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Abstract 

 
The ramified sewerage system for receiving and transferring household and industrial sewage typical for 
a large city is considered. Consideration is restricted to the sub-system of sewage conveyance (sewer 
network). A sewer network is defined as a combination of underground pipes (sewers) passing sewage 
through the force of gravity. A review of the literature reveals that there is currently no universally 
acceptable definition or measure for the reliability of urban sewer network. The aim of this article is to 
propose the physically obvious reliability index, and to develop an engineering methodology for its 
calculating. The relative raw sewage volume that could be potentially discharged to the environment as 
a result of component failures in the sewer network is proposed as a measure of overall system reliability. 
A simple method for quick and proper calculation of this volume is presented. The basis for this method 
is a representation of the sewer network by a combination of Y-like fragments. Each such fragment is 
formally substituted by a fictitious equivalent sewer that has a failure rate leading to the same output for 
the same input. A sequential application of this approach reduces the problem of estimating the discharged 
sewage volume to an elementary sub-problem with a simple solution is. The proposed approach is based 
on the reliability theory. The notions “failure flow” and “repair flow” are used. These flows are taken 
stationary with known parameters. Numerical examples are used to demonstrate the proposed approach. 

 
Keywords: Sewer network; Reliability; Sewage discharge; Y-like network fragment; 

Decomposition-equivalence method. 
 

I. Introduction 
 
The proper functioning of the urban sewage disposal system is a primary determinant of the city’s 
ecological and sanitary-hygienic conditions. Confronting problems associated with the sewer 
network maintenance as a subsystem of an entire sewage disposal system, is a necessary step for 
improving operation efficiency in an urban waste water disposal system as a whole. In recent years, 
in response to increasing congestion in urban sewer networks and the adverse environmental impact 
of such congestion, substantial attention has been focused on working out the proposals to improve 
waste water disposal processes. A critical issue in the evaluation and effective implementation of 
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these proposals is the development of the best, in some specified sense, sewage disposal strategies. 
In practice sometimes, very significant improvements in management efficiency could be 
accomplished simply by better maintenance of the waste water disposal system. 

There is a great deal of research dedicated to the reliability problems of water supply systems 
reported in the literature [1-6]. From the latest publications we emphasize the work [2], which 
provides an in-depth review of the relevant research literature in the context of the mathematical 
methods for measuring water distribution system reliability. However, as note in other works, for 
example, [4]: “A review of the literature reveals that there is currently no universally acceptable 
definition or measure of the reliability of water distribution systems … For a large system … it is 
extremely difficult to analytically compute the mathematical reliability”. 

By contrast, the reliability problems of the sewage disposal systems are still uninvestigated [7-
13]. Therefore, any effort to comprehend, set up and refine the issue of sewer network reliability 
takes on great significance. The final objective of these investigations is to develop sewer network 
design, reconstruction and maintenance methods with due regard for reliability.      

 
II. Short description of the object and problem statement 

 
An urban wastewater disposal system is a network of structurally and technologically 
interconnected structures intended for sewage collection and its conveyance to the purification 
facilities. 

Usually the city sewage disposal system is designed and constructed according to the head-
and-gravity concept. This means that the sewage passes through underground sewers having a 
specified fall by gravity, and pumping stations lift sewage in areas where gravity flow is impossible. 
(As a rule, the sewage pumping station is designed as a system providing a redundancy of the 
pumping equipment. Because of this, in the following, we assume that the pumping stations are 
absolutely reliable). By this means the sewer network, by nature, is a peculiar water distribution 
system. The reliability of such systems is often defined by heuristic guidelines, like having all pipe 
diameters greater than a minimum prescribed value. By using such guidelines it is implicitly 
assumed that reliability will be assured, but the level of reliability provided is not quantified or 
measured. Thus, the question: “Is the system reliable?” is usually well understood and easy to 
answer, while the question “What is its reliability level?” is not straightforward. As a result, only 
limited confidence can be placed on such rules, as reliability is not considered explicitly. 

