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Abstract 
 

Accelerated life testing (ALT) is a time-saving technique that has been used in a variety of sectors 
to get failure time data for test units in a relatively short time it takes to test them under regular 
operating circumstances. One of the primary goals of ALT is to estimate failure time functions 
and reliability under typical use. In this article, an ALT with k increasing stress levels that is 
stopped by a type II progressive censoring (TIIPC) scheme is considered. At each stress level, it is 
assumed that the failure times of test units follow a generalized Pareto (GnP) distribution. The 
link between the life characteristic and stress level is considered to be log-linear. The maximum 
likelihood estimation (MLE) method is used to obtain inferences about unknown parameters of the 
model. Furthermore, the asymptotic confidence intervals (ACIs) are obtained by utilizing the 
inverse of the fisher information matrix. Finally, a simulation exercise is presented to show how 
well the developed inferential approaches performed. The performance of MLEs is assessed in 
terms of relative mean square error (RMSE) and relative absolute bias (RAB), whereas the 
performance of ACIs is assessed in terms of their length and coverage probability (CP). 

 
Keywords: Simulation, type-II progressive censoring, multiple constant stress accelerated life test 
 
 

I. Introduction 
 

Traditional reliability tests are designed to examine failure time data acquired under normal 
operating circumstances. However, due to restricted testing time and highly reliable products like 
as electronics systems, insulating materials, engines, and so on, such life data is not easy to obtain. 
As a result, the use of traditional reliability tests is inappropriate, time consuming and expensive. 
Therefore, ALT is widely used in the manufacturing and production industries due to its capacity 
to provide timely and adequate failure data for product reliability and design assessment. 
Furthermore, the growing competitiveness of innovation, as well as the desire to shorten product 
development time, have underlined the use and significance of ALT techniques. It is especially 
difficult to detect faults in highly reliable items or systems under typical operating conditions in a 
short period of time. Thus, in the manufacturing business, ALT has become an essential element of 
the product design and development process. In ALT, samples of test items are exposed to more 
intense levels of stress, such as temperature, voltage, humidity etc. to cause early failures, and the 
resultant failure times and the used censoring schemes are recorded. The data is then utilized to 
create an ALT model for extrapolating the product's reliability under normal operation conditions. 

The stress loading in ALT may be applied in a various different way, however the most often 
utilized stress loadings are constant, step, and progressive stress loadings [1] (abbreviated as 
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CSALT, SSALT & PSALT). In CSALT, units are tested at two or more constant levels of high stress 
until they all fail or the test is stopped owing to some censoring scheme or other factors. Many 
researchers have investigated CSALT models, including [2-9]. In SSALT, the testing units are 
initially subjected to a starting high level of stress and the failures are noted and then the test items 
are removed at prespecified time to test at the next level of stress, and so on. Many scholars have 
looked at the SSALT models, including [10-19]. Progressive stress loading, often known as ramp 
stress loading, is a method of exposing test units to gradually increasing stress over time. PSALT 
designs were initially proposed by [20], who took into account both exponential and Weibull life 
distributions. Since then, several writers have explored PSALT for different distributions with 
different types of data, including [21-25]. 

Most items are subjected to constant stress when they are in use in general. The CSALT is 
straightforward in most tests, making it easier to maintain a consistent stress level and the CSALT 
mimics actual use of the product. For some materials and products, CSALT models are better 
designed and empirically validated. Furthermore, data analysis for estimating reliability is well 
established and automated. However, CSALT is the most commonly utilized ALT method because 
of its above-mentioned benefits, but the majority of ALT research has concentrated on statistical 
inference with only two or three levels of constant stress. 

So far, there are only a few studies which have considered multi-stress CSALT. [26] discussed 
the reliability analysis of type-I censored Weibull failure data obtained from a system of multiple 
components connected in series under CSALT assuming a log-linear relation between scale 
parameter and the stress variable. [27] used TIIPC data to develop MLEs and Bayes estimates (BEs) 
of the parameters of the extended exponential distribution under CSALT. [28] examined several 
estimating methods for the parameters of the exponentiated distributions family, with the 
exponentiated inverted Weibull regarded as a particular example under CSALT. [29] estimated the 
parameters of a lower-truncated family of distributions using the MLE approach for simple CSALT 
under TIIPCS. Assuming mean life as a linear function of the stress, [30] considered hybrid type-I 
censored data from a CSALT and obtained the MLEs and approximation MLEs of the parameters 
of a generalized log-location-scale distribution. [31] investigated a multiple stress CSALT and 
utilized MLE and BE approaches to construct point and interval estimates of Weibull distribution 
parameters based on TIIP adaptive hybrid censored data. Assuming that failure under 
arithmetically increasing stress levels of CSALT, [32] employed MLE methods for estimating the 
Burr-X life distribution parameters. [33] studied CSALT and estimated the doubly truncated Burr-
XII parameters using MLE and BE methods. [34] address the problem of statistical inference using 
MLE and BE approaches for TIIPC data under multiple stress CSALT, assuming that failure times 
follow the modified Kies exponential distribution and removal follows a binomial distribution.  

