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Abstract

A conformal curvature tensor and con-circular curvature tensor in an SP-Kenmotsu manifold are
derived in this article which admits a quarter-symmetric metric connection. Conclusively, we verified
our results by considering a case of 3-D SP-Kenmotsu manifold.
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I. Introduction

A Mn (Riemannian manifold) is symmetrical locally if ∇.R = 0 and symmetric if R(X, Y).R = 0
where R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z appears as a derivation. If R(X, Y).R = 0, then
Mn is turns to be the pseudo symmetric space that is defined with the criteria R.R = L(g, R).
A manifold Mn is conformally symmetric if ∇.C = 0 and if R.C = 0, it is said to be Weyl semi
symmetric which are characterised by the condition R.C = LCQ(g, C).

Schouten & Friedman proposed the concept of semi-symmetric linear connection on a differ-
entiable manifold. Some of the semi-symmetric curvature criteria in Riemannian manifolds are
given by Yano [12].

Semi symmetric metric connection plays a very significant part in the geometry of Riemannian
manifolds. For instance, a semi-symmetric metric is the displacement of the earth’s surface after
a fixed point. A quarter-symmetric connection is a linear connection ∇̃ on an n-dimensional
Riemannian manifold (Mn, g) if T̃ is T̃(X, Y) = η(Y)ϕX − η(X)ϕY.

Sato [8] proposed concepts of almost para contact Riemannian manifold. In 1977, Matsumoto
and Adati [1] characterized special para-Sasakian as well as para-Sasakian manifolds as a par-
ticular type of almost contact Riemannian manifolds. Before Sato, Kenmotsu [6] characterized
a type of this manifold. In 1995, Sinha and Sai Prasad [9] characterized a type of almost para
contact metric manifolds mainly para-Kenmotsu and special para-Kenmotsu manifolds. For the
literature, on Para-Kenmotsu manifolds one can refer to Balga [2], Srivastava and Srivastava [10],
Olszak [7] .

On the other hand, various geometers of Riemannian manifolds and specifically, SP-Sasakian
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manifolds were widely explored for the quarter-symmetric metric connections [3, 4, 5]. Inspired
by these studies, in this work, we explore a class of special para-Kenmotsu manifolds that allow-
ing the quarter-symmetric metric connection.

The current study is arranged as follows: Section 2 has certain prerequisites. In relation to
the quarter symmetric metric connection in an SP-Kenmotsu manifold, we derive the equations
for the Ricci tensor S̃ & Riemannian curvature tensor R̃ in Section 3. The equations in relation to
quarter symmetric metric connection are also derived in an SP-Kenmotsu manifold Mn for con-
circular curvature tensor Z̃ in Section 4. It is illustrated that the manifold Mn is η-Einstein given
the concircular curvature tensor Z̃ meets either of these conditions R̃(ξ, U).Z̃ = 0, Z̃(ξ, U).R̃ = 0,
Z̃(ξ, U).Z̃ = 0, Z̃(X, Y).S̃ = 0. Section 5 is intended to define and analyse the curvature prop-
erties in the quarter-symmetric metric connection of the Weyl-conformal curvature tensor C̃, of
form (0, 4), of SP-Kenmotsu manifold Mn. Finally, an illustration of a 3d SP-Kenmotsu manifold
is considered in Section 6.

II. Preliminaries

Suppose Mn be an n-dimensional differentiable manifold provided with structure tensors (Φ, ξ, η)
such that

(a) η(ξ) = 1

(b) Φ2(X) = X − η(X)ξ; X = ΦX.
(1)

Mn is called an almost para contact manifold.

Suppose that g be a Riemannian metric such that, for all vector fields X and Y on Mn

(a) g(X, ξ) = η(X)

(b) Φξ = 0, η(ΦX) = 0, rank Φ = n − 1

(c) g(ΦX, ΦY) = g(X, Y)− η(X)η(Y).

(2)

Then it is stated that the manifold [8] Mn accepts an almost para contact structure of Riemannian
(Φ, ξ, η, g).

Furthermore, if (Φ, ξ, η, g) fulfils the equations

(a) (∇Xη)Y − (∇Yη)X = 0;

(b) (∇X∇Yη)Z = [−g(X, Z) + η(X)η(Z)]η(Y) + [−g(X, Y) + η(X)η(Y)]η(Z);

(c) ∇Xξ = Φ2X = X − η(X)ξ;

(d) (∇XΦ)Y = −g(X, ΦY)ξ − η(Y)ΦX;

(3)

then Mn is termed a para-Kenmotsu manifold or simply a P-Kenmotsu manifold [9].

