energy growth, agriculture, 

and harvest selection. Probabilistic quadratic programming is applicable for financial and risk 

management, and various important related literatures are found in this direction, which are 

mentioned below. 

Mc Carl et al. [2] presented some of the approaches during which QP are often used. Interval 

parameters are used to represent the cost coefficients, constraint coefficients, and right-hand sides 

in an interval quadratic programming problem proposed by Liu and Wang [6]. A fuzzy quadratic 

programming problem was introduced in [7] where fuzzy data represents the cost coefficients, 

constraint coefficients, and right-hand side values. Kausar and Adhami [18] have given a fuzzy 

goal programming approach for solving chance constrained bi-Level multi-objective quadratic 

fractional programming problems. Ammar [9] proposed a multi-objective quadratic programming 

problem based on the fuzzy random coefficient matrix's goals and constraints where the decision 

vector interpreted as a fuzzy vector. The problem of fuzzy quadratic programming was introduced 

by Liu [10] in which convex fuzzy numbers represent the cost coefficients, constraint coefficients, 

and constraints parameters on the right side. He [11] also specified a stream water quality control 

solution process. Qin and Huang [12] suggested an inexact chance constrained quadratic 

programming model. Nasseri [13] outlined a fuzzy quadratic programming problem with 

trapezoidal and/or triangular fuzzy numbers for the cost coefficients, constraint coefficients, and 

right-hand parameter values. Guo and Huang [14] developed an incorrect fuzzy-stochastic 

quadratic programming approach to efficiently distribute waste to a municipal solid waste 

management scheme while accounting for the nonlinear objective function and various parameter 

uncertainties in the constraints. Bi-level multi-objective stochastic linear fractional programming 

with general form of distribution has been developed by Kausar and Adhami [17] 

In this paper, we are constructing a different approach for solving quadratic fractional bi level 

programming problems with probabilistic constraints having two parameter exponential 

distributed fuzzy random variables with known probability distributions. The probabilistic 

problem is changed into an equivalent deterministic model. Under the quadratic fractional 

programming outline, both uncertainty and fuzziness are considered. Poularikas [16] proposes a 

defuzzification technique for determining the crisp values of fuzzy numbers using the Mellin 

transformation. 

 

I. Probabilistic Fuzzy Quadratic Fractional Bi-Level Programming Problem 
 

In some circumstances, quadratic fractional programming with a quadratic fractional objective 

function and few linear constraints including fuzziness and randomness is called a probabilistic 

fuzzy quadratic fractional programming problem. When a number of the input parameters of QFP 

are described by stochastic and fuzzy parameters, the problem is treated as a probabilistic fuzzy 

quadratic fractional programming problem. A general probabilistic fuzzy quadratic fractional bi-

level programming problem is presented as follows 

Max
𝑋1

𝑓1(𝑥1, 𝑥2) =
𝑓11
𝑓12

=
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

                                                                                   (1.1) 

where for given 𝑋1, 𝑋2  

Max
𝑋2

𝑓2(𝑥1, 𝑥2) =
𝑓21
𝑓22

=
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

                                                                                   (1.2) 

X ∈ G = {𝑋 ∈ 𝑅𝑛|𝑃(∑ �̃�𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖) ≥ 1 − 𝜆𝑖 ,        𝑖 = 1,2, … . .𝑚𝑛
𝑗=1 }                                               (1.3)  

𝑥𝑗 ≥ 0,      𝑗 = 1,2, … , 𝑛                                                                                                                                  (1.4)   

where 0 < 𝜆𝑖 < 1 and �̃�𝑖 (i=1,2,…,m) represent two parameter exponential distribution fuzzy 

random variables; �̃�𝑖1, �̃�𝑖2, �̃�𝑖1, �̃�𝑖2 (i=1,2,…,m) and �̃�𝑖𝑗 are considered as fuzzy number and 𝜆𝑖 𝜖[0,1]. 
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The decision vector 𝑋1 = (𝑥11, 𝑥12, … , 𝑥1𝑛1)  is controlled by the leader and decision vector 𝑋2 =

(𝑥21, 𝑥22, … , 𝑥2𝑛2) is controlled by the follower; 𝑋1 ∪ 𝑋2 = 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅
𝑛 with 𝑛1 + 𝑛2 = 𝑛. 

 

II. Some Preliminaries 
 

In the model formulation the triangular and trapezoidal membership functions are discussed in 

this section. We can also introduce the Mellin transform to find the expected value of a random 

variable's function by using proportional probability density function related with membership 

functions of fuzzy numbers. 

