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Abstract 
 

This paper deals with an economic production quantity (EPQ) model in which production is random and 
having heterogeneous units of production. The production process is characterized by mixture of Weibull 
distribution. It is assumed that the demand is constant and the lifetime of the commodity is random and 
follows an exponential distribution. Assuming that the shortages are allowed and fully backlogged the 
instantaneous state of inventory in the production unit is derived. The minimizing the expected total 
production cost, the optimal production quantity, the production uptime and downtime are derived. 
Through sensitivity analysis it is observed that the random production with mixture distribution have a 
significant influence on the optimal production schedules and production quantity. It is also observed 
that the rate of deterioration can tremendously influence the optimal operating policies of the system. This 
model also includes some of the earlier models as particular cases. The model is extended to the case of 
without shortages. A comparison of the two models reveals that allowing shortages will reduce expected 
total cost of the model. 

 
Keywords: Stochastic production, Mixture of Weibull Distribution, Exponential decay, Production 
Schedules, Sensitivity analysis. 

 
I. Introduction 

 
In production quantity models much emphasis is given for the lifetime of the commodity. In many 
production processes the lifetime of the commodity is random and can be characterized by a 
probability distribution. The literature on inventory models for deteriorating items are reviewed 
by Pentico and Drake (2011), Ruxian Lie et al (2010), Goyal and Giri (2001), Raafat (1991) and 
Nahmias (1982). The exponential decay models of inventory are studied by Ghare and Schrader 
(1963), Shah and Jaiswal (1977), Cohen (1977), Aggarwal (1978), Dave and Shah (1982), Pal (1990), 
Kalpakam and Sapna (1996), Giri and Chaudhari (1999). The exponential decay is used when the 
rate of deterioration is constant which coincide with the deterioration of several perishable items 
such as medicine, sea foods, vegetable oils, cement and paints. Hence it is reasonable to assume 
exponential decay of the product.  

Another important consideration in EPQ models is the rate of production and it is studied 
by several authors Perumal and Arivarignan (2002), Pal and Mandal (1997), Sen and Chakrabarthy 
(2007), Lin and Gong(2006), Maity et al(2007), Hu and Liu(2010), Uma Maheswararao et al (2010), 
Venkata Subbaiah et al (2011), Essey and Srinivasa Rao (2012), Ardak and Borade (2017), Anindya 
Mandal, Brojeswar Pal and Kripasindhu Chaudhuri (2020), Sunit Kumar, Sushil Kumar and 
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Rachna Kumari (2021). In all these papers they assumed that the production is deterministic and 
having finite rate. However, in many production processes the production is not deterministic and 
random.  

 Stochastic production is a reality in the modern technological industrial developments. 
One of the major consideration for scheduling the production and determining the optimal 
production quantity lies on several factors such as availability of raw material, power supply, man 
power skill level, machine tool wear which are governed by laws of chance and become stochastic. 
Because of the stochastic factors the production process in many industries is random and can be 
characterized by a probability distribution. 

Recently Sridevi et al. (2010), Srinivasa Rao et al. (2010), Laxmana Rao et al. (2015), 
Srinivasa Rao et al. (2017), Madhulatha et al. (2017), Punyavathi et al. (2020) have developed and 
analyzed production quantity models with random production. In all these papers they assumed 
that the production is homogeneous even though governed by stochastic nature i.e., all the 
production is done in one unit or in a single machine. But in practice several of the products are 
produced by different machines or in different units which are operated under different 
conditions. Hence these heterogeneous production processes can be characterized by mixes of 
probability distributions. It is also observed that in each unit the production rate may be 
increasing/decreasing/remains constant. This type of variable rate of production can be 
represented by Weibull probability distribution. Hence in this paper we develop and analyze 
stochastic production quantity models assuming that the production is random and follows a two 
component Weibull mixture distribution. It is also further assumed that the demand is constant 
and in the production backorders are allowed and fully backlogged.  

Using the differential equations the production quantity at a given time is derived. With 
suitable costs the total expected production cost is derived. By minimizing the total expected 
production cost the optimal production schedules, the production quantities are derived. Through 
sensitivity analysis the effect of the change in parameters and cost on optimal production 
schedules and production quantity is discussed. This model is extended to the case of without 
shortages. 

II. Assumptions 
 
For developing the model the following assumptions are made: 

• The demand rate is constant say k.                            (1) 
• The production is random and follows a mixture of two-parameter Weibull distribution. The 

instantaneous rate of production is: 
 

𝑅(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
; 𝛼!, 𝛼& > 0, 𝛽!, 𝛽& > 0, 0 ≤ 𝑝 ≤ 1								(2) 

• Lead time is zero. 
• Cycle length is T. It is known and fixed. 
• Shortages are allowed and fully backlogged. 
• A deteriorated unit is lost. 
• The lifetime of the item is random and follows a exponential distribution with probability 

density function: 
𝑓(𝑡) = ѳ𝑒#'%; 	ѳ > 0, 𝑡 > 0 

         
Therefore the instantaneous rate of deterioration is 
 

																																																																															ℎ(𝑡) = ѳ; 	ѳ > 0                                                                       (3) 
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The following notations are used for developing the model.  
Q is the production quantity 
A	 is setup cost 
C  is cost per unit 
h Inventory holding cost per unit per unit time 
π	 Shortages cost per unit per unit time 

 
III. EPQ Model with Shortages 

 
Consider a production system in which the stock level is zero at time t	=	0. The stock level 

increases during the period (0, 𝑡!), due to production after fulfilling the demand and deterioration. 
The production stops at time t! when stock level reaches S. The inventory decreases gradually due 
to demand and deterioration in the interval (𝑡!, 𝑡&). At time 𝑡& the inventory reaches zero and 
backorders accumulate during the period (𝑡&, 𝑡(). At time 𝑡( the production again starts and fulfills 
the backlog after satisfying the demand. During (𝑡(, 𝑇) the backorders are fulfilled and inventory 
level reaches zero at the end of cycle T. The Schematic diagram representing the inventory level is 
given in Figure 1. 

