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Abstract

Based on progressively first-failure censored data, the problem of estimating parameters as well as relia-
bility and hazard rate functions for a class of an exponential distribution is considered. The classic and
Bayes approaches are used to estimate the parameters. The maximum likelihood estimates and exact con-
fidence interval as well as exact confidence region for parameters are developed based on this censoring
scheme. Also, when the parameters have discrete and continuous priors, several Bayes estimators with
respect to different symmetric and asymmetric loss functions such as squared error, linear-exponential
(LINEX) and general entropy are derived. Finally two numerical examples are presented to illustrate
the methods of inference developed in this paper.

Keywords: Bayes estimator, Confidence region, Exponential distribution, Maximum likelihood
estimator, Loss function, Progressive first-failure censoring scheme

1. Introduction

In many life test studies, it is common that the lifetimes of the test units may not be able to
record exactly. Censoring is very common in reliability data analysis, in the past several decades.
It usually applies when the exact lifetimes are known for only a portion of the products and
the remainder of the lifetimes has only partial information. There are several types of censoring
schemes in survival analysis and the type-II censoring scheme is one of the most common for
consideration. In type-II censoring, the test terminates after a predetermined number of failure
occurs in order to save time or cost, but the conventional type-II censoring scheme does not
has the flexibility of allowing removal of units at points other than the terminal point of the
experiment. For this reason, a more general censoring scheme called progressive type-II right
censoring is proposed. Although, progressive censoring scheme was introduced long ago in the
statistical literature, in recent years the progressive censoring scheme has received considerable
attention in the statistical literature, see for instance [1], [2] and [3]. For an exhaustive list of
references and further details on progressive censoring, readers are referred to [4]. In some
cases, the lifetime of products is quite long and so the experimental time of the progressive type-
II censoring scheme can still be too long. In order to give an efficient experiment, the other test
methods are proposed by statisticians where one of them is the progressive first-failure censoring
scheme. It can be described as follows.

Suppose that n independent groups with k items within each group are put on a life test
and experimenter decides beforehand the quantity m, the number of units to be failed. At the
time of the first failure, Xr

1;m,n,k, r1 groups and the group in which the first failure is observed
are randomly removed. r2 groups and the group with observed failure are randomly removed
as soon as the second failure, X r

2;m,n,k, has occurred. The procedure is continued until all rm
groups and the group with observed failure are removed at the time of the m-th failure, Xr

m;m:k:n.
Then Xr

1;m,n,k < Xr
2;m,n,k < . . . < Xr

m;m,n,k are called progressively first-failure censored order
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statistics with the censoring scheme r = (r1, r2, . . . , rm). We notice that if k = 1, progressively
first-failure censored reduces to the progressive type-II censoring. Also, if k = 1 and r1 = r2 =
· · · = rm−1 = 0, rm = n − m, it reduce to the type-II censoring. Wu et al. [5] and Wu and
Yu [6] obtained the maximum likelihood estimates (MLEs), exact confidence intervals and exact
confidence regions for the parameters of the Gompertz and Burr type XII distributions based on
first-failure censored sampling, respectively. Wu and Kuş [7] studied the Weibull distribution
under progressive first-failure censoring to make some classical inference on the parameters
of a Weibull distribution and they proved that the progressive first-failure censoring scheme
had shorter expected test times than the progressive type-II censoring scheme. Abou-Elheggag
[8] studied the Rayleigh distribution under progressive first-failure censoring. He derived the
maximum likelihood estimates and Bayes estimates of scale parameter, survival and hazard rate
functions. Also, one can refer to [9], [10], [11],[12] and [13].

To simplify the notation, we will use Xi in place of Xr
i;m,n,k. Let X = (X1, X2, . . . , Xm) be a pro-

gressive first-failure censored sample from a continuous population with the cumulative distribu-
tion function (CDF), F(x), the probability density function (PDF), f (x), and x = (x1, x2, . . . , xm)
is an observed value of X. The joint pdf of X is given by [7] as follows

f1,2,...,m(x) = Akm
m

∏
i=1

f (xi)[1 − F(xi)]
k(ri+1)−1, 0 < x1 < x2 < . . . < xm < ∞, (1)

where A = n(n − r1 − 1)(n − r1 − r2 − 2) · · · (n − r1 − r2 − · · · − rm−1 − m + 1).
In this paper, our main object is to study the classical and Bayes estimation procedures for

the parameter(s) of a general class of exponential- type distribution based on a progressively
first-failure censored sample.

The rest of this paper is organized as follows. In Section 2, the model is described. Some clas-
sical estimation, such as maximum likelihood estimation and interval estimation are presented
in Section 3. Section 4 develops the Bayes estimators for different loss functions such as squared
error, LINEX and general entropy. One illustrative example and a simulation study via a Monte
Carlo method are conducted in Section 5. Finally, we conclude the paper in Section 6.

