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Abstract

In this paper a new process is introduced. To some extent it has resemblance with Queueing-Inventory
(Inventory with positive service time) (see Sigman and Simchi-Levy [2] and Melikov and Molchanov [1].
We consider a k - out - of - n: G system of identical components, each of which has exponentially distributed
life time with parameter λ, independent of the others. When the number of working components goes
down to N (k ≤ N ≤ n) due to failures, an order for n − k + 1 items is placed. Replenishment time is
exponentially distributed with parameter β. On replenishment, all failed components are instantaneously
replaced by the new arrivals, subject to a maximum of n − k + 1. This process is investigated and its
long run system state distribution derived explicitly. An associated optimization problem is discussed.
Throughout this paper the k - out - of - n system is assumed to be COLD.

Keywords: COLD system, System Reliability, k - out - of - n System, Replenishment policy, Serial
and Parallel Systems

1. Introduction

The purpose of this paper is to introduce a notion similar to Queueing - Inventory (QI), introduced
in 1992 by two groups of researchers: Sigman and Simchi-Levy [2] and Melikov and Molchanov
[1], independently of each other. Until then service time associated with providing an inventoried
item was assumed to be negligible. In reality, that assumption is rarely valid. A brief description
of QI is as follows. In classical queue, if the server is ready to serve and customers are waiting
then the service starts. The notion of the requirement of some materials is totally missing in it.
However, to provide service some item(s) is often required. It was Kazimirsky [7] who came
up with the idea of an item required to provide service. In the absence of such an item(s)
service cannot be given. In classical inventory, it is assumed that the service time is negligible.
That is to say, if the item is of demand is available, the server provides it to the customer in a
negligible amount of time and the customer leaves the system. In case the item is not available,
customers may wait until the inventory gets replenished. Thus absence of inventory alone results
in customers joining a queue of demands. The waiting space may be of finite or infinite capacity.
On replenishment, a certain number of waiting customers equal to min{number waiting, number
of inventoried items replenished}, leave the system with the inventory - it is assumed that each
customer asks for exactly one unit of the item. The assumption of negligible service time is
often unrealistic. This is the one that prompted Sigman and Simchi-Levy as well as Melikov and
Molchanov to introduce positive service time. This results in the formation of queue even when
inventory is available. The reader may refer to the recent survey paper by Krishnamoorthy et al
[4] for further details on the work done up to 2018 in QI.
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We consider a service providing system, namely a k-out-of-n system. Such a system has n
identical components/units. The system continuously operates. When the number of operational
component hits k − 1, the system fails. We assume that the life times of these n units are indepen-
dent and identically distributed random variables with exponential distribution having parameter
λ. Up on the number of working components going down to N(k ≤ N ≤ n) due to failures, an
order for n − k + 1 items are placed. Lead time is exponentially distributed with parameter β.
The life time of components and lead time are independent random variables. On replenishment,
all failed components are replaced by the new arrivals, subject to a maximum of n − k + 1. This
process is analysed to derive its long run system state distribution. In this paper the case of
COLD system alone is analysed and an associated optimization problem discussed. The system
is referred to as COLD if the components that were operational at the time of system failure, do
not deteriorate further until the system is again put back to operation by replacement/repair of
failed components. We can consider different types of replenishment policies and also systems
of that are WARM or HOT. In a warm system, components that remain operational at the time
of system failure continue to deteriorate, but at a slower rate than when the system is up. We
restrict the discussion to COLD system because the very purpose of this work is to announce the
above indicated new direction of thoughts. For this reason we also assumed that all distributions
involved are exponential.

Next we present a brief discussion in the investigation done on the reliability of k - out - of
- n : G system. This system is extensively investigated. Its particular cases, serial and parallel
systems are of special interest. A detailed discussion on these can be found in Sivazlian and
Stanfel [3]. Krishnamoorthy and Ushakumari [5] extended a repairable k - out - of - n : G system
to the case of retrial of failed components for repair. Krishnamoorthy et al [6] introduced the
N-policy of repair in k - out - of - n : G system and investigated the optimal number N of failed
components that should accumulate in order to start the repair of failed components in a cycle to
maximize the reliability of the system. Here a cycle is defined as the time interval that starts at the
epoch all the n components are in working condition until the moment all components that fail
during this time period are repaired and the system is back with all components in operational
state.