  

Figure 1: Schematic Diagram representing the inventory level 
      

Let I(t) be the inventory level of the system at time ‘t’ (0 ≤ t ≤ T). The differential equations 
governing the instantaneous state of I(t) over the cycle of length are: 

 
𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
− 𝑘; 0 ≤ 𝑡 ≤ 𝑡!																																	(4) 

𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) = −𝑘;	𝑡! ≤ 𝑡 ≤ 𝑡&																																																																																																																										(5) 

𝑑
𝑑𝑡 𝐼

(𝑡) = −𝑘;	𝑡& ≤ 𝑡 ≤ 𝑡(																																																																																																																																															(6) 

𝑑
𝑑𝑡 𝐼

(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
− 𝑘;	𝑡( ≤ 𝑡 ≤ 𝑇																																																					(7) 

 
Where, h(t) is as given in equation (3), with the initial conditions I(0)	=	0, 𝐼(𝑡!) = 𝑆, 𝐼(𝑡&) = 0 and 
𝐼(𝑇) = 0 
Solving the differential equations, the on hand inventory at time ‘t’ is obtained as: 
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𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑒#%'K L
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
− 𝑘N 𝑒+'𝑑𝑢

%!

%
; 0 ≤ 𝑡 ≤ 𝑡!(8) 

𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑘𝑒#%'K 𝑒+'
%

%!
𝑑𝑢; 	𝑡! ≤ 𝑡 ≤ 𝑡&																																																																																																					(9) 

𝐼(𝑡) = 𝑘(𝑡& − 𝑡); 𝑡& ≤ 𝑡 ≤ 𝑡(																																																																																																																																							(10) 
 

𝐼(𝑡) = K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%
+ 𝑘(𝑇 − 𝑡); 𝑡( ≤ 𝑡 ≤ 𝑇																														(11) 

 
Production quantity Q	in the cycle of length T	is: 
 

𝑄 = K 𝑅(𝑡)𝑑𝑡 + K 𝑅(𝑡)𝑑𝑡
,

%$

%!

-
 

		= K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

			

+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

																																																				(12) 

 
From equation (8) and using the initial condition I(0) = 0, we obtain the value of ‘S	’ as: 
 

𝑆 = 𝑒#'%!K R
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
S𝑒+ѳ𝑑𝑢

%!

-
−
𝑘
ѳ T1 − 𝑒

#'%!U																					(13) 

 
When 	𝑡 = 𝑡(, then equations (10) and (11) become: 
 
𝐼(𝑡() = 𝑘(𝑡& − 𝑡()																																																																																																																																																											(14) 
 

and 

𝐼(𝑡() = 𝑘(𝑇 − 𝑡() −K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑑𝑢

,

%$
																																												(15) 

 
Equating the equations (14) and (15) and on simplification one can get: 
 

𝑡& =
1
𝑘K L

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
N 𝑑𝑢 + 𝑇 = 𝑥(𝑡()	𝑠𝑎𝑦																																	(16)

,

%$
 

 
 Let 𝐾T𝑡!,𝑡&, 𝑡(U be the total production cost per unit time. Since the total production cost is the sum 
of the set up cost, cost of the units, the inventory holding cost. Hence the total production cost per 
unit time become: 
 
𝐾T𝑡!,𝑡&, 𝑡(U =

0
,
+ 12

,
+ 3

,
\∫ 𝐼(𝑡)𝑑𝑡 + ∫ 𝐼(𝑡)𝑑𝑡%#

%!
%!
- ^ + 4

,
\∫ −𝐼(𝑡)𝑑𝑡 + ∫ −𝐼(𝑡)𝑑𝑡,

%$
%$
%#

^																																			(17)  
 
Substituting the values of I(t) given in equations (8), (9), (10) and (11) and Q given in equation (12) 
in equation (17) one can obtain 𝐾T𝑡!,𝑡&, 𝑡(U as: 
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					𝐾(𝑡!, 𝑡&, 𝑡() =
𝐴
𝑇 +

𝐶
𝑇 aK

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

 

																							+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

b 

							+
ℎ
𝑇 aK a𝑆𝑒'(%!#%) − 𝑒#%'K R

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
− 𝑘S 𝑒+'𝑑𝑢

%!

%

b 𝑑𝑡

%!

-

		 

								+ K a𝑆𝑒'(%!#%) − 𝑘𝑒#%' K𝑒+'
%

%!

𝑑𝑢b𝑑𝑡b

%#

%!