Definition 2.1 (triangular fuzzy number): A triangular fuzzy number is one that is represented by 

the triplet  �̃� = (𝑎1, 𝑎2, 𝑎3)  and has a piecewise linear membership function 𝜇𝐴(𝑥) is given by 

 𝜇𝐴(𝑥) =

{
 
 

 
 

𝑥 − 𝑎1
𝑎2 − 𝑎1

,   𝑎1 ≤ 𝑥 ≤ 𝑎2 

𝑎3 − 𝑥

𝑎3 − 𝑎2
,    𝑎2 ≤ 𝑥 ≤ 𝑎3

    0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

                                                                                                   (2.1) 

Definition 2.2 (trapezoidal fuzzy number): A fuzzy number represented by the quadruplet �̃� =

(𝑎1, 𝑎2, 𝑎3, 𝑎4) and has a piecewise linear membership function  𝜇𝐴(𝑥) is given by 

 

                𝜇𝐴(𝑥) =

{
 
 

 
 

𝑥−𝑎1

𝑎2−𝑎1
,   𝑎1 ≤ 𝑥 ≤ 𝑎2

1,     𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑎4−𝑥

𝑎4−𝑎3
,    𝑎3 ≤ 𝑥 ≤ 𝑎4

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                              (2.2) 

 

I. Defuzzification with Probability Density Function and Membership Function 
 

Assume that 𝐹(ℝ) represent the sum of all fuzzy numbers. In(ℝ) the triangular and trapezoidal 

fuzzy numbers are (𝑎1, 𝑎2, 𝑎3) and (𝑎1, 𝑎2, 𝑎3, 𝑎4) respectively. Now the method associated with a 

probability density function for the membership function of �̃�  is defined as follows ([15], [4]). 

             Proportional probability distribution: describe a probability density function 𝑓1 = 𝑐𝜇𝐴(𝑥) 

associated with �̃�, where the constant c is obtained by using the property of probability density 

function, where ∫ 𝑓1(𝑥)𝑑𝑥 = 1
∞

−∞
 and  ∫ 𝑐𝜇𝐴(𝑥)𝑑𝑥 = 1.

∞

−∞
 

 

II. Mellin Transform 
 

The Mellin transform ([15], [4]) is used to find this expected value since any probability density 

function with finite support is associated with expected value. 

Definition 2.3: The Mellin transform 𝑀𝑋(𝑡) of a probability density function 𝑓(𝑥), where 𝑥 denote 

the positive, is given as 

𝑀𝑋(𝑡) = ∫ 𝑥𝑡−1𝑓(𝑥)
∞

0

𝑑𝑥                                                                                                                             (2.3) 

Now in terms of expected values we find the Mellin transform. Remember that the expected value 

of any function 𝑔(𝑋) of the random variable 𝑋 whose probability density function is 𝑓(𝑥), is given 

as 

𝔼[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥                                                                                                                        (2.4)
∞

−∞

 

Thus, it follows that 𝑀𝑋(𝑡) = 𝔼[𝑋
𝑡−1] = ∫ 𝑥𝑡−1𝑓(𝑥)

∞

0
𝑑𝑥. 

Hence, 𝔼[𝑋𝑡] = 𝑀𝑋(𝑡 + 1). Thus the expected value of random variable X is 𝔼[𝑋] = 𝑀𝑋(2). 

For example, if the triangular and trapezoidal fuzzy numbers are �̃�1 = (𝑎1, 𝑎2, 𝑎3) and �̃�2 =

(𝑎1, 𝑎2, 𝑎3, 𝑎4) respectively,  then their crisp values are determined by finding expected values 
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using the probability density function that corresponding to the membership functions of the 

given fuzzy number. 

Thus, the probability density function corresponding to triangular fuzzy number �̃�1 = (𝑎1, 𝑎2, 𝑎3) 

is given as 

𝑓�̃�1(𝑥) = 𝑐1𝜇�̃�1(𝑥)                                                                                                                                       (2.5) 
where 𝜇�̃�1(𝑥) is defined as 

𝜇𝐴1(𝑥) =

{
 
 

 
 

𝑥 − 𝑎1
𝑎2 − 𝑎1

,   𝑎1 ≤ 𝑥 ≤ 𝑎2 

𝑎3 − 𝑥

𝑎3 − 𝑎2
,    𝑎2 ≤ 𝑥 ≤ 𝑎3

   0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

                                                                                                      (2.6) 

Now 𝑐1 is calculated as  

∫ 𝑓𝐴1(𝑥)𝑑𝑥 = 1                                                                                                                                           (2.7)
∞

−∞

 

that is  

∫ 𝑐1𝜇𝐴1(𝑥)𝑑𝑥 = 1                                                                                                                                       (2.8)
∞

−∞

 

that is 

𝑐1∫
𝑥 − 𝑎1
𝑎2 − 𝑎1

𝑎2

𝑎1

𝑑𝑥 + 𝑐1∫
𝑎3 − 𝑥

𝑎3 − 𝑎2

𝑎3

𝑎2

𝑑𝑥 = 1                                                                                            (2.9) 

On integration, we get 

𝑐1 =
2

𝑎3 − 𝑎1
                                                                                                                                                 (2.10) 

The proportional probability function corresponding to triangular fuzzy number 𝐴 ̃is given by 

 𝑓𝑋�̃�1
(𝑥) =

{
 
 

 
 

2(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)(𝑎3 − 𝑎1)
,   𝑎1 ≤ 𝑥 ≤ 𝑎2 

2(𝑎3 − 𝑥)

