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Abstract 

 
Redundancy is an approach to improve the reliability system. There are three main models of redundancy. In a 
system with standby redundancy, there are number of components only one of which works at a time and the other 
remain as standbys. When an impact of stress exceeds the strength of the active component, for the first time, it 
fails and another from standbys, if there is any, is activated and faces the impact of stresses, not necessarily identical 
as faced by the preceding component and the system fails when all the components have failed. In This paper, we 
consider the problem of estimation the reliability of a multicomponent stress- strength system called N-M- cold -
standby redundancy. This system includes N- subsystem consisting of M- independent distributed strength 
components only one of which works under the impact of stress. The system fails when all the components have 
failed. Assuming the stress and strength random variables have the generalized linear failure rate distribution with 
common scale parameters and different shape parameter. The reliability estimated based on progressive type II 
data. Simulation study is used to compare the performance of the estimators. Finally, real data set is used the 
proposed model in practice. 
 
Keywords: N-M Standby Redundancy System; Progressive Type II Censoring; Generalized 
Linear Failure Rate Distribution (GLFRD); Multicomponent stress- strength (MSS); 
Simulation study; Bootstrap; Bayes estimator; Maximum Likelihood Method. 

 

I. Introduction 

Reliability is defined as the probability of not failing in an environment for a mission time. 
Reliability is a statistical probability and are no absolutes or guarantees. For stress and strength 
models, both the strength X  of the system and stress Y are random variables. The stress-strength 
model describes the life of a component which has a random strength X and is subjected to random 
stress Y.  The component fails at the instant that the stress applied to it exceeds the strength and the 
component will function satisfactory whenever Y < X. Thus R = P[Y < X] is a measure of component 
reliability. The idea of stress-strength model was presented by Birnbaum [1], for more reference see 
Kotz et al [2]. Recently it studied by Basirat et al [2], Asgharzadeh et al [4] and Hassan [5-6]. The 
stress- strength model is applied in many fields such as quality control, engineering, medicine, 
biostatistics and economics. Also, the reliability is considered in a multicomponent stress-strength 
model, which is introduced by Bhattacharyya and Johnson [7] and recently see Hassan and Alohali 
[8] Sriwastav and Kakati [9] are considered the stress-strength reliability of standby redundancy, 
that is, there are number of components only one of which works at a time and the other remains as 
standby.  
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When an impact of stress exceeds the strength of the active component, for the first time, it fails and 
another component from standby. The system is fails when all the components has failed. The 
standby redundancy systems have many applications such as military satellite, standby redundancy 
system can improve the lifetime of satellite. For stress-strength of standby redundancy system see 
Khan and Jan [10] ke et al [11], Gogoi et al [12 and Liu et al [13]. In This paper we consider the 
estimation of N-M- cold- standby redundancy system in a multicomponent stress-strength model 
based on generalized failure rate distribution (GLFRD). Sarhan and Kundu [14] introduced this 
distribution has the following pdf and cdf are given by 

 

f(x; a, b, α) = α	(a + b	x)	Exp 6−8ax +
b
2	x

!:;	(1 − Exp 6−8ax +
b
2	x

!:;)"#$	

	and		

F(x; ; a, b, α	) = 	 (1 − Exp 6−8ax +
b
2	x

!:;)"	

 
Where	x > 0, a,	b>0 are the scale parameters and α > 0 is the shape parameter.  

 

 

 
Figure (1): Different shapes of pdf of GLFRD  

 
This distribution used as a lifetime model because it has increasing, decreasing or bathtub shaped 
hazard rate function. Figure (1) show the pdf of GLFRD which may have no mode at all.  

 
II. METHODOLOGY 

 
Reliability is an important concept at the planning, designing, manufacturing, and operating stages 
operating stages of systems ranging from simple to complex. For multicomponent system to make 
it more reliable use redundant parts. Redundancy plays an important role in enhancing system 
reliability. One of the commonly used forms of the redundancy is standby redundancy system. We 
consider the standby redundancy system which consists of certain number of same subsystems with 
series structure. Suppose X%$……X%& , i = 1……N are M  independent strength random variables 
follow have GLFRD(a, b, α)  in ith subsystem. Let Z% = min	(X%$……X%&) , i = 1……N , then Z$……Z' 
is the set of N independent strength random variables. Let Y$……Y' be independent stress random 
variables follow have GLFRD(a, b, β). Then the reliability of the system is given by: 
 

R = R(1) +⋯+ R(N).                                        (1) 
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The marginal reliability R(i) of ith subsystem is 
 
R(i) = P[Z$ < Y$, …… , Z%#$ < Y%#$, Z% > Y%],																								i = 1……N.					

	
										= ∫ F%(y$)h$(y$)dy$……

(
) ∫ F%#$(y%#$)h%#$(y%#$)dy%#$ ∫ (1 − F%(y%))h%(y%)dy%.