 

	−
𝜋
𝑇 a𝑘 K

(𝑡& − 𝑡)𝑑𝑡

%$

%#

+ KadK
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

,

%

𝑑𝑢e𝑑𝑡b + 𝑘 K(𝑇 − 𝑡)
,

%$

,

%$

b (18) 

 

Substituting  the  value  of  S  given  in  equation  (13)  in  the  total  production  cost  equation  
(18),  we  obtain: 

𝐾(𝑡!, 𝑡&, 𝑡() =
𝐴
𝑇 +

𝐶
𝑇 aK

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

 

+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

b 

+
ℎ
𝑇 f
1 − 𝑒#'%#

ѳ K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢

%!

-

+
𝑘
ѳ& T1 − 𝑒

#%#'U 

															−	
𝑘
ѳ 𝑡& −K 𝑒#'% dK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

%!

%

𝑒+'𝑑𝑢e

%!

-

𝑑𝑡b 

−
𝜋
𝑇 a
𝑘
2
[(𝑇 − 𝑡()& − (𝑡& − 𝑡()&] 			+ KdK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

,

%

𝑑𝑢e𝑑𝑡
,

%$

b (19) 

Substituting the value of ′𝑡&′ given in equation (16) in the total production cost equation (19), we 
obtain: 

		𝐾(𝑡!, 𝑡&, 𝑡() =
𝐴
𝑇 +

𝐶
𝑇 aK

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

 

	+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

b 

		+
ℎ
𝑇 L
1 − 𝑒#'5(%$)

ѳ K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'

%!

-
𝑑𝑢 +

𝑘
ѳ& T1 − 𝑒

#'5(%$)U 
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				−
𝑘
ѳ 𝑥
(𝑡() − K 𝑒#'% RK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢

%!

%
S𝑑𝑡

%!

-
N 

	−
𝜋
𝑇 a
𝑘
2
[(𝑇 − 𝑡()& − (𝑥(𝑡() − 𝑡()&] 	

+ KdK
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

,

%

𝑑𝑢e𝑑𝑡
,

%$

b																															(20) 

 

 

IV. Optimal Production Schedules of the Model 
 

In this section we obtain the optimal policies of the system under study. To find the 
optimal values of t1  and t3, we obtain the first order partial derivatives of K(t1,t3) given in equation 
with respect to t1 and t3  and equate them to zero. The condition for minimization of K(t1,t3) is 
 
Where D		is the Hessian matrix 

𝐷 = mm

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡!&

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡!𝜕𝑡(

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡!𝜕𝑡(

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡(&

mm > 0 

Differentiating 𝐾(𝑡!, 𝑡() given in equation (20) with respect to t1		and equating to zero, we get  

							o
𝐶
𝑇 L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
N 

   

						+
	ℎ
𝑇 L
1 − 𝑒#5(%$)'

ѳ L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
N 𝑒%!'Np = 0			(21) 

 

Differentiating 𝐾(𝑡!, 𝑡() given in equation (20) with respect to t3		and equating to zero, we get 

						o−
𝐶
𝑇 L
𝑝𝛼!𝛽!𝑡("!#!𝑒#$!%$

"! + (1 − 𝑝)𝛼&𝛽&𝑡("##!𝑒#$#%$
"#

𝑝𝑒#$!%$"! + (1 − 𝑝)𝑒#$#%$"#
N 

							+
ℎ
𝑇 L
1
ѳ L
𝑝𝛼!𝛽!𝑡("!#!𝑒#$!%$

"! + (1 − 𝑝)𝛼&𝛽&𝑡("##!𝑒#$#%$
"#

𝑝𝑒#$!%$"! + (1 − 𝑝)𝑒#$#%$"#
N T1 − 𝑒#'5(%$)U 

	− 6%&'()$)

7
f8$!"!%$

"!%!6%+!)$
"!9(!#8)$#"#%$"#%!6%+#)$

"#

86%+!)$
"!9(!#8)6%+#)$

"# q ∫ f8$!"!+
"!%!6%+!,

"!9(!#8)$#"#+"#%!6%+#,
"#

86%+!,"!9(!#8)6%+#,"#
q 𝑒+'%!

- 𝑑𝑢q  

−
𝜋
𝑇 a𝑘

(𝑡( − 𝑇) + (𝑥(𝑡() − 𝑡() aL
𝑝𝛼!𝛽!𝑡("!#!𝑒#$!%$

"! + (1 − 𝑝)𝛼&𝛽&𝑡("##!𝑒#$#%$
"#

𝑝𝑒#$!%$"! + (1 − 𝑝)𝑒#$#%$"#
N + 𝑘b 
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							− K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑑𝑢

,

%$

br = 0																														(22) 

 Solving the equations (21) and (22) simultaneously, we obtain the optimal time at which 
production is stopped 𝑡!∗ of 𝑡! and the optimal time 𝑡(∗ of 𝑡( at which the production is restarted 
after accumulation of backorders. 

The optimum production quantity Q* of Q in the cycle of length T	 is obtained by 
substituting the optimal values of 	𝑡!∗, 𝑡(∗  in equation (12).  
 

V. Numerical Illustration 
 

In this section we discuss the solution procedure of the model through a numerical 
illustration by obtaining the production uptime, production downtime, optimum production 
quantity and the total production cost of an inventory system. Here, it is assumed that the 
production is of deteriorating nature and shortages are allowed and fully backlogged. For 
demonstrating the solution procedure of the model the parameters are considered as A	= Rs.300/-,  
C = Rs.10\-, h	 = Re.0.2\-, π	 = Rs.3.3\-, T	 = 12 months. For the assigned values of production 
parameters (α1,	α2,	β1,	β2,	p) = (11, 15, 0.55, 2, 0.5), deterioration parameter ѳ	= 3, demand rate k	= 3.3. 
The values of parameters above are varied further to observe the trend in optimal policies and the 
results are obtained are shown in Table 1. Substituting these values the optimal production 
quantity 𝑄∗, the production uptime, production downtime and total production cost are computed 
and presented in Table 1. 