2. Model description

Suppose the lifetime random variable T has a continuous distribution with two parameters as α
and λ, and with the PDF and CDF as

f (t; α, λ) = αψ(t; λ) exp{−αΨ(t; λ)}, 0 < t < ∞, (2)

F(t; α, λ) = 1 − exp{−αΨ(t; λ)}, (3)

where ψ(t; λ) = ∂Ψ(t;λ)
∂t , Ψ(t; λ) is increasing in t with Ψ(0; λ) = 0 and Ψ(∞; λ) = ∞. The

corresponding reliability and hazard rate functions becomes:

R(t) = exp{−αΨ(t; λ)}, (4)

h(t) = αψ(t; λ), (5)

respectively. This general form for lifetime model including some well-known and useful mod-
els such as Burr XII distribution with Ψ(t; λ) = ln(1+ tλ), Gompertz distribution with Ψ(t; λ) =
eλt−1

λ , Weibull distribution with Ψ(t; λ) = tλ, two parameters bathtub-shaped lifetime distribu-
tion (see [14]) with Ψ(t; λ) = etλ − 1 and so on. For more details, we refer the reader to [15].

3. Classical estimation

In this section, we consider the maximum likelihood estimation and interval estimation for the
unknown parameters when the data are progressively first-failure censored.
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3.1. Point estimation

Let X = (X1, X2, . . . , Xm) be a progressive first-failure censored sample from (2), with censoring
scheme (r1, r2, . . . , rm). From (1) the likelihood function is given by

L(α, λ; x) = Akmαm exp{−αk
m

∑
i=1

(ri + 1)Ψ(xi; λ)}
m

∏
i=1

ψ(xi; λ). (6)

By setting the derivatives of the log-likelihood function with respective to α or λ to zero, the
MLE of λ, say λ̂, is the solution to the following likelihood equation

m

∑
i=1

(∂/∂λ)ψ(xi; λ)

ψ(xi; λ)
=

m ∑m
i=1(ri + 1)(∂/∂λ)Ψ(xi; λ)

∑m
i=1(ri + 1)Ψ(xi; λ)

, (7)

and the MLE of α, say α̂, can be obtained as

α̂ =
m

k ∑m
i=1(ri + 1)Ψ(xi; λ̂)

. (8)

It is not easy to solve the equation(7) analytically in order to achieve the MLE of λ. Some
numerical methods can be employed such as the Newton-Raphson method. Finally, using the
invariance property, the MLEs of R(t) and h(t) are obtained as

R̂(t) = exp{−α̂Ψ(t; λ̂)}, t > 0,

and
ĥ(t) = α̂ψ(t; λ̂), t > 0,

respectively.

3.2. Interval estimation

Let Yi = kαΨ(Xi; λ) for i = 1, 2, . . . , m. It can be seen that Y1 < Y2 < . . . < Ym, are the progressive
first-failure censored order statistics from an exponential distribution with mean 1. Consider the
following transformation:

Z1 = nY1,

Zi = (n − r1 − r2 − · · · − ri−1 − i + 1)(Yi − Yi−1), i = 2, 3, . . . , m.

The generalized spacings Z1, Z2, . . . , Zm are independent and identically distributed as an expo-
nential distribution with mean 1 (see [1]). Hence, for j = 1, 2, . . . , m − 1,

τj = 2
j

∑
i=1

Zi = 2kα[
j

∑
i=1

(ri + 1)Ψ(Xi; λ) +
m

∑
i=j+1

(ri + 1)Ψ(Xj, λ)] (9)

and

γj = 2
m

∑
i=j+1

Zi = 2kα
m

∑
i=j+1

(ri + 1)[Ψ(Xi; λ)− Ψ(Xj; λ)] (10)

are independently Chi-squared distributed with 2j and 2(m− j) degrees of freedom, respectively.
We consider the following pivotal quantities:

ηj =
j

m − j
.

∑m
i=j+1(ri + 1)(Ψ(Xi; λ)− Ψ(Xj; λ))

∑
j
i=1(ri + 1)Ψ(Xi; λ) + ∑m

i=j+1(ri + 1)Ψ(Xj; λ)
, j = 1, 2, . . . , m − 1, (11)

ξ = 2kα
m

∑
i=1

(ri + 1)Ψ(Xi; λ). (12)
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It is clearly that ηj has a F distribution with 2(m − j) and 2j degrees of freedom and ξ has a
Chi-squared distribution with 2m degree of freedom. Meanwhile, ηj and ξ are independent. To
construct an exact confidence interval for λ and the joint confidence region for the parameters α
and λ, we need the following lemma.