The underground pipes, as sewer network components, are subject to so many influences that 
it is difficult, if not impossible, to predict their combined effect in advance. These influences include 
the corrosive action of the soil and sewage, ground movements, the weather, etc. Most of these 
factors are random, and are characterized by significant variability. These circumstances adversely 
affect sewer network reliability. Currently, traditional wastewater disposal system design and 
maintenance methods usually fail to account for this situation. 
A determination of the timeline and the sequence of a sewerage modernization plan is an important 
problem of the applied reliability theory. The strategy development for the object  reconstruction 
falls into two stages. At the first stage, the object technical condition is established, and a need for 
renovation is determined. The second stage is job scheduling for the specific network elements 
requiring repair or replacements. 

Depending on the purpose of the study and the specifics of an object, its technical state may 
be estimated, from the viewpoint of a reliability, using different quantitative measures: for example, 
by the average time between failures or by the probability of trouble-free functioning over a given 
period of time. We note that these traditional measures accepted in theory, as applied to sewer 
networks, provide not enough information because it is very hard to interpret them physically. 

Here the specific reliability index is proposed. This index is intended for functioning 
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efficiency estimation of tree-like hierarchical structures; an urban sewer network is a typical 
representative of such structure. The damage due to raw sewage discharged to the environment 
resulting from sewer network failures is considered as a quantitative reliability measure [7]. 
At the moment there are no universally accepted procedures for assessment of the economic and 
ecological damage due to raw sewage discharge resulting from sewer network failures. Within any 
particular region, sewer basin or city district this damage and the methods of assessing it may differ 
significantly and may change with the time. What is considered acceptable for one area or time 
period may not be appropriate for another area or time. In any case however, it is evident that this 
damage is dependent on the volume of raw sewage discharged to the environment (in actual practice 
this sewage is usually pumped over into a suitable nearly manhole by a mobile emergency pumping 
plant). 

For this reason, the volume of raw sewage potentially discharged from the sewer network to 
the environment over some time period (for example, one year) may be taken as a measure of the 
damage caused by the network unreliability, and, therefore, as an indirect measure of the sewer 
network reliability. 
Thus, the problem reduces to finding of the raw sewage volume potentially discharged from the 
sewer network. 
 

III. Reliability analysis of the sewer network fragment 
 

Systems like a urban sewer network, are often described in terms of a graph, with links representing 
the pipes (sewers), and nodes representing connections between the pipes. The behavior of a sewer 
network is governed by the physical laws that describe the flow relationships in the pipes (laws of 
conservation), and the network layout. 

Two features of a sewer network should be pointed out: 1) a sewage gravitates through each 
sewer in one direction only, and 2) the hydraulic elements used to link different sewer basins are 
lacking. This means particularly that the sewage entering into any network inlet, may be piped to a 
certain its outlet by a strictly specified sequence of sewers, i.e. along the only path. Thus, 
mathematically, the graph of an urban sewer network is a simply connected, oriented, and acyclic 
graph; in theory such graphs are also known as tree-like graphs. 

We consider the three-component Y-like sewer network fragment shown in Fig. 1. 

 
 

Figure. 1: Y-like sewer network fragment. 
 

Each enumerated sewer of this fragment is characterized by its length ; in 

addition, we suppose that the unidirectional sewage flow rates in the inlets of sewer 1and 2 (  and 

, respectively) are known, constant and equal to the mean values calculated by averaging the 
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historical data obtained over a long period of time. We assume that, from time to time, each sewer 
fails, is repaired and, thereafter, put back in service again. Thus, each sewer can be either up 
(operable) or down (failed). In terms of the reliability theory, this means that so-called failure and 
repair flows are both acting on each sewer. 

For a mathematical description of these flows, what is meant by term “failure” must be 
ascertained. 

The exact definition of failure is somewhat fluid and depends on the level of detail of the 
required analysis, and has a variety of meanings to different individuals. In actual practice, a 
disturbance of the normal operation of the sewer can be manifested as a reduction of its capacity 
caused by cracks in the pipe, sewer breaks under extreme mechanical load, increasing rates of 
infiltration, repeated overflows, etc. Here, we shall define “failure” as an event implying a need for 
immediate overhaul or replacement of the pipe. In other words, the failure of a sewer is defined as 
an event when the sewer capacity becomes equal to zero, and consequently, all sewage entering into 
the sewer discharges to the environment. 