From Table 1 it is observed that the deterioration parameter and production parameters 
have a tremendous influence on the optimal values of production times, production quantity and 
total production cost. 

When the ordering cost ‘A	’ increases from 300 to 345, the optimal production quantity Q* 
decreases from 33.867 to 33.863, the optimal production down time 𝑡!∗ remains constant, the 
optimum production uptime 𝑡(∗ increases from 3.685 to 3,686, the total production cost per unit 
time 𝐾∗ increases from 80.793 to 84.529. As the cost parameter ‘C	 ’ increases from 10 to 11.5, the 
optimal production quantity	𝑄∗ increases from 33.867 to 33.872, the optimal production down time  
𝑡!∗ and optimal production uptime 𝑡(∗ remains constant, the total production cost per unit time 𝐾∗  
increases from 80.793 to 82.451. As the holding cost ‘h	 ’ increases from 0.2 to 0.23, the optimal 
production quantity 	𝑄∗, the optimal production down time 𝑡!∗, the optimal production uptime 𝑡(∗ 
remains constant, the total production cost per unit time  𝐾∗ decreases from 80.793 to 80.755. As the 
shortage cost ‘π	 ’ increases from 3.3 to 3.795, the optimal production quantity 	𝑄∗ increases from 
33.867 to 33.966, the optimal production down time 𝑡!∗ remains constant, the optimal production 
uptime 𝑡(∗ decreases from 3.685 to 3.655, the total production cost per unit time 𝐾∗ increases from 
80.793 to 87.753. 

 As the production parameter ‘α1	’ varies from 11 to 12.65, the optimal production quantity 
	𝑄∗ increases from 33.867 to 39.086, the optimal production down time 𝑡!∗ increases from 1.274 to 
1.277, the optimal production uptime 𝑡(∗ decreases from 3.685 to 3.628, the total production cost 
per unit time 𝐾∗ increases from 80.793 to 93.146.As the production parameter ‘α2	’ varies from 15 to 
17.25, the optimal production quantity 	𝑄∗, the optimal production down time 𝑡!∗, the optimal 
production uptime 𝑡(∗, the total production cost per unit time 𝐾∗ remains constant.  
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Table 1: Numerical Illustration 

A	 C	 h	 π	 T	 𝜶𝟏	 𝜶𝟐	 𝜷𝟏	 𝜷𝟐	 ѳ	 k	 p	 𝒕𝟏∗ 	 𝒕𝟑∗ 	 Q*	 K*	

300 10 0.2 3.3 12 11 15 0.55 2 3 3.3 0.5 1.274 3.685 33.867 80.793 

315            1.274 3.685 33.866 82.039 

330            1.274 3.686 33.865 83.284 

345            1.274 3.686 33.863 84.529 

 10.5           1.274 3.685 33.869 81.346 

 11           1.274 3.685 33.87 81.898 

 11.5           1.274 3.685 33.872 82.451 

  0.21          1.274 3.685 33.867 80.781 

  0.22          1.274 3.685 33.867 80.768 

  0.23          1.274 3.685 33.867 80.755 

   3.465         1.274 3.675 33.9 83.1 

   3.63         1.274 3.665 33.933 85.42 

   3.795         1.274 3.655 33.966 87.753 

     11.55       1.275 3.666 35.599 84.778 

     12.1       1.276 3.647 37.338 88.895 

     12.65       1.277 3.628 39.086 93.146 

      15.75      1.274 3.685 33.867 80.793 

      16.5      1.274 3.685 33.867 80.793 

      17.25      1.274 3.685 33.867 80.793 

       0.578     1.275 3.648 36.366 88.423 

       0.605     1.276 3.609 38.996 97.002 

       0.633     1.277 3.565 41.973 107.394 

        2.1    1.274 3.685 33.867 80.793 

        2.2    1.274 3.685 33.867 80.793 

        2.3    1.274 3.685 33.867 80.793 

         3.15   1.274 3.685 33.867 80.805 

         3.3   1.274 3.685 33.867 80.816 

         3.45   1.274 3.685 33.867 80.826 

          3.465  1.274 3.689 33.853 79.886 

          3.63  1.274 3.693 33.841 79.062 

          3.795  1.274 3.696 33.83 78.31 

           0.525 1.274 3.685 33.818 80.753 

           0.55 1.274 3.685 33.772 80.714 

           0.575 1.274 3.685 33.728 80.677 
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As the production parameter ‘β1	 ’ varies from 0.55 to 0.633, the optimal production 
quantity 	𝑄∗ increases from 33.867 to 41.973, the optimal production down time 𝑡!∗ increases from 
1.274 to 1.277, the optimal production uptime 𝑡(∗ decreases from 3.685 to 3.565, the total 
production cost per unit time 𝐾∗ increases from 80.793 to 107.394. As the production parameter ‘β2’ 
varies from 2 to 2.3, the optimal production quantity	Q∗, the optimal production down time 𝑡!∗, the 
optimal production uptime 𝑡(∗ and the total production cost per unit time 𝐾∗ remains constant. As 
the production parameter ‘p	 ’ varies from 0.5 to 0.575, the optimal production quantity 	𝑄∗ 
decreases from 33.867 to 33.728, the optimal production down time 𝑡!∗ and the optimal production 
uptime 𝑡(∗ remains constant, the total production cost per unit time 𝐾∗ decreases from 80.793 to 
80.677. 