Barlow and Heidtmann [9] present a linear-time algorithm and its short computer program
in BASIC for the computation of reliability of a k - out - of - n : G system. We now turn to
a few more recent investigations on k - out - of - n : G system. Zhang et al. [10] analyse a
k - out - of - n : G system with repairman’s single vacation and shut off rule. The working
times and repair times of components follow exponential distributions, and the duration of the
repairman’s vacation is governed by a phase type distribution. Both transient and long run
system availability are obtained. Time-dependent behavior of the system performance measures
under different initial system states, are obtained. Monte Carlo simulation and special cases of
the system are investigated to check the correctness of the results obtained. Ji-EunByun et al [11]
investigate the reliability growth of k-out-of- N systems using matrix-based system reliability
method. To increase the reliability of a specific system, using redundant components is a common
method which is called redundancy allocation problem (RAP). Some of the RAP studies have
focused on k-out-of-n systems. However, all of these studies assumed predetermined active or
standby strategies for each subsystem. Mahsa Aghaei et al [12] propose a k - out - of - n series -
parallel system when the redundancy strategy can be chosen for each subsystem. Because the
optimization of RAP belongs to the NP-hard class of problems, a modified version of genetic
algorithm (GA) is developed. The exact method and the proposed GA are implemented on a
well-known test problem and the results obtained demonstrate the efficiency of the approach of
the authors compared to the previous studies.

In this paper we introduce the concept of replacement of failed components through a pur-
chase of new items that have the same life time distribution as the failed components. The
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order for purchase is placed when the number of operational components in the system falls
down to N, k ≤ N ≤ n. It takes an exponentially distributed amount of time, called the lead
time, for the replenishment of items to take place. The order quantity is fixed at n − k + 1. On
physical realization of the order, failed components are replaced by the new arrivals. The time
for replacement is assumed to be negligible. It may be noted that at most n − k + 1 components
need replacement at the time when replenishment takes place because operational components
do not deteriorate when the system is down (COLD system). As a result none, one , ... up to a
maximum of N − k + 1 excess/spare components will be available as standby units. This means
that the system is working now with all n components in operation and the remaining, if any,
stay as spares. These are brought to operation, one at a time, as and when components fail. This
process gets repeated.

The reader may wonder about the distinction from the classical queueing-inventory (QI)
problem and may even ask the question: are they not the same if the number of customers in the
QI is restricted to a finite number? The answer is a firm NO. This is so because at a replenishment epoch
the number of failed units of the k - out - of - n system can be smaller than n − k + 1, the replenishment
quantity. Thus there could be excess inventory to be stored, which are put into operation when failure
of components of the system takes place. Those excess components alone have holding cost. However,
in QI the inventory level may at most reach S at a replenishment epoch. Further all items held in the
inventory have holding cost associated with them. Also notice that all components of the system that
are in operation, deteriorate, though those on Şstandby (the excess remaining after failed components are
replaced)Ť do not deteriorate (because the system is COLD). Thus there are valid reasons for analysing
the reliability-inventory (RI) problem presented in the previous paragraph.

The remaining part of this paper is arranged as follows. In section 2, the mathematical model
of the problem is presented. The long run system state distribution is explicitly computed. In
section 3, we compute a few distributions of interest, associated with the model. Section 4
provides a cost function involving the decision variable N. Its analysis is then presented. This cost
function is shown to be convex. Thus there is a global optimum value for N. Finally a concluding
section tells about future plans for extensions and generalizations.

Notations and abbreviations:
In the sequel the following notations and abbreviations are employed:
i.i.d - independent and identically distributed.
rv(s) - random variable(s).
CTMC - Continuous time Markov Chain.
IPV Ů initial probability vector.
X(t) Ű Number of operational components in the system at time t.
Y(t) Ű Number of spare/standby components available at time t.
Note that only when X(t) = n, the value of Y(t) can be positive.

2. Mathematical Modeling and Analysis of the problem

The system under consideration is COLD: when the system fails in the absence of at least k
operational components, the components that are still operational do not deteriorate until system
again starts operation, with the failed components replaced by new ones. Though only one new
component suffices to put the system back into operation, we follow the policy of replacing
all failed components at the time when replenishment of the ordered items take place. The
replenishment quantity is n − k + 1. All of them may not be immediately required. Therefore the
excess items are kept as spares/standby for future replacements as and when required. Life times
of components are i.i.d rvs having exponential distribution with parameter λ. When number of
operational components drops down to N, with k ≤ N ≤ n, an order is placed for n − k + 1 new
components. It takes an exponentially distributed time with parameter β for the materialization
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of this order. This is referred to as lead time in inventory management. During this time, none,
one, ... , up to a maximum of N − k + 1 components may fail. Up on replenishment, all failed
components are replaced by new ones and the system continues to operate. It may be noted as
stated earlier, that all of these n − k + 1 units may not be required to bring back the number of
operational components in the system to n. Therefore only that much of these new components
that are required.