A P-Kenmotsu manifold Mn permitting a 1-form η fulfilling

(a) (∇Xη)Y = g(X, Y)− η(X)η(Y);

(b) (∇Xη)Y = φ(X, Y);
(4)

here φ signifies Φ associate, is termed a special para-Kenmotsu manifold or shortly SP-Kenmotsu
manifold [9].

Suppose (Mn, g) be an n-dimensional, n ≥ 3, differentiable manifold of class C∞ and let ∇
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be its connection Levi-Civita. Then curvature tensor R of class (1, 3) of the the Riemannian
Christoffel is provided by:

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z. (5)

The (0,2)-tensor S2 and the Ricci operator S are described as follows

g(SX, Y) = S(X, Y), (6)

and S2(X, Y) = S(SX, Y). (7)

It is known [9] that the following relationship exist in the P-Kenmotsu manifold:

(a) S(X, ξ) = −(n − 1)η(X),

(b) g[R(X, Y)Z, ξ] = η[R(X, Y, Z)] = g(X, Z)η(Y)− g(Y, Z)η(X),

(c) R(ξ, X)Y = g(X, Y)ξ − η(Y)X,

(d) R(X, Y)ξ = η(Y)X − η(X)Y; when X is orthogonal to ξ.

(8)

Almost para-contact Riemannian manifold Mn is termed to be η-Einstein and form of its Ricci
tensor

S(X, Y) = a g(X, Y) + b η(X) η(Y) (9)

Fields X and Y for any vector; a and b are a few scalars on Mn. In specific, if b = 0 thus Mn is
considered to be an Einstein manifold.

III. Curvature tensor

A linear connection ∇̃ in a Riemannian manifold Mn is called a quarter-symmetric metric con-
nection [4] if their torsion tensor T(X, Y) meets

T(X, Y) = η(Y) ΦX − η(X) ΦY, (10)

and
(∇̃X g)(Y, Z) = 0; (11)

where Φ iindicates a tensor field of the form (1, 1) and η is a 1-form.

A quarter-symmetric metric connection ∇̃ with torsion tensor (10) is given by

∇̃XY = ∇XY + η(Y) ΦX − φ(X, Y)ξ (12)

here, ∇ indicates Riemannian connection.

Suppose manifold Mn to be an SP-Kenmotsu manifold and Φ(X) as ΦX = X. Therefore the
(10) and (11) may be represented as:

T(X, Y) = η(Y)X − η(X)Y (13)

(∇̃X g)(Y, Z) = 0. (14)

Let us choose the linear and Riemannian connection as ∇̃ and ∇, respectively

∇̃XY = ∇XY + U(X, Y), U is a tensor o f type (1, 2) (15)

We have [12], for ∇̃ to be a quarter symmetric metric connection in Mn,

U(X, Y) = 1/2[T(X, Y) + T′(X, Y) + T′(Y, X)], (16)
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where
g(T′(X, Y), Z) = g(T(Z, X), Y)]. (17)

Using (13) and (17), we get
T′(X, Y) = η(X)Y − ′F(X, Y)ξ; (18)

here ′F(X, Y) = g(X, Y), η signifies a 1-form and ξ indicates the associated vector field.

From (13) and (16), in (18), we have

U(X, Y) = η(Y)X − ′F(X, Y)ξ, (19)

and then (15) becomes
∇̃XY = ∇XY + η(Y)X − ′F(X, Y)ξ; (20)

which indicates ∇̃ in an SP-Kenmotsu manifold.

Suppose R̃ and R be the curvature tensors of the connections ∇̃ and ∇ correspondingly, we
get

R̃(X, Y)Z = ∇̃X∇̃YZ − ∇̃Y∇̃XZ − ∇̃[X, Y]Z (21)

Using (20) and (5) in (21), we have

R̃(X, Y)Z = R(X, Y)Z + g(Y, Z)X − g(X, Z)Y. (22)

If we describe R̃(X, Y, Z, U) as g(R̃(X, Y)Z, U) and R(X, Y, Z, U) as g(R(X, Y)Z, U); then (22)
becomes

R̃(X, Y, Z, U) = R(X, Y, Z, U) + g(Y, Z)g(X, U)− g(X, Z)g(Y, U). (23)

The above expression (23) denotes the relation between R̃(X, Y)Z of Mn w.r.t. ∇̃ and R(X, Y)Z
w..r.t. ∇.

