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Abstract

Hazard rate, and ageing intensity (AI) are measures or functions required for qualitative and quantitative

analysis of ageing phenomena of a system with a well defined statistical distribution respectively. In this

paper, we reiterate upon the fact that in a few cases hazard rate and ageing intensity do not depict the

same pattern as far as monotonicity is concerned. So, a question naturally arises which among hazard

rate, and ageing intensity is a preferable measure for characterizing ageing phenomena of a system. As

a consequence, an example involving two design systems are analyzed and is illustrated to answer the

aforementioned question.
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1. Introduction

The notion of ageing phenomena and its mathematical counterpart are established by Barlow

and Proschan (1975), Shaked and Shanthikumar (2007), Deshpande and Purohit (2005), Nanda

et al. (2010) to name a few. The measures (or functions) usually used in this context are many,

namely, survival function, hazard rate function, reversed hazard rate function, mean residual

function, reversed mean residual function (cf. Block et al. (1998), Nanda et al. (2003,2005)).

Jiang et al. (2003) came forward with ageing intensity function relevant in reliability analysis.

He established that the quantitative analysis of ageing phenomena for a system can be done using

ageing intensity (AI) function, whereas hazard rate does the qualitative analysis.

The ageing intensity function (AI), denoted by LX(t) of a random variable X at time

t > 0, with probability density function fX(t), survival function F̄X(t) and failure rate λX(t) =
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fX(t)/F̄X(t) is given by (cf. Jiang et al. (2003)),

LX(t) =
−t fX(t)

F̄X(t) ln F̄X(t)
, where defined,

=
tλX(t)∫ t

0 λX(u)du
. (1.1)

Nanda et al. (2007) and Bhattacharjee et al. (2013), Giri et al. (2021) derive the AI function

of a few distributions. Sunoj and Rasin (2017) introduce quantile-based ageing intensity function

and study its various ageing properties. To learn more on ageing intensity function, one can refer

to Misra and Bhattacharjee (2018), Szymkowiak (2018a,b) to name a few.

Stochastic orders play an important role in the theory of reliability as it helps in comparison

of systems based on the functions, discussed in this section, namely survival function F̄(t),

hazard rate function λ(t), reversed hazard rate function µ(t), mean residual function m(t), ageing

intensity function L(t) etc. giving rise to usual stochastic order (ST order), hazard rate order (HR

order ), reversed hazard rate order (RHR order), mean residual order (MRL order) and ageing

intensity order(AI order) respectively. The stochastic orders are mathematically represented as

given in the next definition.

Definition 1.1. A random variable X is said to be smaller than another random variable Y in

(i) usual stochastic order (denoted by X ≤ST Y) if F̄X(t) ≤ F̄Y(t), for all t ≥ 0.

(ii) hazard rate order (denoted by X ≤HR Y) if λX(t) ≥ λY(t), for all t ≥ 0.

(iii) reversed hazard rate order (denoted by X ≤RHR Y) if µX(t) ≤ µY(t), for all t ≥ 0.

(iv) mean residual life order (denoted by X ≤MRL Y) if mX(t) ≤ mY(t), for all t ≥ 0.

(v) AI order (denoted by X ≤AI Y) if LX(t) ≥ LY(t), for all t > 0.

Based on the hazard rate function, an ageing class has been defined in the literature as

follows.

Definition 1.2. A random variable X is said to have increasing (decreasing) hazard rate function, denoted

by IFR(DFR), if λX(t) is increasing (decreasing) in t ≥ 0.

The words ‘failure rate’ and ‘hazard rate’ have been synonymously used in this article.

Throughout the article, the words increasing (decreasing) and non-decreasing (non-increasing)

are used interchangeably.

Section 2 discuss the monotonic properties of failure rate and ageing intensity functions in

a few statistical distributions. Section 3 simply highlights the estimator of functions appearing

in this paper. Section 4 cites an example to illustrate the study of ageing phenomena through

reliability function, hazard rate, reversed hazard rate and ageing intensity functions. Section 5

demonstrates the concluding remarks of the work.

