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Abstract 
 

Nowadays, large volumes of data generate by numerous business organizations due to digital 
communications, web applications, social media, internet of things, cloud and mobile computing. 
Such has turned the nature of classical data into big data. Loan risk analysis is one of the most 
importance financial tasks, where financial organizations predict loan risk through customer 
financial history and behavioral data. Financial institutions face loan risk related issues when 
they make a loan to a bad customer. As a result, financial institutions divide loan applications 
into loan risk and non-risk clusters before making a loan for avoiding the loan risk challenges. 
Clustering approach is a data mining technique that uses data behavior and nature to discover the 
unexpected loan without any external information. Clustering algorithms face efficiency and 
effectiveness challenges as a result of the primary characteristics of big data. Sampling is of the 
data reduction technique that reduces computation time and improves cluster quality, scalability 
and speed of clustering algorithm. This study suggests a Stratified Remainder linear Systematic 
Sampling Extension (SRSE) approach for loan risk analysis in big data clustering using a single 
machine execution. The SRSE sampling plan enhances the effectiveness and efficiency of the 
clustering algorithm by employing maximum variance stratum formulation, remainder linear 
systematic sampling and extending sampling results into final result through centroid distance 
metric. The performance of the SRSE-based clustering algorithm has been compared to existing 
K-means and K-means++ algorithms using Davies Bouldin score, Silhouette coefficient, SD 
Validity, Ray-Turi index and CPU time validation metric on risk datasets.  

 
Keywords: Loan Risk Clustering, Big Data Clustering, Stratified Sampling, Remainder linear 
Systematic Sampling, Sample Extension, K-means, SRSE-K-means, SRSE- K-means++. 

 
I. Introduction 

 
The volume of data has increased rapidly as a result of the development of the internet of things, 
cloud computing, web applications, communication technologies and social networks. Big data 
mining is analysis and process dealing the massive amounts of data for an organization's decision-
making system [1]. The major characteristics of big data are volume (large scale of data), variety 
(various categories of data), and velocity (speed of data, stay motion). These three Vs are referred 
to as core features of big data, whereas the remaining Vs are referred to as supportable 
characteristics. Veracity (quality of processed data), variability (inconsistency of data), value 
(importance of data) and visualization (imagining the data) are other characteristics. Volume is a 
key attribute of big data and is represented in the scale of Terabytes and Petabytes. Variety handles 
a wide range of heterogeneous data sources, formats and their types.  Velocity represents the rate 
of data creation, generation, delivery and updates in batch time, real-time and streaming across the 
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heterogeneous sources [2–4]. Veracity determines the quality, trustworthiness and accuracy of the 
data during the mining process because some heterogeneous sources generate inconsistent, 
incomplete, imprecise and ambiguous data [3, 4] . Value related to attributes (importance) of data 
for decision-making during the analysis process. It is described as valuable information on a 
massive volume and heterogeneous data that does not impair business decisions [2, 5] . Variability 
indicates the nature of data across the time and is fragments used in big data sentiment analysis. It 
refers to data whose structure, meaning, and behavior constantly change over time due to rapid 
data growth [5, 6]. Visualization pictures the raw and analyzed data as per user expectation and 
understandable in the form of figure or graphical presentation such as a table, graph, picture, chart 
and so on [7]. 

Big data mining is the discovery of knowledge, unknown correlations, actionable 
information and hidden patterns in big data sources useful for decision-making [2]. The objective 
of data mining is to predict the unknown insight and provide a description of predicate values that 
users easily can interpret. A data relation approach is another way of big data mining that 
identifies the relationship between attributes of a dataset. Big data mining research necessitates 
transparency because the large volume of data provides valuable knowledge, relationships and 
hidden patterns. The variety of data types and data sources leads to a diversification of mining 
results, and data velocity defines real-time mining [8]. Big data mining utilizes stability, high-
efficiency, low computational cost and better risk management capability [9]. The combination of 
statistics and data mining techniques is known as intelligent big data mining and addresses the 
process and management challenges in mining framework [2]. Big data mining under risk 
reduction is classified as association rule learning, clustering, classification, and regression 
prediction.  

Clustering is a technique used risk reduction for unsupervised predictive data mining that 
predicts class label based on homogeneity, similarity, or characteristics. Each risk cluster has a high 
degree of resemblance and a significant separation degree among them. The distance between data 
points with the shortest distance within-cluster is defined as having a high similarity within-
cluster. A high separation results in the maximum distance between clusters. [10].  The application 
of clustering is in the fields of pattern recognition, image segmentation, artificial intelligence, 
wireless sensor networks, text analysis, bioinformatics, financial analysis, vector quantization and 
so on [11, 12].  

Clustering is used in risk analysis applications such as supplier risk assessment [13], 
probabilistic risk assessment [14], project interdependent risk [15], financial risk analysis [16],  
insurance risk analysis, dynamic rockfall risk analysis [17], fall risk assessment [18] etc.  Credit and 
debit risk concentrations are managed by banks and financial departments. The clustering 
technique allows customers to spend less time processing loan applications, and financial 
organizations predict loan risk in terms of good and bad customer for loan repayment. Borrowers' 
loan repayment capacity and loan risk are determined by their liabilities, reliance on family 
members, loans from other sources, individual age, increase in future income, etc. The 
identification of loan risk factors improves organizational safety and performance [14].  