(𝑎3 − 𝑎2)(𝑎3 − 𝑎1)
,    𝑎2 ≤ 𝑥 ≤ 𝑎3

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

                                                                               (2.11) 

Graphically it is presented in Figure 1 

By using the Mellin transform, we obtain  

𝑀𝑋(𝑡) = ∫ 𝑥𝑡−1𝑓𝑋�̃�1
(𝑥)

∞

0
𝑑𝑥 =  ∫ 𝑥𝑡−1

𝑎2
𝑎1

2(𝑥−𝑎1)

(𝑎2−𝑎1)(𝑎3−𝑎1)
𝑑𝑥 + ∫ 𝑥𝑡−1

𝑎3
𝑎2

2(𝑥−𝑎1)

(𝑎2−𝑎1)(𝑎3−𝑎1)
𝑑𝑥           (2.12)  

On integration, we obtain  

𝑀𝑋�̃�1
(𝑡) =

2

(𝑎3 − 𝑎1)𝑡(𝑡 + 1)
[
𝑎3(𝑎3

𝑡 − 𝑎2
𝑡)

(𝑎3 − 𝑎2)
−
𝑎1(𝑎2

𝑡 − 𝑎1
𝑡)

(𝑎2 − 𝑎1)
]                                                           (2.13) 

 

 

 

 

 

 

 

 

                                  Figure 5.1:  Proportional probability density function of triangular fuzzy number 
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Thus the random variable 𝑋𝐴1  has mean (𝜇𝑋�̃�1

) and variance (𝜎𝑋�̃�1
2 ) can be obtained as 

𝜇𝑋�̃�1
= 𝔼[𝑋𝐴1] = 𝑀𝑋�̃�1

(2) =
𝑎1 + 𝑎2 + 𝑎3

3
                                                                                         (2.14) 

𝜎𝑋�̃�1
2 = 𝑀𝑋�̃�1

(3) − [𝑀𝑋�̃�1
]
2

=
𝑎1
2 + 𝑎2

2 + 𝑎3
2 − 𝑎1𝑎2 − 𝑎2𝑎3 − 𝑎3𝑎1

18
                                            (2.15) 

Further, the probability density function corresponding to trapezoidal fuzzy number �̃�2 =

(𝑎1, 𝑎2, 𝑎3, 𝑎4) is given as 𝑓𝐴2(𝑥) = 𝑐2𝜇𝐴2(𝑥), where 𝜇𝐴2(𝑥) is defined as 

𝜇𝐴2(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

,   𝑎1 ≤ 𝑥 ≤ 𝑎2

1,     𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑎4 − 𝑥

𝑎4 − 𝑎3
,    𝑎3 ≤ 𝑥 ≤ 𝑎4

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                        (2.16) 

Now 𝑐2 is calculated as  

∫ 𝑓𝐴2(𝑥)𝑑𝑥 = 1                                                                                                                                         (2.17)
∞

−∞

 

That is, 

∫ 𝑐2𝜇𝐴1(𝑥)𝑑𝑥 = 1                                                                                                                                    (2.18)
∞

−∞

 

That is, 

𝑐2∫
𝑥 − 𝑎1
𝑎2 − 𝑎1

𝑎2

𝑎1

𝑑𝑥 + 𝑐2∫ 𝑑𝑥 + 𝑐2∫
𝑎4 − 𝑥

𝑎4 − 𝑎3

𝑎4

𝑎3

𝑎3

𝑎2

𝑑𝑥 = 1                                                                  (2.19) 

On integration, we get 

 𝑐2 =
2

𝑎4+𝑎3−𝑎1−𝑎2
                                                                                                                                         (2.20) 

The proportional probability density function corresponding to triangular fuzzy number �̃�1 is 

given by 

𝑓𝑋�̃�2
(𝑥) =

{
 
 
 

 
 
 

2(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)
,       𝑎1 ≤ 𝑥 ≤ 𝑎2,

2

(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)
,                          𝑎2 ≤ 𝑥 ≤ 𝑎3

2(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          𝑎3 ≤ 𝑥 ≤ 𝑎4

                                                        (2.21) 

Graphically it is shown in figure 5.2 

Using the Mellin transform, we get 

 

 

 

 

  

     
    

        

         
0 

0.3 

1 

Figure 5.2:  Proportional probability density function of trapezoidal fuzzy number 
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𝑀𝐴2
(𝑡) = ∫ 𝑥𝑡−1𝑓𝑋�̃�2

(𝑥)
∞

0

𝑑𝑥 = ∫ 𝑥𝑡−1
𝑎2

𝑎1

2(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)
𝑑𝑥                                     

+∫ 𝑥𝑡−1
𝑎3

𝑎2

2

(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)
𝑑𝑥 + ∫

2(𝑎4 − 𝑥)

(𝑎4 − 𝑎3)(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)

𝑎4

𝑎3

𝑑𝑥                             (2.22) 

On integration, we obtain 

𝑀𝐴2
(𝑡) =

2

(𝑎4 + 𝑎3 − 𝑎1 − 𝑎2)𝑡(𝑡 + 1)
[
(𝑎4

𝑡+1 − 𝑎3
𝑡+1)