The repair is taken here to mean that a renewal process reaches completion and the sewer is 
returned to service. 

Usually, such events are documented with accompanying parameters. This information is 
systematically renewed, statistically processed and stored in relevant data bases. In the following, 
we assume that these data (in particular, the mean time to failure and mean time to repair) are known 
and available for analysis. 

Both of these flows are characterized by their rates. Physically, the failure rate is the mean 
number of failures in a unit of time. The repair rate is defined similarly. In line with a much used 
assumption, we suppose that the failure flow as well as the repair flow are exponentially distributed 
flows [4]. From this it follows that the specific failure rate (the failure rate per unit sewer length) for 
each sewer , respectively) is constant. Analogously, the repair rates for sewers 

1, 2 and 3  are constant as well. We assume that all these values are given. 

The problem is stated as follows: given the values of all quantities listed above, it is necessary 
to estimate the volume of raw sewage discharged from the sewer network to the environment over 
some time period (one year in this study). 

In order to solve this problem, we must first bring out the possible states of the system taken 
as a whole. These states are enumerated and listed below; what is meant by each state is explained 
in parentheses, and, next, the associated probability  of the system residing in state  is 

introduced: 
0: (sewers 1, 2 and 3 up) - ; 

1: (sewer 1 down, sewers 2 and 3 up) - ; 

2: (sewer 2 down, sewers 1 and 3 up) - ; 

3: (sewer 3 down, sewers 1 and 2 up) - ; 

4: (sewers 1 and 2 down, sewer 3 up) - ; 

5: (sewers 1 and 3 down, sewer 2 up) - ; 

6: (sewers 2 and 3 down, sewer 1 up) - ; 

7: (sewers 1, 2 and 3 down) - . 

With time, under the influence of failure and repair flows, the system goes from one state to 
another accidentally. This process is conveniently described by the use of the state space graph [14] 
(see Fig. 2), in which the possible system states are represented by circles with their number inside. 
The arrows indicate the transitions between states. The associated failure or repair rate is placed by 
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an arrow; in this case , and . 

Such a graph gives a descriptive idea of the changing system states. As an example, we 
consider state 4 (sewers 1 and 2 down, sewer 3 up). From this state the system departs to state 1 if 
the renewal process of sewer 2 reaches completion (the repair rate is ), to state 2 when sewer 1 is 

returned to service ( ), and to state 7 when sewer 3 breaks down as well ( ). We note incidentally 

that the transition of the system, for example, from state 4 to state 0 is impossible due to the features 
of the exponentially distributed flow. 

With the state space graph in hand it becomes possible to find all state probabilities  

as functions of time. For this purpose so-called Kolmogorov’s equations are formed [14]. 
 
 

 
 

Figure. 2: State space graph for the Y-like network fragment. 
 
 

For the graph shown in Fig. 2 these equations take the form: 

                    (1) 

 

22021101 )(,)( LL llll == 3303 )( Lll =

2µ
1µ 3l

)(tpi

0

4

1

6

3

7

5

2
3l

1l

3l

1l

1µ

1µ

3µ

3µ
3l

1µ 3µ

1l

3l

1l 2l 2µ

1µ 3µ

2l

2l2l 2µ2µ

2µ

ï
ï
ï
ï
ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï
ï
ï
ï
ï

í

ì

++-++=

++-++=

++-++=

++-++=

++-++=

++-++=

++-++=

++-++=

).()()()()(
)(

),()()()()(
)(

),()()()()(
)(

),()()()()(
)(

),()()()()(
)(

),()()()()(
0(

),()()()()(
)(

),()()()()(
)(

7321615243
7

6321713223
6

5312723113
5

4213732112
4

3321625103
3

2231634102
2

1132534201
1

0321332211
0

tptptptp
dt
tdp

tptptptp
dt
tdp

tptptptp
dt
tdp

tptptptp
dt
tdp

tptptptp
dt
tdp

tptptptp
dt
tdp

tptptptp
dt
tdp

tptptptp
dt
tdp

µµµlll

µµlµll

µµlµll

µµlµll

µllµµl

µllµµl

µllµµl

lllµµµ

125



 
Baranov L.A., Ermolin Y.A., Shubinsky I.B. 
RELIABILITY OF A NETWORK 

RT&A, No 4 (65) 
Volume 16, December 2021  

 

 
When a system state is changed, transition processes on the probabilities  take place. 