Kara et al. [13] assessed the 17 qualitative and quantitative supplier risks using the K-
means clustering algorithm. The data points within the cluster indicate the specific risk, and their 
interpretation facilitates risk management and reduces supplier risk. It used the supplier risk-
related dataset to identify the most reliable supplier by minimizing risk. Mandelli et al. [14] used 
principal component analysis and mean-shift methodology to identify similar behavioral risk 
events using the clustering algorithm for probabilistic risk assessment. Marle et al. [15] used 
interaction-based clustering to categorize the risks. The proposed methodology used the clustering 
objective for prioritization and resource allocation during risk grouping. Kou et al. [16] used real-
life credit and bankruptcy risk datasets to evaluate a clustering algorithm based on multiple 
criteria decision making (MCDM) problems for financial risk analysis. 

Fahad et al. [19] outlined the volume, variety, and velocity evolution criteria of the 
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conventional risk clustering approach for big data. The volume of the conventional clustering 
technique is recognized as the dataset size, high dimensionality and outlier detection. The variety 
is recognized as a dataset type and the clustering shape of the conventional clustering algorithm. 
The velocity is considered in the complexity and execution time of the conventional clustering 
algorithm. The existing risk clustering algorithms are unsuitable for big data mining due to these  
characteristics in terms of scalability, performance, quality and speedup. Volume is a dominant 
attribute of big data that reason data mining algorithms to pose storage and processing challenges. 
Data Volume necessitates a large amount of hardware and takes a long time to execute algorithms.  
The most common big data clustering methods are incremental, divide and conquer, data 
summarization, sampling, efficient nearest neighbor, dimension reduction, parallel computing, 
condensation, granular computing and so on [11, 20–22]. 

Nowadays, sampling and distributed/parallelization systems are two major strategies to 
solve big data mining-related issues. Sampling is a widely scientific method in the context of big 
data because it accurately reduces the data amount to a manageable size, increases scalability and 
speeds up algorithm execution with data processing [23, 24]. The execution of risk clustering is 
divided into single and multiple machines categories under big data mining, where single machine 
clustering use single machine resources and multiple machines used distributed execution. 
Parallel/distributed computation and data reduction are two common approaches to large-scale 
data clustering [22]. 

Sampling is a data reduction strategy that is useful for improving efficiency and 
performance when dealing with various types of problems related to data mining and database 
systems [25–27]. Sampling process minimizes data size and saves computation time and memory, 
while establishing a balance between the computational cost of high volume data and 
approximation results [24, 28]. The sampling-based data mining technique reduces the amount of 
data for mining and is known as an approximation approach [22]. It achieves approximate results 
within a specific time with query optimization for the decision support system. It is used in high-
volume data applications such as risk analysis, database sampling, online aggregation, correlation 
discovery, stream-sampling, and so on [29, 30]. 

The analysis of big data necessitates the use of highly scalable clustering techniques. The 
computational complexity of the classical clustering algorithms is high on large scale data set that 
reason it cannot be straight applied to large-scale. The computational efficiency and cluster quality 
are the major challenges in the large scale data clustering. The objective of this study is to improve 
computational efficiency in terms of scalability, resources utilization, computational cost, and 
speed-up of big data clustering utilizing stratified remainder linear systematic sampling extension 
(SRSE) approach in the application of loan risk analysis on single machine execution. This study is 
organized into five sections. The second section examines sampling-based clustering algorithms 
and their applications in data mining. The third section introduces the stratified remainder linear 
systematic sampling extension approach and provides a sampling strategy for big data clustering. 
Section four contains the proposed work implementation using the K-means and K-means++ 
algorithms and provides as well as their validation on loan risk datasets using internal measures. 
The final section of the work wraps up the work and explores new possibilities. The final section of 
the work concludes the work and explores additional possibilities. 
 

II. Literature review 
 
This section presents sampling-based works on data mining based on existing research 
perspectives and investigates the advantages of stratified and systematic sampling over other 
sampling methods. Most of the data mining algorithms use uniform random sampling, systematic 
sampling, progressive sampling, stratified sampling and reservoir sampling. Uniform random 
sampling selects data from large data sets using a random number generator [31]. In systematic 
sampling, the first data point of the sample is selected in random order and the remaining sample 
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data points are selected at fixed intervals from the dataset [32]. Progressive sampling starts with a 
small sample size and gradually increases the sample size until a satisfactory performance measure 
is obtained [25]. Stratified sampling splits the dataset into homogeneous sample data, which is 
known as strata,  then uses random sampling to collect samples from the strata for processing [22]. 
Reservoir sampling is used for data stream mining for both homogeneous and heterogeneous data 
sources [33].  

Buddhakulsomsiri et al. [34] used a stratified random sampling approach in the 
application of health care systems to bill processing accuracy. The sampling plan used the 
rectangular method for strata construction to utilize sample resources, and measured the accuracy 
by percent and dollar accuracy. Silva et al. [35] proposed the CLUSMASTER (CLUStering on 
MASTER) algorithm through sampling for data streams in the application of sensor networks. The 
sampling procedure shortens the execution time and allocates fewer resources to the MASTER 
algorithm.  The CLUSMASTER selects the best samples from each sensor in a network while 
minimizing the sum of square errors of the cluster. Rajasekaran et al. [36] proposed the DSC 
(Deterministic Sampling-based Clustering) algorithm for hierarchical and partitional clustering. 
The DSC algorithm improved the speed and accuracy as compared to the random sampling. 