Put X = U = ei in (23), where ei be an orthonormal basis of the tangent space at any point
of the manifold and taking summation over i (1 ≤ i ≤n), we get

S̃(Y, Z) = S(Y, Z) + n g(Y, Z)− η(Y)η(Z); (24)

here S̃ and S signifies the Ricci tensors of ∇̃ and ∇.

From (24), by using Y = Z = ei, we obtain

r̃ = r + n2 − 1; (25)

here r̃ and r indicates the scalar curvatures of ∇̃ and ∇ correspondingly.

Theorem 3.1: Suppose that S̃ be the Ricci tensor & R̃ be the curvature tensor in an SP-Kenmotsu
manifold Mn w.r.t. ∇̃, then

(a) R̃(X, Y)Z + R̃(Y, Z)X + R̃(Z, X)Y = 0,

(b) R̃(X, Y, Z, U) + R̃(X, Y, U, Z) = 0,

(c) R̃(X, Y, Z, U)− R̃(Z, U, X, Y) = 0,

(d) R̃(X, Y, Z, ξ) = 2R(X, Y, Z, ξ),

(e) S̃(X, ξ) = 2S(X, ξ).
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Proof: Using first Bianchi identity and eq.(22) w.r.t. the Riemannian connection, we obtain (a).

From eq. (23), we obtain (b) & (c). By putting U = ξ in (23) and by using (8) we have (d).

By using Y = Z = ei in equation (d) as well as summation with i, we obtain (e).

Theorem 3.2: The Ricci tensor S̃ in an SP-Kenmotsu manifold Mn w.r.t. the connection for
the quarter-symmetric metric is symmetrical.

Proof: The theorem-proof is based on the eq. provided in (24).

IV. Concircular curvature tensor

The n-dimensional Riemannian manifold Mn is provided by the concircular curvature tensor
Z(X, Y) [11, 13]:

Z(X, Y)U = R(X, Y)U − r
n(n − 1)

[g(Y, U)X − g(X, U)Y] (26)

for all X, Y, U ∈ TM.

The concircular curvature tensor w.r.t. ∇̃ in an SP-Kenmotsu manifold is Z̃.

Therefore, using the equations (22) and (26), we get

Z̃(X, Y)U = Z(X, Y)U − 1
n
[g(Y, U)X − g(X, U)Y], (27)

which denotes the relation between the concircular curvature tensors w.r.t. ∇̃ and ∇.

Theorem 4.1: If Z̃ w.r.t. ∇̃ in an SP-Kenmotsu manifold satisfies R̃(ξ, U).Z̃ = 0, the mani-
fold is η-Einstein.

Proof: Suppose R̃(ξ, U).Z̃(X, Y)ξ = 0, in an SP-Kenmotsu manifold.

Then

(R̃(ξ, U).Z̃(X, Y)ξ)− Z̃(R̃(ξ, U)X, Y)ξ − Z̃(X, R̃(ξ, U)Y)ξ − Z̃(X, Y).R̃(ξ, U)ξ = 0. (28)

Also, from (8) and (22), we get

R̃(X, Y)ξ = 2[η(Y)X − η(X)Y] and (29)

R̃(ξ, X)U = 2[g(X, U)ξ − η(U)X]. (30)

Then, by using (28), (29) and (30), we get

Z̃(X, Y)U = 0. (31)

Now, using the equations (26) and (27), the equation (31) reduces to

R(X, Y, U) =
r + n − 1
n(n − 1)

[g(Y, U)X − g(X, U)Y]. (32)

We obtain with the above equation w.r.t. X,

S(Y, U) =
r + n − 1
n(n − 1)

[ng(Y, U)X − η(Y)η(U)], (33)
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which on further contracting, we get
r = 1 − n2. (34)

Using (34), the expression (33) becomes

S(Y, U) = η(Y)η(U)− ng(Y, U); (35)

which proves η-Einstein manifold.