In this paper, an ALT with k constant stress levels which is stopped by a TIIPC scheme is 
considered. The following is how the paper is structured. Section 2 provides fundamental 
terminology, failure distribution, and basic multi-stress CSALT assumptions. In Section 3, the MLE 
technique is employed to derive estimates of the parameters using TIIPC data. In Section 4, a 
simulation study with different test setting is conducted to compare the performance of the 
proposed model. Section 5 concludes the paper with some remarks. 

 
II. Assumptions and procedure for 𝑘-stress level ALT 

 
A 𝑘 levels of CSALT is considered. Let 𝒬! be the normal stress level and 𝒬" , 𝑖 = 1,2, . . . 𝑘 are the 𝑘 

levels of applied higher constant stress levels. The following assumptions are used in this paper: 
1. Suppose 𝓃" , 𝑖 = 1, 2, . . . , 𝑘 are samples containing independent and identical items put on test at 

the same time at stress levels 𝒬" , 𝑖 = 1,2, . . . 𝑘 in such way that 𝒩 = ∑ 𝓃"
#
	"%& , where 𝒩 total 

number of items assigned on all stress levels to test. 
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2. The product's life has a GnP distribution under normal stress 𝒬! and accelerated stress 𝒬" , 𝑖 =
1,2, . . . 𝑘. The density function, cumulative distribution function, the reliability function and the 
hazard rate function of GnP distribution are as follows: 

 
𝒻(𝓉" 	, 𝜙" , 𝜓") = 𝜙"𝜓"(1 + 𝜓"𝓉")'()!*&),			𝓉" 	, 𝜙" , 𝜓" > 0																																																										(1) 

 
ℱ(𝓉" 	, 𝜙" , 𝜓") = 1 − (1 +	𝜓"𝓉")')! ,									𝓉" 	, 𝜙" , 𝜓" > 0																																																											(2) 

 
𝑅(𝓉" 	, 𝜙" , 𝜓") = (1 +	𝜓"𝓉")')! ,																	𝓉" 	, 𝜙" , 𝜓" > 0																																																											(3) 

 

ℎ(𝓉" 	, 𝜙" , 𝜓") =
𝜙"𝜓"

(1 +	𝜓"𝓉")
,																							𝓉" 	, 𝜙" , 𝜓" > 0																																																										(4) 

 
where 𝜙" is the shape parameter and the scale parameter is 𝜓" at stress level 𝒬" , 𝑖 = 1,2, . . . 𝑘. 

3. At each increased stress, the product's failure mechanism stays unchanged. Because 𝜙" 
specifies the failure mechanism, it follows that 

 
𝜙! = 𝜙& = 𝜙, =. . . = 𝜙# = 𝜙																																																																																																					(5) 

 
4. The parameter 𝜓" has a log-linear relationship with the stress variable 𝒬" and may be described 

as follows: 
𝑙𝑜𝑔𝜓" = 𝛼 + 𝛽𝒵" ,			𝑖 = 0, 1, 2, . . . , 𝑘																																																																																						(6) 

 
where 𝛼 and 𝛽(> 0) are the unknown parameters of the relationship and their values usually 

depend on true nature of the test items. And 𝒵" = 𝒵(𝒬") is an increasing function of stress 𝒬". Eq. 
(6) depends on the type of stress used for testing, e. g., if stress is temperature, then, the Arrhenius 
model is used and can written as 𝑙𝑜𝑔𝜓" = 𝛼 + 𝛽/𝒬",  where 𝒬" is temperature stress. If stress is 
voltage, then the inverse power model is appropriate to be used and can written as 𝑙𝑜𝑔𝜓" = 𝛼 +
𝛽(𝑙𝑜𝑔(𝒬")), where 𝒬" is voltage stress. For weather conditions, exponential model is used and can 
written as 𝑙𝑜𝑔𝜓" = 𝛼 + 𝛽𝒬". Above defined three well-known models may be converted into the 
linear form as in eq. (6) by transforming the stress with 𝒵(𝒬") = 1/𝒬" , 𝑙𝑜𝑔(𝒬") and 𝒬" respectively. 

Let 𝓉"- , 𝑖 = 1,2, . . . 𝑘; 		𝑗 = 1, 2, . . . , 𝓃" 		 are observed ordered failures with progressive censoring 
scheme 𝓌"- = (𝓌"&,	𝓌",, . . . ,𝓌"/!)		, 𝑖 = 1,2, . . . 𝑘; 		𝑗 = 1, 2, . . . , 𝑚" at each  𝒬" stress level. Based on 𝑘 
stress ALT with TIIPC scheme 𝓌"-, 𝓃" units are put under accelerated testing condition 𝒬" and the 
experiment will be run until 𝑚" failures at each stress level and the number of failures is prefixed. 
Now, the TIIPC can be implemented as follows:  at each 𝒬" , 𝑖 = 1,2, . . . 𝑘, at first failure time 𝓉"&, 𝓌"& 
items are omitted from the remaining (𝓃" − 1) survivals randomly. Similarly at time 𝓉",, 𝓌", is the 
number of removed items from (𝓃" − 2 −𝓌"&) remaining survivals and so on until the desired 
number of failures 𝑚" , 𝑖 = 0, 1, 2, . . . , 𝑘 at each stress level obtained and then the test is terminated 
by removing all the remaining survivals 𝓌"- = 𝓃" −𝑚" −∑ 𝓌"-

/!'&
"%&   from the test. 