2. Monotonicity of failure rate and ageing intensity functions

On the basis of the monotonicity of the AI function, Nanda et al. (2007) define ageing

classes, namely increasing ageing intensity class (IAI) (decreasing ageing intensity class (DAI)) if
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the corresponding AI function L(t) is increasing(decreasing) in t ≥ 0. It was pointed out that the

monotonic behavior of the failure rate function is not, in general, transmitted to the monotonicity

of the AI function, which is established by the following examples.

Example 2.1. (cf. Nanda et al. (2007)) Let X has Erlang distribution, with density function with

fX(t) = λ2te−λt, t ≥ 0. Clearly,its failure rate function is rX(t) = λ2t/(1+λt) which increases for t ≥ 0,

i.e., X has increasing failure rate (IFR). On the other hand, LX(t) = λ2t2/(1 + λt)(λt − ln(1 + λt)),

decreases for t > 0, i.e., X is DAI. So, X is IFR but DAI.

Example 2.2. (cf. Nanda et al. (2007)) Let X be a random variable having uniform distribution over

[a, b], 0 ≤ a < b < ∞, i.e., Then, its failure rate rX(t) = 1/(b − t), a < t < b is increasing in t ∈ (a, b),

i.e., X is IFR. However, LX(t) = t/(b − t)/ ln
(
b/b − t

)
, for a < t < b, is increasing in t, a < t < b.

So, X is IFR and IAI.

In the next example, we find that a random variable is DFR and DAI.

Example 2.3. Let X be a random variable having Pareto distribution with density function or fX(t) =

aka/ta+1, for t ≥ k > 0, so that its failure rate rX(t) = a/t, is decreasing in t ∈ (k, ∞). i.e., X is DFR.

However, LX(t) = 1/(ln t − ln k), is increasing in t ∈ (k, ∞). Thus, X is DFR and IAI.

Through these aforementioned examples, one concludes that an IFR random variable could be

IAI or DAI. So, does a DFR random variable. The non-monotonic nature are also observed for

some statistical distributions (cf. Nanda et al. (2007, 2013)).

Reliability analysts can obviously strive for a question, if a system (or a random variable)

depicts different characteristics in terms of failure rate and ageing intensity function then which

function should be used in the final conclusion of knowing the behavior of the system in terms of

ageing phenomena. In this paper, we try to answer this question by giving a case study mentioned

in Section 4 and analyzing it.

3. Estimator of functions

Nanda et al. (2013) gives the logical estimates of survival function F̄X(t), probability density

function f̄X(t), hazard rate function λX(t), reversed hazard rate µX(t) and ageing intensity

function LX(t). Let n units be put to test at t = 0. Further, let the number of units having survived

at ordered times tj be ns(tj). Then logical estimates of F̄X(t), fX(t), λX(t), µX(t) and LX(t) for

tj < t < tj + ∆tj, are respectively given by

ˆ̄FX(t) =
ns(tj)

n
,

f̂X(t) =
ns(tj)− ns(tj + ∆tj)

n∆tj
,

λ̂X(t) =

{
ns(tj)− ns(tj + ∆tj)

}
ns(tj)∆tj

,

µ̂X(t) =

{
ns(tj)− ns(tj + ∆tj)

}
(n − ns(tj))∆tj

.
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Thus, logical estimate of LX(t) is

L̂X(t) =
−t

{
ns(tj)− ns(tj + ∆tj)

}
ns(tj)∆tj ln

ns(tj)
n

,

for tj < t < tj + ∆tj.

4. An Example to illustrate the study of ageing phenomena through

reliability function, hazard rate, reversed hazard rate and ageing

intensity functions

A good number of life testing data can be found for analysis in Shooman (1968), Ebeling

(1997) and others.

Example 4.1. (cf. Ebeling (1997)) Fifteen units each of two different deadbolt locking mechanisms were

tested under accelerated conditions until 10 failures of each were observed. The following failure times in

thousands of cycles were recorded as in Table 1. Which design appears to provide the best function?