Theorem 4.2: If Z̃ with respect to ∇̃ in an SP-Kenmotsu manifold satisfies Z̃(ξ, U).R̃ = 0, the
manifold is an η-Einstein.

Proof: Suppose that Z̃(ξ, U).R̃(X, Y)ξ = 0, in an SP-Kenmotsu manifold.

Then

(Z̃(ξ, U).R̃(X, Y)ξ)− R̃(Z̃(ξ, U)X, Y)ξ − R̃(X, Z̃(ξ, U)Y)ξ − R̃(X, Y).Z̃(ξ, U)ξ = 0 (36)

Also, from (8), (26) and (27), we have

Z̃(ξ, U)Y =
[ r

n(n − 1)
+

1
n
− 1
][

g(U, Y)ξ − η(Y)U
]

(37)

and
Z̃(X, Y)ξ =

[ r
n(n − 1)

+
1
n
− 1
][

η(X)Y − η(Y)X
]
. (38)

By substituting the values from (29), (30), (37) and (38) in the expression (36), we obtain

R̃(X, Y)U = g(U, Y)X − g(U, X)Y + η(U)[1 − η(X)]Y. (39)

Using (22), the above eq. becomes

R(X, Y)U = η(U)[1 − η(X)]Y; (40)

and it proves.

Theorem 4.3: If the Z̃ w.r.t. ∇̃ in an SP-Kenmotsu manifold meets Z̃(ξ, U).Z̃ = 0, the mani-
fold is η-Einstein.

Proof: The theorem-proof is trivial by the use of the the fact that Z̃(ξ, U).Z̃ indicates Z̃(ξ, U)
was acting on Z̃ as a derivation.

Theorem 4.4: If Z̃ (concircular curvature tensor) with respect to ∇̃(quarter symmetric metric
connection) in an SP-Kenmotsu manifold fulfills Z̃(X, Y).S̃ = 0, the manifold signifies η-Einstein.

Proof: Let Z̃(X, Y).S̃(U, V) = 0 in an SP-Kenmotsu manifold.

Then it means
S̃(Z̃(X, Y)U, V) + S̃(U, Z̃(X, Y)V) = 0. (41)

By choosing X = ξ in (41) and on using the equations (37) and (24), we obtain[ r
n(n − 1)

+
1
n
− 1
][

− η(U)S(Y, V)− nη(U)g(Y, V) + 2η(U)η(V)η(Y)

− η(V)S(U, Y)− nη(V)g(U, Y)
]
= 0.

(42)

Again by using U = ξ in the eq. (42), we get

S(Y, V) = η(Y)η(V)− ng(Y, V); (43)

which provides the required result.
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V. Conformal curvature tensor

The Weyl conformal curvature tensor C of the type (0, 4) of a manifold Mn w.r.t. a Riemannian
connection provided by [12, 13]:

C(X, Y, Z, U) = R(X, Y, Z, U)− 1
n − 2

[S(Y, Z)g(X, U)− S(X, Z)g(Y, U)

+ g(Y, Z)S(X, U)− g(X, Z)S(Y, U)]

+
r

(n − 1)(n − 2)
[g(Y, Z)g(X, U)− g(X, Z)g(Y, U)].

(44)

Analogous to this, we define C̃ i.e.Weyl conformal curvature tensor of the type (0, 4), of an
SP-Kenmotsu manifold w.r.t. the quarter-symmetric metric connection as:

C̃(X, Y, Z, U) =R̃(X, Y, Z, U)− 1
n − 2

[S̃(Y, Z)g(X, U)− S̃(X, Z)g(Y, U)

+ g(Y, Z)S̃(X, U)− g(X, Z)S̃(Y, U)]

+
r̃

(n − 1)(n − 2)
[g(Y, Z)g(X, U)− g(X, Z)g(Y, U)].

(45)

Then, using the equations (23), (24), (25), (44) and (45), we get

C̃(X, Y, Z, U) = C(X, Y, Z, U), (46)

which implies the following statement:

Theorem 5.1: The conformal curvature tensors of ∇̃ and ∇ are equal in an SP-Kenmotsu mani-
fold.

Suppose that R̃ = 0. Then S̃ = 0 and r̃ = 0.

From (45) we get that C̃ = 0 and hence using (46), we get C = 0.

Therefore, we provide the following theorem.

Theorem 5.2: The manifold is conformally flat in an SP-Kenmotsu manifold if the conformal
curvature tensor C̃ of ∇̃ vanishes.