 
III. Parameter estimation 

 
In statistics, MLEs and BE techniques are two of the most significant and commonly used 

approaches. The MLEs are asymptotically normal and consistent. The BE technique necessitates 
the selection of previous knowledge of unknown parameters, although this is generally a 
challenging task in reality. Furthermore, BE method frequently necessitates the use of complicated 
integral procedures. As a result, in a CSALT, this paper uses an MLE method utilizing TIIPC data. 

Let the obtained observed failure TIIPC samples at 𝑖01 stress level in the considered ALT 𝓉"& ≤
𝓉", ≤ ⋯ ≤ 𝓉"/! , 𝑖 = 0, 1, 2, . . . , 𝑘, then the likelihood for the observed data under TIIPC scheme can 
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be obtained in the following form  
 

𝐿(𝓎, 𝜉, 𝛿	) =OP𝐶"O𝒻𝒯!"R𝓉"-S T1 − ℱ𝒯!"R𝓉"-SU
𝓌!"

/!

-%&

V
#

"%&

																																																													(7) 

 
where, 𝐶" = 𝓃"(𝓃" − 1 −𝓌"&)(𝓃" − 2 −𝓌"& −𝓌",). . . ∑ 𝓌"-

/!'&
"%& . Now, the log likelihood ℓ =

𝐿(𝓎, 𝜉, 𝜎, 𝛿	) corresponding to Eq. (7) after substituting the values of 𝒻𝒯!"R𝓉"-S & ℱ𝒯!"R𝓉"-S and taking 
log on both sides is obtained as follows: 
 

ℓ =ZZ[𝑙𝑜𝑔(𝜙) + 𝑙𝑜𝑔(𝜓") − (𝓌"-𝜙 + 𝜙 + 1)𝑙𝑜𝑔(1 + 𝜓"𝓉"-)\
/!

-%&

#

"%&

																																										(8) 

 
Now, from equation (6), we can drive 
 

𝜓" = 𝜓!𝑒(4𝒵!'4𝒵#) 	= 𝜓!𝜗6! 	, 𝑖 = 0, 1, 2, . . . , 𝑘																																																																								(9) 
 

Where, 𝜓! = 𝛼 + 𝛽𝒵! represents the GnP distribution’s scale parameter at stress 𝒬! and 
𝜓& 𝜓!⁄ = 𝜗 = 𝑒4(𝒵$'𝒵#) denotes the acceleration factor from 𝒬& to 𝒬!, and 

 
 Ω" = (𝒵" −𝒵!) (𝒵& −𝒵!)⁄ ,									𝑖 = 0, 1, 2, . . . , 𝑘																																																																									(10) 

 
Because the transformation from (𝛼, 𝛽, 𝜙) to (𝜓!, 𝜗, 𝜙) is one-to-one, we can immediately 

calculate the product's life at 𝒬! using the new transformed parameters. As a result, the likelihood 
function (8) may be rewritten as follows: 

 

ℓ =ZZ[𝑙𝑜𝑔(𝜙) + 𝑙𝑜𝑔(𝜓!) + Ω"𝑙𝑜𝑔(𝜗) − (1 + 𝜙 +𝓌"-𝜙)𝑙𝑜𝑔(1 + 𝜓!𝜗6!𝓉"-)\
/!

-%&

#

"%&

												(11) 

 
By solving the following likelihood equations, the MLEs of the parameters can now be calculated: 
 

𝜕ℓ
𝜕𝜓!

=
1
𝜓!

−
𝜗6!(1 + (1 +𝓌"-)𝜙)𝓉"-

1 + 𝜓!𝜗6!𝓉"-
= 0																																																																																										(12) 

 
𝜕ℓ
𝜕𝜗 =

Ω"
𝜗 −

𝜓!𝜗6!'&Ω"(1 + (1 +𝓌"-)𝜙)𝓉"-
1 + 𝜓!𝜗6!𝓉"-

= 0																																																																															(13) 

 

	
𝜕ℓ
𝜕𝜙 =

1
𝜙 − (1 +𝓌"-)𝑙𝑜𝑔(1 + 𝜓!𝜗6!𝓉"-) = 0																																																																																						(14) 

 
We now have a system of three nonlinear equations with three unknowns, making it difficult 

to find closed-form solutions manually. Hence, numerical solution to equations is obtained using 
Newton Raphson iterative approach, the R programming language is used to get the solutions. 

By using asymptotic characteristics of the MLEs, the ACIs of the parameters may now be 
estimated using TIIPC by mathematically inverting Fisher's information matrix. As a result, we can 
compute the estimates of 95% two-sided ACIs for 𝜓!, 𝜗 and 𝜙 as follows: 

 

𝜓!d ± 1.96f𝑣𝑎𝑟(𝜓!d)	;		𝜗j ± 1.96f𝑣𝑎𝑟( 𝜗j);			𝜙k ± 1.96f𝑣𝑎𝑟(𝜙k)																																											(15) 
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Where, 𝑣𝑎𝑟(𝜓!d), 𝑣𝑎𝑟( 𝜗j) and 𝑣𝑎𝑟(𝜙k) are main diagonal entries of inverted Fisher matrix and the 
elements of the matrix are given by following equations: 

 
𝜕,ℓ
𝜕𝜙, = −

1
𝜙, 																																																																																																																																											(16) 