With X(t) defined as the number of operational components at time t and Y(t), that of
spares, we see that {(X(t), Y(t)), t ≥ 0)} is a two-dimensional CTMC with state space {(i, 0)|i =
k − 1, 2, ..., n} ∪ {(n, j)|j = 1, 2, ..., N − k + 1}. This process is not skip - free to the right because,
immediately after replenishment the number of operational components increases by at least
n − N (with none, one or more left as excess) and at most by n − k + 1(without any unit left
as standby). We employ the difference-differential equation technique to compute the long run
system state distribution. The figure below provides the working of the system: 2 - out - of - 5 : G
system.

β 

5λ 4λ 3λ 2λ 

(5, 0)  (4, 0) (3, 0) (2, 0) (1, 0) 

β 5λ  β 

(5, 2) (5, 1) 

5λ 

 

 

Figure 1: Transition diagram of 2 - out - of - 5 : G system with N = 3 when the failure rate is λ.

The transition rate matrix of the 2 - out - of - 5 : G system is as given below:

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (5, 1) (5, 2)



(1, 0) −β β
(2, 0) 2λ −(β + 2λ) β
(3, 0) 3λ −(β + 3λ) β
(4, 0) 4λ −4λ
(5, 0) 5λ −5λ
(5, 1) 5λ −5λ
(5, 2) 5λ −5λ

In this we have, n = 5, k = 2 and N = 3. For that system we get the long run behavior of the
system as

q4,0 = 5
4 q5,0;

q3,0 = 4λ
β+3λ

5
4 q5,0;

q2,0 = 3λ
β+2λ

4λ
β+3λ

5
4 q5,0;

q1,0 = 2λ
β

3λ
β+2λ

4λ
β+3λ

5
4 q5,0;

q5,2 = β
5λ q3,0 = β

5λ
4λ

β+3λ
5
4 q5,0

q5,1 = q5,0 − β
5λ q1,0 = q5,0 − β

5λ
2λ
β

3λ
β+2λ

4λ
β+3λ

5
4 q5,0.
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Now we add these limiting probabilities. Since their sum is 1, we immediately get q5,0.

A different failure rate case also will be discussed in the numerical section; this one considers
inverse variation of rate of failure with the number of operational components: when the number
of components in operation is j, the failure rate is λ/j. This leads to more compact expressions
for the system state probabilities. Therefore, we can expect a much nicer expression for the
optimal N value as well. The figure below provides the working of the system: 2 - out - of - 5 : G
system.

β 

λ λ λ λ 

(5, 0)  (4, 0) (3, 0) (2, 0) (1, 0) 

β λ   β 

(5, 2)  (5, 1) 

λ 

 

 

Figure 2: Transition diagram of 2 - out - of - 5 : G system with N = 3, when the failure rate is λ/j.

The transition rate matrix of the 2 - out - of - 5 : G system is as given below:

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (5, 1) (5, 2)



(1, 0) −β β
(2, 0) λ −(β + λ) β
(3, 0) λ −(β + λ) β
(4, 0) λ −λ
(5, 0) λ −λ
(5, 1) λ −λ
(5, 2) λ −λ

Nevertheless, the long run system state probabilities are indicated below for the 2-out-of- 5 : G
system, in the case where the failure rate is λ/j when j components are operating. We continue
to use the same notation for the system state probability.

q5,1 = (1 + λ
λ+β )q5,2;

q5,0 = (1 + λ
λ+β + λ

β
λ

λ+β )q5,2;

q4,0 = (1 + λ
β )q5,2;

q3,0 = ( λ
β )q5,2;

q2,0 = ( λ
β )(

λ
λ+β )q5,2;

q1,0 = ( λ
β )

2( λ
λ+β )q5,2.

