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Abstract

We present a short overview of developments of the last decade in asymptotic analysis of extrema of
families of random variables. We focus on the methods of investigating the quality of approximations
as given by Gnedenko’s extreme value theorem, and its generalizations to the case of dependent random
variables.
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I. Introduction

Let us consider a sequence X1, ..., Xn, ... of independent identically distributed random variables
with the cumulative distribution function F(x). Let us furthermore assume that there exists
sequences of real numbers an > 0 and bn such that the limit of the distribution functions of the
sequence

max(X1, ..., Xn)− bn

an

as n→ ∞ is non-degenerate, so that

lim
n→∞

Fn(anx + bn) = G(x), (1)

where the distribution function G(x) takes more than two values. The maximum of random data
is one of the key statistics in various applications, and so various possible forms of the function
G(x) were established early on in the 20s of the previous century, see [1]. But it was only in 1941
when Gnedenko, in a short note [2], published a rigorous mathematical statement describing all
possible types of the distribution function G(x), where the type of a distribution function G(x) is
understood to be a class of distributions obtained from G(x) by shifting and scaling its argument.
Let us state this result in modern notation.

*The work of I. V. Rodionov in section 3 was performed at the Steklov Mathematical Institute of Russian Academy of
Sciences with the support of the Russian Science Foundation (grant 19-11-00290)
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Theorem 1. If (1) holds for some non-degenerate G, then there exist a > 0 and b such that G(ax + b) =
Gγ(x), where

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, (2)

the class of extreme value distributions with γ real, and for γ = 0 the exponent on the right is interpreted
as exp(−e−x).

When γ > 0 this is the Frechet class, when γ < 0 this is the Weibull class, and for γ = 0 this
is the Gumbel class, or, in this case, the standard Gumbel distribution.

The full proof of the theorem was published in 1943, [3] not in the Soviet Union for obvious
reasons, but in Annals of Mathematics, in French. The English translation appeared in 1992 in a
book Breakthroughs in Statistics published by Springer.

The importance of this work goes far beyond its use in the domain of applied probability
theory and statistics. In our view, this is one of the cornerstones of the modern mathematical
apparatus of the theory of probability. Every year since the result was discovered 80 years ago,
a large number of papers that further develop mathematical methods in this area come out. It
would not be an exaggeration to draw strong parallels with the central limit theorem which also
came out of the needs of applications but since influenced the development of core mathematical
methodologies of the whole of probability theory.

This short overview of the mathematical methods for asymptotic analysis of extrema of
families of random variables is dedicated to the latest developments in this area, primarily
covering the last decade, since the 100th birthday of Gnedenko that was widely celebrated
by the mathematical community. We focus our attention on the areas that can be called a
classical extension of the theory. Specifically we look into the quality of approximations given
by Gnedenko’s theorem, Theorem 1, and generalizations of the limit relation (2) to the case of
dependent Xi that form a stochastic sequence or a random field on an integer lattice. There also
exist various other generalizations of the original problem statement for limit distributions of
maxima. This area of research mostly focuses on distributions of maxima of random processes
and random fields in continuous time, extrema of vector sequences, and even functional limit
theorems with follow-up analysis of the so-called max-stable stochastic processes. In short, here
the focus is on limit distributions of maxima of random variables over various probabilistic
structures. Among the latest on these topics the following are worth mentioning: [4] on the
distribution of the maximum of a random number of random vectors, and [5], [6], [7] on max-
stable processes and fields, as well as vector-valued random processes. All these papers have
extensive literature reviews. From a somewhat different angle, considering triangular arrays,
rather than sequences, of identically distributed random variables expands not only the class of
possible limit distributions of normalized maxima, [8], [9], but also a class of distributions for
which the limit distribution of the normalized maxima is non-degenerate, [11], [10]. There also
exist results on the limit distribution of the maxima of stochastic sequences under non-linear
normalization [12]. Lebedev in [13], [14] considers the problems of limit distributions of maxima
of the particle scores in branching processes; the bibliography in these papers should also be
perused. The author moves away from the classical conditions of the Gnedenko limit theorem,
which is a substantial development of the theory of Lamperti-type maximal branching processes.

