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Abstract 
 

In this paper, an  epidemic model with nonlinear incidence rate is studied. The basic reproduction 
number ( ) is calculated. The local and global stability of the disease free equilibrium  and the endemic 

equilibrium  of the model are discussed and also the global asymptotical stability of the disease free 
equilibrium and endemic equilibrium are discussed. The stability analysis of the model shows that the 
system is locally asymptotically stable at disease free equilibrium  and endemic equilibrium  under 
suitable conditions.  Moreover, show that the disease free equilibrium and the unique endemic equilibrium 
of the system is globally asymptotically stable under certain conditions. Finally, numerical simulations are 
given to support some of the theoretical results. 
 
Keywords: epidemic models, equilibrium, local and global stability. 
 

 
I. Introduction 

 
Mathematical models describing the population dynamics of infectious diseases have been playing 
an important role in disease control for a long time. In recent years, various epidemic models have 
been proposed and explored to prevent and control the spread of the infectious diseases, such as 
measles, tuberculosis, and flu (see e.g., [2, 12]). Simple mass action bilinear incidence rate  was 
introduced Kermack –Mcendrick [5] in 1927. In many epidemic models, bilinear incidence rate  
is frequently used [1, 6, 13, 14, 15]. Moreover, nonlinear incidence rates of the form  were 
investigated by Liu, Hethcote and Levin [9], Liu, Levin and Iwasa [10]. In this paper, we consider 
an  epidemic model with nonlinear incidence rate  taking  and  that is  
have similar  repertoires  of  dynamical  behaviors,  much  wider  than  of  bilinear  incidence  rate  
models, and we study the existence and stability of the equilibriums of the  epidemic model. 

This manuscript is organized as follows: In Sect. 2,  model is presented. In Sect. 3, 
basic properties of solutions are discussed. In Sect. 4, we determine all possible equilibria of model. 
In Sect. 5, we discuss and analyze the local stability of the equilibriums. In Sect. 6, we discuss and 
analyze the global stability of the equilibriums. We present in Sect. 7, some numerical examples of 
the dynamics of the model. Finally, in Sect. 8, we discussed the conclusion.  
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II. Model Formulation 

 
By a standard nonlinear incidence rate , we consider an  epidemic model which consists 
of three compartments corresponding to three population classes, namely, susceptible , exposed 
(but not yet infectious) ,  infectious and the total population  . 
The model is given as follows:   

                                                                  (2.1) 

whose state space is the first quadrant  and subject to the initial 
conditions , , . It is assumed that all the parameters are positive. 
From the model, the parameters can be summarized in the following list: 

 is the recruitment rate of the population,  is the natural death rate of the population,  is the 
constant rate of infectious hosts suffer an extra disease related death,  is the  transmission or 
contact rate,  and  is the transfer rates among the corresponding classes. 

 
III. Basic Properties of the Model 

 
Summing up the four equations of model (2.1) and denoting 

, 
Having, . If disease is not present that is , then . This shows that 

population size  as . Since the spread of the disease in the population will lead to the 

decrease of , it follows that . It follows that the solutions of model (2.1) exists in the 

region defined by  

. 

This gives the following lemma which shows that the solutions of model (2.1) are bounded, 
continuous for all positive time and lie in a compact set. 

 
IV. Existence of Equilibria 

In this section, we obtain the existence of the disease-free equilibrium  and the endemic 
equilibrium  of model (2.1). 
Set the right sides of model (2.1) equal zero, that is, 

                                                                                  (4.1) 

The model (2.1) always has the disease-free equilibrium point . Solving (4.1) we also get 
a unique positive, endemic equilibrium point of the model (2.1), where 

,  and  is given as a root of the quadratic equation  
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, 
 where,  ,  and . 

Now, , 

where, . 
Obviously when . 
According to a direct computation, define the basic reproduction number as follows:  

. 

It means the average new infections caused by a single infected individual in a whole susceptible 
population. 
 

V. Local Stability Analysis 
 

In this section, we study the local stability of the disease-free equilibrium  and the endemic 
equilibrium of model (2.1). 
Theorem 5.1 If , the disease-free equilibrium  of model (2.1) is locally asymptotically 
stable. If , the disease-free equilibrium  is unstable. 
Proof.  The Jacobian matrix of model (2.1) at the disease-free equilibrium  is  

 

The characteristic equation of   is  . 
This equation has the following roots:  ,  and  are always negative. 
Hence  is locally asymptotically stable for , while it is unstable for . 
Theorem 5.2 If , the endemic equilibrium  of model (2.1) is locally asymptotically stable.  
Proof.  The Jacobian matrix of system (2.1) at  is  

 

where                and      
The characteristic equation of  is    

        (5.1) 

from numerical computation, we realized the real part of equation (5.1) cannot be positive. This 
indicates that, the steady state(s) will also be stable. 

 
VI. Global Stability Analysis  

 
In this section, we study the global stability of the disease-free equilibrium  and the endemic 
equilibrium of model (2.1). 
Theorem 6.1 If , the disease-free equilibrium  of model (2.1) is globally  asymptotically 
stable.  
Proof. We prove the global stability of the model (2.1) at the equilibrium  when . Taking 
the Lyapunov function   
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Calculating the derivative of along the positive solution of model (2.1), it follows that  

 

Since the incidence function  

 for . 

