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Abstract 

In this paper, we construct an algorithm for converting an acyclic digraph that defines the 
structure of a complex system into a class of cyclically equivalent vertices by adding 
several additional edges to the digraph. This addition of the digraph makes it 
possible to introduce negative feedbacks and, consequently, to stabilize the 
functioning of the complex system under consideration and so to increase its 
reliability.To do this, the original digraph is transformed into a bipartite undirected 
graph, in which only the input and output vertices and the edges between them remain. 
In the constructed bipartite undirected graph, we search for the minimal edge cover and 
restore the orientation of the edges in it. Next, we construct an algorithm for adding new 
edges, based on the search for Hamiltonian (or Eulerian) paths and turning the minimum 
edge cover into a class of cyclically equivalent vertices. The minimal number of edges to 
be added is not larger than the number of edges in the minimum edge cover. 

Keywords: cluster, maximal matching, increasing alternating path, minimal edge cover, 
bipartite graph, star, Hamiltonian path, Eulerian path. 

I. Problem statement and solution idea

Suppose that a complex system, such as a protein network, is represented by an acyclic digraph 
without isolated vertices. In particular, using the algorithm built in [1] for identifying cyclic 
equivalence classes (clusters) in a digraph, the original digraph is transformed into an acyclic 
digraph whose vertices are clusters.  

Let's call the vertices of the digraph  from which only the edges come out, input and denote 
the set of input vertices Let's call the vertices that only the edges come in, output and denote the 
set of output vertices  As the digraph  has not isolated vertices so from any input vertex there 
is a path to some output vertex and to any output vertex there is a path from some input vertex. 

Our task is to add new directed edges to the digraph  so that there is a path from any vertex 
of the resulting digraph to any other vertex. This addition of the digraph makes it possible to 
introduce negative feedbacks and, consequently, to stabilize the functioning of the complex system 
under consideration and so to increase its reliability. In a sense, such a problem is the inverse of the 
digraph clustering problem considered in [1]. 

In this paper, this is achieved in two stages. At the first stage, we construct a bipartite digraph 
with vertex fractions  and edges  that are entered if there is a path from 
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vertex  to vertex in  the digraph . We remove the orientation of the edges 
 from the bipartite graph and find the minimum edge cover [2], [3]. Its 

connectivity components are star graphs (connected graphs where all edges originate from a single 
vertex). In the minimal edge cover, we restore the orientation of the edges and denote the resulting 
bipartite digraph . 

At the second stage, a minimal set of edges is introduced into the digraph , which turns all 
the vertices into a cluster. To do this, we first add a minimal set of edges in the constructed star 
graphs that generate a Hamiltonian or Eulerian path with a starting and ending vertices. Then edges 
are added that connect these paths in a Hamiltonian or Eulerian cycle. All the edges entered in the 
digraph  are added to the original digraph  turning it into a cluster. 

II. Finding feedbacks in a digraph

Consider a bipartite digraph  represented by a collection of unrelated stars. Let the star  (Figure 
1), have a vertex  as its root, leaves  and edges  Let's add a 
minimal set of  edges  to this star (coming out of the vertices 

), building a Hamiltonian path in it (a simple path that passes through all the 
vertices once):  

 
Let's call the vertex  the starting point and the vertex  the ending point in this path. 

This star can also be supplemented with a minimal set of  edges 
 (coming out of the vertexes ), building an Euler path in it (a path 

that passes through all the edges once): 
 

Let us call the vertex  the starting point, and the vertex   the ending point in this path. 

Figure 1. The Hamiltonian (left) and Eulerian (right) paths for the star  

Let the star  (Fig. 2),  have a vertex  leaves  and edges  Let`s 
add this star by minimal set of  edges  (included in the vertices 

), building a Hamiltonian path in it: 
 

Let's call the vertex as the starting point  and the vertex as the ending point in this path. 
This star can also be supplemented with a minimal set of  edges 

(included in the vertices ) building an Eulerian path in it: 
 

Let us call the vertex  as the starting point and the vertex as the ending point in this path. 