Let S̃ = 0. Then r̃ = 0. Hence from (24) and (25), we get

S(Y, Z) = η(Y)η(Z)− n g(Y, Z) (47)

and
r = 1 − n2. (48)

Then by using (23), (44), (47) and (48), we obtain

R̃(X, Y, Z, U) = C(X, Y, Z, U). (49)

From (49), we state that

Theorem 5.3: Conformal curvature tensor C of the manifold is identical in an SP-Kenmotsu
manifold if S̃ (Ricci tensor) of ∇̃ i.e quarter-symmetric metric connection vanishes, then R̃ i.e.
curvature tensor of ∇̃ .

Using theorem (5.2) and (5.3), we state that

Theorem 5.4: If S̃ of ∇̃ in an SP-Kenmotsu manifold disappears, then the manifold is con-
formally flat if R̃ of ∇̃ vanishes.

RT&A, No 4 (65)
Volume 16, December 2021

216



Sunitha, Satyanarayana and Sai Prasad
On SP-Kenmotsu Manifolds w.r.t Quarter-symmetric metric connection

VI. Example of a 3d SP-Kenmotsu manifold admitting the

quarter-symmetric metric connection

Example 6.1: Suppose that 3d manifold M = {(x, y, u) ∈ R3}, where (x, y, u) indicates "standard
coordinates" in R3. Considering e1, e2 & e3 be fields of vector in M as

e1 = e−u ∂

∂x
, e2 = e−u ∂

∂y
, e3 =

∂

∂u
. (50)

for each point of M are linearly independent vectors and constitute a basis of χ(M).

Riemannian metric g(X, Y) is

g(ei, ej) =


1, i f i = j

0, i f i ̸= j; i, j = 1, 2, 3, 4, 5.

Letη(Z) = g(Z, e3), f or any Z ∈ χ(M)

Let η be a 1-form & (1, 1)-tensor field on M expressed by Φ defined as

Φ2(e1) = e1, Φ2(e2) = e2, Φ2(e3) = 0.

The g(X, Y) and linearity of Φ yields that

η(e3) = 1, Φ2(X) = X − η(X)e3 ; and

g(ΦX, ΦY) = g(X, Y)− η(X)η(Y)

for all vector fields X, Y ∈ χ(M).

Thus for e3 = ξ, (Φ, ξ, η, g) describes an almost para-contact structure in M.

Let ∇ be a Riemannian connection in regard to the Riemannian metric g.[
e1, e2

]
= 0, [e1, e3] = e1, [e2, e3] = e2.

The formula of Koszul’s is

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)

− g(X, [Y, Z])− g(Y, [X, Z]) + g(Z, [X, Y]).
(51)

By taking e3 = ξ in (51), one can get

∇e1 e1 = −e3,∇e1 e2 = 0,∇e1 e3 = e1;

∇e2 e1 = 0,∇e2 e2 = −e3,∇e2 e3 = e2;

∇e3 e1 = 0,∇e3 e2 = 0,∇e3 e3 = 0.

Therefore manifold under consideration satisfies ∇Xξ = Φ2X = X − η(X)ξ, η(ξ) = 1 and the
expression (3)d.

The above expressions satisfy all the properties of SP-Kenmotsu manifold with (Φ, ξ, η, g) . Thus
M(Φ, ξ, η, g) is a 3-dimensional manifold.

Further from (20), we get

∇̃e1 e1 = −2e3, ∇̃e1 e2 = 0, ∇̃e1 e3 = 2e1;

∇̃e2 e1 = 0, ∇̃e2 e2 = −2e3, ∇̃e2 e3 = 2e2;

∇̃e3 e1 = 0, ∇̃e3 e2 = 0, ∇̃e3 e3 = 0;
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Therefore T(X, Y) of ∇̃ can be expressed as:

T(ei, ei) = 0, f or i = 1, 2, 3; and

T(e1, e2) = 0, T(e1, e3) = e1, T(e2, e3) = e2.

Also, we get
(∇̃e1 g)(e2, e3) = 0, (∇̃e2 g)(e3, e1) = 0, (∇̃e3 g)(e1, e2) = 0,

which proves that the manifold M under consideration admits ∇̃.

Thus it proves that M under consideration is an SP-Kenmotsu manifold and allows ∇̃.
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