But, as shown this in [15] for real values  and , these processes are very rapid. Usually, 

engineering practice uses so-called stationary probabilities. The probability of the system residing 
in state  assumes that stochastic transition process is stationary. By this is meant that all 
probabilities are independent of time (otherwise, they are also known as the stationary or limiting 
probabilities [14]. They may be obtained from Eqs. (1) taking all derivatives with respect to time 
equal to zero. In line with a common procedure [14], we form a set of linear algebraic equations for 
stationary probabilities : 

                                  (2) 

 
Due to the fact that the set of Eqs. (2) fails to involve constant terms, there are infinitely many 

different solutions satisfying Eqs. (2). In order to be able to choose the unique solution in terms of 
, it is necessary to substitute any one of the equations in (2) by the normalizing condition: 

 

                                                             3) 

which reflects the fact that the considered system is in any one state at all time. 
 

We can notice the following rules for forming each individual equation by inspecting the set 
(2) and the associated graph (Fig. 2). The left-hand side of the equation contains the product of the 
probability of residing in state and of the summarized rate of all flows departing the system from 
the th state. The right-side of the equation is the sum of products of the probability of the state from 
which it is possible to arrive to state , and of the corresponding failure or repair flow rate. Thus, 
given the state space graph, forming a set of equations allows us to calculate the stationary 
probabilities. 

Solving the set of Eqs. (2), we have the values of all stationary probabilities. Physically, the 

value of  obtained is the relative mean time of the system residing in state . We point 

out that this method is known as the state-enumeration method [14]. 
We calculate the stationary probabilities for eight possible states  for  the  graph shown in 

Fig. 2. We assume: = 1 km, = 1.5 km, = 2 km. Let also = 0.42 1/(yr km), 

= 0.37 1/(yr km), = 0.3 1/(yr km). Then = 0.42 1/yr, = 0.56 
1/yr and =0.6 1/yr.1/yr. For the sake of calculation simplicity it is assumed as well 

that . We take = 0.02 1/h = 175.2 1/yr. By substituting these values in Eqs.(2) 

(replacing one of  them by (3)) and  solving  the set (2) for , we obtain:  = 0.9; = 2.376 10
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; = 3.168 10 ; = 3.394 10 ; =7.594 10 ; = 8.136 10 ; = 1.085 10
; = 2.596 10 . 

With every system state one can associate a certain volume  of raw sewage discharged 

to the environment that can be represent by the following correspondence relations: 

                                     (4) 

where T  is the interval of time for which the discharged sewage volume  is to be estimated. 

For the sake of concreteness, we assume that = 0.4 m /s, = 0.6 m /s and T = 1 yr = 
31.536 10  s. Then = 0, = 126.144 10 m , = 189.216 10  m , 

= 315.360 10  m . The raw sewage volume is calculated as 

expectation of the random variable 

= 1.978 10  m                                         (5) 

that is 0.63 % of the total volume of sewage  = 315.360 10  m that entered the inlets 
of the considered network during the year. 

Thus, the problem formulated for the sewer network, shown in Fig. 1, is solved. 
A more realistic and much used approach proceeds from the fact that the probabilities of 

simultaneous failure of two or more sewers are extremely low. This fact is easy to verify by analyzing 
the results of numerical calculations cited above. Taking this into account and assuming that these 
probabilities are equal to zero, it can be seen that for the network fragment shown in Fig. 1 only four 
possible states are available, namely: 

0: (sewers 1, 2 and 3 up) -   

1: (sewer 1 down, sewers 2 and 3 up) -   

2: (sewer 2 down, sewers 1 and 3 up) -  

3: (sewer 3 down, sewers 1 and 2 up) -  

The corresponding state space graph is shown in Fig. 3,a. 
 