 
𝜕,ℓ
𝜕𝜗, = −

Ω"(1 + 𝜓!𝜗6!𝓉"-(1 − 𝜙(1 +𝓌"-)(1 + 𝜓!𝜗6!𝓉"-) + Ω"(1 + 𝜙 +𝓌"-𝜙)))
𝜗,(1 + 𝜓!𝜗6!𝓉"-),

								(17) 

 
𝜕,ℓ
𝜕𝜓!,

= −
1
𝜓!,

+
𝜗,6!(1 + (1 +𝓌"-)𝜙)𝓉"-,

(1 + 𝜓!𝜗6!𝓉"-),
																																																																																						(18) 

 
𝜕,ℓ
𝜕𝜙𝜕𝜗 =

𝜕,ℓ
𝜕𝜗𝜕𝜙 = −

𝜓!Ω"𝜗6!'&(1 +𝓌"-)𝓉"-
1 + 𝜓!𝜗6!𝓉"-

																																																																																(19) 

 
𝜕,ℓ

𝜕𝜙𝜕𝜓!
=

𝜕,ℓ
𝜕𝜓!𝜕𝜙

= −
𝜗6!(1 +𝓌"-)𝓉"-
1 + 𝜓!𝜗6!𝓉"-

																																																																																								(20) 

 
𝜕,ℓ

𝜕𝜓!𝜕𝜗
=

𝜕,ℓ
𝜕𝜗𝜕𝜓!

= −
Ω"𝜗6!'&(1 + 𝜙 +𝓌"-𝜙)𝓉"-

(1 + 𝜓!𝜗6!𝓉"-),
																																																																				(21) 

 
IV. Simulation Study 

 
In this section, the performance of the considered methodology for estimating the parameters 

of the GnP distribution based on the CSALT with k stresses for TIIPC data utilizing the log liner 
association between stress and life characteristic is examined through a Monte-Carlo simulation 
using the R-package. Two set of initial values (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5), (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 =
0.8) of parameter with various sample combinations (𝓃" , 𝑚")= (20, 10), (20, 15), (30, 15), (30, 20), (30, 
25), (40, 20), (40, 25), (40, 30), (50, 25), (50, 30), (50, 35), (60, 35), (60, 40), (60, 45) are selected for 
simulation. Apart from the normal stress level 𝒬! = 110, three levels of constant stress are 
assumed as; 𝒬& = 150, 𝒬, = 220 and 𝒬7 = 250 under TIIPC scheme. Additionally, two distinct 
removal schemes 𝑖.𝓌"&,𝓌",, . . . ,𝓌"(/'&) = (𝓃" −𝑚")		&		𝓌"/! = 0; 𝑖𝑖.𝓌"&,𝓌",, . . . ,𝓌"(/'&) =
1	&	𝓌"/! = 𝓃" −𝑚8 + 1 are used to generate TIIPC samples with various combinations of (𝓃" , 𝑚") 
under three different constant-stress levels. For each test scheme, average RABs and RMSEs for 
point estimates, as well as lower and upper ACI limits (LACIL, UACIL) and ACIs lengths (ACIsL) 
of 95% ACIs with corresponding CPs are computed. Following steps are used to perform the 
simulation study: 

Step 1: Set the initial values of the parameters 𝜓!, 𝜗 and 𝜙. 
Step 2: Set the values of stress levels 𝒬", 𝑖 = 0, 1, 2, . . . , 𝑘. 
Step 3: Set the values of (𝓃" , 𝑚"), 𝑖 = 0, 1, 2, . . . , 𝑘 at each stress levels 𝒬". 
Step 4: Now using the defined values in step 1-3, generate 𝑖 = 	1, 2, . . . , 𝑘 random samples of 
size 𝑚" of TIIPC data from Uniform (0, 1) distribution according to the steps outlined by [35]. 
Step 5: Using inverse CDF method, for each sample size 𝑚" obtained in step 4, generate TIIPC 
data from GnP distribution using (𝑒𝑥𝑝(− 𝑙𝑛(1 − 𝑢) 𝜙⁄ ) − 1)/𝜓. 
Step 6: For each stress levels along with removal scheme, repeat the steps 1-5 for 10000 times. 
Step 7: Compute the average of MLEs of 𝜓!, 𝜗 and 𝜙 with their respective RABs and RMSEs. 
Step 8: Compute LACIL, UACIL, ACIsL of 95% ACIs with corresponding CPs of  𝜓!, 𝜗 and 𝜙. 