It is worth noting that we do not cover other types of convergence, focusing exclusively
on convergence in distribution. We mention in passing one of the latest papers here, [15] and
literature therein, on the iterated logarithm laws for almost sure convergence of sequences of
maxima. Other works of I. Matsak on this topic are also of interest.
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II. On the quality of convergence

The question of quantifying the quality of approximations in limit theorems of probability theory
has many aspects. Broadly, the main topics of interest include convergence of moments; rates of
convergence in limit theorems; rates of convergence for large and growing values of arguments
(large deviations); convergence in probability and almost surely; asymptotic expansions and
accompanying laws that improve the quality of approximations. An excellent review of relatively
latest advances in the areas of moment convergence, rates of convergence, large deviations in the
Gnedenko limit theorem, and sequences of normalized maxima can be found in Chapter 5 of a
fairly current monograph [16]. Some of the more contemporary works covered in that review are
also cited in our bibliography. The area of asymptotic expansions and accompanying measures
(laws) is relatively mature, with only a few new developments appearing recently, mostly related
to specific distributions important in certain applications, such as the Weibull distribution or the
Normal distribution, see e.g. [17], [18].

It is important to point out that establishing asymptotic expansions and their accompanying
laws is much easier for limit distributions of maxima of random variables than in the context
of the central limit theorem [19], [20]. For maxima of independent random variables, deriving
asymptotic expansions can basically just follow the approach developed by Gnedenko himself, or
its somewhat more contemporary interpretations. A cumulative distribution function F(x) from
the maximum domain of attraction of the Gumbel distribution MDA(Λ) can be characterized
in terms of the von Mises function. As shown in [21], a distribution from MDA(Λ) can be
described via the von Mises representation. Specifically, under the assumption F(x) < 1 for all x,
F ∈ MDA(Λ) if and only if there exists x0 ≥ 0 such that F(x) can be represented in the form

1− F(x) = c(x) exp
{
−
∫ x

x0

g(t)
f (t)

dt
}

, x ≥ x0, (3)

where f (x) is a positive absolutely continuous function on [x0, ∞), where f ′(x) → 0, g(t) → 1
and c(x)→ c > 0 for x → ∞. A similar statement can be made for a distribution bounded from
the right. Normalizing sequences can be chosen as follows,

bn = F←(1− n−1), an = f (bn).

It is obvious then that

Fn(anx + bn) =

(
1− exp

(
log c(anx + bn) +

∫ anx+bn

x0

g(t)
f (t)

dt
))n

=

(
1− 1

n
e−γn(x)

)n
,

where

γn(x) := − log n +
∫ anx+bn

bn

g(t)
f (t)

dt− log
c(anx + bn)

c(bn)
. (4)

Let us denote
Bn(x) := e−e−γn (x)

I{γn(x)≥− log log n}, (5)

where I is the indicator function. Paper [22] uses standard calculus techniques, under the
assumption of F(x) < 1 for all x, to demonstrate that

P(Mn ≤ anx + bn)− Bn(x) = O
(

n−1 log2 n
)