(𝑎4 − 𝑎3)
−
𝑎2
𝑡+1 − 𝑎1

𝑡+1

(𝑎2 − 𝑎1)
]                                      (2.23) 

Thus, the random variable 𝑋𝐴2has mean (𝜇𝑋�̃�2
) and variance (𝜎𝑋�̃�2

2 )  can be obtained as 

𝜇𝑋�̃�2
= 𝔼[𝑋𝐴2] = 𝑀𝑋�̃�2

(2) =
1

3
[(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4) +

(𝑎1𝑎2 − 𝑎3𝑎4)

(𝑎4 + 𝑎3 − 𝑎2 − 𝑎1)
]                         (2.24) 

𝜎𝑋�̃�2
2 = 𝑀𝑋�̃�1

(3) − [𝑀𝑋�̃�2
(2)]

2

 

=
1

6
[(𝑎1

2 + 𝑎2
2 + 𝑎3

2 + 𝑎4
2) +

(𝑎1 + 𝑎2)(𝑎3
2 + 𝑎4

2) − (𝑎3 + 𝑎4)(𝑎1
2 + 𝑎2

2)

(𝑎4 + 𝑎3 − 𝑎2 − 𝑎1)
] + (𝜇𝑋�̃�2

)2                (2.25) 

 

III. Probabilistic Fuzzy Quadratic Programming Problem and Its Crisp Model 
 

Let �̃�𝑗 = (𝑐𝑗
1, 𝑐𝑗

2, 𝑐𝑗
3), 𝑗 = 1,2, … , 𝑛, �̃�𝑖𝑗 = (𝑎𝑖𝑗

1 , 𝑎𝑖𝑗
2 , 𝑎𝑖𝑗

3 ), 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 and �̃�𝑖𝑗 = (𝑞𝑖𝑗
1 , 𝑞𝑖𝑗

2 , 𝑞𝑖𝑗
3 ), 

𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑛 denote the triangular fuzzy numbers. By using the method of 

defuzzification the crisp values of these fuzzy numbers can be obtained with probability density 

function of given membership function given as follows 

�̂�𝑗 =
𝑐𝑗
1 + 𝑐𝑗

2 + 𝑐𝑗
3

3
,    𝑗 = 1,2, … , 𝑛,                                                                �̂�𝑖𝑗 =

𝑎𝑖𝑗
1 + 𝑎𝑖𝑗

2 + 𝑎𝑖𝑗
3

3
,   𝑖

= 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛,                                                                            (2.26) 

�̂�𝑖𝑗 =
𝑞𝑖𝑗
1 + 𝑞𝑖𝑗

2 + 𝑞𝑖𝑗
3

3
,   𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛,                              

where the crisp value of the given fuzzy number �̃�𝑗 is represented by �̂�𝑗  and so on. 

Similarly if all the coefficients have trapezoidal fuzzy numbers such as, �̃�𝑗 = 𝑐𝑗
1 + 𝑐𝑗

2 + 𝑐𝑗
3 + 𝑐𝑗

4, 𝑗 =

1,2, … , 𝑛, �̃�𝑖𝑗 = (𝑎𝑖𝑗
1 + 𝑎𝑖𝑗

2 + 𝑎𝑖𝑗
3 + 𝑎𝑖𝑗

4 ), 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 and �̃�𝑖𝑗 = (𝑞𝑖𝑗
1 , 𝑞𝑖𝑗

2 , 𝑞𝑖𝑗
3 , 𝑞𝑖𝑗

4 ), 𝑖 =

1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑛, then the crisp values are given as 

�̂�𝑗 =
1

3
[(𝑐𝑗

1 + 𝑐𝑗
2 + 𝑐𝑗

3 + 𝑐𝑗
4) +

(𝑐𝑗
1𝑐𝑗

2 − 𝑐𝑗
3𝑐𝑗

4)

(𝑐𝑗
3 + 𝑐𝑗

4 − 𝑐𝑗
1 − 𝑐𝑗

2)
] ,   𝑗 = 1,2, … , 𝑛                                                 

�̂�𝑖𝑗 =
1

3
[(𝑎𝑖𝑗

1 + 𝑎𝑖𝑗
2 + 𝑎𝑖𝑗

3 + 𝑎𝑖𝑗
4 ) +

(𝑎𝑖𝑗
1 𝑎𝑖𝑗

2 − 𝑎𝑖𝑗
3 𝑎𝑖𝑗

4 )

(𝑎𝑖𝑗
3 + 𝑎𝑖𝑗

4 − 𝑎𝑖𝑗
1 − 𝑎𝑖𝑗

2 )
] ,   𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛            

�̂�𝑖𝑗 =
1

3
[(𝑞𝑖𝑗

1 + 𝑞𝑖𝑗
2 + 𝑞𝑖𝑗

3 + 𝑞𝑖𝑗
4 ) +

(𝑞𝑖𝑗
1 𝑞𝑖𝑗

2 − 𝑞𝑖𝑗
3 𝑞𝑖𝑗

4 )