Note that, estimator of probability density function for ti ≤ t ≤ ti+1 is

f̂ (t) = − R̂(ti+1)− R̂(ti)

(ti+1 − ti)

=
1

(ti+1 − ti)(n + 1)
(4.2)

that of failure rate function is

λ̂(t) =
f̂ (t)
R̂(t)

=
1

(ti+1 − ti)(n + 1 − i))
. (4.3)

The estimator of reversed hazard rate is given by,

µ̂(t) = ( f̂ (t))/(F̂(t))

=
1/(ti+1 − ti)(n + 1)

i/(n + 1)

=
1

i(ti+1 − ti)
(4.4)

Now, for the ageing intensity, it is given by,

L̂(t) =
−t f̂ (t)

ˆ̄F(t) ln ˆ̄F(t)

=
−t/(ti+1 − ti)(n + 1)

{(n + 1 − i)/(n + 1)} ln{(n + 1 − i)/(n + 1)}

=
−t

(ti+1 − ti)(n + 1 − i) ln(n + 1 − i)/(n + 1)
(4.5)

The detailed analysis of the example considered in this Section are given in Table 2, Table 3, Table

4, Table 5 and Table 6. The Plots are also displayed in Figure 1, Figure 2, Figure 3 and Figure 4.
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5. Conclusion

According to the literature on stochastic orders, we know that any system, say, here, Design-

A is said to be better than design-B, if design-A has less ageing intensity, less hazard rate and

higher reliability than that of design-B. The concluding remarks as noted in Table 6 at a certain

interval of time are summarized as follows:

(i) Design A is better than design B in terms of the function being doubly underlined in a time

interval.

(ii) Design B is better than design A on the basis of the function being singly underlined during

a certain time interval.

(iii) However, the function being starred in a time interval denotes the fact that we cannot

specify which among A or B is of the better design.

(iv) For example, in the interval (56.8,77], design B is better in terms of ageing intensity, whereas

according to hazard rate, design A is better during (56.8,63] and design B is better in the

interval (63,77]. Also, the analyzing the systems in terms of reliability reveal that, both the

designs A and B have equal reliabilities during (56.8,63] but design-A is better on (63,77].

(v) It is evident that Table 6 contains more singly underlined cells than than that of doubly

underlined cells.

(vi) In a nutshell, design B is more efficient than that of design A.

(vii) We attempt to identify the function which should be preferred in determining the ageing

behaviour of a system.

In Table 6, one can observe that if at some interval of time the ageing intensity, hazard

rate and the reliability have the same nature (either single underlined or doubly underlined)

or (doubly underlined with starred) or ( singly underlined with starred),then all the three

measures give the same conclusion in choosing the best system design. But if one function

is doubly underlined and another is singly underlined, then it gives different conclusion

with regard to the performance of the systems.

(viii) For example, on the interval (56.8,63], the ageing intensity and the hazard rate show

different behaviour, whereas on the interval (63,77] hazard rate and reliability show different

behaviour. And on (897.8,1043.6], all the three measures show same behaviour.

(ix) Clearly, from Table 6 we can see that, hazard rate doesn’t have opposite behaviour with

the other two measures simultaneously. For example, on the interval (56.8,63], hazard rate

shows opposite behaviour to ageing intensity function only, but not to reliability. Also, it

shows opposite behaviour to reliability on (63,77], but not to the ageing intensity function

in that interval. We note that, hazard rate doesn’t have any doubtful situations (λ1 = λ2),

which are in the case of ageing intensity or reliability at some intervals. (as, the equality

sign doesn’t say anything about which design is better, so these are the doubtful situations.)

Therefore, we conclude that, hazard rate should be preferred as a measure of ageing phenomena,

while comparing the two systems in the problem concerned.
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Table 1: Failure Times

Design A 44 77 218 251 317 380 438 739 758 1115

Design B 32 63 211 248 327 404 476 877 903 1416

Table 2: Analysis of Design A

i ti R1(t) λ1(t) µ1(t) L1(t)

0 0 1 0.002066

1 44 0.909 0.00303 0.022727 0.3179t

2 77 0.8182 0.000788 0.015152 0.00393t

3 218 0.7273 0.003788 0.002364 0.01189t

4 251 0.6364 0.002165 0.007576 0.00479t

5 317 0.5455 0.002646 0.00303 0.00436t

6 380 0.4546 0.003448 0.002646 0.00437t

7 438 0.3636 0.000831 0.002463 0.00082t

8 739 0.2727 0.017544 0.000415 0.0135t

9 758 0.1818 0.001401 0.005848 0.00082t

10 1115 0.0909 0.00028

Table 3: Analysis of Design B

i ti R2(t) λ2(t) µ2(t) L2(t)