(6)

for n→ ∞, uniformly in x ∈ R. This implies that the equality

P(Mn ≤ anx + bn)− exp
(
−e−x) = exp

(
−e−x) e−x(γn(x)− x)(1 + o(1)) + O(n−1 log2 n) (7)

holds uniformly on the set {x : γn(x) ≥ − log log n} as n→ ∞. Naturally, the idea of using the
Taylor expansion applied to a power of the distribution function appears in various other works
on distributions of maxima such as [23] and other references we cite.
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Thus, the sequence Bn(x) is the natural sequence of accompanying laws, i.e. signed measures,
in Gnedenko’s limit theorem. It gives an exponential-type rate of convergence to the distribution
of the maximum. The same characterisation holds for the two other maximum domains of
attraction, Frechét and Weibull. For them, an analogue to the representation (3) is obtained using
Karamata representation for regularly varying functions, see for example [16], [24]. Expansions
and accompanying laws can be derived along the same lines as our calculations above. We remind
the reader that the Frechét maximum domain of attraction consists only of distributions with
tails that are regularly varying at infinity, and the Weibull maximum domain of attraction with
regularly varying tails at a finite right endpoint.

In [22] the authors consider the Gumbel maximum domain of attraction, where the double
exponential gives a logarithmic rate of convergence only, which is often insufficient in applications.
Another reason for considering this domain specifically is the fact that it is extremely broad,
and various applications require splitting it into reasonable, in some sense, sub-domains. For
example, this domain includes distributions whose tails are equivalent, for x → ∞, to the
tail of the Weibull distribution log(1 − F(x)) ∼ −Cxp, C, p > 0, as well as log-Weibull tail,
log(1− F(x)) ∼ −C(log x)p, C > 0, p > 1. Moreover, the exponents in the asymptotics can be
replaced by slowly varying at infinity functions. A wide variety of other distributions with heavier
(slower decaying) or lighter (faster decaying) tails belongs to the same domain. The Weibull and
log-Weibull classes of distributions are considered in detail in [22] as specific examples.

One of the principal recent approaches to the study of rates of convergence in the limit
theorem for the maxima has been an introduction of additional conditions on the distribution tail
behavior. Primarily this is the second-order condition suggested by de Haan [26]. Let us state
this condition in terms of the function γn(x).

The second-order condition for functions from MDA(Λ) with an infinite right tail. There
exists a sequence A(n) of constant sign, approaching zero as n→ ∞ and such that the limit

lim
n→∞

e−γn(x) − e−x

A(n)
= H(x) (8)

exists and is not identically zero or infinite.
This formulation is based on Theorem 2.3.8, [16]. It follows from the second-order condition

(see e.g. [16]) that A(n) is a slowly varying at infinity function of non-positive index ρ ≤ 0.
It is also known, see [27], that for the case of convergence to the Gumbel distribution we are
considering here, the function H is equal to

H(x) =
1
ρ

(
xρ − 1

ρ
− log x

)
, if ρ < 0, (9)

and
H(x) =

1
2

log2 x if ρ = 0.

Using the aforementioned Theorem 2.3.8, [16], and (4), one can obtain a somewhat different
asymptotic expansion,

P(Mn ≤ anx + bn) = exp
{
−e−x − A(n)H(x)(1 + o(1)

}
× exp

(
− 1

n

∞

∑
k=0

1
(k + 2)nk

(
1− F(anx + bn)

1− F(bn)

)k+2
)

.

We note that if ρ < −1, the main contribution to the speed of convergence to the double
exponential distribution is given by the second exponent. In the case ρ = −1, on the other hand,
one needs to know the behavior of the function A(n) = n−1ℓ(n) more precisely, i.e. how the
slowly varying function ℓ(n) behaves. In the case ρ > −1, the second term in the first exponent is
the main contributing factor to the rate of convergence.

Similar calculations can be carried out for the n-th order condition on the distribution tail
introduced in [28]. Let us state a recent estimate by Drees and de Haan (see [29]) for the rate of
convergence taking into account the accompanying law.