Table 1-6 displays the numerical findings of RMSEs and RABs of MLEs and LACIL, UACIL, and 
ACIsL, as well as the corresponding CPs of ACIs. Figures 1-3 represent the behavior of the RABs 
and RMSEs with respect to the sample size. 
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Table 1: MLEs with RMSEs, RABs of 𝜓! & LACIL, UACIL, ACIsL, CPs of ACIs with (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5) 
(𝓃" , 𝑚") CS MLE RMSE RAB LACIL UACIL ACIsL CP 
20, 10 1 1.379815 0.960779 0.439453 -0.503310 3.262942 3.766253 0.950000 
20, 15 1 1.439942 0.797518 0.433950 -0.123190 3.003076 3.126269 0.940000 
30, 15 1 1.370340 0.705081 0.408689 -0.011620 2.752298 2.763916 0.960000 
30, 20 1 1.486785 0.666933 0.357396 0.179597 2.793973 2.614376 0.950000 
30, 25 1 1.312451 0.664671 0.392446 0.009696 2.615206 2.605510 0.950000 
40, 20 1 1.291834 0.644747 0.383245 0.028131 2.555537 2.527407 0.950000 
40, 25 1 1.370246 0.639035 0.389515 0.117737 2.622754 2.505017 0.940000 
40, 30 1 1.365194 0.611388 0.358700 0.166874 2.563514 2.396640 0.980000 
50, 25 1 1.371536 0.588579 0.350251 0.217920 2.525151 2.307231 0.970000 
50, 30 1 1.053091 0.533587 0.382436 0.007259 2.098922 2.091663 0.940000 
50, 35 1 1.244513 0.521590 0.330190 0.222196 2.266830 2.044634 0.950000 
60, 35 1 1.275332 0.504480 0.344008 0.286551 2.264113 1.977562 0.940000 
60, 40 1 1.294818 0.451734 0.283193 0.409419 2.180216 1.770797 0.950000 
60, 45 1 1.244503 0.451180 0.266636 0.360191 2.128815 1.768624 0.950000 
20, 10 2 1.359424 0.946580 0.432959 -0.495874 3.214721 3.710595 0.980000 
20, 15 2 1.418662 0.785732 0.427537 -0.121372 2.958696 3.080068 0.940000 
30, 15 2 1.350089 0.694661 0.402649 -0.011446 2.711624 2.723070 0.940000 
30, 20 2 1.464813 0.657076 0.352115 0.176943 2.752682 2.575739 0.950000 
30, 25 2 1.293055 0.654848 0.386646 0.009553 2.576557 2.567005 0.950000 
40, 20 2 1.272743 0.635218 0.377582 0.027715 2.517771 2.490056 0.950000 
40, 25 2 1.349996 0.629591 0.383759 0.115997 2.583995 2.467997 0.950000 
40, 30 2 1.345019 0.602353 0.353399 0.164408 2.525630 2.361222 0.940000 
50, 25 2 1.351267 0.579881 0.345075 0.214700 2.487834 2.273134 0.970000 
50, 30 2 1.037528 0.525702 0.376785 0.007152 2.067903 2.060751 0.940000 
50, 35 2 1.226121 0.513882 0.325310 0.218912 2.233330 2.014417 0.950000 
60, 35 2 1.256485 0.497025 0.338925 0.282316 2.230653 1.948337 0.970000 
60, 40 2 1.275682 0.445058 0.279008 0.403369 2.147996 1.744628 0.950000 
60, 45 2 1.226111 0.444512 0.262695 0.354868 2.097355 1.742486 0.970000 

 
Table 2: MLEs with RMSEs, RABs of 𝜓! & LACIL, UACIL, ACIsL, CPs of ACIs with (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 = 0.8) 

 