 As the deterioration parameter ‘ѳ’ varies from 3 to 3.45, the optimal production quantity 
	𝑄∗, the optimal production down time 𝑡!∗ and the optimal production uptime 𝑡(∗ remains 
constant, the total production cost per unit time 𝐾∗ increases from 80.793 to 80.826.     

As the demand rate parameter ‘k	 ’ increases from 3.3 to 3.795 the optimal production 
quantity 	𝑄∗ decreases from 33.867 to 33.83, the optimal production down time 𝑡!∗ remains 
constant, the optimal production uptime 𝑡(∗ increases from 3.685 to 3.696, the total production cost 
per unit time 𝐾∗ decreases from 80.793 to 78.31. 
 

VI. Sensitivity Analysis of the Model 
 
Sensitivity analysis is carried to explore the effect of changes in model parameters and costs on the 
optimal policies, by varying each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) at a time for the 
model under study. The results are presented in Table 2. The relationships between the parameters 
and the optimal values of the production schedule are shown in Figure 2. 

       
Table 2: Sensitivity Analysis of the Model - With Shortages 

 
Variation 

Parameters 
Optimal 
Policies -15% -10% -5% 0% 5% 10% 15% 

A	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.684 3.684 3.685 3.685 3.685 3.686 3.686 
	 𝑄∗ 33.871 33.869 33.868 33.867 33.866 33.865 33.863 
	 𝐾∗ 77.058 78.303 79.548 80.793 82.039 83.284 84.529 
C	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.684 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.862 33.864 33.866 33.867 33.869 33.87 33.872 
	 𝐾∗ 79.138 79.689 80.241 80.793 81.346 81.898 82.451 
h	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.832 80.819 80.806 80.793 80.781 80.768 80.755 
π	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.715 3.705 3.695 3.685 3.675 3.665 3.655 
	 𝑄∗ 33.766 33.8 33.834 33.867 33.9 33.933 33.966 
	 𝐾∗ 73.95 76.218 78.499 80.793 83.1 85.42 87.753 
𝜶𝟏	 𝑡*∗ 1.271 1.272 1.273 1.274 1.275 1.276 1.277 
	 𝑡+∗ 3.74 3.722 3.704 3.685 3.666 3.647 3.628 
	 𝑄∗ 28.718 30.427 32.143 33.867 35.599 37.338 39.086 
	 𝐾∗ 69.61 73.212 76.939 80.793 84.778 88.895 93.146 
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Variation 
Parameters 

Optimal 
Policies -15% -10% -5% 0% 5% 10% 15% 

𝜶𝟐	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.793 80.793 80.793 80.793 80.793 80.793 80.793 
𝜷𝟏	 𝑡*∗ 1.27 1.272 1.273 1.274 1.275 1.276 1.277 
	 𝑡+∗ 3.776 3.748 3.719 3.685 3.648 3.609 3.565 
	 𝑄∗ 27.639 29.56 31.58 33.867 36.366 38.996 41.973 
	 𝐾∗ 63.978 68.832 74.257 80.793 88.423 97.002 107.394 
𝜷𝟐	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.793 80.793 80.793 80.793 80.793 80.793 80.793 
Ѳ	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.749 80.766 80.78 80.793 80.805 80.816 80.826 
k	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 	𝑡+∗ 3.67 3.676 3.68 3.685 3.689 3.693 3.696 
	 𝑄∗ 33.917 33.899 33.882 33.867 33.853 33.841 33.83 
	 𝐾∗ 84.168 82.916 81.798 80.793 79.886 79.062 78.31 
p	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 	𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 34.029 33.972 33.918 33.867 33.818 33.772 33.728 
	 𝐾∗ 80.929 80.881 80.836 80.793 80.753 80.714 80.677 

VII. Observations 
 

The major observations drawn from the numerical study are: 

• t1*	and	t3*	are less sensitive, Q*	is slightly sensitive and K* is moderately sensitive to changes 
of ordering cost ‘A’. 

• t1*	and	t3*	are less sensitive, Q*	is slightly sensitive and K* is moderately sensitive to changes 
of cost per unit ‘C’. 

• t1*,	t3*	and	Q*	are less sensitive, K*	is slightly sensitive to changes of holding cost ‘h’. 
• t1*	 is	 less sensitive, t3*	and	Q*	are slightly sensitive and K* is highly sensitive to change in 

parameter ‘π’. 
• t1*	and t3*	are slightly sensitive, Q*	and	K* are highly sensitive to change in the production 

parameter ‘α1’. 
• t1*,	t3*,	Q*	and	K*	are less sensitive to change in the production parameter ‘α2’. 
• t1*	and t3*	are slightly sensitive, Q*	and	K* are highly sensitive to change in the production 

parameter ‘β1’. 
• t1*,	t3*,	Q*	and	K*	are less sensitive to change in the production parameter ‘β2’. 
• t1*	and	 t3*	are less sensitive, Q*	and	 K* are slightly sensitive to change in the production 

parameter ‘p’. 
• t1*,	 t3*	 and	 Q*	 are less sensitive, K*	 is slightly sensitive to change in the deterioration 

parameter ‘ѳ’. 
• t1*	is	less sensitive, t3*	and	Q*	are slightly sensitive and K* is highly sensitive to change in the 

demand parameter ‘k’. 
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Figure 2: Relationship between parameters and optimal values with shortages 