0 0 1 0.002841

1 32 0.909 0.002933 0.03125 0.0339t

2 63 0.8182 0.000614 0.016129 0.00374t

3 211 0.7273 0.002457 0.002252 0.0106t

4 248 0.6364 0.001151 0.006757 0.004t

5 327 0.5455 0.001181 0.002532 0.00357t

6 404 0.4546 0.001263 0.002165 0.00352t

7 476 0.3636 0.000227 0.001984 0.00062t

8 877 0.2727 0.003497 0.000312 0.00987t

9 903 0.1818 0.000177 0.004274 0.00057t

10 1416 0.0909 0.000195

Table 4: Comparison of R(t), λ(t), µ(t)

Time R1(t) R2(t) Order R(t) λ1(t) λ2(t) Order λ(t) µ1(t) µ2(t) Order µ(t)

(0, 32] 1 1 R1 = R2 0.002066 0.002841 λ1 < λ2 0.022727 0.03125 µ1 < µ2

(32, 44] 1 0.909 R1 > R2 0.002066 0.003226 λ1 < λ2 0.022727 0.016129 µ1 > µ2

(44, 63] 0.909 0.909 R1 = R2 0.00303 0.003226 λ1 < λ2 0.015152 0.016129 µ1 > µ2

(63, 77] 0.909 0.8182 R1 > R2 0.00303 0.000751 λ1 < λ2 0.015152 0.002252 µ1 > µ2

(77, 211] 0.8182 0.8182 R1 = R2 0.000788 0.000751 λ1 < λ2 0.002364 0.002252 µ1 > µ2

(211, 218] 0.8182 0.7273 R1 > R2 0.000788 0.003378 λ1 < λ2 0.002364 0.006757 µ1 > µ2

(218, 248] 0.7273 0.7273 R1 = R2 0.003788 0.003378 λ1 < λ2 0.007576 0.006757 µ1 > µ2

(248, 251] 0.7273 0.6364 R1 > R2 0.003788 0.001808 λ1 < λ2 0.007576 0.002532 µ1 > µ2

(251, 317] 0.6364 0.6364 R1 = R2 0.002165 0.001808 λ1 < λ2 0.00303 0.002532 µ1 > µ2

(317, 327] 0.5455 0.6364 R1 < R2 0.002646 0.001808 λ1 < λ2 0.002646 0.002532 µ1 > µ2

(327, 380] 0.5455 0.5455 R1 = R2 0.002646 0.002165 λ1 < λ2 0.002646 0.002165 µ1 > µ2

(380, 404] 0.4546 0.5455 R1 < R2 0.003448 0.002165 λ1 < λ2 0.002463 0.002165 µ1 > µ2

(404, 438] 0.4546 0.4546 R1 = R2 0.003448 0.002778 λ1 < λ2 0.002463 0.001984 µ1 > µ2

(438, 476] 0.3636 0.4546 R1 < R2 0.000831 0.002778 λ1 < λ2 0.000415 0.001984 µ1 > µ2

(476, 739] 0.3636 0.3636 R1 = R2 0.000831 0.000623 λ1 < λ2 0.000415 0.000312 µ1 > µ2

(739, 758] 0.2727 0.3636 R1 < R2 0.017544 0.000623 λ1 < λ2 0.005848 0.000312 µ1 > µ2

(758, 877] 0.1818 0.3636 R1 < R2 0.001401 0.000623 λ1 < λ2 0.00028 0.000312 µ1 > µ2

(877, 903] 0.1818 0.2727 R1 < R2 0.001401 0.012821 λ1 < λ2 0.00028 0.004274 µ1 > µ2

(903, 1115] 0.1818 0.1818 R1 = R2 0.001401 0.000975 λ1 < λ2 0.00028 0.000195 µ1 > µ2

(1115, 1416] 0.0909 0.1818 R1 < R2 0.000975
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Figure 1: Plot of R1 and R2 versus time t.