These, together with the normalizing condition, gives q5,2.
Assume that the process initially starts in state (n, 0). Up to the state (N, 0), the process is a

pure death process, with linear death rates (depending on the number of operational components).
An order for replenishment for n − k + 1 units is placed on reaching (N, 0). The replenishment
may precede next failure or may be after the next failure and so on, could be even after the system
fails. Therefore there is a chance of system reliability getting affected. Since the system is COLD,
no more working component fails until they are again put into operation which can happen
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only after the replenishment. When replenishment takes place, all failed units are replaced
instantaneously. Thus from (N, 0) onwards the process is no more a pure death process nor it can
be called a birth and death process because the replenishment is in bulk. Thus it is not skip-free
to the right. Denote by Pij(t), the probability that the system is in state (i, j) at time t and P′

ij(t)
its derivative. Then the difference-differential equations satisfied by Pi,j(t) are:

P′
nj(t) = −λnPnj(t) + λnPnj+1(t) + βPi0(t); j = 0, 1, ..., i − k + 1, i = k − 1, ..., N;

P′
i0(t) = −(λi + β)Pi0(t) + λ(i + 1)Pi+10(t) for i = k − 1, ..., N;
P′

i0(t) = −λiPi0(t) + λ(i + 1)Pi+10(t) for i = N + 1, ..., n − 1.

These three systems of equations can be solved for computing the time dependent behavior of
the system state probabilities (see Karlin and Taylor [13], Chapter 4). When transient effect fades,
the system gets stabilized. Denote by qij the limit distribution, as t → ∞, of Pij(t). The CTMC
under study is aperiodic and irreducible, though it may get absorbed into state (k − 1, 1), only to
stay there for an exponentially distributed duration. Later on we will consider that state as an
absorbing state for deriving the distribution of time during which the system provides failure
free operation. Thus the above system of equations gives us:

nλqn,j = nλqn,j+1 + βqi,0 for j = 0, 1, ..., n − k + 1 − (n − i) : i = k − 1, ..., N;
(λi + β)qi,0 = λ(i + 1)qi+1,0 for i = k − 1, ...N;
iλqi,0 = (i + 1)λqi+1,0 for i = N + 1, ..., n − 1.

These are recursively solved to arrive at the long run system state probability as given below.

Theorem 1. : With qij defined as the limit as t → ∞ of Pij(t), we get:

qi,0 = i+1
i qi+1,0 for i = N + 1, ..., n − 1;

qi,0 = λ(i+1)
(λi+β)

qi+1,0 for i = k − 1, ..., N and

qn,j = qnj+1 +
β

nλ qi,0 for j = 0, 1, ..., i − k + 1 and i = k − 1, ..., N.

Proof. These show that we can express the system state probability in terms of qn,0, for
example. Then by total probability argument (the normalizing condition), we get qn,0. Thus
we have explicit analytical expressions for the system state probability. Next we use these to
derive several system characteristics which, in turn, are used in analyzing a related optimization
problem. �

3. Performance Characteristics

∙ Mean number of operational components when the system is working (excluding spares, if
any), OCW = ∑

j=N−k+1
j=1 nqn,j + ∑n

i=k iqi,0.

∙ Mean number of spare components, SC = ∑N−k+1
j=1 jqn,j.

∙ Fraction of time system is down, FTD = qk−1,0.

∙ Fraction of time the system is up, FTU = 1 − qk−1,0.

FTU is the complement of FTD. Our objective is to make it as close to one as possible, subject
to constraints of funds and at the same time the significance of the role of the machine. Thus N
plays the most crucial role.
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3.1. Related Distributions

In this section we derive a few distributions of interest that arise in the study of the system. We
may assume, without loss of generality, that the system starts in state (n, N − k). The distributions
that are derived include the distribution of the time until first failure; distribution of the number
of replenishments that take place before the system failure; distribution of the number of times
the replenishment results in excess inventory and in particular, the distribution of the number
of times the excess number of spares reached N − k + 1 and those that resulted in no excess
inventory.

Distribution of the time until first failure

We consider the Markov chain with state space {(i, 0)|i = k, ..., n} ∪ {(n, j)|j = 0, 1, ..., N − k + 1}.
Notice that we have dropped two states from the state space: The state (k − 1, 0) is excluded
because we want the distribution of the time during which the process remains continuously
in the transient states of the Markov chain. Because of that, in consequence to a replenishment,
the excess inventory/spare parts level cannot be zero. The initial probability vector γ of the
Markov chain has entries 1 at the place corresponding to (n, 0) and 0 at the remaining positions.
The reason for starting in state (n, 0) is that a new cycle starts after the machine failed. Thus
the state (k − 1, 0) is reached before replenishment of components. So after replacing all failed
components by the new arrivals, the system is left with no spare unit. Our objective is to compute
the distribution of the time T until the state (k − 1, 0) is reached for the first time. This is given in
the following theorem.