Lemma 1. Suppose that for x1 < x2 < · · · < xm,

wj(λ) =
∑m

i=j+1(ri + 1)(Ψ(xi; λ)− Ψ(xj; λ))

∑
j
i=1(ri + 1)Ψ(xi; λ) + ∑m

i=j+1(ri + 1)Ψ(xj; λ)
, j = 1, 2, . . . , m − 1. (13)

Then wj(λ) is strictly increasing in λ, if function Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t, where Ψ′(t; λ)

is (∂/∂λ)Ψ(t; λ).

Proof. Let wj(λ) = w1j(λ)/w2j(λ), where

w1j(λ) =
m

∑
i=j+1

(ri + 1)
Ψ(xi; λ)

Ψ(xj; λ)
−

m

∑
i=j+1

(ri + 1), (14)

w2j(λ) =
j

∑
i=1

(ri + 1)
Ψ(xi; λ)

Ψ(xj; λ)
+

m

∑
i=j+1

(ri + 1). (15)

Since w1j(λ) and w2j(λ) are positive, the proof is obtained if we can show that w1j(λ) and w2j(λ)
are strictly increasing and decreasing functions in λ, respectively. It is observed that

w′
1j(λ) =

1
Ψ2(xj; λ)

m

∑
i=j+1

(ri + 1)[Ψ′(xi, λ)Ψ(xj; λ))− Ψ(xi; λ)Ψ′(xj; λ)] > 0, (16)

w′
2j(λ) =

1
Ψ2(xj; λ)

j

∑
i=1

(ri + 1)[Ψ′(xi; λ)Ψ(xj; λ))− Ψ(xi; λ)Ψ′(xj; λ)] ≤ 0, (17)

Since, when Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t, then Ψ′(xi ;λ)

Ψ(xi ;λ)
<

Ψ′(xj ;λ)
Ψ(xj ;λ)

for i = 1, 2, . . . , j − 1, and

Ψ′(xi ;λ)
Ψ(xi ;λ)

>
Ψ′(xj ;λ)
Ψ(xj ;λ)

for i = j + 1, j + 2, . . . , m. ■

Remark 1. For all of well-known lifetime distributions mentioned in Section 2, it can be shown
that Ψ′(t;λ)

Ψ(t;λ) is strictly increasing in t. For instance, when Ψ(t; λ) = ln(1 + tλ), it turns out to be
Burr XII distribution and see [5].

Let Fv1,v2(p) is the percentile of F distribution with v1 and v2 degrees of freedom with the
right-tail probability p. An exact confidence interval for the parameter λ, and the joint confidence
region for the parameters α and λ are given in the following theorems, respectively.

Theorem 1. Suppose that X = (X1, X2, . . . , Xm) be a progressive first-failure censored sample
from (2), with censoring scheme (r1, r2, . . . , rm),

Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t, and

Wj(λ) =
j

m − j
wj(λ), j = 1, 2, . . . , m − 1, (18)

where wj(λ) is defined in (13). Then, for any 0 < ν < 1 and j = 1, 2, . . . , m− 1, when F2(m−j),2j(
ν
2 )

and F2(m−j),2j(1 − ν
2 ) are in the range of the function Wj(λ)

φj
(
X, F2(m−j),2j(1 −

ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

ν

2
)
)

(19)

is a 100(1 − ν)% confidence interval for λ, where φj(X, u) is the solution of λ for equation
Wj(λ) = u.
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Proof. By Lemma 1, Wj(λ) is a strictly increasing function in λ and since F2(m−j),2j(1 − ν
2 )

and F2(m−j),2j(
ν
2 ) are in the range of function Wj(λ), then equations Wj(λ) = F2(m−j),2j(

ν
2 ) and

Wj(λ) = F2(m−j),2j(1 − ν
2 ) have unique solutions with respect to λ. Also we know that ηj has an

F distribution with 2(m − j) and 2j degrees of freedom. Thus for 0 < ν < 1,

P
(

F2(m−j),2j(1 −
ν

2
) < ηj < F2(m−j),2j(

ν

2
)
)
= 1 − ν

is equivalent to

P
(

φj
(
X, F2(m−j),2j(1 −

ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

ν

2
)
))

= 1 − ν.

■

Theorem 2. Suppose that X = (X1, X2, . . . , Xm) be a progressive first-failure censored sample
from (2), with censoring scheme (r1, r2, . . . , rm),

Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t. Then, for any

0 < ν < 1 and j = 1, 2, . . . , m − 1, when F2(m−j),2j(
1+

√
1−ν

2 ) and F2(m−j),2j(
1−

√
1−ν

2 )are in the
range of function Wj(λ), a 100(1 − ν)% confidence region for (α, λ) is given by

φj
(
X, F2(m−j),2j(

1+
√

1−ν
2 )

)
< λ < φj

(
X, F2(m−j),2j(

1−
√

1−ν
2 )

)
χ2

2m( 1+
√

1−ν
2 )

2k ∑m
i=1(ri+1)Ψ(xi ;λ)

< α <
χ2

2m( 1−
√

1−ν
2 )

2k ∑m
i=1(ri+1)Ψ(xi ;λ)

, (20)

where χ2
v1
(p) is the percentile of Chi-squared distribution with v1 degree of freedom with the

right-tail probability p and φj(X, u) is defined in Theorem 1 .