Jaiswal et al. [37] proposed a PTAS method based on D2-Sampling and K-means 
clustering. The PTAS shortened the time required for exhaustive search and optimized the 
objective function of clustering. Parker et al. [36] introduced geometric progressive fuzzy c-means 
(GOFCM) and minimum sample estimate random fuzzy c-means (MSERFCM) accelerated 
algorithms. Both clustering methods used novel stopping criteria and sampling for subsample size 
identification to speed up the initialization process. The GOFCM algorithm combines single-pass 
fuzzy c-means (SPFCM) and progressive sampling, whereas the MSERFCM algorithm combines 
random sampling and fuzzy c-means extension. 

Xu et al. [38] proposed the Summation-bAsed Incremental Learning (SAIL) algorithm to 
avoid effectiveness and efficiency issues associated with text clustering on a large scale of text 
documents. The SAIL algorithm employs random sampling to address data scalability issues using 
an approximate approach. The use of random sampling significantly reduces computation costs 
and controls sampling error. Luchi et al. [39] use K-means to cluster a large data set using random 
sampling and a genetic approach. This approach guides better sample selection through genetic 
operations and reasonable computing time. 

Jing et al. [40] combined a stratified sampling method and an ensemble clustering 
algorithm on a high dimensional dataset. The stratified sampling is used to generate the subspace 
component of the dataset. The proposed method achieves a better clustering structure and more 
accurate results than random sampling and random projection methods without sacrificing cluster 
diversity. Li et al. [41] proposed a Distributed Stratified Sampling approach for big data. The 
stratified sampling extracts the subsample size from each partition of the data distribution in 
parallel order. The DSS algorithm achieved higher sample representativeness, accuracy, scalability, 
and efficiency with low data-transmission costs than state-of-the-art methods. 

Zhan et al. [42] solved eigenfunction problems for spectral clustering algorithms in image 
segmentation applications using the Nyström sampling method. The Nyström technique is used to 
reduce the time and space complexity. The proposed method is effective for solving high-
resolution image-related problems such as high dimensionality, small sample sizes, feasibility, and 
overall clustering solution. Aloise et al. [43] used an iterative sampling algorithm to solve the 
strongly NP-hard minimax diameter clustering problem (MMDCP). The proposed algorithm used 
the heuristic procedure to select the optimal solution across the sample. 

Reddy et al. [44] proposed an optimal stratification design for data mining algorithms 
using Weibull-distributed auxiliary information in the context of a health population. The auxiliary 
information is used for strata construction in the absence of study variables. This study states that 
the combination of data mining and a well-designed sampling plan enhances the accuracy of 
mining results. Sainil et al. [45] compared the performance of stratified random sampling and 
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stratified ranked set sampling in terms of bias and mean square error. These evaluations show that 
stratified ranked set sampling is more efficient than stratified random sampling. 

Li et al. [46] dveloped the clustering ensemble algorithm through sample stability, which 
divided the dataset into cluster core and cluster halo for the underlying cluster structure of the 
data set. The cluster core discovers the cluster structure through samples, and the cluster halo 
assigns the sample data into cluster construction. Zhao et al. [22] proposed the Stratified Sampling 
plus Extension FCM (abbr. SSEFCM) algorithm for large-scale datasets by combining stratified 
sampling and fuzzy c-means clustering. The SSEFCM improves computational efficiency and 
cluster quality while diminishing computational complexity. 

Goshu et al. [47] proposed the Systematic Sampling Evolutionary (SSE) method, which is a 
derivative-free meta-heuristic type algorithm that combines a systematic sampling procedure and 
nature-inspired particle swarm optimization algorithm. Systematic sampling is used to determine 
the leader decision of the evolutionary algorithm, which searches for the action decision at each 
iteration. Prasad et al. [48] address the solution of the bigVAT algorithm through sampling and 
crisp partitions. The bigVAT is used for cluster tendency detection of big data clusters using the K-
means algorithm on synthetic and real-life datasets. The sampling process selects a sample from 
inter-cluster data objects, and the crisp partitions technique predicts the cluster labels of sample 
objects. 

Nguyen et al. [49] proposed the S-VOILA (Streaming Variance OptImaL Allocation) 
algorithm for streaming and non-streaming data using stratified random sampling and mini-batch 
processing. The S-VOILA algorithm reduces the variance of sample data through locally variance-
optimal allocation and maintains the stratum via weighted sampling. 

Larson et al. [50] investigated systematic and random sample designs and discovered that 
systematic sampling outperforms random sampling in terms of variance estimator, sample size, 
and data range. Stratified sampling outperforms simple random sampling in terms of statistical 
precision and sampling error. To achieve better accuracy, performance, and computing resource 
utilization, stratified sampling used a smaller sample size than random sampling [24]. According 
to the literature [41], stratified sampling can achieve higher statistical precision and improve 
representativeness by reducing sampling error than simple random sampling, because variability 
within subgroups with similar properties is lower than that of the entire population. Stratified 
sampling also extracts better samples from the dataset in terms of size and representativeness, 
which saves time and costs associated with the data processing algorithm. 

The literature [32] states that sampled data from systematic sampling is more accurate and 
has spatial autocorrelation than random sampling. The results of the experiments [32] show that 
systematic sampling has variance-related issues that can be resolved by combining systematic and 
stratified sampling because each stratum has an optimal variance sample. The results of a 
comparison of uniform random sampling, progressive sampling, biased sampling, and stratified 
sampling show that stratified sampling achieves higher computational efficiency and quality for 
the clustering process [22]. 
 