Theorem 2. Starting in state one of the states in the set, the distribution of the time T until
absorption takes place is phase type with representation (γ, U) of order n + N − 2k + 1. U is
that part in the infinitesimal generator of the Markov chain corresponding to the set of states
{(i, 0)|i = k, ..., n} ∪ {(n, j)|j = 0, 1, ..., N − k + 1} and γ is the IPV vector with 1 at the position
corresponding to the state (n, 0) and 0 at the remaining places.

NOTE We may relax the assumption that the initial state is (n, 0) by associating probabilities
for starting in any state. In that case there will be corresponding changes in the IPV γ. However,
for computing the distribution of the time till next failure (i.e., distribution of the time duration
between two successive failures of the system), the state (n, 0) has to be the starting state. Proof.
Write the difference - differential equations satisfied by the probabilities of the system occupying
any state belonging to {(j, 0)|j = k, ..., n} ∪ {(n, j)|j = 0, 1, ..., N − k + 1}. Now solve this matrix
differential equation to get the tail distribution of T as P(T > t) = γe(Ut)e, where e is a column
vector of 1Šs having the same order as that of γ. Therefore P(T < t) = 1 − γe(Ut)e. The expected
time to failure is given by - γU−1e.(see Neuts [8]). �

Distribution of the number of times the replenishment results in excess inventory before
absorption to (k − 1, 0)

To compute this distribution we proceed as follows. We start at an epoch of replenishment
that takes the state space to one of (n, 1), ...., (n, N − k + 1). These precisely correspond to those
replenishments that take place while the system is in states (k, 0), ..., (N, 0), respectively. The IPV
will be defined accordingly. Further we assume that the immediately preceding replenishment
took place only after reaching the state (k − 1, 0). The initial probability vector of the Markov
chain associated with these states is Θ = (θk0, ..., θn0, ..., θnN−k) and at the remaining positions,
including (k − 1, 0) and (n, 0) the entries are all zeros. If we look at the time t (i.e., pre-event
occurrence epoch), when the replenishment takes place during [t, t + h) for h infinitesimally small,
we notice that in the initial probability vector the only non-zero elements are θk0, ..., θN0. We
introduce an additional component called level, as the first coordinate, into the state space of the
process. We start at level 0 assuming that no replenishment order has so far materialized. It may
happen that the process reaches (0, k − 1, 0) before the materialization of the replenishment order
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that was placed on reaching (0, N, 0). In this case the required number turns out to be zero. We
call this a failure. Suppose that replenishment against the order which was placed on reaching
(0, N, 0), materializes before dropping to (0, k− 1, 0). We label this as a success. Then the level goes
up by 1 and the resulting state is an element of {(1, n, j)|j = 1, ..., N − k, N − k + 1}. This is the
first success. Thus the level, the first coordinate in the triplet, stands for the number of consecutive
successes. The components start failing with passage of time and on reaching down to (1, N, 0),
the next replenishment order Is placed. The two possibilities thereafter are: i) replenishment only
after the system breaks down (ie., state (1, k − 1, 0)is reached) or ii) replenishment takes place
before falling to state (1, k − 1, 0). In case the event mentioned as (ii) occurs, then we have the
second success. The Śconsecutive success counting processŠ goes on like this. In this we notice
that the time elapsed between consecutive replenishment epochs are i.i.d.rvs following the tail of
the phase type distribution with representation PH(Θ, V) where V is the part of the infinitesimal
generator corresponding to these transient states. It is important to note that, because (k − 1, 0) is
absorbing state, we have not brought it into the above computational argument. For this reason
the state (., n, 0) also does not come into play.

Now back to the computation of the required probability distribution. Denote by Y, the
random variable that represents the number of successes before the first failure where success and
failure are in the context as described in the previous paragraph. Denote the tail of the PH(Θ, V)
distribution described above by p and its complement by q. Then the distribution of Y is given
by P(Y = m) = pmq for m = 0, 1, ... which is the geometric distribution. We sum up these in the
following theorem.

Theorem 3. The distribution of the number of times the replenishment results in excess inventory
before absorption to (k − 1, 0) is given by the geometric distribution with parameter p where p is
the tail of the PH(Θ, V) distribution which is the time until absorption into state (k − 1, 0) of the
Markov chain describing the state space of the k - out - of - n : G system.