(
)

(
)                       (2) 

 
Since Z%′s ≈ GLFRD(a, b, α) , then   
                                                                   

f%(z; a, b, α%) = α%	(a + b	z)	Exp 6−8az +
b
2	z

!:;	(1 − Exp 6− 8az +
b
2	z

!:;)"!#$	

 and  
F%(z; ; a, b, α%	) = 	 (1 − Exp U− Vaz +

*
!
	z!WX)"! 	,	i = 1……N.	

	
Since	Y%′s ≈ GLFRD(a, b, β)	,	then			
																																																																			

h%(y; a, b, β%) = β%	(a + b	y)	Exp 6−8ay +
b
2	y

!:;	(1 − Exp 6− 8ay +
b
2	y

!:;)+!#$	

	and  
H%(y; a, b, β%) = 	 (1 − Exp U−Vay +

*
!
	y!WX)+! 	,	i = 1……N.	

	
Hence, 

R(i) = +!
+!,"!

	∏ ""
"",+"

%#$
-.$ 																																																															(3)	

	
And the reliability system is  

 
R = +#

+#,"#
+∑ +!

+!,"!
	∏ ""

"",+"
%#$
-.$

'
%.! 										                                (4) 

 
I. Point Estimators of Standby Redundancy System in a MSS Model with GLFRD 
Based on Progressive Type II Censoring Sample: 
 
 we will derive the different point estimator for R  based on progressive type II censored sample. 

First, we will introduce a brief description for this date type. It is very useful in lifetime studies. It 
saves cost and time, because it allows to cancel surviving units during the experiment time. In this 
progressive censoring scheme, let we want to study n  units but m failures are completely observed. 
At the first failure time Z$:0:1	, S$ of surviving units are randomly selected and removed from 
remaining n − 1 units, in the second failure time Z!:0:1 observed, S! of the surviving units are 
randomly selected and removed from n − 2 − S$, finally at the mth  failure time, when mth failure Z0:0:1 
observed all the S0 surviving units are removed. This approach getting the censored sample of size m 
is called progressive type II censored sample with censoring scheme S$, … , S0 for more details see 
Balakrishnan and Aggarwala [15], Balakrishnan [16], and Krishna and Kumar [17]. 

 
 1. Maximum Likelihood Estimator of R 

To get the maximum likelihood estimator of R, Let the progressive type II censored     sample  
Z$:1!:'!.…Z1!:1!:'! of  Z% random variables with censoring scheme {n%, N%, r%$…r%1!} and similar 
Y$:0!:&!.…Y0!:0!:&! of Y% random variables with censoring scheme {m%, M%, r̀%$… r̀%0!}. To simplify our 
symbols, we replace Z$:1!:'!.…Z1!:1!:'! 	 by Z$:1!.…Z1!:1!  and replace Y$:0!:&!.…Y0!:0!:&!  by Y$:0!.…Y0!:0!. 
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Let Z%- and Y%4, i = 1…N, j = 1…n% and l = 1…m% are independent random variables having 
GLFRD(a, b, α%)  and GLFRD(a, b, β%) respectively.  

The Likelihood function of Z%- and Y%4 is 

L(α%, β%) =dfez%$…z%1!f	h(y%$…y%0!)
'

%.$

 

Where, 

																	𝑓e𝑧5$…𝑧56$f = 𝐶5	𝛼5
6$ 		𝐸𝑥𝑝(−	𝑇5(𝑎, 𝑏) + 𝑆5(𝑎, 𝑏) + (𝛼5 − 1)	𝑄5(𝑎, 𝑏) + ∑ 𝑟57𝐿𝑛(1 − 𝐴57

8$(𝑎, 𝑏))6$
7.$ )	,	

ℎe𝑦5$…𝑦59$f = 𝐶y5	𝛽5
9$ 		𝐸𝑥𝑝(−	𝑇y5(𝑎, 𝑏) + 𝑆{5(𝑎, 𝑏) + (𝛽5 − 1)	𝑄y 5(𝑎, 𝑏) +|�̀�5:𝐿𝑛(1 − 𝐴y 5:

;(𝑎, 𝑏))
9$

:.$

)	

where,	

𝐶5 = 𝑁5 	(𝑁5 − 1 − 𝑟5$)… . (𝑁5 − 𝑛5 + 1 − ∑ 𝑟57
6$#$
7.$ ),	

𝐶y5 = 𝑀5 	(𝑀5 − 1 − �̀�5$)… . (𝑀5 −𝑚5 + 1 − ∑ �̀�5:
9$#$
:.$ ),	

𝑇5(𝑎, 𝑏) = ∑ (𝑎	𝑧57 + 𝑏	𝑧57! )
6$
7.$ ,			𝑇y5(𝑎, 𝑏) = ∑ (𝑎	𝑦5: + 𝑏	𝑦5:!)