 
VIII. EPQ Model without Shortages 

 
In this section the inventory model for deteriorating items without shortages is developed and 
analyzed. Here, it is assumed that shortages are not allowed and the stock level is zero at time t	=0. 
The stock level increases during the period (0, 𝑡!) due to excess production after fulfilling the 
demand and deterioration. The production stops at time 𝑡! when the stock level reaches S. The 
inventory decreases gradually due to demand and deterioration in the interval (𝑡!, 𝑇) . At time T 
the inventory reaches zero. The schematic diagram representing the instantaneous state of 
inventory is given in Figure 3.  

 
Figure 3: Schematic diagram representing the inventory level 

Let I(t) be the inventory level of the system at time ‘t	’ (0	≤	t	≤	T). Then the differential equations 
governing the instantaneous state of I(t) over the cycle of length T	are: 
 
𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
− 𝑘; 	0 ≤ 𝑡 ≤ 𝑡!																														(23) 
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𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) = −𝑘;	𝑡! ≤ 𝑡 ≤ 𝑇																																																																																																																									(24)	
  
Where, h(t) is as given in equation (3), with the initial conditions I(0)	=	0, 𝐼(𝑡!) = 𝑆 and I(T)	=0.  
Substituting h(t) given in equation (3) in equations (23) and (24) and solving the differential 
equations, the on hand inventory at time ‘t	’ is obtained as: 

𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑒#%'K L
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
− 𝑘N 𝑒+'𝑑𝑢

%!

%
; 0 ≤ 𝑡 ≤ 𝑡!	

(25)	

𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑘𝑒#%'K 𝑒+'
%

%!
𝑑𝑢; 𝑡! ≤ 𝑡 ≤ 𝑇																																																																																																						(26)	

Production quantity Q	in the cycle of length T		is 

𝑄 =	K 𝑅(𝑡)𝑑𝑡

%!

-

 

 

																																																															= K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡																			(27)

%!

-
 

 
From equation (25) and using the initial conditions I(0)	=	0, we obtain the value of ‘S		’ as 

𝑆 = 𝑒#'%!K R
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
S𝑒+ѳ𝑑𝑢

%!

-
−
𝑘
ѳ T1 − 𝑒

#'%!U																						(28) 

Let 𝐾(𝑡!) be the total production cost per unit time. Since the total production cost is the sum of the 
set up cost, cost of the units, the inventory holding cost. Therefore the total production cost per 
unit time becomes 

𝐾(𝑡!) = 	
𝐴
𝑇 +

𝐶𝑄
𝑇 +

ℎ
𝑇 aK 𝐼(𝑡)𝑑𝑡

%!

-

+ K𝐼(𝑡)𝑑𝑡
,

%!

b																																																																																																							(29) 

Substituting the values of I(t) and Q from equations ,(25), (26) and (27) in equation (29), we obtain 
K(t1)	 as 

𝐾(𝑡!) =
𝐴
𝑇 +

𝐶
𝑇K L

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
N 𝑑𝑡

%!

-

 

	+
ℎ
𝑇 aK L𝑆𝑒'(%!#%) − 𝑒#%'K L

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑑𝑢 − 	𝑘N 𝑒+'𝑑𝑢

%!

%
N 𝑑𝑡

%!

-

 

   

				+K f𝑆𝑒'(%!#%) − 𝑘𝑒#%'K 𝑒+'
%

%!
𝑑𝑢q 𝑑𝑡

,

%!
q																																																																																																															(30) 

 
Substituting the value of S		given in equation (28) in the total cost equation (30), we obtain 

178



 
V.Sai Jyothsna Devi and K.Srinivasa Rao 
EPQ MODELS WITH MIXTURE OF WEIBULL PRODUCTION 
EXPONENTIAL DECAY AND CONSTANT DEMAND 

RT&A, No 4 (65) 
Volume 16, December 2021                         

 

𝐾(𝑡!) =
𝐴
𝑇 +

𝐶
𝑇K L

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#
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"#
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𝑘
ѳ&
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-
N	 

 

	−
𝑘
ѳ 𝑇 −K 𝑒#%' RK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢

%!

%
S𝑑𝑡

%!

-

b																														(31) 

 

IX. Optimal Production Schedules of the Model 

In this section we obtain the optimal policies of the inventory system under study. To find the 
optimal values of t1, we equate the first order partial derivatives of K(t1) with respect to t1  equate 
them to zero. The condition for minimum of K(t1) is 
 

𝜕&𝐾(𝑡!)
𝜕𝑡!&

> 0 

Differentiating 𝐾(𝑡!) with respect to 𝑡! and equating to zero, we get 
 

o
𝐶
𝑇 L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
N 

 

+
ℎ
𝑇 a
T1 − 𝑒#',U𝑒%!'

ѳ L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
Nbr = 0																																					(32) 

 
Solving the equation (32), we obtain the optimal time 𝑡!∗ of 𝑡!at which the production is to be 
stopped. 
The optimal production quantity 𝑄∗ of Q in the cycle of length T is obtained by substituting the 
optimal values of 𝑡! in equation (27). 
 