 

 
Figure. 3:  Simplified state space graph for the Y-like fragment a) and its transformation b). 
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The set of equations written with respect to the stationary probabilities takes the form: 

                           (6) 

 
It is possible to solve this set of equations analytically. Granting that  , we get: 

                                                    (7) 

where dimensionless parameters  characterizing the rate of the “failure-repair” process for each 
sewer of Y-like network fragment are introduced. 

By analogy with (4) we can write for volumes  : 

                              (8) 

and to make an estimate of the raw sewage discharge  as: 

                              (9) 

For data used in this numerical example, the calculation by (9) yields: = 1.969 10 m , 

that is coincident practically with the result (5) obtained above. 
 

IV. Equivalenting of the network fragment 
 

Difficulties emerge when we estimate the raw sewage discharge resulting from sewer network 
failures for a sufficiently branched, multicomponent sewer network. The problem is that the number 
of the possible states rapidly increases with number n of network elements (sewers), and equals 
. For example, for n = 15  we have 32768 possible states. The high order of the problem presents 
difficulties in solving an associated set of equations, equals to the number of possible states, in actual 
practice. Below is proposed an approach that provides a way of simplifying the procedure of 
estimating the discharged sewage volume for a sufficiently branched sewer network. 

First of all, we recall that the mean relative time of the system residing in the inoperable 
state having only two possible states (up and down), is numerically equal [16]: 

                                                    (10) 

where . 
Return again to Fig. 1 and imagine a fictitious sewer 123 with unknown, for now, failure 

and repair  rates, at the inlet of which the sewage flow rate  is the case, that 

substitute, in some sense, the Y-like network fragment shown in Fig. 1.  
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Schematically, such substitution is represented in Fig. 4. 
 

 
Figure. 4: Three-component network a) and its equivalent b). 

 
The state space graph corresponding to Fig. 4b) is shown in Fig. 3b). 

It is easy to verify that the volume of raw sewage  discharged from this sewer for 

time T, is: 

                                              (11) 

We call attention to the fact that, at given flow rates  and  at the inlets of Y-like network 
fragment, the volume of discharged sewage for time T is dependent on the dimensionless parameter 

 of fictitious sewer only. In this case, under equivalenting of Y-like network fragment, is no need 

to find  and  separately, but their ratio only. 

We find  leading to the same output for the same input. To this end we equate (11) to (9) 

and solve the equation obtained for  This leads to 

                                            (12) 

Usually, in actual practice the mean time to failure is far in excess of mean time to repair, 
that , and, then, Eq. (12) can be written as: 

                                            (13) 

Thus, the Y-like sewer system shown in Fig. 4a) is superseded formally with an equivalent 
fictitious sewer 123, having the dimensionless parameter  and sewage flow rate at the inlet 

 (see Fig. 4b)). 
Sometimes, the cases occur when at one point of network more than two (generally, k) 

sewers are connected (Fig. 5a)). 
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Figure. 5:. Extension of an equivalenting procedure 
 

In this case  must be calculated by formula [16]: 

                                                             (14) 

and, then, the system depicted in Fig. 5a) can be superseded by one sewer as shown in Fig. 5b). 
Now we find out a physical meaning of the dimensionless parameter . 

Because , the Eq. (11) may be rewritten as . It is evident 

that cofactor  in the right-hand side of this expression is a total volume of raw 

sewage that entered the inlets of the considered network at time T . Then,  is a part of Q that is 

not conveyed to the network outlet, i. e. is discharged to the environment. When multiplied by 100,   
physically shows the raw sewage discharge resulting from sewer network failures, expressed as a 
percentage of total sewage volume entered to its inlets. By virtue of the fact that  is varied from 0 

(absolutely reliable network) to 1 (theoretically, completely inoperable network), the parameter , 

in our opinion, may be used as an objective, single-valued measure of the sewer network reliability. 
We emphasize that the sewer network fragment of Fig. 4a) (or Fig.5a)) is a structure-forming 

component in the sense that any arbitrary complicated dendritic sewer network may be thought of 
as a composition of such components that substantially reduces and simplifies a body of calculations 
in estimating raw sewage discharged from the network. Below we give a technique of how to apply 
this approach. 
 

V. Decomposition-equivalence technique 
 

We shall call this procedure as the “decomposition-equivalence technique”. It is more convenient to 
demonstrate this technique by the following example.  