III. Proposed Work 
 
The practical approach of the sample plan for clustering across several domains is determined by 
existing research [22, 51, 52] and literature.  The stratification technique reduces sample variance, 
whereas clustering reduces variance within a cluster. As a result, combining stratification and 
clustering improves the effectiveness and efficiency of clustering algorithm. Uniform random 
sampling is entirely dependent on sampling design, data structure, and sampling strategy. The 
random sampling does not cover the entire dataset; therefore the sample representativeness 
quality is reduced. To avoid this issue, systematic sampling is preferable because it sample data 
covers the entire dataset. This section describes the clustering objective, sampling contents, and 
presents the stratified remainder linear systematic sampling extension approach (SRSE) for loan 
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risk clustering on big data mining using single machine execution. The proposed method reduces 
computation costs and improves computational efficiency while maintaining cluster quality during 
risk clustering. 
 
I. Objective function for loan risk clustering  
 
Let the X loan risk based dataset 𝑁 =	 {𝑥!, 𝑥", …… . . 𝑥#}		to be clustered C into 𝐾 =	 {𝐶!, 𝐶", …… . . 𝐶$} 
on the basis of predefined similarity function in d dimension space of loan risk attribute set. The 
considered clustering approach minimizes the within-cluster Sum of Squared Error (WSSE) and 
maximizes the between-cluster Sum of Squared Error (BSSE). The objective criterion defined 
described in Eq. 1 [20]. 
 

𝑊𝑆𝑆𝐸	(𝑋, 𝐶) = ∑ ∑ 	‖𝑥% − 𝜇&‖"'!∈	*"
$
&+!                         (1) 

 
where 𝑥% is the data point and  𝜇$ is the centroid of 𝐶$ cluster. The content of 𝐶$ to the minimum 
SSE problem is defined by as under [53].   
 

                                           𝐶& = 6𝑥% ∈ 𝑋|𝑘 = arg	min	
,∈{!,",….$}

@𝑥% − 𝜇,@
"	A                  (2) 

 

                                                           𝜇& =
∑ '!#!∈	&"

|*!|
                      (3) 

 
II. Sampling content  
 
The presented clustering approach uses the stratification, remainder linear systematic sampling 
and sample extension process for loan risk group detection.  
 
A. Stratification  
 

The sampling-frame is divided into non-overlapping strata in stratified sampling 
according to data behaviors, types, location, attributes, variance, correction, regression, 
characteristics, format and so on. The strata are internally homogeneous with respect to the study 
variable that maximizes the precision of sampling results. Stratified sampling divides the N 
heterogeneous data points of loan risk dataset into 𝐿 = {𝑆!, 𝑆", …… . . 𝑆4} homogeneous strata, where 
each stratum h consists of 𝑁5 data units and used the {𝑆! 	∪ 	𝑆" ∪ …… . 	∪ 𝑆5} = 𝑁 and {𝑆! 	∩ 	𝑆" ∩
…… . 	∩ 	𝑆5} = 	𝜃 conditions, where ℎ = 1,2,3, … . . 𝐿 and  ∑ 𝑁5		 = 𝑁 =	{𝑥!, 𝑥", …… . . 𝑥#}4

5+!  [54, 55]. 
The stratum is derived from the loan risk data set by the stratification process. The maximum 
variance attribute and ascending sorting heuristics have used in this study to employ novel 
stratification methods. Algorithm 1 and Figure 1 illustrate the conceptual stratification 
representation.  

This study used a remainder linear systematic sampling approach; therefore the 
stratification process formed the dataset into two strata. The stratification process first extracts the 
study variable based on maximum variance and then arranges the entire loan risk dataset based on 
the selected variable. The remainder linear systematic sampling method is used to determine the 
number of data points in strata. 

 
B. Remainder Linear Systematic Sampling  
 
Chang et al. proposed the Remainder Linear Systematic Sampling (RLSS) method to overcome the 
limitations of linear systematic sampling [56] in terms of N≠nl and linear sample size. Where N is 
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the size of the dataset, n is the sample size and l is the sample interval. The RLSS resolved the 
systematic sampling issue through a combination of stratification and linear systematic sampling. 
The number of data points in the loan risk dataset is represented in the RLSS approach by N=nl+r, 
0≤r≤n. The RLSS approach is more efficient when the sample size is not a multiple of the dataset 
size and in N≠nl situations. The n, l and r are the integer numbers, and r is the reminder data points 
of the sampling process [56][57] .  
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Figure 1. Conceptual Representation of proposed Stratification and Sampling Plan (SRSE)  
 
The number of data points in strata is determined by the integer constraints n, l, and r. This study 
has adopted the Cochran formula for sample size identification, which is shown in Eq. 4 and Eq. 5. 
[58]. 

𝑛6 =
7'(9:)
<'

            (4) 
 
where z denotes the standard error, p indicates the variability of the dataset, q signifies the (p-1), 
and e represents the acceptable sample error. In this study, the standard error is set at 99% for the 
confidence interval, so the z value is set at 2.576, the variability value p was set at 0.5, and the 
acceptable sample error e is set at 1% for the 99 confidence interval. To obtain the total sample size, 
the sample size is normalized by the total number of data points in the loan risk dataset [58]. 
 

𝑛 = =(
!>	=( #⁄

       (5) 

 
The sampling interval is determines every nth data point of stratum is chosen for clustering. Eq. 6 is 
determined the sampling interval. 
 