19



V. I. Piterbarg, I. V. Rodionov
CERTAIN MODERN DEVELOPMENTS IN STOCHASTIC EXTREME
VALUE THEORY ON OCCASION OF 110th BIRTHDAY OF GNEDENKO

RT&A, No 4 (65)
Volume 16, December 2021

If the condition (8) is satisfied with ρ < 0, see (9), then for bn = F←
(

e−1/n
)

and, correspondingly,
an = f (bn), and for any ε > 0, the following holds,

sup
x

e(1−ε)x
∣∣∣∣ Fn(anx + bn)− exp(−e−x)

A(n)
+

1
ρ

e−x+ρxe−e−x
∣∣∣∣→ 0

for n→ ∞.
Note that this can also be derived from the expansion (7).
It is also interesting to use the expansion (7) to study probabilities of large deviations in the

Gnedenko limit theorem. For example, Corollary 2.1, [29] and Theorem 5.3.12, [16], under suitable
restrictions, follow from the relation (7). [24] uses similar expansions for this purpose.

Scale in MDA(Λ). As we already mentioned, the Gumbel maximum domain of attraction
is extremely broad, and the idea of splitting it into parts and developing criteria for classifying
distributions into these sub-domains is quite reasonable. [22] proposes one such classification of
distributions with smooth tails, based on the von Mises representation. The first two “grades” in
this scale are the generalized distributions of Weibull and log-Weibull type, defined by functions
f (t) = Ct1−p, C, p > 0, and f (t) = Ct log1−p t, C > 0, p > 1 in the representation (3), respectively.
These distributions play an important role in financial and actuarial mathematics, in reliability
theory, and other industrial applications. Yet the information on distribution tails obtained
from the approximation provided by the Gnedenko theorem is far from complete. For example,
insurance premiums directly depend on the specific type of the tail of the distribution that
generates a given insurance event. Recently a number of studies appeared that aim to distinguish
tails of Weibull and log-Weibull type distributions, see for example [30], [31], [32] and their
bibliographies.

The continuation of the scale that begins with the two aforementioned classes of distributions
can proceed as follows. Distribution tails with f (t) = Ct(log log t)1−p, p > 1, are heavier than
Weibull and log-Weibull type ones. (Here C denotes some constant that could be different in
different contexts.) The number k of iterated logarithms in these expressions for f (t) could be
defined to be Gumbel’s index for the distribution. Then tails of distributions of Weibull type have
Gumbel’s index k = 0, log-Weibull type distributions have index k = 1, and so on. More details
can be found in [22].

Shubochkin in his thesis [33] determines convergence rates for approximations of distributions
of normalized maxima and their accompanying laws, see (7).

The definition of the scale the we presented above is not the only reasonable option, and
alternatives have been proposed. For example, Troshin in his thesis [34] considers an alternative
definition of Gumbel’s index, defined to be the smallest k = 0, 1, ... such that the integral∫ ∞

x0

a(t)dt
t2 log t log(2) t... log(k) t

.

converges. (Indices mean numbers of log ... log repeating.) The existence of such k for functions
from MDA(Λ) has been proved.

III. Models with dependence

One of the first follow-up questions that Gnedenko’s limit theorem elicits is whether its results
could be generalized to sequences of dependent and/or non-identically distributed random
variables. First results of this type, mostly concerning distributions of maxima of stationary
sequences, appeared back in the 60s and 70s in the works by Berman, Loynes, Cramér, and Lead-
better. The results obtained during this period are comprehensively covered in the monograph
[35] by Leadbetter, Lindgren and Rootzén.

A situation when a maximum over some collection of random variables behaves like a
maximum of independent random variables has a special name in the extreme value theory,
and is called extremal independence. For example, if {Xi}i≥1 is a sequence of random variables,
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with Fi the distribution function of Xi, and Mn = max{X1, . . . , Xn}, then this sequence possesses
extremal independence if

sup
x∈R

∣∣∣P(Mn ≤ x)−
n

∏
i=1

Fi(x)
∣∣∣→ 0, n→ ∞.

We note that if {Xi}i≥1 are identically distributed according to the (common) distribution function
F, and this sequence is extremely independent, then the distribution of the normalized maximum
converges to one of the three types of limit distributions from Gnedenko’s limit theorem, as long
as F satisfies the conditions of the theorem.