9$
:.$ 	

𝑆5(𝑎, 𝑏) = ∑ 𝐿𝑛(𝑎 + 𝑏	𝑧57)
6$
7.$ ,		𝑆y5(𝑎, 𝑏) = ∑ 𝐿𝑛(𝑎 + 𝑏	𝑦5:)

9$
:.$ 	

𝑄5(𝑎, 𝑏) = ∑ 𝐿𝑛(𝐴57(𝑎, 𝑏))
6$
7.$ 	,	𝑄y 5(𝑎, 𝑏) = ∑ 𝐿𝑛(𝐴y 5:(𝑎, 𝑏))

9$
:.$ 	

𝐴57(𝑎, 𝑏) = 1 − 𝑒𝑥𝑝	(−	V𝑎	𝑧57 +
<
!
	𝑧57! W),	and		𝐴y5:(𝑎, 𝑏) = 1 − 𝑒𝑥𝑝	(−	V𝑎	𝑦5: +

<
!
	𝑦5:!W).	

Then, the log-likelihood function is given by 

Ln	eL(α%, β%)f = Ln(k) +|n% ln(α%) −| T%(a, b)
'

%.$
+|S%(a, b)

'

%.$

'

%.$

	

+∑ (α% − 1)	Q%(a, b)'
%.$ + ∑ ∑ r%-Ln(1 − A%-

"!(a, b))1!
-.$

'
%.$ +	

+|m% ln(β%) −| Ty %(a, b)
'

%.$
+|Sy %(a, b)

'

%.$

+
'

%.$

	

∑ (β% − 1)		Qy %(a, b)'
%.$ +∑ ∑ r̀%4Ln(1 − Ay %4

+!(a, b))0!
4.$

'
%.$   

If shape parameters a	and	b  are known, then the maximum likelihood estimators of α% and β% are 
the solution of the following nonlinear equations 

1!
"!
+ Q%(a, b) − ∑ r%- �

=!"	
&!(?,*)B1C=!"(?,*)D

$#=!"	
&!(?,*)

� = 01!
-.$ 																																																																																										(5)	

0!
+!
+ Qy %(a, b) − ∑ r̀%4 �

=E !'	
(!(?,*)B1C=)'E (?,*)D

$#=E !'	
(!(?,*)

� = 00!
4.$ 																																																																																												(6)	

 using numerical nonlinear maximization techniques are α�% and β�% then the maximum likelihood 
estimator of R is getting using the invariance property as  

 																																		𝑅FGH =
;I#

;I#,8J#
+ ∑ ;I$

;I$,8J$
	∏ 8J*

8J*,;I*
5#$
7.$

K
5.! 																																																																																										(7)	
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 2. Bayes estimator of R 

           To get the Bayes estimator of R, suppose that the prior distributions for 

      α% ≈ Gamma	(t%$, s%$) and β% ≈ Gamma	(t%!, s%!), then the Bayes estimator of R under   squared 
error loss function is defined by  

RL?MNO = E[R(α%, β%|data)] 

																																																							= � � R(α%, β%)π(α%, β%|data)
(

)

(

)
	dα%	d	β% 

Where,   

π(α%, β%|data) = W	L(α%, β%|data)	π(α%)	π(β%)	;	

W#$ = ∫ ∫ L(α%, β%|data)	π(α%)	π(β%)	dα%	d	β%
(
)

(
) ;	

π(α%) =
O!#
+!#

P(Q!#)
	α%
Q!##$e#	O!#	"! ,		π(β%) =

O!,
+!,

P(Q!,)
	α%
Q!,#$e#	O!,	+! .	

But this integral is difficult to calculate, we will use the Lindley approximation which introduced 
by Lindley [18] more details see Ahmed et al [19]. Then the Bayes estimator of R using the Lindley 
approximation is defined as  

RL?MNO = R + $
!
∑ ∑ eR%- + 2	R%	ρ-fσ%- +

$
!
∑ ∑ ∑ ∑ L%-RR%	σ%-	σR4

S
4.$

S
R.$

S
-.$

S
%.$

S
-.$

S
%.$                              (8) 

Where all calculations are computed at by α�% and β� %. Let Θ = (θ$, θ!) = (α%, β%), ρ(Θ) is the log of 
joint prior of Θ, then  

R% =
TU
TV!
,		ρ% =

TW
TV!
		,		i = 1,2.	

R%- =
T,U

TV! TV"
	,	i, j = 1,2.	

L%-R =
T-BXY(B)

TV! 	TV"	 TV.
	,	i, j, k = 1,2 

and σ%- are the elements of the Fisher information matrix of Θ. 

II. Interval Estimation of Standby Redundancy System in a MSS Model with  
GLFRD Based on Progressive Type II Censoring Sample: 

 
we consider the interval estimation of R. Construct the asymptotic confidence interval (ACI) and 
bootstrap confidence interval (BCI) of R. 
 