(𝓃" , 𝑚") CS MLE RMSE RAB LACIL UACIL ACIsL CP 
20, 10 1 1.594526 0.948091 0.458727 -0.263732 3.452785 3.716517 0.930000 
20, 15 1 1.556388 0.844726 0.385720 -0.099275 3.212051 3.311326 0.950000 
30, 15 1 1.582766 0.812384 0.367365 -0.009506 3.175038 3.184544 0.930000 
30, 20 1 1.546824 0.807062 0.381692 -0.035018 3.128666 3.163684 0.970000 
30, 25 1 1.189059 0.807045 0.483961 -0.392749 2.770867 3.163616 0.960000 
40, 20 1 1.557939 0.806578 0.406983 -0.022955 3.138833 3.161788 0.940000 
40, 25 1 1.589465 0.763197 0.372843 0.093600 3.085331 2.991731 0.920000 
40, 30 1 1.520138 0.754312 0.365067 0.041687 2.998588 2.956901 0.950000 
50, 25 1 1.560208 0.736059 0.399957 0.117533 3.002883 2.885350 0.970000 
50, 30 1 1.147427 0.687020 0.415694 -0.199131 2.493985 2.693117 0.970000 
50, 35 1 1.581000 0.661877 0.319240 0.283721 2.878278 2.594557 0.950000 
60, 35 1 1.466991 0.645759 0.352575 0.201303 2.732678 2.531375 0.940000 
60, 40 1 1.582213 0.589180 0.280259 0.427421 2.737005 2.309584 0.950000 
60, 45 1 1.350998 0.574095 0.326686 0.225772 2.476224 2.250452 0.970000 
20, 10 2 1.496527 0.812236 0.370885 -0.095460 3.088511 3.183967 0.940000 
20, 15 2 1.521890 0.781138 0.353235 -0.009140 3.052921 3.062062 0.940000 
30, 15 2 1.487331 0.776021 0.367011 -0.033670 3.008333 3.042004 0.950000 
30, 20 2 1.143326 0.776005 0.465347 -0.377640 2.664295 3.041939 0.930000 
30, 25 2 1.498018 0.775556 0.391330 -0.022070 3.018108 3.040180 0.940000 
40, 20 2 1.528332 0.733843 0.358503 0.091020 2.966664 2.876664 0.950000 
40, 25 2 1.461671 0.725300 0.351026 0.040084 2.883258 2.843174 0.950000 
40, 30 2 1.500200 0.707749 0.384574 0.113013 2.887387 2.774375 0.960000 
50, 25 2 1.103295 0.660596 0.399705 -0.191470 2.398063 2.589535 0.960000 
50, 30 2 1.520192 0.636420 0.306962 0.272809 2.767575 2.494766 0.960000 
50, 35 2 1.410568 0.620922 0.339014 0.193561 2.627575 2.434014 0.950000 
60, 35 2 1.521359 0.566519 0.269480 0.410982 2.631736 2.220754 0.950000 
60, 40 2 1.299036 0.552014 0.314121 0.217088 2.380985 2.163896 0.960000 
60, 45 2 1.429823 0.520777 0.260784 0.409101 2.450546 2.041445 0.970000 
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Table 3: MLEs with RMSEs, RABs of  𝜗 & LACIL, UACIL, ACIsL, CPs of ACIs with (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5) 
(𝓃" , 𝑚") CS MLE RMSE RAB LACIL UACIL ACIsL CP 
20, 10 1 0.956331 0.146834 0.116788 0.668536 1.244127 0.575591 0.960000 
20, 15 1 0.970048 0.144884 0.116523 0.686076 1.254020 0.567944 0.950000 
30, 15 1 0.964952 0.142178 0.112322 0.686283 1.243622 0.557339 0.970000 
30, 20 1 0.938985 0.138562 0.116477 0.667403 1.210567 0.543164 0.950000 
30, 25 1 0.964784 0.127289 0.102683 0.715298 1.214270 0.498972 0.940000 
40, 20 1 0.937890 0.120433 0.104640 0.701840 1.173940 0.472099 0.950000 
40, 25 1 0.948488 0.119736 0.097341 0.713805 1.183171 0.469366 0.950000 
40, 30 1 0.951535 0.117819 0.098871 0.720610 1.182461 0.461852 0.960000 
50, 25 1 0.936677 0.115799 0.101152 0.709711 1.163643 0.453932 0.960000 
50, 30 1 0.879029 0.112284 0.099044 0.658952 1.099106 0.440154 0.950000 
50, 35 1 0.884003 0.110710 0.103224 0.667011 1.100995 0.433983 0.960000 
60, 35 1 0.951515 0.102543 0.079229 0.750531 1.152500 0.401969 0.950000 
60, 40 1 0.962086 0.094635 0.077911 0.776601 1.147571 0.370970 0.940000 
60, 45 1 0.948595 0.092008 0.079129 0.768259 1.128932 0.360673 0.960000 
20, 10 2 1.004047 0.169615 0.129299 0.671601 1.336493 0.664892 0.910000 
20, 15 2 0.993732 0.160594 0.128606 0.678968 1.308495 0.629528 0.940000 
30, 15 2 0.919236 0.159483 0.138557 0.606649 1.231823 0.625174 0.970000 
30, 20 2 0.975282 0.152032 0.125374 0.677299 1.273265 0.595966 0.960000 
30, 25 2 0.987848 0.149513 0.121256 0.694803 1.280893 0.586090 0.960000 
40, 20 2 0.945983 0.138707 0.117505 0.674117 1.217849 0.543732 0.960000 
40, 25 2 0.967796 0.136775 0.109025 0.699717 1.235876 0.536159 0.970000 
40, 30 2 0.908435 0.136498 0.121973 0.640898 1.175972 0.535073 0.940000 
50, 25 2 0.854772 0.134755 0.124194 0.590652 1.118892 0.528240 0.930000 
50, 30 2 0.963932 0.132995 0.111667 0.703263 1.224602 0.521339 0.940000 
50, 35 2 0.970456 0.129270 0.109791 0.717087 1.223824 0.506737 0.960000 
60, 35 2 0.950931 0.121757 0.106660 0.712287 1.189574 0.477287 0.960000 
60, 40 2 0.977545 0.116375 0.096155 0.749450 1.205640 0.456190 0.940000 
60, 45 2 1.003948 0.101925 0.080405 0.804175 1.203721 0.399546 0.970000 

 
Table 4: MLEs with RMSEs, RABs of  𝜗 & LACIL, UACIL, ACIsL, CPs of ACIs with (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 = 0.8) 

 