Proof. For 0 < ν < 1,

P
(

φj
(
X, F2(m−j),2j(

1 +
√

1 − ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

1 −
√

1 − ν

2
)
)
,

χ2
2m(

1+
√

1−ν
2 )

2k ∑m
i=1(ri + 1)Ψ(xi; λ)

< α <
χ2

2m(
1−

√
1−ν

2 )

2k ∑m
i=1(ri + 1)Ψ(xi; λ)

)
=

P
(

F2(m−j),2j(
1 +

√
1 − ν

2
) < ηj < F2(m−j),2j(

1 −
√

1 − ν

2
)

)
P
(

χ2
2m(

1 +
√

1 − ν

2
) < ξ < χ2

2m(
1 −

√
1 − ν

2
)

)
=

√
1 − ν

√
1 − ν = 1 − ν,

and the first equality follows from the fact that ηj and ξ are independent. ■
It is observed that Theorems 1 and 2 provides the different confidence intervals and confidence
regions, respectively for various j. We can derive optimal confidence interval and region based
on different criteria such as shortest interval length and minimum region area.

4. Bayes Estimation

The Bayesian approach in statistical inference provides an alternative choice for parameters es-
timation. We consider the Bayesian estimates of the unknown parameters α and λ as well as
reliability function R(t) and hazard rate function h(t) under symmetric and asymmetric loss
functions.
The loss function plays a critical role in Bayes perspective. In many practical situations, usually
symmetric loss function such as squared error loss function is taken into consideration to pro-
duce Bayes estimates. In most cases, it is done for convenience but may not be appropriate in
many real life situations. Since under this loss function overestimation and underestimation are
equally penalized which is not a good criteria from practical point of view. As an example, in
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reliability estimation overestimation is considered to be more serious than the underestimation.
Thus, it is important to consider Bayes estimates under asymmetric loss function. The squared
error loss function is defined as

L1

(
f (µ), f̂ (µ)

)
=
(

f̂ (µ)− f (µ)
)2

,

with f̂ (µ) begins an estimator of f (µ). Here f (µ) denotes some parametric function of µ. Bayes
estimator, say f̂SB(µ) is evaluated by the posterior mean of f (µ).

One of the most commonly used asymmetric loss function is LINEX loss function which
introduced first by [16] and further properties of this loss function have been investigated by
[17] . It is defined as follows:

L2

(
f (µ), f̂ (µ)

)
= ec∆ − c∆ − 1, c ̸= 0,

where ∆ = f̂ (µ)− f (µ). When c is negative, underestimation is more serious than overestima-
tion and it is opposit for positive c. The Bayes estimator of f (µ) for the loss function L2 can

be obtained as f̂LB(µ) = −1
c

ln
{

Eµ

(
e−c f (µ)|data

)}
, provided that Eµ(.) exists and is finite. An-

other useful asymmetric loss function is the general entropy loss which is a generalization of the
entropy loss and is given as

L3

(
f (µ), f̂ (µ)

)
∝

(
f̂ (µ)
f (µ)

)−q

− q ln

(
f̂ (µ)
f (µ)

)
− 1, q ̸= 0.

For this loss function, overestimation is heavily penalized when q is positive, and vice versa. The
Bayes estimator of f (µ) under general entropy loss function is obtained as

f̂EB(µ) =
{

E
[
( f (µ))−q|data

]}− 1
q ,

provided that Eµ(.) exists and is finite.

4.1. Prior distribution and posterior analysis

In this subsection, we need to assume some prior distributions for the unknown parameters.
Under the assumption that two parameters α and λ are unknown, specifying a general conjugate
joint prior forα and λ is not easy task. In this case, we develop the Bayesian set-up by considering
the idea of [18] regarding the choice of prior distributions. We assume that for j = 1, 2, . . . , M, λ
has a discrete prior say,

P(λ = λj) = θj,
M

∑
j=1

θj = 1, (21)

while the conditional distribution of α given λj has a conjugate prior distribution, with density

g(α|λj) = β j exp{−αβ j}, α, β j > 0, (22)

where β j, j = 1, 2, . . . , M, are hyper-parameters. Combining (6) and (22), the conditional poste-
rior of the parameter α,