        𝑙 = 𝑁/𝑛            (6) 
 
The reminder data points r refer to the un-sample data points after the sampling procedure. Eq. 7 
describes the identification of the number of reminder data points r. 
 
               𝑟 = 𝑁 − 𝑛𝑙             (7) 
 
The number of data points in the strata is determined by the values of n, l, and r. The first stratum 
is made up of the first (n-r)l data points from the sorted loan risk dataset. The second strata is 
represented by the remaining r(l+1) data points of the sorted loan risk dataset. These scenarios are 
described in Eq. 8. 

𝑁 = 𝑛𝑙 + 𝑟 = (𝑛 − 𝑟)𝑙+	𝑟(𝑙 + 1)                     (8) 
 
After stratification, the RLSS is used to define the sample size and sample selection interval for 
each stratum.  The (n - r) data points of the first strata are selected for a sample pool/clustering 
with a l linear systematic sampling interval, while r data points of the second strata are selected for 
a sample pool/clustering with a (l +1) linear systematic sampling interval. As a result, Eq. 9 
determines the total number of sample sizes n. 
 

𝑛 = (𝑛 − 𝑟) + 𝑟                (9) 
 
C. Sample extension 
 
The Sample extension approach uses centroid-based distance to convert sample-based clustering 
results into final clustering results. The centroid-based distance used the Euclidean distance 
approach, which assigns un-sample data to its closed cluster using a centroid of the sample based 
cluster. Eq. 10 describes the sample extension function, where 𝐴% 	is the data point of the un-sample 
data pool and 𝐵%	is the mean of the cluster centroid [22]. 
 
                                                      𝑑𝑖𝑠@ABCDE@FG(𝐴, 𝐵) = V∑ |𝐴% − 𝐵%|"=

%+!                                        (10) 
 
III. Algorithm Description  
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This section describes the stratified remainder linear systematic sampling extension (SRSE) 
approach for loan risk analysis through stratification, remainder linear systematic sampling, and 
sample extension. The standard sampling plan first selects the dimension with the highest variance 
of the risk-based dataset and then sorts the entire dataset based on the selected dimension. The 
data points are then assigned to both strata using remainder linear systematic sampling 
rules.  After the stratification process, it collects the required number of sample data points into a 
sample pool for clustering. The strata sample size and sample interval determined the sample data. 
The sample based clustering results are merged into the final results with the help of the sample 
extension method. The sample unit is used for clustering, and the resulting value is merged with 
an un-sample unit via sample extension. The proposed SRSE sampling plan is detailed in 
Algorithm 1 and the sampling flowchart is shown in Figure 1.  
 

Algorithm 1 Stratified Remainder linear Systematic sampling Extension (SRSE) Big Data 
Clustering Approach  
Input:  

1. 𝑁 =	 {𝑥!, 𝑥", …… . . 𝑥#}	is the data points of the loan risk based D dataset. 
2. K = Required number of clusters. 

Output: 
1. 𝐶$ = {	𝐶!, 𝐶"……	𝐶&	} of the clustering results.  

Methods: 
Stratification 

1. Identify the maximum variance dimension of the dataset.      
• 𝑣H = 𝑚𝑎𝑥(σ!E", σ"E", …………… , σIE", ) 

2. Sort the entire data of the dataset according to the 𝑣H dimension in ascending order. 
3. Determine the total sample size n for the clustering process through Eq. 5. 
4. Extracts sample interval l from the entire dataset by Eq. 6. 
5. Define the number of remainder sample data points n through Eq. 7. 
6. Determine the number of data points for each stratum with the help of n, l and r. 

• 𝑆1 = (𝑛 − 𝑟)𝑙 
• 𝑆2 = 𝑟(𝑙 + 1) 

7.  Extract two strata from the entire dataset based on the sorted dataset .  
• S1=N[0:	(𝑛 − 𝑟)] 
• S1=N[(𝑛 − 𝑟): 𝑙𝑒𝑛(𝑁)] 

Sample size identification 
8. Determine the number of data point of sample size for both strata according to Eq. 

9.  
• 𝑛! = (𝑛 − 𝑟) 
• 𝑛" = 𝑟 

Sample allocation 
9. Extract every lth data points for S1 and every (l+1)th data point for S2 strata through 

linear systematic sampling.   
10. Combine all n1 and n2 sample data points into the 𝑛J		 sample pool and all un-

sample data points into the 𝑢J		 un-sample pool.  
Clustering algorithm  

11. Apply necessary clustering algorithms in 𝑛J		and achieved approximate clustering 
results such as K-means (𝑛J		, K), K-means++ (𝑛J		, K), etc.  

Sample extension  
12. According to Eq. 10, assign 𝑢J		un-sampled pool data to approximate clustering 

results based on nearest Euclidean distance. 
13. Achieved final clustering results in the loan risk and non-loan risk clusters and 

Exit. 
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IV. Experimental Analysis over Loan Risk Data  

 
The experimental study evaluates the research effort based on the computing environment, 
datasets, existing algorithms, evaluation criteria, and outcomes. This section discusses the 
experimental environment, loan risk dataset characteristics, and validation criteria. The 
effectiveness and efficiency-related assessment criteria are used to evaluate the performance of the 
SRSE-based clustering approach. 