(𝑞𝑖𝑗
3 + 𝑞𝑖𝑗

4 − 𝑞𝑖𝑗
1 − 𝑞𝑖𝑗

2 )
] ,   𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑛          (2.27) 

Thus the probabilistic quadratic fractional bi-level programming can be stated as follows 

Max
𝑋1

𝑓1(𝑥1, 𝑥2) =
𝑓11
𝑓12

=
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

                                                                                 (2.28) 

where for given 𝑋1, 𝑋2  

Max
𝑋2

𝑓2(𝑥1, 𝑥2) =
𝑓21
𝑓22

=
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

                                                                                 (2.29) 

X ∈ G = {𝑋 ∈ 𝑅𝑛|𝑃(∑ �̃�𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖) ≥ 1 − 𝜆𝑖 ,        𝑖 = 1,2, … . .𝑚𝑛
𝑗=1 }                                             (2.30)  

𝑥𝑗 ≥ 0,      𝑗 = 1,2, … , 𝑛                                                                                                                               (2.31) 

where 0 < 𝜆𝑖 < 1, 𝑖 = 1,2, … ,𝑚 
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IV. Deterministic Model of the Probabilistic Quadratic Fractional Programming 

Problem 
 

A technique for converting the quadratic fractional bi-level fuzzy probabilistic programming into 

its equivalent quadratic fractional bi-level fuzzy programming is discussed. We assume that 𝑏𝑖(𝑖 =

1,2, … ,𝑚) in the model (2.28)-(2.31) are independent random variables following two-parameter 

exponential distribution [3] with parameters 𝜃𝑖 , 𝜎𝑖 where mean and variance of random variable 𝑏𝑖 

are given by: 
𝐸(𝑏𝑖) = 𝜃𝑖 + 𝜎𝑖      𝑖 = 1,2, … ,𝑚                                                                                                               (2.32) 
𝑉(𝑏𝑖) = 𝜎𝑖

2     𝑖 = 1,2, … ,𝑚                                                                                                                       (2.33) 

The probability density function of the 𝑖  𝑡ℎ two-parameter exponential variable 𝑏𝑖 is given by 

𝑓(𝑏𝑖) =
1

𝜎𝑖
𝑒𝑥𝑝 (

−(𝑏𝑖 − 𝜃𝑖)

𝜎𝑖
) , 𝑖 = 1,2, … ,𝑚                                                                                 (2.34) 

where 𝑏𝑖 ≥ 𝜃𝑖 , 𝜎𝑖 > 0 

To solve the problem (2.28)-(2.31), the deterministic form of the problem is established. Then from 

the chance-constraint (2.30), we have 

Pr (∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

) ≥ (1 − 𝛾𝑖) 

Pr (𝑏𝑖 ≥∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) ≥ (1 − 𝛾𝑖) 

∫ 𝑓(𝑏𝑖)𝑑𝑏𝑖 ≥
∞

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1

(1 − 𝛾𝑖) 

∫
1

𝜎𝑖
𝑒𝑥𝑝 (

−(𝑏𝑖 − 𝜃𝑖)

𝜎𝑖
)

∞

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1

𝑑𝑏𝑖 ≥ (1 − 𝛾𝑖)                                                                                      (2.35) 

After integrating the above equation, following result is obtained 

∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝜃𝑖 − 𝜎𝑖 ln(1 − 𝛾𝑖)                                                                                                                   (2.36)

𝑛

𝑗=1

 

Hence the quadratic fractional bi-level fuzzy probabilistic programming into its equivalent 

deterministic quadratic fractional bi-level fuzzy programming by using the derived methodology 

is given as follows 

Max
𝑋1

𝑓1(𝑥1, 𝑥2) =
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

 

 where for given 𝑋1, 𝑋2  

Max
𝑋2

𝑓2(𝑥1, 𝑥2) =
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

 

Subject to 

∑�̃�𝑖𝑗𝑥𝑗 ≤ 𝜃𝑖 − 𝜎𝑖ln (1 − 𝛾𝑖)

𝑛

𝑗=1

                                                                                                                   (2.37) 

0 < 𝛾𝑖 < 1,      𝑖 = 1,2, … . ,𝑚 
𝑥𝑗 > 0,         𝑗 = 1,2,… . ,𝑚 
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III. Transformation of bi-level quadratic fractional programming problem to 

nonlinear programming problem 
 

The objective function of each decision maker is transformed from fractional form to nonlinear 

form with the procedure described below in order to find the best solution for each level without 

considering other levels. Consider the most basic model of the quadratic fractional programming 

problem, which is defined as follows. 