π(α|x, λj) =
g(α|λj)L(α, λj; x)∫

α g(α|λj)L(α, λj; x) dα
, (23)

takes the form

π(α|x, λj) =
1

Γ(m + 1)
cm+1

j αm exp{−αcj}, j = 1, 2, . . . , M, (24)
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where cj = k ∑m
i=1(ri + 1)Ψ(xi; λj) + β j. Also by applying (6), (21), (22) and the discrete version

of Bayes theorem, the marginal posterior distribution of λ can be expressed as

pj = P(λ = λj|x) =
∫

α P(λ = λj)g(α|λj)L(α, λj; x) dα

∑M
j=1
∫

α P(λ = λj)g(α|λj)L(α, λj; x) dα

=
β jθjc

−(m+1)
j ∏m

i=1 ψ(xi; λj)

∑M
j=1 β jθjc

−(m+1)
j ∏m

i=1 ψ(xi; λj)
, j = 1, 2, . . . , M. (25)

Therefore, the Bayes estimators of α and λ under the squared error loss function L1 are

α̂SB = (m + 1)
M

∑
j=1

pj

cj
, (26)

λ̂SB =
M

∑
j=1

pjλj, (27)

respectively. Also, the Bayes estimators of R(t) and h(t) against the loss function L1 are given
respectively, by

R̂SB(t) =
M

∑
j=1

pj
[
1 +

Ψ(t; λj)

cj

]−(m+1), (28)

ĥSB(t) = (m + 1)
M

∑
j=1

pjψ(t; λj)

cj
. (29)

For the loss function L2, the Bayes estimators of α, λ, R(t) and h(t) are respectively obtained as

α̂LB = −1
c

ln
[ M

∑
j=1

pj(1 +
c
cj
)−(m+1)

]
, (30)

λ̂LB = −1
c

ln
[ M

∑
j=1

pje
−cλj

]
, (31)

R̂LB(t) = −1
c

ln
[ M

∑
j=1

∞

∑
l=0

(−1)l

Γ(l + 1)
pjcl(1 +

lΨ(t; λj)

cj
)−(m+1)

]
, (32)

ĥLB(t) = −1
c

ln
[ M

∑
j=1

pj(1 +
cψ(t; λj)

cj
)−(m+1)

]
. (33)

Finally, against the loss function L3, the Bayes estimators of α, λ, R(t) and h(t) can be expressed
as

α̂EB =

[
Γ(m + 1 − q)

Γ(m + 1)

M

∑
j=1

pjc
q
j

]− 1
q

, m + 1 > q, (34)

λ̂EB =

[ M

∑
j=1

pjλ
−q
j

]− 1
q

, (35)

R̂EB(t) =
[ M

∑
j=1

pj(1 −
qΨ(t; λj)

cj
)−(m+1)

]− 1
q

, (36)

ĥEB(t) =
[

Γ(m + 1 − q)
Γ(m + 1)

M

∑
j=1

pj(
cj

ψ(t; λj)
)q
]− 1

q

, m + 1 > q, (37)

respectively.
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4.2. The choice of hyper-parameters

The priors specification are completed by specifying λj, θj and hyper-parameters β j, for j =
1, 2, . . . , M, in practice. The values of λj and θj are fairly straightforward to specify, but some-
times it is not always possible to know the values of the hyper-parameters β j, in prior (22). In
practice, the values of β j are difficulty to know, since it is necessary to condition prior beliefs
about α on each λj, j = 1, 2, . . . , M. Thus, the estimation problem for hyper-parameters β j,
j = 1, 2, . . . , M, is considered in this subsection.

There are different methods to estimate the hyper-parameters β j, j = 1, 2, . . . , M. First, we
consider the maximum likelihood type-II method (see [19, pp. 99]).

Let Ui = Ψ(Xi; λ), i = 1, 2, . . . , m. It can be shown that U1 < U2 < · · · < Um, are the progres-
sive first-failure censored order statistics with censoring scheme (r1, r2, . . . , rm), from conditional
density

fU(u; α) = αe−αu, u > 0. (38)

For given λj, the marginal PDF and CDF of U are given by

fU(u) =
∫

α
g(α|λj) fU(u; α) dα =

β j

(β j + u)2 , u > 0, (39)

FU(u) = 1 −
β j

β j + u
, u > 0, (40)

respectively. From (1), the log-likelihood function of U = (U1, U2, . . . , Um), can be written as

logL(β j; u) = ln(Akm) + nk ln(β j)−
m

∑
i=1

(k(ri + 1) + 1) ln(β j + ui). (41)

By setting the derivative of the log-likelihood function with respective to β j to zero, the MLE of
β j, is the solution to the likelihood equation 1