 
I. Experiment Environments and Loan Risk Dataset  
 
The computing environment of the SRSE-based clustering approach used in the Jupyter Notebook 
computing environment. The experimental environment is configured with an Intel I3 processor, 
CPU M350@2.27 GHz, 320 GB hard disk, 4(+64) GB DDR3 RAM, Windows 7 operating system, and 
Python tools. The experimental analysis was performed on four loan risk datasets within a single 
machine execution environment. Table 1 illustrates the characteristics and sources of the 
experimental loan risk datasets. 
 

Table 1 Description of the Loan Risk Datasets. 
 

ID Datasets (DB) Objects Attributes  Class Data Source 
LRDB1 Bondora Peer to Peer 

Lending Loan Data  
1,79,235 112 2 https://www.kaggle.com/ 

LRDB2 Vehicle Loan Default 
Prediction 

3,45,546 41 2 https://www.kaggle.com/ 

LRDB3 XYZ_Corp Lending 
Data 

8,55,969 70 2 https://www.kaggle.com/  

LRDB4 Loan Data for 
Dummy Bank  

8,87,379 30 2 https://www.kaggle.com/ 

 
The clustering of the LRDB1 loan risk-related dataset is divided into two classes: default risk and 
non-default risk. Default risk is a significant risk factor used to evaluate borrowers' behavior in 
peer-to-peer (P2P) lending. Lenders want to minimize the default risk on each lending decision in 
order to make rational decisions and to realize a return that compensates for the risk. 
 
The loan risk-related dataset LRDB2 is clustered in order to estimate the determinants of vehicle 
loan default risk and non-default risk. The clustering process predicts the likelihood of a 
loanee/borrower defaulting on a vehicle loan during the first EMI (Equated Monthly Instalments) 
due date. This ensures that clients who are capable of repayment are not turned down. The 
important determinants are identified, which are used to reduce default rates.  
 
The LRDB3 loan risk dataset clustering manages credit risk by using historical data to determine 
who to lend to in the future based on default, payment information, credit history, and other 
factors. The clustering process categorizes the data as capable of loan repayment or incapable of 
determining loan eligibility.   
 
The LRDB4 clustering divides the data into loan default risk and non-loan risk. Data grouping 
provides funds for potential borrowers, and banks earn a profit based on the risk they take (the 
borrower’s credit score). 
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II. Selected Algorithms for Comparison  
 
The proposed SRSE-based clustering approach is compared to partitional K-means (KM) [20], K-
means++ (KM++) [59, 60] clustering algorithms. The goal of both clustering algorithms is to 
recognize loan risk in terms of default risk by minimizing within-cluster Sum of Squared Error 
(WSSE) and maximizing between-cluster (BSSE) distance. Except for the initial centroid selection 
approach, the cluster formulation process of both methods is similar. The KM method chooses the 
initial centroid at random, whereas the KM++ method chooses the initial centroid based on 
distance and probability.  
 
III. Evaluation Criteria  
 
Cluster validation is achieved through the application of both internal and external measures. The 
internal measure is used to compare the cluster's objective to its internal structures. The external 
measure is used to validate the cluster using outside knowledge. This study employs the Davies 
Bouldin score (DB), Silhouette coefficient (SC), SD Validity (SD), and Ray-Turi index (RT) as 
internal validation tools for effectiveness [61–63], with CPU time (CT) serving as an efficiency 
validation metric [64–66]. The strongest clustering method always maximizes intra-class similarity 
while decreasing inter-class similarity. As a result, the clustering method maximizes the SC metric 
value while reducing the DB, SD, RT, and CT metric values. 
 

• Davies Bouldin score (DB): The Davies Bouldin validates within-cluster dispersion and 
between cluster similarity independently number of cluster. In the DB formulation, _𝐶,_ 
defines the total number of data point 𝑥% inside of  𝐶, cluster and 𝐶% is another cluster.  

 
                                                        𝐷𝐵 = !

$
∑ 𝑚𝑎𝑥%K,

L%M5%=!>	L%M5%=)
N<ML<<=!)

$
%+!                                             (11) 

 

                                                            𝑤𝑖𝑡ℎ𝑖𝑛, =	
!
O*)O
	∑ ||	𝑥% −	𝐶, 	||"	

OP)O
%+!                                                       (12) 

 
                                                                    𝑏𝑒𝑡𝑤𝑒𝑒𝑛%, =	 ||	𝐶% −	𝐶, 	||"                                                        (13) 
 

• Silhouette coefficient (SC): The Silhouette coefficient validates cluster similarity by 
accepting the pairwise difference of cluster distances within (compactness) and between 
(separation) the clusters. In SC formulation a(x) is the average distance of x to all other data 
points in the same cluster C, b(x) is the average distance of x to all other data points in the 
all Ci cluster. 

 

                                                     𝑆 = d∑ N(')QR(')
SFT[N('),		R(')]'∈*% e                                                                          (14) 

 

• SD Validity (SD):  The SD Validity metric assesses the effectiveness of clustering by 
averaging dispersion and total separation between clusters with variance. In SD Validity 
formulation, ∝ is constant value equal to 1, 𝑆R is average scattering in term of variance and 
𝑆M is the total separation of cluster, 𝜎(𝐶%) is defines variance of 𝐶% cluster, 𝜎(𝑋) is represents 
variance of dataset. 