Corollary 1. From theorem 3.2, we conclude that the distribution of number of consecutive
failures of the system between two successive failure free cycles is also geometrically distributed.
Let Z denote this random variable. Then P(Z = m) = qm p for m = 0, 1, 2, ....

Corollary 2. From the state space description of the Markov chain of the k - out - of - n : G
system, it is clear that the consecutive number of times the excess inventory is positive (i.e., it hits
the set {1, 2, ..., N − k, N − k + 1} between two successive system failures, also has the geometric
distribution: Denote this rv by D. Then P(D = m) = pmq for m = 0, 1, 2, ....

Remark 1. It can be easily proved that the distribution of the time between two successive visits
to any state, say (k − 1, 0), is phase-type distributed with appropriate representation (see Theorem
3.1). A similar procedure can be adopted to compute the distribution of the time duration for
successive visits to any state in the state space of the Markov chain.

4. An Optimization Problem

In this section we construct a cost function involving the decision variable N. The relevant costs
are:
K - Fixed cost of placing an order for replenishment
C - Purchase cost/ unit item
h - Holding cost/excess units held/time
R - Penalty cost/time when system is down.
We consider the cost function: Average cost per unit time when the replenishment order for spare
items is placed when number of operating components drops down to N,
F(N) = [K + C(n − k + 1)]/(Expected time elapsed between two consecutive order placements)+
h. ∑

j=N−k+1
j=1 jqn,j + Rqk−1,0

First we compute the expected length of a cycle. Here a cycle time is the time duration, starting
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from an epoch at which state (N, 0) is reached to the next epoch at which that state is revis-
ited. . Denote the length of this cycle by W. We have to compute E(W). First we compute
the distribution of W. Figure 1 gives an idea about W in the special case discussed therein.
In the general case also the state space was described earlier. We incorporate a major modi-
fication in the order in which the state space appears and also an Şadditional elementŤ to it
for the computation of the distribution of W : {(N, 0), (N − 1, 0), ..., , (k, 0), (k − 1, 0), (n, N − k +
1), ..., (n, N − k), ...., (n, 1), (n, 0), ..., (n − 1, 0), ..., (N + 1, 0), *}. In this * is an absorbing state and
the remaining states are transient. This * is the same as the state (N, 0); however the intention of
using a distinct notation is to indicate that the state (N, 0) is revisited. Thus we can compute the
distribution of the distribution of the time duration elapsed, starting from (N, 0) back to (N, 0)
for the first time after the next replenishment at the same level or a lower level followed by de-
terioration of components. The infinitesimal generator of the corresponding CTMC is given below.

𝒢 =

[
Q Q*

0 0

]

Q =

 Z11 Z12
Z22 Z23

Z33


and Q* the column vector with entry (N + 1)λ in the last position.

Z11 =

(N, 0) (N − 1, 0) (N − 2, 0) . . . (k, 0)


(N, 0) −(β + Nλ) Nλ
(N − 1, 0) −(β + (N − 1)λ) (N − 1)λ

...
. . . . . .

(k, 0) −(β + kλ)

Z12 =

(k − 1, 0) (n, N − k + 1) (n, N − k) . . . (n, 1)


(N, 0) β
(N − 1, 0) β

...
. . .

(k, 0) kλ β

Z22 =

(k − 1, 0) (n, N − k + 1) (n, N − k) . . . (n, 1)


(k − 1, 0) −β
(n, N − k + 1) −nλ nλ
(n, N − k) −nλ

...
. . .

(n, 1) −nλ

Z23 =

(n, 0) . . . (N + 2, 0) (N + 1, 0)


(k − 1, 0) β
(n, N − k + 1) 0
(n, N − k) 0

...
...

(n, 1) nλ
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Z33 =

(n, 0) (n − 1, 0) . . . (N + 2, 0) (N + 1, 0)


(n, 0) −nλ nλ
(n − 1, 0) −nλ

...
. . .

(N + 2, 0) −(N + 2)λ (N + 2)λ
(N + 1, 0) −(N + 1)λ

It follows from it that the time until absorption to * has the Coxian distribution with representation
(δ, Q) where Q is that part of the infinitesimal generator sans the row and column corresponding
to *. Its dimension is n + N − 2(k − 1) and δ is the initial probability vector with 1 at the first
position and the remaining elements are 0sŠ. Its dimension is obvious from this description. Thus
we have proved the following:

Theorem 4. The distribution of a cycle (starting from state (N,0), returning to it for the first time),
has Coxian distribution with representation (δ, Q) of order n + N − 2(k − 1). Denoting by W the
length of this cycle, we have E(W) = δQ(−1)e.