 

Max
𝑋𝑖

𝑓𝑖 =
𝑓𝑖1
𝑓𝑖2

=
�̃�𝑖1𝑥𝑗 +

1
2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1

�̃�𝑖2𝑥𝑗 +
1
2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2

 

Subject to 

∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝜃𝑖 − 𝜎𝑖ln (1 − 𝛾𝑖)

𝑛

𝑗=1

 

0 < 𝛾𝑖 < 1,      𝑖 = 1,2, … . ,𝑚 
𝑥𝑗 > 0,         𝑗 = 1,2, … . , 𝑛 

To convert the above type of quadratic fractional programming problem into the nonlinear 

programming problem, take   
1

𝑓𝑖2
=

`1

𝑐�̃�2𝑥𝑗+
1

2
𝑥𝑇�̃�𝑖2𝑥𝑗 +𝛽𝑖2

= 𝑦𝑖 ⇒ 𝑓𝑖2𝑦𝑖 = 1 

Thus, problem becomes as the following: 

Max
𝑋𝑖

𝑓𝑖 = 𝑓𝑖1𝑦𝑖 = (�̃�𝑖1𝑥𝑗 +
1

2
𝑥𝑇�̃�𝑖1𝑥𝑗  + 𝛼𝑖1) 𝑦𝑖  

Subject to 

(�̃�𝑖2𝑥𝑗 +
1

2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2) 𝑦𝑖 = 1 

∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝜃𝑖 − 𝜎𝑖ln (1 − 𝛾𝑖)

𝑛

𝑗=1

 

0 < 𝛾𝑖 < 1,      𝑖 = 1,2, … . ,𝑚 
𝑥𝑗 > 0,         𝑗 = 1,2, … . , 𝑛 

 

IV. Formulation of fuzzy goal programming approach for bi-level quadratic 

fractional programming problem 
 

The decision makers of a bi-level quadratic fractional programming problem (BLQFPP) are 

fundamentally cooperative and make sequential decisions. By optimizing each decision maker 

individually for the given set of constraints for each objective functions 𝑓𝑖,   𝑖 = 1,2, …𝑚 of the 

problem the fuzzy goal are taken as the maximum and minimum value of each decision maker. . 

Let 𝑓𝑖
𝑈𝑖 , 𝑓𝑖

𝐿𝑖 is the maximum and minimum value of each objective function which are obtained by 

optimizing them as individually i.e. 𝑓𝑖
𝑈𝑖 = max

𝑥∈𝑋
𝑓𝑖 with the solution set of decision variables as 

(𝑥1
𝑈𝑖 , 𝑥2

𝑈𝑖 , … , 𝑥𝑛
𝑈𝑖 ) 

𝑓𝑖
𝐿𝑖 = min

𝑥∈𝑋
𝑓𝑖 with the solution set of decision variables as (𝑥1

𝐿𝑖 , 𝑥2
𝐿𝑖 , … , 𝑥𝑛

𝐿𝑖  )  

For 𝑖 = 1,2, … ,𝑚  now, for the given model, our objective was to maximize the objective function of 

each decision maker such that maximum value of objective function for first decision maker is 𝑓1
𝑈1  

at the point  (𝑥1
𝑈1 , 𝑥2

𝑈1 , … , 𝑥𝑛
𝑈1  ), similarly maximum value of objective function for second decision 

maker is 𝑓2
𝑈2  at the point (𝑥1

𝑈2 , 𝑥2
𝑈2 , … , 𝑥𝑛

𝑈2  ). It can be assumed reasonably that the value of 𝑓𝑖 ≥ 𝑓𝑖
𝑈𝑖 

are acceptable and all values less than 𝑓𝑖
𝐿𝑖 = min

𝑥∈𝑋
𝑓𝑖 are absolutely unacceptable. Then the 

membership function 𝜇𝑖𝑓𝑖 for the 𝑖𝑡ℎ fuzzy goal can be formulated as 
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𝜇𝑖𝑓𝑖 =

{
 
 

 
 

    

1,                                                              𝑖𝑓  𝑓𝑖 ≥ 𝑓𝑖
𝑈𝑖

𝑓𝑖 − 𝑓𝑖
𝐿𝑖

𝑓𝑖
𝑈𝑖 − 𝑓𝑖

𝐿𝑖
                          𝑖𝑓 𝑓𝑖

𝐿𝑖 ≤ 𝑓𝑖 ≤ 𝑓𝑖
𝑈𝑖   𝑖 = 1,2, …𝑚

0                                                             𝑖𝑓   𝑓𝑖 ≤ 𝑓𝑖
𝐿𝑖 

  

Each decision maker seeks to maximize his or her own objective function when making a decision. 

When each decision maker's optimum solution is computed separately, it is considered as the best 

solution, and the associated value of the objective function is regarded as the aspiration level of the 

corresponding fuzzy goal. In fuzzy programming approach, the highest degree of membership is 

one Mohamed [5]. The flexible membership goal having the aspired level unity can be represented 

as follows: 
𝜇𝑓𝑖(𝑓𝑖) + 𝑑𝑖

− − 𝑑𝑖
+ = 1,     𝑖 = 1,2, … . ,𝑚 

Or equivalently as 

𝑓𝑖−𝑓𝑖
𝐿𝑖

𝑓
𝑖

𝑈𝑖−𝑓
𝑖

𝐿𝑖
+ 𝑑𝑖

− − 𝑑𝑖
+ = 1,      𝑖 = 1,2, … . ,𝑚,  

where 𝑑𝑖
−, 𝑑𝑖

+ ≥ 0, with 𝑑𝑖
− × 𝑑𝑖

+ = 0, represent the under and over deviations, respectively, from 

the aspired levels Pramanik and Roy [8] 