 
SD	 =	∝ 𝑆R − 𝑆M                                                                                   (15) 

 

249



 
Kamlesh Kumar Pandey and Diwakar Shukla 
STRATIFIED REMAINDER LINEAR SYSTEMATIC SAMPLING 
EXTENSION BASED BIG DATA CLUSTERING  

RT&A, No 4 (65) 
Volume 16, December 2021  

 

                                                       	𝑆R =	
!
&
∑ ‖X(*!)‖

‖X(Y)‖
&
%+!                                                                                 (16) 

 
                                          	𝑆M =

Z*+#
Z*!,

∑ j∑ @	𝐶% −	𝐶, 	@&
,+! kQ!&

%+!                                                                (17) 

 
𝐷[R' = 𝑚𝑎𝑥!\%,,\&	@	𝐶% −	𝐶, 	@	              (18) 

 
 𝐷[%= = 𝑚𝑖𝑛!\%,,\&	@	𝐶% −	𝐶, 	@                    (19) 

 
• Ray-Turi index (RT) :  The Ray-Turi index measures the mean of the squared distances of 

the all data points respect to k cluster centroid and minimum squared distance ∆&&-
"  

between all cluster centroid. In the RT formulation, N is total length of dataset, 𝑀%
& is the 

data points of particular cluster k and 𝐺& is the centroid of that cluster. 𝐺&-is the centroid 
of remainder cluster. 
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           (22) 

• CPU time (CT): CPU time computes the total execution times of any algorithm inside the 
CPU between the entry ENT and exit EXT times of the clustering algorithm. 

                                         𝐶𝑇	 = 	𝐸𝑋b − 𝐸𝑁b                                                                              (23)            

 
IV. Experimental Results and Discussion   
 
On the basis of effectiveness and efficiency indices, the performance of SRSE-based clustering 
algorithms such as SRSE-KM and SRSE-KM++ has been compared to that of the classical KM and 
KM++ algorithms. Tables 2-3 show the average comparative efficiency and effectiveness results 
from four loan risk data sets using ten trials. This study used pre-defined Python library functions 
for DB, SC and SD, as well as technical code for RT, WSSE, BSSE and CT for cluster evaluation. 
Tables 2-3 highlight the optimal value of each reported result in bold face, where the optimal value 
of SC is required for maximization and the optimal values of DB, SD, RT, and CT are required for 
minimization.  

Table 2 shows that the proposed SRSE clustering strategy outperformed the KM and KM++ 
algorithms in terms of WSSE, compaction, separation, similarity, dissimilarity, variance, and 
density. Table 3 demonstrates that the proposed SRSE strategy is faster than the KM and KM++ 
algorithms and uses the least amount of CPU time. 

The experimental results of the LRDB1, LRDB2, LRDB3, and LRDB4 loan risk datasets 
illustrate that SRSE-KM and SRSE-KM++ clustering strategies outperform KM and KM++ 
algorithms in DB, SC, SD, and RT. In terms of clustering quality, the observed DB, SC, SD, and RT 
values show that the SRSE-KM and SRSE-KM++ algorithms outperform the KM and KM++ 
algorithms. Inside the LRDB1 risk dataset, the SRSE-KM diminishes the CT to 73.82% as compared 
to KM, and the SRSE-KM++ decreases the CT to 84.71% than KM++. Over the LRDB2 risk dataset, 
the SRSE-KM reduces the CT by up to 79.33% compared to the KM, whereas the SRSE-KM++ 
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minimizes the CT to 90.48% than the KM++. For the LRDB3 risk dataset, the SRSE-KM alleviates 
the CT by 88.06% then KM while the SRSE-KM++ depletes the CT up to 93.79% in the context of the 
KM++. In LRDB4 risk dataset efficiency observations, the SRSE-KM minimizes the CT to 78.63% 
with reference to KM, and the SRSE-KM++ reduces the CT to 95.44% than KM++. 
 

Table 2– Comparative average analysis of effectiveness measures (𝒎𝒆𝒂𝒏𝒔 ± 𝒔𝒕𝒅) over 10 trials 
 

DB Criteria KM SRSE-KM KM++ SRSE-KM++ 
LRDB1 DB 1.93012 ± 0.06722 1.91441 ± 0.069 1.95983 ± 0.04012 1.93705 ± 0.06083 

SC 0.20382 ± 0.01777 0.20817 ± 0.01887 0.1938 ± 0.00344 0.2002 ± 0.01529 
SD 1.64826 ± 0.0283 1.64815 ± 0.02832 1.66252 ± 0.03457 1.6553 ± 0.0324 
RT 0.94748 ± 0.09631 0.92626 ± 0.10121 0.99837 ± 0.03155 0.96234 ± 0.08407 

LRDB2 DB 1.52436 ± 0.42002 1.47528 ± 0.37001 1.68744 ± 0.41411 1.63843 ± 0.38459 
SC 0.33395 ± 0.10959 0.34382 ± 0.10014 0.28805 ± 0.1093 0.29857 ± 0.1039 
SD 2.84239 ± 0.63412 2.76349 ± 0.55905 3.09039 ± 0.6263 3.01145 ± 0.58457 
RT 0.69375 ± 0.47179 0.62644 ± 0.41411 0.86921 ± 0.46626 0.80205 ± 0.43891 

LRDB3 DB 2.94263 ± 0.12489 2.93696 ± 0.12788 3.0114 ± 0.22726 2.97292 ± 0.17355 
SC 0.10263 ± 0.00735 0.10265 ± 0.00686 0.10017 ± 0.01064 0.10042 ± 0.00948 
SD 2.32874 ± 0.07231 2.32833 ± 0.07218 2.30435 ± 0.15084 2.30381 ± 0.09601 
RT 2.20612 ± 0.20542 2.19989 ± 0.20849 2.31537 ± 0.38257 2.25861 ± 0.28156 