β j
= H(β j), where

H(β j) =
1

nk

m

∑
i=1

k(ri + 1) + 1
β j + ui

, (42)

and it is unique (see Appendix). Most of the standard iterative process can be used for finding
the MLE. We propose a simple iterative scheme to finding the MLE of β j. Start with an initial

guess of β j, say β
(0)
j , then obtain β

(1)
j = 1/H(β

(0)
j ), and proceeding in this way iteratively to

obtain β
(N)
j = 1/H(β

(N−1)
j ). Stop the iterative procedure, when |β(N)

j − β
(N−1)
j | < ε, some

pre-assigned tolerance limit.
Another useful alternative method to estimate the hyper-parameters β j, j = 1, 2, . . . , M, is

based on the idea of [20]. By applying (22), the expected value of the reliability function R(t)
conditional on λ = λj, can be written as

E(R(t)) =
∫

α
R(t)g(α|λj) dα =

β j

β j + Ψ(t; λj)
, j = 1, 2, . . . , M. (43)

For given time t, by considering E(R(t)) = R̂(t), the estimate of β j is

β̂ j =
R̂(t)Ψ(t; λj)

1 − R̂(t)
, j = 1, 2, . . . , M. (44)

Similarly, we can use the expected value of the hazard rate function h(t) conditional on λ =
λj, j = 1, 2, . . . , M. It can be shown that

E(h(t)) =
∫

α
h(t)g(α|λj) dα =

ψ(t; λj)

β j
, (45)
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and

β̂ j =
ψ(t; λj)

ĥ(t)
, j = 1, 2, . . . , M. (46)

It is obviously the second method to estimate the hyper-parameters β j, j = 1, 2, . . . , M, depend
on the value of MLEs α̂ and λ̂. Therefore, the author recommends the first method.

5. Data analysis

To illustrate the above procedures, we present the analysis of one real data set. Also, we report
some numerical experiments performed to evaluate behavior of the different estimators.

Example 1.(Real Data) In this example, we analyze a data set from [21], which represents the
number of 1000s of cycles to failure for electrical appliances in a life test. The complete data have
been used earlier by [22]. They showed that the bathtub-shaped distribution is suitable to fitting
the data. The CDF of the bathtub-shaped distribution is form(3), where Ψ(t; λ) = etλ − 1, t > 0.
It can be shown that Ψ′(t;λ)

Ψ(t;λ) , is strictly increasing in t (see [14]).

Table 1: progressively first-failure censored sample of size 8 out of 20 groups.

i 1 2 3 4 5 6 7 8
xi 0.014 0.034 0.059 0.061 0.069 0.142 0.165 1.270
ri 4 0 3 0 0 2 3 0

The data are randomly grouped into 20 groups with k = 3 items within each group. The
progressively first-failure censored sample is given in Table 1. For this example, 12 groups of
failure times are censored, and 8 first-failures are observed. By applying, (19) and (20), the 95%
exact confidence intervals (CI) for λ, confidence regions (CR) for (α, λ), are obtained and the
length of confidence intervals (LCI) and area for confidence regions (ACR) are presented in
Table 2, where A(λ) = ∑8

i=1(ri + 1)(exλ
i − 1).

Table 2: The 95% confidence intervals and regions and their some properties for λ and (α, λ).

j CI CR LCI ACR
1 0.3933 < λ < 1.7034 0.3397 < λ < 1.8545 , 1.0114

A(λ) < α < 5.2012
A(λ) 1.3101 1.3904

2 0.3694 < λ < 1.4175 0.3192 < λ < 1.5198 , 1.0114
A(λ) < α < 5.2012

A(λ) 1.0481 1.0334
3 0.3538 < λ < 1.3167 0.3044 < λ < 1.4039 , 1.0114

A(λ) < α < 5.2012
A(λ) 0.9629 0.9081

4 0.2317 < λ < 1.0946 0.1920 < λ < 1.1696 , 1.0114
A(λ) < α < 5.2012

A(λ) 0.8629 0.6805
5 0.1391 < λ < 0.9320 0.1092 < λ < 1.0014 , 1.0114

A(λ) < α < 5.2012
A(λ) 0.7929 0.5232

6 0.1302 < λ < 0.9750 0.0963 < λ < 1.0462 , 1.0114
A(λ) < α < 5.2012

A(λ) 0.8448 0.5708
7 0.0212 < λ < 0.7932 0.0109 < λ < 0.8646 , 1.0114

A(λ) < α < 5.2012
A(λ) 0.7720 0.4094

From Table 2, It is observed that, the 95% optimal confidence interval for λ is (0.0212, 0.7932),
and the optimal confidence region for (α, λ) is given by

0.0109 < λ < 0.8646 ,
1.0114
A(λ)

< α <
5.2012
A(λ)