Consider the network in Fig. 6a) consisting of seven sewers, each determined by the values 
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and , and, hence, by the value . In addition, the sewage flow rate at the 

network inlets  will be considered to have constant values.  

 
 
It is necessary to estimate the raw sewage volume discharged from the network throughout 

the year as a consequence of possible failures. 
 

 
Figure. 6:.Decomposition-equivalence technique. 

 
First we consider the contours I and II in Fig. 6a). Either contour includes the Y-like system, 

and, consequently, can be substituted by one equivalent sewer with its associated value of parameter 
 calculated according to the method proposed above. Using Eq. (13), we have  for contour I. 

Similarly, with assigned notations, for contour II we have . 
The results obtained enable one to present the initial network in the form shown in Fig. 6b). 

But this is an Y-like system (contour III) again. Using Eq. (13), we have finally the parameter 
 of one equivalent sewer substituting the initial network (see Fig. 6c)). Thus, the problem 

is solved. 
As may be seen from this example, unlike the state-enumeration method here, there is no 

need to solve an unwieldy set of equations. The problem reduces to a sequence of simple 
computations using, at every stage, the results of a preceding step. 

Although this methodology has been applied to a comparatively simple case, it can be 
extended easily to multicomponent networks. 

 
VI. Applications 

 
The method developed in this paper may be used to solve many practical problems. Some of these, 
in the form of numerical examples, are considered below in a deliberately simplified but well 
realistic statement. 
 

6.1. Problem 1.The sewer network shown in Fig. 7a) is given. 
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Figure 7: Initial sewer network a) and its sequential transformations b), c), d), e). 

 

q1

q2

q3

q4

q5

q6

q7

q8
outlet

1

2

3

4
5

6

8

9

10

11 12

13

15

а)

l

ll

lll

14 7

q1

(q2+q3)

q4 (q5+q6)

(q7+q8)

outlet

1

4

11 12

15

 b)

lV

V

l

ll

lll

10

q1

(q2+q3+q4)

(q5+q6+q7+q8)

outlet

1 11

15

 c)

Vl

lV

V

outlet

15

outlet

å
=

8

1i
iqVll

Vll
Vl V

d) e)

(q1+q2+q3+q4) (q5+q6+q7+q8)

132



 
Baranov L.A., Ermolin Y.A., Shubinsky I.B. 
RELIABILITY OF A NETWORK 

RT&A, No 4 (65) 
Volume 16, December 2021  

 

 
The network consists of 15 enumerated sewer sections; the number of inlets is equal to 8. 

The direction of the sewage flow through an each sewer is shown by the arrow. There is a need to 
estimate a reliability level of this network (in the sense of the proposed criterion). 

To carry out the calculations we need some data. Such data are represented in Table 1. 
 

Table 1: Input data for calculations 
 

 

Section, i 1 2 3 4 5 6 7 8 9 10 

Failure rate , (1/yr)                     
0.52 0.68 0.79 0.91 1.34 0.83 0.75 0.03 0.85 0.62 

Repair rate , (1/yr) 
220 220 220 220 220 220 220 220 200 150 

Parameter  
2.36 3.09 3.59 4.14 6.09 3.77 3.41 0.14 4.25 4.13 

 11 12 13 14 15      
 0.84 1.10 0.03 0.50 0.05      

 120 120 200 200 90      

 7.00 9.17 0.15 2.50 0.56      

 
Besides, the inlets sewage flow rates in Table 2 are shown. 

 
Table 1: Network inlets sewage flow rate. 

Inlet, i                                   1 2 3 4 5 6 7 8 
Sewage flow rate 

, (m /s)       
3 9 6 4 5 1 5 7 

 
In addition, without loss of generality, we assume that the length of each sewer section is 

equal to 1 km. We note also that all values are hypothetical, convenient for calculations only. 
First we consider the contours I, II and III (Fig. 7a)) at the network periphery. Either contour 

includes the Y-like system, and, consequently, can be substituted by one equivalent sewer with its 
associated value of parameter  calculated according to the method proposed above. Using Eq. (13) 
where now, taking account of the new notations, and the data from Table 1 and Table 2 we have for 
contour I: 

 

Similarly, for contour II: 