LRDB4 DB 1.94253 ± 0.24398 1.89247 ± 0.18771 1.99679 ± 0.22767 1.89885 ± 0.27487 
SC 0.21184 ± 0.03164 0.21962 ± 0.02426 0.2048 ± 0.02778 0.2205 ± 0.02898 
SD 2.02541 ± 0.18196 2.01309 ± 0.158 2.1079 ± 0.18926 1.94093 ± 0.13944 
RT 1.00316 ± 0.2711 0.93779 ± 0.20157 1.05623 ± 0.25264   0.94993 ± 0.31184 

 
 

Table 3– Comparative average analysis of efficiency CT measure (𝒎𝒆𝒂𝒏𝒔 ± 𝒔𝒕𝒅) over 10 trials 
 

DS KM SRSE-KM KM++ SRSE-KM++ 
LRDB1 8.83084 ± 2.35755 2.31235 ± 0.24165 12.60682 ± 1.69874 1.92721 ± 0.57942 
LRDB2 7.7521 ± 2.25847 1.60213 ± 0.09076 16.63186 ± 3.9364 1.58328 ± 0.64967 
LRDB3 11.26206 ± 2.51383 1.34438 ± 0.03677 24.22219 ± 4.92122 1.50246 ± 0.05333 
LRDB4 6.29301 ± 3.01334 3.34744 ± 5.10325 43.21801 ± 6.65378 1.96903 ± 0.42415 

 
Figure 2-5 depicts a comparative analysis of clustering objective and efficiency-related 

measures, with the resulting values ordered ascending to identify minimum to maximum values. 
The WSSE clustering objective for the KM and SRSE-KM algorithms is depicted in Figure 2, 
whereas the WSSE clustering objective for the KM++ and SRSE-KM++ algorithms is depicted in 
Figure 3. The minimum WSSE result shows that the proposed sampling plan consistently achieves 
the excellence WSSE in each trial on the experimental loan risk data sets.  The observation of 
Figures 2-3 indicates that the SRSE based clustering algorithm achieves better compaction and 
separation of the cluster with the clustering objective. 

Figure 4 demonstrates the computing time efficiency measurements for the KM and SRSE-
KM algorithms, while Figure 5 reveals the computing time efficiency measurements for the KM++ 
and SRSE-KM++ algorithms. The proposed sampling plan minimizes the computation cost, 
iterations, number of distances, and data comparisons in each trial on the experimental risk data 
sets, implying that the proposed sampling plan minimizes the computation cost, iterations, 
number of distances, and data comparisons in each trial on the experimental risk data sets. Figures 
4-5 illustrate that the SRSE-based clustering algorithm outperforms the KM and KM++ algorithms 
in terms of speed and resilience. 
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Figure 2 Analysis of total-WSSE between KM and SRSE-KM on each trial 

 
 
 

 
Figure 3 Analysis of total-WSSE between KM++ and SRSE-KM++ on each trial 
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Figure 4 Analysis of computing time between KM and SRSE-KM on each trial 

 
 

 
Figure 5 Analysis of computing time between KM++ and SRSE-KM++ on each trial 

 
The proposed sampling-based clustering algorithm improves cluster quality and 

clustering objective while reducing data and distance comparisons with execution times, as shown 
in Table 2-3 and Figure 2-5. The presented sampling-based clustering algorithm also outperforms 
previous KM and KM++ algorithms in terms of speed and scalability on loan risk-based big data. 
On loan risk-based big data, the SRSE-based clustering algorithm eliminates the worst-case 
scenario of the KM and KM++ algorithms. The analysis shows that the proposed SRSE-KM and 
SRSE-KM++ algorithms are more robust for big data clustering than the KM and KM++ algorithms. 
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V. Conclusion

This study presents, a stratified remainder linear systematic sampling extension (SRSE) based 
clustering approach for loan risk analysis on big data using the KM and KM++ clustering 
algorithms. The proposed clustering SRSE-KM and SRSE-KM++ algorithms employ five stages to 
reduce computing time while improving cluster quality. The first step is to sort the entire dataset 
in order to create a stratification using the maximum variance attribute approach. The second stage 
determines the total sample size, sample interval, and reminder sample values in order to calculate 
the total number of data items and sample size in stratum. The third stage divides the data points 
into strata and uses a liner systematic sampling procedure to extract sample data from each 
stratum. The fourth stage clusters the sample data according to the selected clustering algorithm. 
The final stage uses a centroid-based sample extension approach to merge the sample data results 
to an un-sample data unit. The final results demonstrate that the unknown loan uncertainty of risk 
belongs to one cluster and non-risky data belongs to another cluster. Experiment results show that 
the SRSE-based clustering algorithm never degrades cluster performance and achieves better 
cluster compaction, separation, variance, density, computing cost, and execution time than 
classical clustering algorithms. The proposed SRSE-KM algorithm reduces average computing time 
by up to 75.25% when compared to KM, and the SRSE-KM++ algorithm reduces average 
computing time by up to 92.78% when compared to KM++. Despite the fact that the SRSE-based 
clustering algorithm significantly reduces clustering time, but it suffers local optima issues due to 
randomization. The study's further scope is to open up to resolve local optima concerns on 
multiple machine-based technologies such as Hadoop and Spark via other internal and external 
validation indexes using various loan risk-related data sets. 
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