Now we go back to the cost function described above. We compute this for two cases:
(a) 2 - out - of - 5 : G system in which N can take values 2, 3, 4, 5;
(b) 5 - out - of - 10 : G system in which N can take values 5, 6, 7, 8, 9.
Fix the various costs as K = $10, C = $1, h = $3, R = $20.
We have computed the long run probability distribution of the system (a), as an illustration for
the k - out - of - n : G system under N - policy for placing order for replenishment. First we take
up that case. The expression for cost function is as follows: F(N) = [10 + 1(5 − 2 + 1)]/(Expected
time elapsed between two consecutive order placements)+3. ∑

j=N−2+1
j=1 jq5,j + 50q1,0. The results

for various values of λ and β are summarized in the following table:

Table 1: Effect of N on Cost Function for a 2 - out - of - 5 : G system.

(λ, β) N = 2 N = 3 N = 4 N = 5

(1, 1) 28.0085 24.75 24.444 24.5
(1, 2) 23.8617 19.1453 19.8726 21.0732
(2, 1) 40.1261 38.1405 38.1920 38.3339

In the case when individual rate of failure is λ/j when the number of operating components
is j, the system state probabilities are computed and given in section 2. (b) For this system the
state space is{(i, 0)|i = 4, ..., 10} ∪ {(10, j)|j = 1, 2, ...N − 4}.
The expression for cost function is as follows: F(N) = [10+ 1(10− 5+ 1)]/(Expected time elapsed
between two consecutive order placements)+3. ∑

j=N−2+1
j=1 jq10,j + 50.q4,0. The results for various

values of λ and β are summarized in the following table:

Table 2: Effect of N on Cost Function for a 5 - out - of - 10 : G system.

(λ, β) N = 5 N = 6 N = 7 N = 8 N = 9

(1, 1) 34.7209 34.0944 33.75 33.6134 33.64
(1, 2) 28.9071 28.2580 28.2174 28.6125 29.3370
(1.5, 1) 41.8150 41.6413 41.6096 41.6771 41.8181

A much more realistic but simple way of looking at the component deterioration would have
been as follows: the rate of component deterioration is λ/j when j components in the system are
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operational. This leads to the system deterioration rate as j.λ/j = λ. This is the case describing
the load balance on the system as stronger when a larger number of components are operational
which is more realistic. In this case the expression for the system state probability gets much
more simplified and looks more elegant.

The long run system state probabilities in this case are:

q(k−1,0) = ( λ
β )(

λ
λ+β )

(N−k)q(N,0);

q(N−i,0) = ( λ
λ+β )

(N−i)q(N,0) for i = 1, 2, .., N − k;

q(N+1,0) = q(N+2,0) = ... = q(n−1,0) = q(n,0) = ( λ+β
λ )q(N,0)

The case when failure rate is inversely proportional to the number of operating components, the
system state probabilities can be deduced from the above or directly computed. These are as
given below:

q(N+1,0) = q(N+2,0) = ... = q(n−1,0) = q(n,0) = (1 + β
λ )q(N,0);

q(n,N−k+1) = ( β
λ )q(N,0);

q(n,N−k−j) = ( β
λ ){1 + ( λ

λ+β ) + ... + ( λ
λ+β )

(j+1)}q(N,0) for j = 0, 1, 2, .., N − k − 1;

q(N−j,0) = ( λ
λ+β )

jq(N,0) for j = 0, 1, ..., N − k

q(k−1,0) =
λ
β (

λ
λ+β )

(N−k)q(N,0).

Table 3: Effect of N on Cost Function for a 2 - out - of - 5 : G system, when failure rate is λ/j when the number of
operating components in the system is j.

(λ, β) N = 2 N = 3 N = 4 N = 5

(1, 1) 11.4589 7.4706 7.7273 9.3385
(1, 2) 8.9415 5.7808 7.2535 9.7473
(1.5, 1) 16.67 11.5242 10.8677 11.5857

Table 1 shows that, for the 2−out-of−5 system, the optimal values of N for the various
combinations of (λ, β) given by (1, 1), (1, 2) and (2, 1) are respectively, 4, 3, 3 and the minimum
costs are $24.444, $19.1453 and $38.1405. In contrast to this, Table 3 shows pretty small values for
the cost function. This shows the effect of reduced failure rate when the number of operating
units is closer to the maximum value.