(𝓃" , 𝑚") CS MLE RMSE RAB LACIL UACIL ACIsL CP 
20, 10 1 0.729710 0.156055 0.171920 0.423842 1.035579 0.611737 0.970000 
20, 15 1 0.635912 0.147363 0.168628 0.347080 0.924744 0.577663 0.970000 
30, 15 1 0.752896 0.146134 0.156156 0.466473 1.039318 0.572845 0.950000 
30, 20 1 0.761058 0.141137 0.146475 0.484429 1.037687 0.553258 0.980000 
30, 25 1 0.659879 0.139685 0.167380 0.386096 0.933663 0.547567 0.940000 
40, 20 1 0.755815 0.138839 0.148709 0.483691 1.027939 0.544249 0.950000 
40, 25 1 0.737196 0.134817 0.147778 0.472956 1.001437 0.528481 0.970000 
40, 30 1 0.744293 0.128940 0.144283 0.491570 0.997016 0.505445 0.960000 
50, 25 1 0.743150 0.122515 0.130935 0.503021 0.983279 0.480258 0.960000 
50, 30 1 0.747007 0.120722 0.130088 0.510392 0.983622 0.473230 0.960000 
50, 35 1 0.616800 0.118942 0.144958 0.383673 0.849927 0.466253 0.950000 
60, 35 1 0.761865 0.113971 0.122099 0.538481 0.985249 0.446768 0.960000 
60, 40 1 0.756613 0.105303 0.110844 0.550219 0.963008 0.412788 0.960000 
60, 45 1 0.741342 0.098291 0.106389 0.548692 0.933991 0.385299 0.950000 
20, 10 2 0.635545 0.121039 0.186381 0.398309 0.872781 0.474472 0.950000 
20, 15 2 0.757236 0.120128 0.156847 0.521786 0.992686 0.470901 0.970000 
30, 15 2 0.617029 0.110272 0.174321 0.400897 0.833161 0.432264 0.940000 
30, 20 2 0.705092 0.106901 0.148531 0.495566 0.914619 0.419054 0.960000 
30, 25 2 0.614613 0.099448 0.154738 0.419694 0.809531 0.389836 0.940000 
40, 20 2 0.605555 0.099098 0.157103 0.411322 0.799788 0.388466 0.960000 
40, 25 2 0.712096 0.098604 0.106531 0.518833 0.905359 0.386527 0.970000 
40, 30 2 0.621327 0.097804 0.154010 0.429632 0.813023 0.383391 0.950000 
50, 25 2 0.614977 0.083327 0.128538 0.451657 0.778298 0.326641 0.950000 
50, 30 2 0.669440 0.074306 0.107218 0.523801 0.815080 0.291279 0.950000 
50, 35 2 0.617426 0.067618 0.102392 0.484895 0.749956 0.265061 0.940000 
60, 35 2 0.613535 0.064974 0.104036 0.486187 0.740883 0.254696 0.940000 
60, 40 2 0.612077 0.064608 0.106285 0.485446 0.738708 0.253262 0.930000 
60, 45 2 0.613641 0.063932 0.104994 0.488334 0.738948 0.250613 0.930000 
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Table 5: MLEs with RMSEs, RABs of  𝜙 & LACIL, UACIL, ACIsL, CPs of ACIs with (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5) 

 

(𝓃" , 𝑚") CS MLE RMSE RAB LACIL UACIL ACIsL CP 
20, 10 1 0.356076 0.217232 0.331312 -0.069698 0.781851 0.851548 0.980000 
20, 15 1 0.423038 0.170116 0.307633 0.089610 0.756466 0.666856 0.940000 
30, 15 1 0.442701 0.103119 0.181128 0.240587 0.644815 0.404228 0.960000 
30, 20 1 0.385605 0.096882 0.187231 0.195716 0.575493 0.379777 0.950000 
30, 25 1 0.408111 0.095668 0.188336 0.220601 0.595620 0.375019 0.950000 
40, 20 1 0.322006 0.092630 0.225161 0.140452 0.503560 0.363108 0.980000 
40, 25 1 0.365803 0.080635 0.180866 0.207758 0.523847 0.316089 0.950000 
40, 30 1 0.335572 0.078809 0.191962 0.181107 0.490037 0.308930 0.990000 
50, 25 1 0.448864 0.077859 0.139534 0.296260 0.601468 0.305208 0.960000 
50, 30 1 0.420924 0.064415 0.122822 0.294671 0.547176 0.252505 0.950000 
50, 35 1 0.469790 0.062875 0.101525 0.346555 0.593024 0.246469 0.940000 
60, 35 1 0.411541 0.053268 0.103181 0.307136 0.515946 0.208809 0.940000 
60, 40 1 0.326189 0.046967 0.110134 0.234134 0.418244 0.184110 0.950000 
60, 45 1 0.333336 0.035991 0.087729 0.262794 0.403879 0.141085 0.980000 
20, 10 2 0.387373 0.124545 0.226787 0.143265 0.631482 0.488217 0.970000 
20, 15 2 0.360833 0.105094 0.239976 0.154850 0.566817 0.411967 0.970000 
30, 15 2 0.465610 0.104133 0.167382 0.261510 0.669710 0.408200 0.920000 
30, 20 2 0.404602 0.101346 0.199987 0.205964 0.603241 0.397277 0.950000 
30, 25 2 0.402596 0.094031 0.194124 0.218295 0.586897 0.368602 0.970000 
40, 20 2 0.340660 0.093892 0.218835 0.156631 0.524689 0.368058 0.960000 
40, 25 2 0.447136 0.078380 0.134325 0.293511 0.600761 0.307250 0.930000 
40, 30 2 0.403542 0.077751 0.163517 0.251151 0.555934 0.304783 0.980000 
50, 25 2 0.450346 0.073391 0.134952 0.306500 0.594192 0.287693 0.960000 
50, 30 2 0.390654 0.061132 0.122158 0.270836 0.510473 0.239636 0.950000 
50, 35 2 0.416645 0.059222 0.115242 0.300570 0.532720 0.232150 0.960000 
60, 35 2 0.388899 0.050428 0.104176 0.290060 0.487738 0.197678 0.940000 
60, 40 2 0.341503 0.037570 0.081691 0.267867 0.415140 0.147273 0.950000 
60, 45 2 0.450346 0.030832 0.095481 0.195635 0.316495 0.120860 0.950000 