1. Bootstrap confidence interval of 𝑅 (Boot-P Method). 

 
Eforn [20] suggested confidence interval based on nonparametric bootstrap method called Boot-
P. as follows: 
1. Generate the progressive type II censored data Z$:1!.…Z1!:1! for given parameters a, b, α% of 
GLFRD. 
2. Generate the progressive type II censored data Y$:0!.…Y0!:0! for given parameters a, b, β% of 
GLFRD. 
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3. Compute the maximum likelihood estimators of α%, β% and R according to equation (5). 
4. Based on pre-specified progressive censoring schemes {r%$…r%1!} and {r̀%$… r̀%0!} to generate 
type II progressive censoring samples Z∗$:1!.…Z

∗
1!:1! and Y∗$:0!.…Y

∗
0!:0! from GLFRD(a, b, α%∗) 

and GLFRD(a, b, β%∗) respectively. 
5. Find the maximum likelihood estimators of α%∗, β%∗ and R∗. 
6. Repeat step 3 and 4 B-times. 
7. Sort R%∗ , i = 1…B in ascending order R($)∗ …R(L)∗ . 
8. Compute the approximate (1 − α)% Boot-P confidence interval of R as 

(R�LXXQ#S("/!), R�LXXQ#S($#"/!)	) where α = 0.05 and R�LXXQ#S is the cumulative distribution of R(%)∗  
i = 1…B. 

 
2. Asymptotic confidence interval (ACI) of R 

 
To obtain the asymptotic confidence interval of R, we must get the asymptotic distribution of R 
because the exact distribution of R does not exist. First, derive the asymptotic distribution of α%, β%, 
i = 1…N. Then obtain the asymptotic distribution of  R. To derive the asymptotic distribution, 
compute the Fisher information matrix of (α$…α', β$…β') as 

I(α$…α', β$…β') = �
I$,$ ⋯ I$,!'
⋮ ⋱ ⋮

I!',$ ⋯ I!',!'
�		

	

= −

⎣
⎢
⎢
⎢
⎢
⎡E(

∂!Log(L)
∂α$!

) ⋯ E(
∂!Log(L)
∂α$ ∂β'

)

⋮ ⋱ ⋮

E(
∂!Log(L)
∂α' ∂β$

) ⋯ E(
∂!Log(L)
∂β'!

)
⎦
⎥
⎥
⎥
⎥
⎤

	

	

Where,	

E 8T
,BXY(B)
T"!

, : = − 1!
"!
, + P%,						P% = NE©∑ r%- ©

=!"	
&!(?,*)B1C=!"(?,*)D

,

($#=!"	
&!(?,*)),

ª1!
-.$ ª,		i = 1…N.	

E 8T
,BXY(B)
T+!

, : = −0!
+!
, + P\%;		P\% = NE(α∑ r̀%4 �

=E !'	
(!(?,*)B1C=)'E (?,*)D

,

($#=E !'	
(!(?,*)),

�)0!
4.$ ,	i = 1…N.	

E 8T
,BXY(B)
T"! T+"

: = E8T
,BXY(B)
T"! T""

: = E 8T
,BXY(B)
T+! T+"

: = 0,i ≠ j, i, j = 1…N.	

	

Theorem:	n% → ∞	and	m% → ∞,	i = 1…N,	then	(Θ� − Θ)≈ N(0, I#$).		Where,	Θ� = eα�$…α�', β�$…β�'f	
and	Θ = (α$…α', β$…β').	

Proof: See, Ferguson[21]. 

The asymptotic distribution of  R&B]	 according to Delta method see Rao [22] and Wasserman 
[23]  is (R&B] − R)~N	(0, H^	I#$H), 

	where	 

H^ = 8
∂	R
∂	α$

…	
∂	R
∂	α'

,
∂	R
∂	β$

…	
∂	R
∂	β'

: 
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𝑎𝑛𝑑,	 

∂	R
∂α%

=
−	β$

(α$ + β$)!
+|((

−	β%
(α% + β%)!

	d
α-

(α- + β-)

%#$

-.$

)
'

%.!

+ (
β%

(α% + β%)
d

β-
(α- + β-)!

%#$

-.$

) 

∂	R
∂β%

=
α$

(α$ + β$)!
+|((

α%
(α% + β%)!

	d
α-

(α- + β-)

%#$

-.$

)
'

%.!

+ (
β%

(α% + β%)
d

−α-
(α- + β-)!

%#$

-.$

) 

Hence, an asymptotic 100(1-α)% confidence interval of  R 

(R&B] − Z" !_ 	°Var(R&B]), R&B] + Z" !_ 	°Var(R&B])) 

Where Z"
!_ 	 the upper "

!
th quantile of standard normal distribution and Var(R&B]) is the variance 

at the maximum likelihood estimator. 