Stationary stochastic sequences provide an important example. Let us recall classical (in
extreme value theory) sufficient conditions for extremal independence of a stationary sequence,
namely the conditions D and D′ from [35]. Let {Xi}i≥1 be a (strictly) stationary sequence with a
marginal distribution function F. We say that it satisfies the condition D(un) for a sequence un if
for any integers 1 ≤ i1 < . . . < ip and j1 < . . . < jq ≤ n, for which j1 − ip ≥ l, the following holds,∣∣∣∣∣P(max(Xi1 , ..., Xip , Xj1 , ..., Xjq) ≤ un)− P(max

k∈[p]
Xik ≤ un)P(max

k∈[q]
Xjk ≤ un)

∣∣∣∣∣ ≤ αl,n, (10)

where αln ,n → 0 as n → ∞ for some index sequence ln = o(n). Furthermore, we say that the
stationary sequence {Xi}i≥1 satisfies the condition D′(un) for a sequence un if

lim sup
n→∞

n
[n/k]

∑
j=2

P(X1 > un, Xj > un)→ 0, k→ ∞ (11)

holds (here [·] is an integer part of a number). Then, if for independent copies of random
variables{Xi}i≥1 the conditions of Gnedenko’s limit theorem are satisfied for some sequences an
and bn, and the conditions D(un(x)) and D′(un(x)) are satisfied for the sequence un = anx + bn
for any x, then the sequence {Xi}i≥1 is extremely independent.

The conditions D and D′ play a foundational role in the extreme value theory for stochastic
models with dependence. The conditions have been slightly modified in [36] and [37] to extend
the result above to non-stationary sequences. Papers [38] and [39] extended it even further to sta-
tionary random fields on integer lattices, and [40] proved an equivalent result for non-stationary
random fields in dimension 2. The main technique that was used in all these proofs was the
so-called block method, where the domain of the stochastic process is split into non-overlapping
intervals in such a way that maxima over the intervals are asymptotically independent. Applica-
tions of this method to random fields required very complicated versions of the conditions D and
D′ which hindered further progress along similar lines of attack. This issue was finally overcome
in [41] (see full text in [42]). These papers derived the conditions for extremal independence of
random variables that constitute so-called stochastic systems. A stochastic system here is defined
as a sequence (X1(n), . . . , Xd(n)) ∈ Rd of random vectors of varying dimensions, where d = d(n)
is some sequence of positive integers. We should also mention here [43] whose results can be
used to derive asymptotics for the distribution of the maxima of a stochastic system under certain
conditions. Stochastic systems generalize many models such as stochastic sequences, stochastic
fields and triangular arrays. They are rich enough to even represent complicated objects such as
random networks and graphs that are otherwise quite challenging to analyze.

Gaussian stochastic sequences, a special case of stochastic sequences, exhibit extremal inde-
pendence under rather weak assumptions. Let {Xi}i≥1 be a Gaussian random sequence with
mean 0 and covariance function r(i), where r(0) = 1. Berman [44] found a simple condition for
the convergence of the distribution of the maximum of the sequence {Xi}i≥1, with the same nor-
malization as for the maximum of independent Gaussian variables in Gnedenko’s limit theorem,
to the Gumbel distribution. The Berman condition simply requires that

r(n) ln n→ 0, n→ ∞.
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It has been established that the Berman’s condition implies the conditions D and D′ for stationary
Gaussian sequences. Hüsler in [36] and [37] showed that under a certain generalization of the
Berman’s condition, a non-stationary Gaussian sequence is extremely independent. Pereira [45]
obtained this result for Gaussian non-stationary random fields in R2, while Jakubowski and
Soja-Kukieła in [46] extended it to Gaussian stationary fields of arbitrary dimension.