 

and for contour III: 

 

The results obtained enable one to present the initial network in the form shown in Fig. 7b). 
But here are the Y-like systems (contours IV and V) again. Using Eq. (13) we have the parameter  

for contour IV: 
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and  for contour V: 

 

As a result, the structure shown in Fig. 7b) substitutes by the structure depicted in Fig. 7c) 
where the Y-like sub-system (contour VI) may be selected. Equivalenting this contour again by one 
sewer section with the parameter 

 

we are going to the Fig. 7d). 
But the structure shown in Fig. 7d) is the Y-like fragment (contour VII) in itself that may be 

substituted by one sewer (see Fig. 7e)). Thus, finally we have the parameter  of one equivalent 

sewer substituting the initial network depicted in Fig. 7a): 

 

The sequence of “decomposition-equivalence” operations is completed. Hence, in this case, 
. This means that, on the average, 1.6 % of the total sewage volume that entered 

the network inlets during time T , discharges from the sewer network to the environment arising 
from the network component failures. The accuracy of this measure increases as T increase, that is 
characteristic for probabilistic problems at all. 

6.2. Problem 2.Let us assume that specialists analyzing the results obtained in preceding 
Problem 1 come to the conclusion that the raw sewage discharge from the sewer network (Fig. 7a)) 
is much too large, and, consequently, the network reliability needs to be increased. The question 
concerning replacement of some components by a new sewer pipe is discussed, but it is possible to 
replace only one sewer because available funds are limited. On the present evidence, it may be 
argued that the failure rate for a new sewer (manufacturer’s data) is 0.02  1/yr; the repair rate 

 is taken to be equal to 200. It is desired to identify the preferential alternative. 

First of all, we compute . As before, we will take the discharged 

sewage volume as an efficiency index of the alternative to be accepted. Calculate this quantity 
assuming that the replacement of sewer section 1 in the initial network (Fig. 7a)) has just been made. 
For this purpose, we substitute the input data (associated with the sewer 1) of the Problem 1, for one 
another (corresponding to the new sewer), namely . Carrying out the relevant 

calculations, we obtain the discharged sewage volume expressed as a percentage of the total sewage 
entered the network: 1.582 %. By repeating the similar calculations with respect to each network 
section we come to the results represented in Table 3. 

 
Table 3: Example table Result of calculations. 

 

 

Section to be replaced Relative 
sewage volume discharge from 
network,% 

1 2 3 4 5 6 7 8 
1.582 1.532 1.547 1.559 1.524 1.590 1.558 1.559 

9 10 11 12 13 14 15  
1.444 1.408 1.220 1.191 1.599 1.527 1.523  

 
Referring to Table 3, it is seen that the smallest volume of sewage to be discharged from the 

network occurs when the network’s section 12 is replaced (in Table 3 this is highlighted in bold 
print). It is obvious that, under otherwise equal conditions, this alternative is preferable from the 
viewpoint of the reliability index accepted in this work. 
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The problems considered are simple as well; for this reason, the results seem to be trivial. 
Note, however, that the simplicity of the examples makes it possible to see the potential of the 
proposed method for practical use. 

VII. Conclusion 
 

Although sewer reliability depicts a fairly complete reliability measure of the sewer network, it is 
convenient to use a single index to represent the composite effect of the component reliabilities. We 
propose to assess sewer network reliability as a whole by a volume of raw sewage discharged from 
the system because of failures of its components for an appreciable length of time. The traditional 
method for solving such problems is the so-called state-enumeration method. But, for the 
multicomponent networks, this generates a need to solve a set of equations having very high order, 
which renders the method unsuitable for many practical applications. The approach proposed in 
this work makes it possible to circumvent these difficulties by using the concept of equivalent sewer. 
As a result, the problem reduces to a sequential consideration of elementary sub-problems the 
solution of which is easily accomplished. 

As the methodology is applicable for sewer networks, each component of which can be 
either up (operable) or down(failed), additional research is need for extending the method for more 
complex cases.  

In our view, similar problems exist also in the course of maintenance of oil, gas and other 
pipeline systems. Such a setting and solving of problems may also be of interest for specialists 
working with general reliability issues. 
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