III. Results & Discussion 

Monte-Carlo simulation study is present for 1-2- cold standby redundancy system to compare the 
performance of different point estimators using biases, mean square error and relative efficiency. 
Also, the comparison of different confidence intervals is made using the average length (ACL) 
and converge probability (CP). We use different parameters and different censoring schemes. For 
Bayes estimator three prior as follows 
 

Prior 1        (non- informative gamma prior) 

Prior 2        (informative gamma prior) 

Prior 3       (informative gamma prior) 
 

We use three censoring schemes as  
 

    

    

  All take the same number 

  
For the population parameters, we assume , . Also, the censoring 

schemes of  are the same i.e. , 

. Biases, MSE’s and relative efficiency of two-point estimators are 

computed. For interval estimation, average converge length (A.C.L) and converge probability 
(Cp) are computed. To perform the simulation study, we use the following algorithm: 
1. Use different value (a, b, α$, α!, β$, β!)= (0.5,1,1,1,1,1), (1,2,1,2,2,3) and (2,1,3,2,1.5,2.5). 
2. Use the following three censoring schemes (CS)  

r$ = (0,0,0,020,0,0,0,0,0, ) 

	r! = (20,0,0,0,0,0,0,0,0,0) 

r` = (2,2,2,2,2,2,2,2,2,2) 

3. For a, b use the numerical method to solve equation 5 and 6 to get the maximum likelihood 
estimators for (α$, α!, β$, β!).  
4. Use equation 7 to calculate the maximum likelihood estimator of R. 

0is = 0it = 1,2i =
1is = 2it = 1,2i =
2is = 3it = 1,2i =

1r (0,0,..., )M m-

2r ( ,0,...,0)M m-

3r

1 2a a a= = 1 2b b b= =

1 2 1 2, , ,Z Z Y Y 1 2 1 2 10n n m m m= = = = =

1 2 1 2 30N N M M M= = = = =
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5. Use equation 8 to calculate the Bayes estimator of R as  

RL?MNO = R&B] +
1
2 [
(R$$ + 2	R$	ρ$)σ$$ + (R!! + 2	R!	ρ!)σ!! + (R`` + 2	R`	ρ`)σ`` + 

(Raa + 2	Ra	ρa)σaa] +
1
2 [L$$$	R$σ$$σ$$ + L!!!	R!σ!!σ!! + L```	R`σ``σ`` + 

Laaa	Raσaaσaa] 

Where, 

R$ =
TU
T"#

= #	+#
("#,+#),

,		R! =
#+#

("#,+#),
− +,	"#

("#,+#)(",,+,),
+ +#	+,

(",,+,)("#,+#),
	,			R` =

"#
("#,+#),

,	

Ra =
"#

("#,+#),
+ ",	"#

("#,+#)(",,+,),
− "#	+,

(",,+,)("#,+#),
,					R$$ =

T,U
T"#,

= !		+#
("#,+#)-

,	

R!! =
T,U
T",,

= #	+,(#!	"#,#!	"#	+#,+#(",,+,))
("#,+#),(",,+,)-

,	R`` =
T,U
T+#,

= #!		"#
("#,+#)-

,	Raa =
T,U
T+,,

= #	"#",	(!	"#,",,!	+#,+,)
("#,+#),(",,+,)-

,	

ρ$ =
TW
T"#

= Q###$
"#

− s$$,	ρ! =
TW
T",

= Q,##$
",

− s!$,	ρ` =
TW
T+#

= Q#,#$
+#

− s$!,	ρa =
TW
T+,

= Q,,#$
+,

− s!!,	

L$$$ =
T-BXY	B
T"#-

= !	1#
"#-

+∑
=!"
&#(?,*)b$,=!"

&#(?,*)cBXY[=%-(?,*)]
-

(=!"
&#(?,*)#$)-

1#
-.$ ,	

L!!! =
T-BXY	B
T",-

= !	1,
",-

+∑
=!"
&,(?,*)b$,=!"

&,(?,*)cBXY[=%-(?,*)]
-

(=!"
&,(?,*)#$)-

1,
-.$ ,	

L``` =
T-BXY	B
T+#-

= !	0#
+#-

+∑
=E !'
(#(?,*)f$,=E !'
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6.  Calculate bias, mean square error and relative efficiency as B = E[R� − R], MSE = E[R� − R]! and 

RE = &h](U/0123)
&h](U456)

. If  RE > 1, then the maximum likelihood estimator of R is more efficient than the 

Bayes estimator and if RE < 1, then the Bayes estimator is more efficient than the maximum 
likelihood estimator. 
7. Calculate the BCI and ACI use section 4.1 and section 4.2 respectively. Also calculate ACL and 
CP to compare between two interval estimations. 