,

and ACR =
∫ 0.8646

0.0109
4.1898
A(λ)

dλ = 0.4094.
Since there is no prior information about α, to compute the Bayes estimates, we estimate the

hyper-parameters β j, j = 1, 2, . . . , 8, using the maximum likelihood type-II method. The values
of β j and pj, for each given λj and θj, j = 1, 2, . . . , 8, are summarized in Table 3. The MLEs as
well as Bayes estimates of α, λ, reliability function R(t), and hazard rate function h(t), for t = 0.5,
are presented in Table 4.
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Table 3: Prior information, hyper-parameter values and the posterior probabilities.

j 1 2 3 4 5 6 7 8
λj 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
θj 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
β j 3.5605 3.1398 2.7814 2.4735 2.2073 1.9756 1.7727 1.5942
pj 0.0308 0.0549 0.0859 0.1206 0.1532 0.1778 0.1897 0.1871

Table 4: The ML and the Bayes estimates of α, λ, R(t) and h(t), with t = 0.5, c = 1 and q = 1.

α̂ α̂SB α̂LB α̂EB λ̂ λ̂SB λ̂LB λ̂EB
0.4800 0.4252 0.4132 0.3674 0.7200 0.6268 0.6220 0.6099
R̂(t) R̂SB(t) R̂LB(t) R̂EB(t) ĥ(t) ĥSB(t) ĥLB(t) ĥEB(t)

0.6697 0.6871 0.6833 0.6753 0.7700 0.6584 0.6267 0.5570

Table 5: The estimated MSE values of the estimators of α and λ.

n m k C.S α̂ α̂SB α̂LB α̂EB λ̂ λ̂SB λ̂LB λ̂EB
20 10 1 I 0.0026 0.0018 0.0017 0.0018 0.0300 0.0088 0.0082 0.0069

II 0.0034 0.0025 0.0024 0.0023 0.0089 0.0054 0.0052 0.0047
III 0.0027 0.0021 0.0021 0.0019 0.0111 0.0059 0.0056 0.0051

5 I 0.0216 0.0031 0.0029 0.0020 0.0919 0.0088 0.0081 0.0063
II 0.0025 0.0020 0.0020 0.0016 0.0262 0.0080 0.0075 0.0064
III 0.0040 0.0025 0.0024 0.0018 0.0342 0.0082 0.0077 0.0065

30 10 1 I 0.0023 0.0018 0.0018 0.0016 0.0463 0.0089 0.0082 0.0067
II 0.0034 0.0025 0.0024 0.0023 0.0079 0.0049 0.0048 0.0043
III 0.0024 0.0021 0.0020 0.0018 0.0106 0.0058 0.0056 0.0051

5 I 0.0658 0.0041 0.0038 0.0024 0.0955 0.0086 0.0079 0.0061
II 0.0025 0.0021 0.0020 0.0016 0.0216 0.0077 0.0072 0.0062
III 0.0066 0.0029 0.0028 0.0020 0.0291 0.0079 0.0074 0.0063

30 15 1 I 0.0016 0.0011 0.0011 0.0012 0.0156 0.0073 0.0069 0.0060
II 0.0021 0.0017 0.0017 0.0016 0.0051 0.0037 0.0036 0.0034
III 0.0016 0.0013 0.0013 0.0013 0.0059 0.0042 0.0040 0.0038

5 I 0.0037 0.0016 0.0016 0.0012 0.0390 0.0080 0.0074 0.0061
II 0.0011 0.0010 0.0010 0.0009 0.0139 0.0068 0.0065 0.0057
III 0.0018 0.0013 0.0013 0.0011 0.0167 0.0070 0.0066 0.0058

Example 2.(Simulation study) To evaluate the performance of the MLEs and Bayes estima-
tors, a simulation study using Monte Carlo method is performed. In this example, we ex-
clusively focus on the bathtub-shaped distribution. For comparison purpose different n, m, k,
and censoring schemes(C.S) are considered. We present the results for α = 0.1 and λ = 0.5.
For generating progressively first-failure censored samples, we use the algorithm suggested
in [23]. We take into consideration that the progressive first-failure censored order statistics
Xr

1;m,n,k, Xr
2;m,n,k, ..., Xr

m;m,n,k is a progressively type-II censored sample from a population with
distribution function 1 − (1 − F(x))k. We considered the following censoring schemes:
• Scheme I: rm = n − m, ri = 0, for i ̸= m.
• Scheme II: r1 = n − m, ri = 0, for i ̸= 1.
• Scheme III: r m

2
= n − m, ri = 0, for i ̸= m

2 if m is even, and r m+1
2

= n − m, ri = 0, for i ̸= m+1
2 if m is odd.

The Bayes estimates are obtained for c = 1, q = 1, and λj and θj were given in previous example. The
performance of all estimators has been compared numerically in terms of their mean squared errors (MSEs).
In each case, for a particular censoring scheme the estimated MSEs are computed over 10,000 simulations.
The simulation study was conducted in R software (R x64 4.0.3) and the R code can be obtained on request
from the author. Based on tabulated the estimated MSEs, following conclusions can be drawn from Tables
5 and 6.