Table 4: Effect of N on Cost Function for a 5 - out - of - 10 : G system, when failure rate is λ/j when the number of
operating components in the system is j.

(λ, β) N = 5 N = 6 N = 7 N = 8 N = 9

(1, 1) 6.5385 5.4 5.5306 6.5876 8.3679
(1, 2) 4.2703 4.2018 5.1754 6.8345 9.0552
(1.5, 1) 10.1739 8.4537 7.9051 8.3293 9.5734

Table 2 shows that, for the 5−out-of−10 system, the optimal values of N for the various com-
binations of (λ, β) given by (1, 1), (1, 2), 1.5, 1) are respectively, $33.6134, $28.2174 and $41.6096.
In contrast to this, when failure rate is inversely proportional to the number of operating units,
the cost gets considerably reduced and a shift in the optimal N value is also observed.
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In this case we can easily see that the holding cost of excess (spare) components increases
with the increase in value of N because N − k increases under this condition; the order for
replenishment is placed when N is closer to n and so there is higher chance of replenishment
taking place before the system reaches the state (k − 1, 0), thereby ensuring smooth functioning
of the system thereby reducing the risk involved due to system failure. Conversely, if we move
down N towards k, the reliability of the system can get seriously affected because the order
materialization may get delayed. Consequently the number of operating components could get
reduced to k − 1, thus affecting system reliability. In other words the order for replenishment
is placed when the number of operating components is closer to k. So the replenishment could
get correspondingly delayed, endangering system reliability. Of course, one can argue that the
replenishment time is exponentially distributed and so it lacks memory. In any case for the
same parameter of the lead time exponential distribution, we will see the distinction through the
examples. In the case of failure rate inversely proportional to number of operating components,
we see that the cost function constructed is convex. In particular for parallel (1-out-of-n : G
system) and serial (n-out-of-n : G system) systems we get the corresponding optimal N value
from the general case.

The eight figures (titled as Figure 3) given below, provide a very clear picture of how the
system performs. The first two among these indicate that, with faster replenishment rate the
number of components in operation goes up in the two types of failure rates indicated. This
trend is also seen to be true for the number of spares available (see the 3rd and 4th figures).
Fraction of time the system is up, is considerably smaller when failure rate of the system is
directly proportional to the number of operational components than when the system failure rate
is inversely proportional to that number (the last two pair of figures). The third pair of figures
tells us about the fraction of time the system is down in the two distinct scenarios.
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Figure 3: Effect of β and N on performance measures, when failure rate is λ and λ/j respectively.
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5. Concluding remarks

In this paper we considered a k - out - of - n : G system with N - policy for placing orders for
replacement of failed components. The long run system state probability distribution is computed
when failure rate is linear. The case of constant failure rate is shown to be a particular case of that.
A number of distributions associated with the system are derived. In particular, the time duration
between two successive failures of the system is shown to be of phase-type with appropriate
representation. The distribution of consecutive number of failure free cycles (each replenishment
taking place before the system drops to (k − 1, 0), and thus system failure is averted) is shown to
have geometric distribution. An optimization problem for determining the optimal value of the
control variable N, is constructed and its optimal value is computed. Computational experience
indicates that the function so constructed, is convex in N.

There are several extensions and generalizations of the problem investigated in this paper.
For example, instead of exponential distribution any continuous distribution with non - negative
part of real line as support which does not lack memory, could be introduced. However, this
may result in the loss of CTMC status for the system. The component life times also could be
replaced by such distributions; however, this will lead to a very complex system. Yet another
direction of investigation is the case of repair of failed components under N-policy. In this case,
when the number of failed components reaches n − N, repair of failed units starts. Thus either a
machinery/server for repair of failed components has to be hired. Questions such as immediate
availability arises in this case just as the role played by the lead time in the model analysed. Also
there arises the repair time. A comparison between the model analysed and the case of repair
of failed components may lead to interesting results. There is a very important extension of the
problem presented in this paper to what can be called Reliability - Queueing - Inventory problem.
Another direction for future work is to have a permanent server for repair of failed components.
He/she will also process items that can be used to replace failed components. The server does
this while waiting for accumulation of n − N failed components of the system. Work on these
directions are in progress.
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