Note that the results of simulation study based on 1000 replications. The results of point estimators 
show in Table (1), we observe the biases of Bayes estimator for three priors are less than the biases 
of maximum likelihood estimator but for the biases of three priors, we get the biases of the third 
prior is smallest. Table (2) shows mean square errors and relative efficiency, The Bayes estimator 
may be the best for some cases and the maximum likelihood estimator may be the best for another 
cases. Table (3) shows interval estimation, we get ACL for asymptotic confidence interval is less 
than its counterpart for bootstrap confidence interval and for CP, we get it is for ACI are closer to 
nominal value for BCI counterparts. So, we can decide the confidence interval is more efficient 
than the bootstrap confidence interval.  
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IV. Application 
 
In this section, we show the implementation of point and interval estimation procedure proposed 
in this paper. We use a real data sets from Lawless [24]. The data sets represent failure time in 
minutes. For two types of electrical insulation in an experiment in which insulation is subjected to 
a continuously increasing voltage stress. Twelve electrical insulations of each type are tested and 
recorded. The failure time of the first type (z) are 21.8-70.7-24.4-138.6-151.9-75.3-12.3-95.5-98.1-43.2-
28.6-16.9 and the failure times of the second type (Y) are 219.3-79.4-86.0-150.2-21.7-18.5-121.9-40.5-
147.1-35.1-42.3-48.7. First, we must check wither the GLFRD fit to the data (Z, Y) or not. For this 
check, we use the Kolmogorov–Smirnov test (K-S).   
 
The results show in Table (4) as. So, at significant level 0.05 cannot reject that the hypothesis that 
the data are coming from GLFRD.  We check graphically the adequacy of the GLFRD to the real 
data. The probability plot in Figure 2 and Figure 3 shows an excellent goodness of fit of GLFRD. 
Also, Now, consider 1-2-cold-standby redundancy system consisting of the first electrical 
insulation and system consisting of a single second type electrical insulation. The maximum 
likelihood estimator, Bayes estimator and asymptotic confidence interval are computed for the 
probability R of 1-2-cold-stand by redundancy system consisting of the first type electrical 
insulation with longer life for different censored schemes and the results show in Table (5). 

 

V. Conclusions 

In this paper, we consider the multicomponent system of reliability called N-M-cold- standby 
redundancy system. Where the distributions for stress and strength variables are GLFRD with 
different shape parameter, Sarhan et al [25] studied the statistical properties of this distribution 
and find many physical interpretations. The reliability system is estimated by maximum likelihood 
method, Bayes estimator and the ACI and BIC are computed.  
 
All estimators calculated under progressive type-II censoring data. Simulation study is performed. 
It is showed that the bias of Bayes estimator is less than the bias of maximum likelihood estimator. 
The MSE and RE showed that the MLE may be more efficient for some cases and Bayes estimator 
is more efficient for another cases. In the context of interval estimation, the comparison between 
ACI and BCI is made. Finally, we discuss the real data set represents failure time in minutes to 
illustrate the implementation of point and interval estimation procedures which proposed in this 
paper. 
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Figure (2): Graphical goodness-of-fit on the failure time of the first type. 
 
 
 

 
 

Figure (3): Graphical goodness-of-fit on the failure time of the Second type. 
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Table 1: The Maximum likelihood and Bayes estimators of R and its biases  

𝐚 = 𝟎. 𝟓, 𝐛 = 𝟏, 	𝛂𝟏 = 𝟏, 𝛂𝟐 = 𝟏, 	𝛃𝟏 = 𝟏, 	𝛃𝟐 = 𝟏 

CS (𝛂-𝟏, 𝛂-𝟐, 𝛃.𝟏, 𝛃.𝟐)  MLE Prior (1) Prior (2) Prior (3) 

𝐑𝐭𝐫𝐮𝐞 𝐑𝐌𝐋𝐄 Bias 𝐑𝐁𝐚𝐲𝐞𝐬 Bias 𝐑𝐁𝐚𝐲𝐞𝐬 Bias 𝐑𝐁𝐚𝐲𝐞𝐬 Bias 

(𝐫𝟏, 𝐫𝟏) (0.4,0.4,0.5,0.5) 0.75 0.8024 0.0262 0.7933 0.0216 0.7643 0.0071 0.7029 -0.0235 

(𝐫𝟏, 𝐫𝟐) (0.44,0.44,0.36,0.36) 0.6975 -0.0262 0.7494 -0.0002 0.7205 -0.0147 0.6590 -0.0454 

(𝐫𝟏, 𝐫𝟑) (0.38,0.38,0.41,0.41) 0.7686 0.0093 0.7085 -0.0207 0.6870 -0.0314 0.6486 -0.0506 

(𝐫𝟐, 𝐫𝟐) (0.5,0.5,0.55,0.55) 0.7732 0.0116 0.7853 0.0167 0.7803 0.0151 0.7685 0.0092 

(𝐫𝟐, 𝐫𝟑) (0.37,0.37,0.47,0.47) 0.8059 0.0279 0.7248 -0.0125 0.6759 -0.0370 0.5836 -0.0831 

(𝐫𝟑, 𝐫𝟑) (0.41,0.41,0.42,0.42) 0.7559 0.0029 0.7354 -0.0072 0.7303 -0.0098 0.7206 -0.0145 

𝐚 = 𝟏, 𝐛 = 𝟐, 	𝛂𝟏 = 𝟏, 	𝛂𝟐 = 𝟐, 𝛃𝟏 = 𝟐, 	𝛃𝟐 = 𝟑 

(𝐫𝟏, 𝐫𝟏) (0.35,0.33,0.37,0.54) 0.817 0.8445 0.0137 0.6104 -0.1032 0.5452 -0.1358 0.4328 -0.1920 