In the formulation of fuzzy goal programming, the under and over deviational variables in the 

achievement function for minimizing them depends up on the type of objective functions to be 

optimized. To reach the aspiration level in the proposed fuzzy goal programming approach, the 

sum of under deviational variables must be minimized. The proposed fuzzy goal programming 

model for BLQFP problem follows as: 

𝑀𝑖𝑛𝑍 =∑𝑤𝑖𝑑𝑖
−

𝑚

𝑖=1

 

𝑓𝑖 − 𝑓𝑖
𝐿𝑖

𝑓𝑖
𝑈𝑖 − 𝑓𝑖

𝐿𝑖
+ 𝑑𝑖

− − 𝑑𝒊
+ = 1 

(�̃�𝑖2𝑥𝑗 +
1

2
𝑥𝑇�̃�𝑖2𝑥𝑗  + 𝛽𝑖2) 𝑦𝑖 = 1 

∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝜃𝑖 − 𝜎𝑖ln (1 − 𝛾𝑖)

𝑛

𝑗=1

 

0 < 𝛾𝑖 < 1,      𝑖 = 1,2, … . ,𝑚 
𝑥𝑗 = 𝑥𝑗

∗        𝑗 = 1,2, … , 𝑛 

 

and   𝑑𝑖
−, 𝑑𝑖

+ = 0, 𝑑𝑖
−, 𝑑𝑖

+ ≥ 0, ∀𝑖 = 1,2, … , 𝑘 

where Z is the fuzzy goal’s  achievement function which is made up of the weighted under-

deviational variables. The numerical weights 𝑤𝑖  represent the relative importance of achieving the 

aspired levels of the respective fuzzy goals. The values of 𝑤𝑖  are determined as Mohamed [5]: 

 

𝑤𝑖 =
1

𝑓𝑖
𝑈𝑖 − 𝑓𝑖

𝐿𝑖
       𝑖 = 1,2, … ,𝑚 

 

V. Numerical Examples 
 

To demonstrate the proposed FGP approach, consider the following BLQFP problem with 

probabilistic nature in the constraints.  

[FLDM] 

𝑀𝑎𝑥𝐹1 =
6̃𝑥1 + 3̃𝑥2 +−1̃𝑥1

2 + −1̃𝑥2
2 + 6

1̃𝑥1
2 + 1̃𝑥2

2 + 4
         

where 𝑥2 solves 

[SLDM] 
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𝑀𝑎𝑥𝐹2 =
1̃𝑥1 + 5̃𝑥2 +−1̃𝑥2

2 + 8

1̃𝑥1
2 + 1̃𝑥2 + 6

          

Subject to 

 

𝑃(1̃𝑥1 + 1̃𝑥2 ≤ 𝑏1) ≥ 0.99 
𝑃(3̃𝑥1 + 2̃𝑥2 ≤ 𝑏2) ≥ 0.95 

𝑃(2̃𝑥1 + 1̃𝑥2 ≥ 𝑏3) ≥ 0.90 
𝑥1, 𝑥2 ≥ 0                                                                                                                                                          (5.1) 

Here, we assume that 𝑏𝑖 (𝑖 = 1,2,3) are random variables following two parameter exponential 

distributions with following parameters: 
𝐸(𝑏1) = 161, 𝐸(𝑏2) = 144, 𝐸(𝑏3) = 106 
𝑉𝑎𝑟(𝑏1) = 25, 𝑉𝑎𝑟(𝑏2) = 36, 𝑉𝑎𝑟(𝑏3) = 64 

Using (2.32) and (2.33), the parameters are calculated as follows: 
𝜃1 = 156, 𝜎1 = 5, 𝜃2 = 138, 𝜎2 = 6, 𝜃3 = 98  , 𝜎3 = 8 

The coefficients of the objectives are taken as triangular fuzzy number with the values 

−1̃ = (−1.5, −1,−0.5), 6̃ = (4,6,9), −1̃ = (−1.1, −1,−0.15), 5̃ = (4.5,5,5.8), 1̃ = (0.95,1,1.05), 3̃ =
(2,3,5), −1̃  = (−1.04, −1,0.03), −2̃(−1.5, −2,−2.5), −2̃ = (−1.8,−2,−2.2), 5̃ = (4.2,5,5.8), 1̃ =

(0.8,1,1.2), 3̃ = (2,3,4)   

The coefficients of the probabilistic constraints are taken as trapezoidal fuzzy number with the 

values 

1̃ = (0.2,0.8,1,1.2), 1̃ = (0.4,1,1.6,2), 3̃ = (1,2,3,4), 2̃ = (0.5,1.5,2.5,3), 2̃ = (1,1.8,2.2,3), 1̃
= (0.5,1,1.5,2). 