X. Numerical Illustration 

In this section we discuss the solution procedure of the model through a numerical illustration by 
obtaining the production time, optimum production quantity and the total production cost of an 
inventory system. For demonstrating the solution procedure of the model the parameters are 
considered as A	= Rs.310\-, C = Rs.15\-, h = Re.0.2\-, (α1,	α2,	β1,	β2,	p) = (11, 14, 0.55, 3, 0.5), ѳ= 3, 
k=3.3 and T=12 months. The values of parameters above are varied further to observe the trend in 
optimal policies and the results are obtained are shown in Table 3. Substituting these values the 
optimal production quantity 𝑄∗, the production time and total production cost are computed and 
presented in Table 3 
From Table 3 it is observed that the deterioration parameters and production parameters have a 
tremendous influence on the optimal values of the model. 
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Table 3: Numerical Illustration 

A	 C	 h	 T	 𝜶𝟏	 𝜶𝟐	 𝜷𝟏	 𝜷𝟐	 ѳ	 k	 p	 𝒕𝟏∗ 	 Q*	 K*	
310 15 0.2 12 11 14 0.55 3 3 3.3 0.5 5.495 28.771 61.871 

325.5           5.495 28.771 63.163 
341           5.495 28.771 64.454 

356.5           5.495 28.771 65.746 
 15.75          5.496 28.775 63.698 
 16.5          5.497 28.778 65.477 
 17.25          5.499 28.782 67.281 
  0.21         5.495 28.772 61.875 
  0.22         5.495 28.772 61.879 
  0.23         5.495 28.772 61.883 
    11.55       5.5 30.217 63.686 
    12.1       5.501 31.598 65.402 
    12.65       5.503 33.01 67.143 
     14.7      5.493 28.767 61.859 
     15.4      5.492 28.763 61.825 
     16.1      5.491 28.761 61.788 
      0.578     5.499 30.157 63.607 
      0.605     5.504 31.56 65.366 
      0.633     5.509 33.088 67.281 
       3.15    5.496 28.773 61.89 
       3.3    5.496 28.775 61.907 
       3.45    5.497 28.777 61.923 
        3.15   5.495 28.772 61.886 
        3.3   5.495 28.773 61.901 
        3.45   5.496 28.773 61.92 
         3.465  5.495 28.771 61.86 
         3.63  5.495 28.771 61.85 
         3.795  5.495 28.771 61.839 
          0.525 5.495 28.722 61.806 
          0.55 5.494 28.675 61.743 

          0.575 5.494 28.629 61.681 
 

When the ordering cost ‘A	’ increases from 310 to 356.5, the optimal production quantity Q* and the 
optimal production down time t1* remains constant, the total production cost per unit time K*  
increases from 61.871 to 65.746. As the cost parameter ‘C	 ’ increases from 15 to 17.25, the optimal 
production quantity Q* increases from 28.771 to 28.782, the optimal production down time t1	
increases from 5.495 to 5.499, the total production cost per unit time	K* increases from 61.871 to 
67.281. As the inventory holding cost ‘h	 ’ increases from 0.2 to 0.23, the optimal production 
quantity Q* increases from 28.771 to 28.772, the optimal production down time t1* remains constant, 
the total production cost per unit time K* increases from 61.871 to 61.883. 

As the production parameter ’α1	’ varies from 11 to 12.65, the optimal production quantity	
Q* increases from 28.771 to 33.01, the optimal production down time t1* increases from 5.495 to 
5.503, the total production cost per unit time	K*  increases from 61.871 to 67.143. As the production 
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parameter ’α2		’ varies from 14 to 16.1, the optimal production quantity Q* decreases from 28.771 to 
28.761, the optimal production down time t1* decreases from 5.495 to 5.491, the total production 
cost per unit time K* decreases from 61.871 to 61.788. As the production parameter ‘β1	’ varies from 
0.55 to 0.633, the optimal production quantity	 Q*	 increases from 28.771 to 33.088, the optimal 
production down time	 t1* increases from 5.495 to 5.509, the total production cost per unit time	K* 
increases from 61.871 to 67.281. As the production parameter ‘β2	’ varies from 3 to 3.45, the optimal 
production quantity Q*	 increases from 28.771 to 28.773, the optimal production down time t1*    
increases from 5.495 to 5.497, the total production cost per unit time K* increases from 61.871 to 
61.923. As the production parameter ‘p’ varies from 0.5 to 0.575 the total production quantity Q*   
decreases from 28.771 to 28.629, the optimal production down time t1* decreases from 5.495 to 
5.494, the total production cost per unit time K* decreases from 61.871 to 61.681. 

As the deterioration parameter  ‘ѳ	’ varies from 3 to 3.45, the optimal production quantity	
Q* increases from 28.771 to 28.773, the optimal production down time t1* increases from 5.495 to 
5.496, the total production cost per unit time K* increases from 61.871 to 61.92. 

As the demand parameter ‘k	 ’ varies from 3.3 to 3.795, the total production quantity Q*   
remains constant, the optimal production down time	t1* remains constant, the total production cost 
per unit time K*  decreases from 61.871 to 61.839. 

 
XI. Sensitivity Analysis of the Model 

 
The sensitivity analysis is carried to explore the effect of changes in model parameters and 

costs on the optimal policies, by varying each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) at a 
time for the model under study. The results are presented in Table 4. The relationship between the 
parameters and the optimal values of the production schedule is shown in Figure 4.  