(𝐫𝟏, 𝐫𝟐) (0.36,0.39,0.39,0.46) 0.8136 -0.0016 0.7374 -0.0397 0.7065 -0.0552 0.6509 -0.0830 

(𝐫𝟏, 𝐫𝟑) (0.359,0.33,0.35,0.44) 0.8212 0.0021 0.6607 -0.0781 0.6378 -0.0895 0.6025 -0.1072 

(𝐫𝟐, 𝐫𝟐) (0.35,0.38,0.35,0.48) 0.8503 0.0166 0.6322 -0.0923 0.5784 -0.1192 0.4884 -0.1642 

(𝐫𝟐, 𝐫𝟑) (0.384,0.326,0.31,0.47) 0.7983 -0.0093 0.9302 0.0566 0.9420 0.0625 0.9563 0.0696 

(𝐫𝟑, 𝐫𝟑) (0.385,0.371,0.383,0.492) 0.8200 0.0015 0.7695 -0.0237 0.7455 -0.0357 0.7007 -0.0581 

𝐚 = 𝟐, 𝐛 = 𝟏, 	𝛂𝟏 = 𝟑, 𝛂𝟐 = 𝟐, 		𝛃𝟏 = 𝟏. 𝟓, 	𝛃𝟐 = 𝟐. 𝟓 

(𝐫𝟏, 𝐫𝟏) (0.36,0.387,0.376,0.319) 0.809 0.6467 -0.0811 0.8562 0.0236 0.8972 0.0441 0.9581 0.0746 

(𝐫𝟏, 𝐫𝟐) (0.309,0.338,0.339,0.355) 0.7085 -0.0502 02894 -0.2598 0.2239 -0.2925 0.1245 -0.3422 

(𝐫𝟏, 𝐫𝟑) (0.356,0.394,0.363,0.375) 0.8094 0.0002 0.7853 -0.0118 0.7845 -0.0122 0.7830 -0.0129 

(𝐫𝟐, 𝐫𝟐) (0.332,0.385,0.335,0.363) 0.8981 0.0445 0.9229 0.0569 0.9527 0.0718 0.9993 0.0951 

(𝐫𝟐, 𝐫𝟑) (0.330,0.393,0.391,0.332) 0.8357 0.0133 0.7894 -0.0097 0.7812 -0.0138 0.7643 -0.0223 

(𝐫𝟑, 𝐫𝟑) (0.320,0.356,0.362,0.336) 0.7033 0.0528 0.5245 -0.1422 0.4965 -0.1562 0.4572 -0.1788 
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Table 2: MSE for The Maximum likelihood and Bayes estimators of R and RE 

CS MSE RE 
MLE Bayes 

Prior (1) Prior (2) Prior (3) RE1 RE2 RE3 
𝒂 = 𝟎. 𝟓, 𝒃 = 𝟏, 	𝜶𝟏 = 𝟏,𝜶𝟐 = 𝟏, 	𝜷𝟏 = 𝟏, 	𝜷𝟐 = 𝟏 

(𝒓𝟏, 𝒓𝟏) 0.0006 0.0004 0.0001 0.0005 0.6666 0.1666 0.8333 
(𝒓𝟏, 𝒓𝟐) 0.0006 0.0005 0.0002 0.0020 0.8333 0.3333 3.333 
(𝒓𝟏, 𝒓𝟑) 0.0001 0.0004 0.0009 0.0025 4 9 25 
(𝒓𝟐, 𝒓𝟐) 0.0001 0.0002 0.0002 0.0001 2 2 1 
(𝒓𝟐, 𝒓𝟑) 0.0007 0.0001 0.0013 0.0069 0.1428 1.85 9.8 
(𝒓𝟑, 𝒓𝟑) 0.0001 0.00005 0.00009 0.0002 5 9 2 

𝒂 = 𝟏, 𝒃 = 𝟐, 	𝜶𝟏 = 𝟏, 	𝜶𝟐 = 𝟐,𝜷𝟏 = 𝟐, 	𝜷𝟐 = 𝟑 
(𝒓𝟏, 𝒓𝟏) 0.0001 0.0106 0.0184 0.0368 106 184 368 
(𝒓𝟏, 𝒓𝟐) 0.0002 0.0015 0.0030 0.0068 7.5 15 34 
(𝒓𝟏, 𝒓𝟑) 0.0004 0.0061 0.0080 0.0115 15.25 20 28.75 
(𝒓𝟐, 𝒓𝟐) 0.0002 0.0085 0.0142 0.0269 42.5 71 14.5 
(𝒓𝟐, 𝒓𝟑) 0.0001 0.0032 0.0039 0.0048 32 39 40 
(𝒓𝟑, 𝒓𝟑) 0.0003 0.0005 0.0012 0.0033 1.6 4 71 