*u
*u G

* * *
* * *( , ), , ,u u u U u UÎ Î

Ĝ
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Figure 2. Hamiltonian (left) and Eulerian (right) paths for the star  

Suppose now that the bipartite digraph consists of several stars with roots from the set 
and with roots from the set  We connect by additional edge the final vertex of the Hamiltonian 
(Eulerian) path in the first star with the initial vertex of the Hamiltonian (Eulerian) path in the second 
star, etc. Then the final vertex of the Hamiltonian (Eulerian) path constructed for the last star we 
connect with the initial vertex of the Hamiltonian (Eulerian) path constructed for the first star.  

As a result, we get a Hamiltonian (Eulerian) cycle passing through all the vertices of a bipartite 
digraph  (for an example, see the Hamiltonian cycle in Fig.3). In this case, the number of additional 
edges is equal to the number of edges in the bipartite digraph  which is the minimal edge covering 
of a bipartite digraph  In addition to the Hamiltonian or Eulerian cycle, you can build a mixed-
type cycle by connecting the Hamiltonian and Eulerian paths in series. Denote  number of
edges in digraph , and  minimal number of new edges, the introduction of which in the 
digraph  leads to the formation of cycles containing all the vertices of the digraph  and 
consequently . If all the stars in the minimal edge cover  are of the same type, then 

.               (1) 

Figure 3. The Hamiltonian cycle for stars  and  

Indeed, let the digraph  consists of isolated stars of the type . Then the total number of 
added edges (marked with dotted lines in Fig. 1 -- 3) coming out of the leaves of these stars in the 
cluster is equal to the total number of these leaves and cannot be less and so .

Connecting the inequalities and  we obtain the equality (1).
Similarly, let the digraph consists of isolated stars of type . Then the total number of added 

edges included in the cluster leaves is the same as the total number of these leaves, so . 
Connecting this inequality with the opposite inequality,  we obtain the equality (1). 

But if the digraph consists of isolated stars of type  and stars of type then it is possible 
to decrease the number of added edges to make this digraph a cluster (see Figure 4). Therefore, in 
the general case, the ratio between  and  is as follows .
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Figure 4. Example when  for stars  and  

Ш. Аlgorithms for finding the minimum edge cover in a bipartite digraph 

Following [2] -- [4] to determine the minimum edge cover in an undirected bipartite graph , we 
first find the maximum matching, i.e. the maximum volume set of non-adjacent edges. For each 
vertex that does not belong to the maximum matching, some edge is selected that connects this 
vertex to the maximum matching. The maximum matching, together with the so-chosen edges, 
forms the minimum edge covering. The maximum matching in an undirected bipartite graph can be 
constructed in the following ways.  

One way is to find the maximum flow in the graph  By adding the source  and edges from 
 to all the vertices from  the drain  and edges from all the vertices of the fraction  to . We 

assign each edge a throughput of one and find the maximum flow between the vertices and 
sequentially determine the paths that increase the flow. Then the edges between  and , on 
which the flow is equal to one, form the maximum matching. 

Another way to find the maximum matching is based on the construction of increasing 
alternating paths. Let some matching in the graph  be given (for example, one edge). We will call 
the edges of the matching strong, and the other edges of the graph weak. A vertex is called free if it 
does not belong to a matching. An alternating path is a simple path in which strong and weak edges 
alternate (i.e., a strong edge is followed by a weak one, and a weak one is followed by a strong one). 
An alternating path is called an increasing path if it connects two free vertices. If there is such a path 
relative to a given match, then you can build a larger match. By turning weak edges into strong ones, 
and strong edges into weak ones, we increase the number of matching edges by one. A match is 
maximal if and only if there are no increasing alternating paths relative to it. 
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