On the basis of the method of defuzzification with probability density function and CCP technique 

the above model (5.1) can be expressed as 

 

[FLDM] 

𝑀𝑎𝑥𝐹1 =
6.33𝑥1 + 3.33𝑥2 − 𝑥1

2 − 0.75𝑥2
2 + 8

0.8𝑥1
2 + 0.93𝑥2

2 + 4
         

where 𝑥2 solves 

 

[SLDM] 

𝑀𝑎𝑥𝐹2 =
𝑥1
2 + 5.1𝑥2 − 0.61𝑥1 + 10

1.06𝑥1
2 + 1.2𝑥2 + 6

              

Subject to 
0.78𝑥1 + 1.24𝑥2 ≤ 156.05 
2.67𝑥1 + 1.86𝑥2 ≤ 138.308            
2𝑥1 + 1.25𝑥2 ≤ 98.41   
𝑥1, 𝑥2 ≥ 0   

The bi-level multi-objective quadratic fractional programming problem is transformed into the bi-

level quadratic programming model as follows. 

 

[FLDM] 

 

𝑀𝑎𝑥𝐹1 = (6.33𝑥1 + 3.33𝑥2 − 𝑥1
2 − 0.75𝑥2

2 + 8)𝑦1 

where 𝑥2 solves 

 

[SLDM] 

𝑀𝑎𝑥𝐹2 = (𝑥1
2 + 5.1𝑥2 − 0.61𝑥1 + 10)𝑦2 

 

Subject to 

(0.8𝑥1
2 + 0.93𝑥2

2 + 4)𝑦1 = 1 
(1.06𝑥1

2 + 1.2𝑥2 + 6)𝑦2 = 1 
0.78𝑥1 + 1.24𝑥2 ≤ 156.05   
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2.67𝑥1 + 1.86𝑥2 ≤ 138.3082𝑥1 + 1.25𝑥2 ≤ 98.41 
𝑥1, 𝑥2 ≥ 0 

 We first obtain the value of  𝐹1
𝑚𝑎𝑥 = 2.945 , 𝐹2

𝑚𝑎𝑥 = 4.088, 𝐹1
𝑚𝑖𝑛 = 2, 𝐹2

𝑚𝑖𝑛 = 0.924 

 and  𝑓1
𝑈 = 2.945, 𝑓2

𝑈 = 4.088, 𝑓1
𝐿 = 2, 𝑓2

𝐿 = 0.924 

To solve FGP models to get 𝑥1 = 𝑥1
∗. Thus the first level FGP model follows as: 

 
𝑀𝑖𝑛𝑍 = 1.058𝑑1

− 

Subject to  
(6.33𝑥1 + 3.33𝑥2 − 𝑥1

2 − 0.75𝑥2
2 + 8)𝑦1 + 0.9448𝑑1

− − 0.9448𝑑1
+ = 2.945 

(0.8𝑥1
2 + 0.93𝑥2

2 + 4)𝑦1 = 1 
(1.06𝑥1

2 + 1.2𝑥2 + 6)𝑦2 = 1 
0.78𝑥1 + 1.24𝑥2 ≤ 156.05 
2.67𝑥1 + 1.86𝑥2 ≤ 138.3082𝑥1 + 1.25𝑥2 ≤ 98.41  
𝑥1, 𝑥2 ≥ 0 
𝑑1
+, 𝑑1

− ≥ 0 

Using Lingo software, the compromise solution of first level decision maker problem is obtained 

as; (𝑥1, 𝑥2) = (0.954, 0.478). Then assuming that the FLDM set 𝑥1
∗ = 0.954 

𝑀𝑖𝑛𝑍 = 1.058𝑑1
− + 0.316𝑑2

− 
(6.33𝑥1 + 3.33𝑥2 − 𝑥1

2 − 0.75𝑥2
2 + 8)𝑦1 + 0.945𝑑1

− − 0.945𝑑1
+ = 2.945 

(𝑥1
2 + 5.1𝑥2 − 0.61𝑥1 + 10)𝑦2 + 3.164𝑑2

− − 3.164𝑑2
+ = 4.0877 

(0.8𝑥1
2 + 0.93𝑥2

2 + 4)𝑦1 = 1 

(1.06𝑥1
2 + 1.2𝑥2 + 6)𝑦2 = 1 

0.78𝑥1 + 1.24𝑥2 ≤ 156.05 
2.67𝑥1 + 1.86𝑥2 ≤ 138.3082𝑥1 + 1.25𝑥2 ≤ 98.41 
𝑥1
∗ = 0.943 
𝑑1
+, 𝑑1

−, 𝑑2
+, 𝑑2

− ≥ 0 

Using Lingo software, the compromise solution of the BLQFP problem is obtained as (𝑥1, 𝑥2) = 

(0.954, 0.798) with the corresponding objective function. 

 

VI. Discussion 
 

In this paper, the technique for solving a Quadratic Fractional Bi-level Fuzzy Probabilistic 

Programming (QFBLFP) programming is outlined by considering the fact that the random variable 

follows two parameter exponential distributions and using a combination of probabilistic and 

fuzzy concepts. Firstly the probabilistic nature of the problem is transformed into an equivalent 

deterministic problem and then a fuzzy goal programming technique is used to solve the bi-level 

deterministic model. 
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