Figure 2: Plot of HR1 and HR2 versus time t
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Table 5: L1(t) and L2(t)

Design A Design B

t L1(t) t L2(t)

32 1.0848 44 1.39876

38.2 1.29498 50.6 1.608574

44.4 1.50516 57.2 1.818388

50.6 1.71534 63.8 2.028202

56.8 1.92552 70.4 2.238016

63 0.23562 77 0.30261

92.6 0.346324 105.2 0.413436

122.2 0.457028 133.4 0.524262

151.8 0.567732 161.6 0.635088

181.4 0.678436 189.8 0.745914

211 2.2366 218 2.59202

218.4 2.31504 224.6 2.670494

225.8 2.39348 231.2 2.748968

233.2 2.47192 237.8 2.827442

240.6 2.55036 244.4 2.905916

248 0.992 251 1.20229

263.8 1.0552 264.2 1.265518

279.6 1.1184 277.4 1.328746

295.4 1.1816 290.6 1.391974

311.2 1.2448 303.8 1.455202

327 1.16739 317 1.38212

342.4 1.222368 329.6 1.437056

357.8 1.277346 342.2 1.491992

373.2 1.332324 354.8 1.546928

388.6 1.387302 367.4 1.601864

404 1.42208 380 1.6606

418.4 1.472768 391.6 1.711292

432.8 1.523456 403.2 1.761984

447.2 1.574144 414.8 1.812676

461.6 1.624832 426.4 1.863368

476 0.29512 438 0.35916

556.2 0.344844 498.2 0.408524

636.4 0.394568 558.4 0.457888

716.6 0.444292 618.6 0.507252

796.8 0.494016 678.8 0.556616

877 8.65599 739 9.9765

882.2 8.707314 742.8 10.0278

887.4 8.758638 746.6 10.0791

892.6 8.809962 750.4 10.1304

897.8 8.861286 754.2 10.1817

903 0.51471 758 0.62156

1005.6 0.573192 829.4 0.680108

1108.2 0.631674 900.8 0.738656

1210.8 0.690156 972.2 0.797204

1313.4 0.748638 1043.6 0.855752

1416 1115

Table 6: Interval-wise Study

Interval Compare Interval Compare Interval Compare

L(t) λ(t) R(t)

(56.8, 77] L1 > L2 (56.8, 63] λ1 < λ2 (56.8, 63] R1 = R∗2

(63, 77] λ1 > λ2 (63, 77] R1 > R2

(77, 211] L1 = L∗2 (77, 211] λ1 > λ2 (77, 211] R1 = R∗2

(211, 240.6] L1 > L2 (211, 218] λ1 < λ2 (211, 218] R1 > R2

(218, 240.6] λ1 > λ2 (218, 240.6] R1 = R∗2

(240.6, 248] L1 = L∗2 (240.6, 248] λ1 > λ2 (240.6, 248] R1 = R∗2

(248, 418.4] L1 > L2 (248, 418.4] λ1 > λ2 (248, 251] R1 > R2

(251, 317] R1 = R∗2

(317, 327] R1 < R2

(327, 380] R1 = R∗2

(380, 404] R1 < R2

(404, 418.4] R1 = R∗2

(418.4, 476] L1 < L2 (418.4, 438] λ1 > λ2 (418.4, 438] R1 = R∗2

(438, 476] λ1 < λ2 (438, 476] R1 = R∗2

(476, 636.4] L1 = L∗2 (476, 636.4] λ1 > λ2 (476, 636.4] R1 = R∗2

(636.4, 796.8] L1 > L2 (636.4, 796.8] λ1 > λ2 (636.4, 739] R1 = R∗2

(739, 758] R1 < R2

(758, 796.8] R1 < R2

(796.8, 897.8] L1 < L2 (796.8, 877] λ1 > λ2 (796.8, 877] R1 < R2

(877, 897.8] λ1 < λ2 (877,897.8] R1 < R2

(897.8, 1043.6] L1 > L2 (897.8, 1043.6] λ1 > λ2 (897.8, 903] R1 < R2

(903, 1043.6] R1 = R∗2
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Figure 3: Plot of RHR1 and RHR2 versus time t

Figure 4: Plot of AI1 and AI2
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