1. For all censoring schemes, it can be observed that the Bayes estimators are superior to MLE for the
parameters α, λ. We also observe that Bayes estimators of h(t) perform better than MLEs of h(t).

2. It is clearly observed that the performance of all estimators of R(t) are very fine in respect to MSE in
all situations.

3. In the case of λ, when n and m are fixed, the censoring scheme (n − m, 0, . . . , 0) posses the smallest
estimated MSE values.
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4. For fixed n and k, it is observed that as m increases the performance of all estimators improve in
terms of the estimated MSE values.

Table 6: The estimated MSE values of the estimators of R(t) and h(t), fot t = 0.75.

n m k C.S R̂(t) R̂SB(t) R̂LB(t) R̂EB(t) ĥ(t) ĥSB(t) ĥLB(t) ĥEB(t)
20 10 1 I 0.0040 0.0038 0.0040 0.0043 0.0039 0.0039 0.0037 0.0033

II 0.0048 0.0053 0.0056 0.0062 0.0046 0.0036 0.0034 0.0034
III 0.0038 0.0049 0.0051 0.0055 0.0040 0.0036 0.0034 0.0031

5 I 0.0060 0.0072 0.0075 0.0082 0.1122 0.0114 0.0100 0.0054
II 0.0028 0.0048 0.0050 0.0054 0.0084 0.0060 0.0056 0.0040
III 0.0033 0.0058 .0060 0.0065 0.0176 0.0084 0.0076 0.0048

30 10 1 I 0.0032 0.0042 0.0043 0.0046 0.0058 0.0050 0.0047 0.0036
II 0.0047 0.0055 0.0058 0.0064 0.0047 0.0038 0.0036 0.0035
III 0.0034 0.0048 0.0050 0.0054 0.0040 0.0037 0.0036 0.0031

5 I 0.0118 0.0091 0.0095 0.0107 0.4210 0.0161 0.0135 0.0064
II 0.0028 0.0050 0.0052 0.0055 0.0078 0.0062 0.0058 0.0040
III 0.0043 0.0066 0.0069 0.0075 0.0320 0.0103 0.0091 0.0056

30 15 1 I 0.0026 0.0027 0.0027 0.0029 0.0022 0.0020 0.0020 0.0020
II 0.0032 0.0043 0.0044 0.0048 0.0029 0.0022 0.0022 0.0022
III 0.0024 0.0035 0.0037 0.0039 0.0023 0.0019 0.0019 0.0018

5 I 0.0025 0.0047 0.0048 0.0051 0.0210 0.0065 0.0059 0.0036
II 0.0015 0.0031 0.0031 0.0033 0.0028 0.0029 0.0028 0.0022
III 0.0018 0.0039 0.0040 0.0042 0.0071 0.0046 0.0043 0.0030

6. Conclusions

Lifetime studies are very important to assess the reliability of products. This article investigates
the problem of reliability analysis for a class of an exponential distribution based on progressive
first failure censoring. It is note that many well-known and useful lifetime distributions which
have wide application in reliability theory and failure time modeling as well as other related
fields, are included in this class of exponential distribution. Both classical and Bayesian point
estimations have been developed. Additionally, the exact confidence interval and region respec-
tively for α and (α, λ) have been conducted. In the future, we can study the problem of predicting
times to failure of units censored in multiple stages in progressive first failure censored sample
based on model (2).
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Appendix

We show that the equation

1
β j

− H(β j) = 0, (47)

where H(β j) is defined in (42), has only one root. By considering

Q1(β j) =
m

∑
i=1

k(ri + 1)
ui

β j(β j + ui)
,

Q2(β j) =
m

∑
i=1

1
β j + ui

,
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the equation (47) is equivalent to Q1(β j) − Q2(β j) = 0. The functions Q1(β j) and Q2(β j) are
strictly decreasing and convex, since

∂Q1(β j)

∂β j
= −

m

∑
i=1

k(ri + 1)
ui

β2
j (β j + ui)2

< 0,

∂2Q1(β j)

∂β2
j

= 2
m

∑
i=1

k(ri + 1)
u2

i
β3

j (β j + ui)3
> 0,

∂Q2(β j)

∂β j
= −

m

∑
i=1

1
(β j + ui)2 < 0,

∂2Q2(β j)

∂β2
j

= 2
m

∑
i=1

1
(β j + ui)3 > 0.

Also,

lim
β j→0

Q1(β j) = +∞, lim
β j→+∞

Q1(β j) = 0,

lim
β j→0

Q2(β j) =
m

∑
i=1

1
ui

, lim
β j→+∞

Q2(β j) = 0,

lim
β j→∞

Q2(β j)

Q1(β j)
= +∞,

thus the equation (47), has only one root.
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