 
Table 6: MLEs with RMSEs, RABs of  𝜙 & LACIL, UACIL, ACIsL, CPs of ACIs with (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 = 0.8) 
(𝓃" , 𝑚") CS MLE RMSE RAB LACIL UACIL ACIsL CP 
20, 10 1 0.534378 0.248217 0.339334 0.047871 1.020884 0.973012 0.940000 
20, 15 1 0.628356 0.226171 0.291756 0.185060 1.071652 0.886592 0.970000 
30, 15 1 0.716714 0.218887 0.253214 0.287696 1.145733 0.858036 0.960000 
30, 20 1 0.568052 0.204952 0.291313 0.166346 0.969758 0.803412 0.950000 
30, 25 1 0.788660 0.188148 0.175430 0.419890 1.157431 0.737541 0.940000 
40, 20 1 0.567105 0.180587 0.266770 0.213155 0.921055 0.707900 0.970000 
40, 25 1 0.763205 0.171400 0.166184 0.427261 1.099149 0.671888 0.950000 
40, 30 1 0.677318 0.165821 0.198586 0.352309 1.002327 0.650018 0.950000 
50, 25 1 0.552460 0.158731 0.226367 0.241347 0.863573 0.622227 0.940000 
50, 30 1 0.541943 0.131083 0.189980 0.285021 0.798864 0.513844 0.970000 
50, 35 1 0.622779 0.130376 0.170692 0.367242 0.878316 0.511074 0.960000 
60, 35 1 0.603203 0.126617 0.150484 0.355034 0.851372 0.496338 0.970000 
60, 40 1 0.628403 0.101000 0.126772 0.430444 0.826363 0.395920 0.950000 
60, 45 1 0.578427 0.095940 0.128139 0.390385 0.766470 0.376086 0.960000 
20, 10 2 0.562503 0.261281 0.357193 0.050391 1.074614 1.024223 0.940000 
20, 15 2 0.661427 0.238075 0.307111 0.194800 1.128055 0.933255 0.950000 
30, 15 2 0.754436 0.230407 0.266541 0.302838 1.206034 0.903196 0.940000 
30, 20 2 0.597950 0.215739 0.306645 0.175101 1.020798 0.845697 0.960000 
30, 25 2 0.830169 0.198051 0.184663 0.441990 1.218348 0.776359 0.950000 
40, 20 2 0.596952 0.190091 0.280810 0.224373 0.969531 0.745158 0.940000 
40, 25 2 0.803374 0.180421 0.174930 0.449749 1.156999 0.707250 0.970000 
40, 30 2 0.712967 0.174548 0.209037 0.370852 1.055081 0.684230 0.970000 
50, 25 2 0.581537 0.167086 0.238281 0.254049 0.909024 0.654975 0.950000 
50, 30 2 0.519055 0.156485 0.257407 0.212344 0.825767 0.613423 0.940000 
50, 35 2 0.570466 0.137982 0.199979 0.300022 0.840910 0.540888 0.940000 
60, 35 2 0.655557 0.137238 0.179676 0.386571 0.924543 0.537972 0.960000 
60, 40 2 0.634950 0.133281 0.158404 0.373720 0.896181 0.522461 0.940000 
60, 45 2 0.661477 0.106316 0.133444 0.453098 0.869856 0.416758 0.940000 
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Figure 1: RMSEs and RABs of the estimates of 𝜓! with (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5) & (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 = 0.8)  

 

  
Figure 2: RMSEs and RABs of the estimates of 𝜗 with (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5) & (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 = 0.8)  

 

  
Figure 3: RMSEs and RABs of the estimates of 𝜙 with (𝜓! = 1.2, 𝜗 = 0.75, 𝜙 = 0.5) & (𝜓! = 1.5, 𝜗 = 0.5, 𝜙 = 0.8)  

 
It is evident from the results in tables 1-6 and Figures 1-3 that the results are consistent and 

that the estimates are quite closer to the real values of the parameters. The following observations 
can be made in general:  

1. In all situations, the RMSEs and RABs decrease as the values of 𝓃" and 𝑚" increase, which 
is to be expected because greater samples produce more accurate results. 

2. The lengths and CPs of 95% of ACIs are relatively precise in all situations, as shown in 
table 1-6. However, the ACIs are narrower for parameter setting 1 and removal scheme 2. 

3. With increasing values of 𝓃" and 𝑚", it can also be seen that the lengths of 95% percent 
ACIs are getting smaller and the CPs are getting larger. 

As an outcome of the above observations, it is reasonable to infer that the proposed model and 
estimation method in this paper performed well, and that all statistical assumptions for fitting the 
model and estimation are suitable. 

 
V. Conclusions 

 
In this paper, the CSALT model has been considered with k levels of constant stress. The 

observed TIIPC failure data was assumed to come from a GnP distribution. The distribution's 
shape parameter has been assumed to be independent of the stress, whereas the scale parameter 
was assumed to have a log linear relationship with the stress variable. Model parameters are 
estimated using the MLE approach, and their performance is evaluated using the corresponding 
RABs and MSEs. The performance of MLEs has been found to be satisfactory, as the estimated 
values approaching real values as the sample size increases. The ACIs have also been constructed 
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based on the asymptotic properties of the MLEs. The performance of ACIs was evaluated in terms 
of their corresponding CPs and ACIIL. An alternative lifetime distribution can be considered in the 
future research, and the corresponding inferences under various censoring methods can be 
developed using the BE technique. 
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