It is interesting that the Berman’s condition is close to being necessary (as well as sufficient)
for extremal independence of stationary Gaussian sequences. Specifically, Mittal and Ylvisaker
in [47] showed that if r(n) ln n→ γ > 0 as n→ ∞, then the limit distribution of the normalized
maximum of a Gaussian stationary sequence is completely different, and is a convolution of the
Gumbel distribution and the Gaussian one. In this case the sequence does not even possess a
phantom distribution function (to be defined shortly).

The extremal independence property is far from being always satisfied, and processes that
appear in applications often exhibit a high degree of dependence. It turns out that in many cases,
the behavior of the maximum of a stationary sequence can be described in terms of the so-called
extremal index. According to the definition from [35], a stationary sequence {Xi}i≥1 has the
extremal index θ ∈ [0, 1], if for any τ > 0 there exists a sequence un(τ) such that

n(1− F(un(τ)))→ τ and P(Mn ≤ un(τ))→ e−θτ .

It follows, in particular, that∣∣P(Mn ≤ un(τ))− Fθn(un(τ))
∣∣→ 0, n→ ∞,

so that the maximum of n terms of the stationary sequence behaves like the maximum of θn
independent copies of X1. It should now be obvious that the situation we considered just before
corresponds to the case θ = 1. The notion of the extremal index is of paramount importance
in applications of extreme value theory, because one can often reduce a sequence of real-world
observations to a stationary sequence, or simply consider it to be such.

Sufficient conditions for the existence of the extremal index were found by Chernick [48],
and they look like this. Let us assume that for τ > 0 a sequence un(τ) is defined such that
n(1− F(un(τ)))→ τ as n→ ∞, and the condition D(un(τ)) is satisfied for any such τ > 0. Then,
if for some τ the sequence P(Mn ≤ un(τ)) converges, then the extremal index exists for {Xi}i≥1.
It is interesting to note that the criterion for the existence of the extremal index has only been
found relatively recently, [49], see also Proposition 11.4, [23]. Various other properties of the
extremal index, as well as methods for its estimation, are covered in Chapter 10 of [50].

The extremal index provides a remarkably convenient mechanism for describing extremal
dependence in stationary sequences. A single index, however, is not sufficient for describing
extremal dependence of stationary random fields on integer lattices. Various attempts to extend
the idea of the extremal index to random fields and use it to analyze extremal dependence have
been undertaken in, for example, [51] and [52], with more complex models considered in [53].
However, [54] showed that the extremal index of a stationary random field on Zd can materially
depend on the direction of growth of a multi-index n = (n1, . . . , nd).

A natural generalization of the notion of the extremal index is provided by the notion of a
phantom distribution function, as discussed in [55]. We say that the distribution function G is the
phantom distribution function for the stationary sequence{Xi}i≥1 with the marginal distribution
function F if

sup
x∈R

|P(Mn ≤ x)− Gn(x)| → 0, n→ ∞.

It is not hard to see that if G could be chosen to be of the form Fθ , then the extremal index of the
sequence {Xi}i≥1 is θ. The existence of a phantom distribution function for a stationary sequence
is quite a common property. For example, it is shown in [49] that any α-mixing stationary
sequence with a continuous marginal distribution function has a phantom distribution function.
The same paper suggests a simple condition for the existence of the phantom distribution function:
it exists if and only if for some sequence νn and γ ∈ (0, 1) the convergenceP(Mn ≤ νn)→ γ holds
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as n→ ∞, and for all T > 0 the condition BT({νn}):

sup
p,q∈N:p+q≤T·n

∣∣P(Mp+q ≤ νn)− P(Mp ≤ νn)P(Mq ≤ νn)
∣∣→ 0, n→ ∞

is satisfied. Clearly the condition BT({νn}) resembles Leadbetter’s condition D. Theory of
phantom distribution functions for models other than stationary sequences is still in its infancy.
In this regard it is worth mentioning [54] where, for the first time ever, the question of existence
of phantom distribution functions for stationary random fields on integer lattices is considered.
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