𝒂 = 𝟐, 𝒃 = 𝟏, 	𝜶𝟏 = 𝟑, 𝜶𝟐 = 𝟐, 		𝜷𝟏 = 𝟏. 𝟓, 	𝜷𝟐 = 𝟐. 𝟓 
(𝒓𝟏, 𝒓𝟏) 0.0065 0.0005 0.0019 0.0055 0.07 0.29 0.84 
(𝒓𝟏, 𝒓𝟐) 0.0025 0.0674 0.0855 0.1171 26.9 34.2 46.84 
(𝒓𝟏, 𝒓𝟑) 0.0001 0.0001 0.0001 0.0001 1 1 1 
(𝒓𝟐, 𝒓𝟐) 0.0019 0.0032 0.0051 0.0090 1.6 2.6 4.7 
(𝒓𝟐, 𝒓𝟑) 0.0001 0.0001 0.0002 0.0004 1 2 4 
(𝒓𝟑, 𝒓𝟑) 0.0027 0.0202 0.0244 0.0319 7.4 8.8 11.8 

Table 3: Results of interval estimation 

CS ACI BCI 
ACL CP ACL CP 

𝒂 = 𝟎. 𝟓, 𝒃 = 𝟏, 	𝜶𝟏 = 𝟏,𝜶𝟐 = 𝟏, 	𝜷𝟏 = 𝟏, 	𝜷𝟐 = 𝟏 
(𝒓𝟏, 𝒓𝟏) 0.1170 0.9661 0.3344 0.9052 
(𝒓𝟏, 𝒓𝟐) 0.1344 0.9579 0.4498 0.8640 
(𝒓𝟏, 𝒓𝟑) 0.1178 0.9650 0.3581 0.8965 
(𝒓𝟐, 𝒓𝟐) 0.1449 0.9571 0.3840 0.8876 
(𝒓𝟐, 𝒓𝟑) 0.1104 0.9681 0.3246 0.9076 
(𝒓𝟑, 𝒓𝟑) 0.1244 0.9626 0.3820 0.8903 
𝒂 = 𝟏, 𝒃 = 𝟐, 	𝜶𝟏 = 𝟏, 	𝜶𝟐 = 𝟐,𝜷𝟏 = 𝟐, 	𝜷𝟐 = 𝟑 

(𝒓𝟏, 𝒓𝟏) 0.0838 0.9765 0.3376 0.9047 
(𝒓𝟏, 𝒓𝟐) 0.0980 0.9719 0.3536 0.8991 
(𝒓𝟏, 𝒓𝟑) 0.0921 0.9737 0.3593 0.8977 
(𝒓𝟐, 𝒓𝟐) 0.0756 0.9789 0.3739 0.8899 
(𝒓𝟐, 𝒓𝟑) 0.1077 09687 0.4609 0.8637 
(𝒓𝟑, 𝒓𝟑) 0.1007 0.9712 0.3835 0.8898 

𝒂 = 𝟐, 𝒃 = 𝟏, 	𝜶𝟏 = 𝟑, 𝜶𝟐 = 𝟐, 		𝜷𝟏 = 𝟏. 𝟓, 	𝜷𝟐 = 𝟐. 𝟓 
(𝒓𝟏, 𝒓𝟏) 0.1290 0.9582 0.3500 0.8931 
(𝒓𝟏, 𝒓𝟐) 0.1216 0.9622 0.3185 0.9024 
(𝒓𝟏, 𝒓𝟑) 0.1103 0.9682 0.3687 0.8695 
(𝒓𝟐, 𝒓𝟐) 0.1051 0.9719 0.4323 0.8695 
(𝒓𝟐, 𝒓𝟑) 0.1007 0.9716 0.3261 0.9022 
(𝒓𝟑, 𝒓𝟑) 0.1186 0.9630 0.2747 0.9175 
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Table 4: (K-S) Test 
Data Set Test Statistic P-Value 

Z 1 0.607 
Y 5 0.082 

 

Table 5: Results of application 

CS MLE Bayes Estimator ACI 
Prior (1) Prior (2) Prior (3) 

(𝒓𝟏, 𝒓𝟏) 0.7420 0.8605 0.9394 0.9999 (0.7416,0.7709) 
(𝒓𝟏, 𝒓𝟐) 0.9666 0.1302 0.2895 0.3820 (0.8516,1) 
(𝒓𝟏, 𝒓𝟑) 0.9617 0.3648 0.1186 0.0523 (0.9579,0.9654) 
(𝒓𝟐, 𝒓𝟐) 0.9019 0.9922 0.7092 0.6240 (0.8935,0.9103) 
(𝒓𝟐, 𝒓𝟑) 0.9707 0.8009 0.8127 0.8245 (0.7511,1) 
(𝒓𝟑, 𝒓𝟑) 0.7510 0.7804 0.7366 0.7178 (0.7494,0.7539) 
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