 

Furthermore, only if , so the largest invariant set contained in is the 
plane . By Lassalle’s invariance principle [7], this implies that all solution in  approach the 
plane  as . On the other hand, solutions of (2.1) contained in such plane satisfy 

, , which implies that  and as , that is, all of these 

solutions approach  is globally asymptotically stable in . 
Next, we analysis the global stability of an endemic equilibrium  by using geometric approach 
method described by Li and Muldowney in [8]. We first briefly explain the geometric approach 
method.  
Theorem 6.2 (Li & Muldowney [8]). Suppose that the system , with , 
satisfies the following:                                      
(H1)   is a simply connected open set, 
(H2) there is a  compact absorbing set , 
(H3)  is the only equilibrium in . 
Then the equilibrium  is globally stable in  if there exists a   measure such that  

, 

 

and  is an  matrix valued function. 

In our case, model (2.1) can be written as  with  and  being the interior of 
the feasible region . The existence of a compact absorbing set  is equivalent to proving that 
(2.1) is uniformly persistent (see [8]) and the proof for this in the case when  is similar to that 
of proposition 4.2 of [8]. Hence, (H1) and (H2) hold for system (2.1), and by assuming the 
uniqueness of the endemic equilibrium in , we can prove its global stability with the aid of 
Theorem 6.2. 
Theorem 6.3 If then the endemic equilibrium  of the system (2.1) is globally asymptotically 
stable in the feasible region .. 
Proof. Let  be the Jacobian matrix of the system (2.1), i.e. 

 

Then the second additive compound matrix of  is given by    
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The matrix  can be written in matrix form  

 

where    

,  ,  ,   

 

Let  be a vector in ; its norm  is defined as       
Let  be the  measure with respect to this norm.  

 
where  

,     ,     ,       are matrix norm with respect to vector norm 

and  denotes the  measure with respect to  vector norm, then , 

,  . 

 Therefore,  

. 

where  

 

From system (2.1) we have   and   

Then  

 

 

Furthermore, obtain 

 

By integrating both sides at the same time, 

 

2 2
2

2 1 2

2

2 22

2 0

0 2

[ ]

I S I S II d
E E E

EPJ P I d
I

I d

b b gb e

e b a g

b a e g

-

æ ö
- - - -ç ÷
ç ÷
ç ÷= - - - -ç ÷
ç ÷

- - - -ç ÷
ç ÷
è ø

1 2 1[ ]
fB P P PJ P- -= +

11 12

21 22

B B
B

B B
æ ö

= ç ÷
è ø

2
11 2B I db e= - - -

2 2

12
2 2,I S I S IB
E E E
b b gæ ö

= -ç ÷
è ø

21 0,
T

EB
I
eæ ö

= ç ÷
è ø

2

22
2

2 0

2

E II d
E IB

E II d
E I

b a g

b a e g

¢ ¢æ ö
- - - - + -ç ÷
ç ÷=

¢ ¢ç ÷- - - - + -ç ÷
è ø

( , , )u v w 3R . ( , , ) max{ , }u v w u v w= +

( )Bµ Lozinskii
!

1 2( ) sup{ , }B g gµ £

1 1 11 12( )g B Bµ= + 2 1 22 21( )g B Bµ= + 12B 21B 1l

1µ Lozinski i
!

1l
2

1 11 2( )B I dµ b e= - - -
2 2 2

12
2 2 2max ,I S I S I I SB
E E E E
b b g bæ ö

= - =ç ÷
è ø

21
EB
I
e

=

2
2

1 1 11 12

2 2 22 21

22

2

( )

( )

I Sg B B I d
E

E I Eg B B d
E I I

bµ b e

eµ a g

ü
= + = - - - + ïï

ý¢ ¢ ï= + = - - - + - + ïþ

2 22 2 2 2( ) max{ , } .E I E I E IB d d d
E I E I E I

µ a g a e g a g
¢ ¢ ¢ ¢ ¢ ¢

= - - - + - - - - - + - = - - - + -

2

( )E SI d
E E

b e
¢
= - + ( )I E d

I I
e g a

¢
= - + +

2
2

1

2

22

2( )

I Sg I d
E

I S Ed d
E E

bb e

b e

= - - - +

¢
£ - + £ -

2 2 E I E Eg d d
E I I E

ea g
¢ ¢ ¢

= - - - + - + = -

1 2( ) sup{ , }

,

B g g
E E Ed d d
E E E

µ £
¢ ¢ ¢ì ü

£ - - £ -í ý
î þ

0

1 1
0
( )( )ds In
( )

t E tB d
t t E
µ £ -ò

60



 
Garima Saxena 
DYNAMICAL BEHAVIOR OF AN SEIS  

RT&A, No 3 (63) 
Volume 16, September 2021  

 

 

Hence,  is globally asymptotically stable in . 
 

VII. Numerical Simulations 
 

To see the dynamical behavior of system (2.1) some numerical simulations are given. For this, 
consider the Hypothetical set of parameter values as the following.   
Case I. , , , , ,  then the basic reproduction number 

,  approaches to its steady state value while  and  approach zero as 
time goes to infinity, the disease dies out (Fig. 1). 

 
Figure 1: The figure represents that the disease dies out  

 
Case II. , , , , ,  then the basic reproduction number 

, all the three component ,  and  approach to their steady state 
values as time goes to infinity, the disease becomes endemic (Fig. 2). 

 
Figure 2: The figure represents that the disease endemic  
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VIII. Conclusion 

 
This paper presents a mathematical study on the dynamics of an  epidemic model that 
incorporates constant recruitment, exponential natural death as well as the disease related rate, so 
that the population size may vary in time. The incidence rate is of the non-linear incidences 
frequently used in the literature. Also, we see that if the basic reproduction number  is less one 
the disease free equilibrium  is locally and globally asymptotically stable in feasible region  
and disease always dies out (see Fig. 1). If the basic reproduction number  is greater than one 
the unique endemic equilibrium  is locally and globally under certain condition if the interior of 

. In this case, the disease cannot control easily (see Fig. 2).  
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