 
Table 4: Sensitivity analysis of the model - Without Shortages 

Variation 
Parameters 

Optimal 
Policies -15% -10% -5% 0% 5% 10% 15% 

A	 𝑡*∗ 5.495 5.495 5.495 5.495 5.495 5.495 5.495 

	 𝑄∗ 28.772 28.772 28.771 28.771 28.771 28.771 28.771 

	 𝐾∗ 57.996 59.288 60.579 61.871 63.163 64.454 65.746 

C	 𝑡*∗ 5.491 5.492 5.494 5.495 5.496 5.497 5.499 

	 𝑄∗ 28.761 28.765 28.768 28.771 28.775 28.778 28.782 

	 𝐾∗ 56.465 58.266 60.068 61.871 63.698 65.477 67.281 

h	 𝑡*∗ 5.495 5.495 5.495 5.495 5.495 5.495 5.495 

	 𝑄∗ 28.771 28.771 28.771 28.771 28.772 28.772 28.772 

	 𝐾∗ 61.859 61.863 61.867 61.871 61.875 61.879 61.883 

𝜶𝟏	 𝑡*∗ 5.485 5.489 5.491 5.495 5.5 5.501 5.503 

	 𝑄∗ 24.537 26.203 27.358 28.771 30.217 31.598 33.01 

	 𝐾∗ 56.463 58.599 60.076 61.871 63.686 65.402 67.143 

𝜶𝟐	 𝑡*∗ 5.496 5.496 5.496 5.495 5.493 5.492 5.491 

	 𝑄∗ 28.775 28.775 28.774 28.771 28.767 28.763 28.761 

	 𝐾∗ 61.901 61.885 61.880 61.871 61.859 61.825 61.788 
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𝜷𝟏	 𝑡*∗ 5.484 5.487 5.491 5.495 5.499 5.504 5.509 

	 𝑄∗ 25.171 26.286 27.453 28.771 30.157 31.56 33.088 

	 𝐾∗ 57.359 58.756 60.219 61.871 63.607 65.366 67.281 

𝜷𝟐	 𝑡*∗ 5.494 5.494 5.494 5.495 5.496 5.496 5.497 

	 𝑄∗ 28.768 28.769 28.77 28.771 28.773 28.775 28.777 

	 𝐾∗ 61.811 61.831 61.851 61.871 61.89 61.907 61.923 

Ѳ	 𝑡*∗ 5.494 5.495 5.495 5.495 5.495 5.495 5.496 

	 𝑄∗ 28.77 28.771 28.771 28.771 28.772 28.773 28.773 

	 𝐾∗ 61.832 61.845 61.857 61.871 61.886 61.901 61.92 

k	 𝑡*∗ 5.495 5.495 5.495 5.495 5.495 5.495 5.495 

	 𝑄∗ 28.771 28.771 28.771 28.771 28.771 28.771 28.771 

	 𝐾∗ 61.903 61.892 61.882 61.871 61.86 61.85 61.839 

p	 𝑡*∗ 5.496 5.495 5.495 5.495 5.495 5.494 5.494 

	 𝑄∗ 28.936 28.878 28.823 28.771 28.722 28.675 28.629 

	 𝐾∗ 62.082 62.009 61.939 61.871 61.806 61.743 61.681 

XII. Observations 
 

The major observations drawn from the numerical study are: 

• t1*	is	less sensitive, Q*	is slightly sensitive and K* is moderately sensitive to the changes in 
ordering cost ‘A’. 

• t1*	and	Q*	are slightly sensitive and K* is moderately sensitive to the changes in cost per unit 
‘C’. 

• t1*	is	less sensitive, Q*	and	K* are slightly sensitive to the changes in holding cost ‘h’. 
• t1*	 is slightly sensitive, Q*	 and	 K* are highly sensitive to the change in the production 

parameter ‘α1’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the production parameter ‘α2’. 
• t1*	is slightly sensitive, Q*	and	K* are moderately sensitive to the change in the production 

parameter ‘β1’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the production parameter  ‘β2’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the production parameter ‘p’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the deterioration parameter ‘ѳ’. 
• t1*	and	Q*	are less sensitive, K* is slightly sensitive to change the  demand parameter ‘k’. 
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Figure 4: Relationship between parameters and optimal values without shortages 
 

XIII. Conclusions 
 
This paper introduces a new EPQ model with random production having mixture of two 

component Weibull production rate and exponential decay having constant demand. The mixture 
of two parameter Weibull distribution characterises the heterogeneous process more close to 
reality. By using the historical data we can estimate the replenishment and deterioration 
distribution parameters. The production manager can estimate the optimal production downtime 
and uptime with the distributional data of production and deterioration parameters. The Weibull 
rate of production can include increase/ decrease/constant rates for different values of parameters. 
Sensitivity analysis is used to understand the change in the parameters of Weibull rates of 
production and exponential deterioration. It is observed that random production and deterioration 
have significant influence on optimal values of the production schedule and production quantity. 
This model also includes some of the earlier models as particular cases. This model can be used to 
analyse production processes where the production is done in two different units/ machines and 
rate of deterioration is constant. It is possible to extend this model with other types of demand 
functions such as stock dependent demand, time and selling price dependent demand which will 
be taken up elsewhere. This paper is useful for analyzing optimal production schedules for the 
industries dealing with deteriorating items such as sea foods and edible oil. This model also 
includes some of the earlier EPQ models as particular cases for specific values of the parameters. 
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