A Case Study to Analyze Ageing Phenomenon in Reliability Theory

Pulak Swain¹, Subarna Bhattacharjee², Satya Kr. Misra³

¹ School of Basic Sciences, IIT Bhubaneswar, Argul-752050, Odisha, India

² Department of Mathematics, Ravenshaw University, Cuttack-753003, Odisha, India

³ Department of Mathematics, KIIT University, Bhubaneswar-751024, Odisha, India

¹pulakswain1994@gmail.com, ²subarna.bhatt@gmail.com, ³satyamisra05@gmail.com

Abstract

Hazard rate, and ageing intensity (AI) are measures or functions required for qualitative and quantitative analysis of ageing phenomena of a system with a well defined statistical distribution respectively. In this paper, we reiterate upon the fact that in a few cases hazard rate and ageing intensity do not depict the same pattern as far as monotonicity is concerned. So, a question naturally arises which among hazard rate, and ageing intensity is a preferable measure for characterizing ageing phenomena of a system. As a consequence, an example involving two design systems are analyzed and is illustrated to answer the aforementioned question.

Keywords: Ageing phenomenon, hazard rate, ageing intensity function.

AMS 2020 Subject Classification: Primary 60E15, Secondary 62N05, 60E05

1. INTRODUCTION

The notion of ageing phenomena and its mathematical counterpart are established by Barlow and Proschan (1975), Shaked and Shanthikumar (2007), Deshpande and Purohit (2005), Nanda et al. (2010) to name a few. The measures (or functions) usually used in this context are many, namely, survival function, hazard rate function, reversed hazard rate function, mean residual function, reversed mean residual function (cf. Block et al. (1998), Nanda et al. (2003,2005)).

Jiang et al. (2003) came forward with ageing intensity function relevant in reliability analysis. He established that the quantitative analysis of ageing phenomena for a system can be done using ageing intensity (AI) function, whereas hazard rate does the qualitative analysis.

The ageing intensity function (AI), denoted by $L_X(t)$ of a random variable X at time t > 0, with probability density function $f_X(t)$, survival function $\bar{F}_X(t)$ and failure rate $\lambda_X(t) =$

^{*}The work was jointly done with the first author when he was in Ravenshaw University, Cuttack-753003, Odisha, India [†]Corresponding author : E-mail: subarna.bhatt@gmail.com

 $f_X(t)/\bar{F}_X(t)$ is given by (cf. Jiang et al. (2003)),

$$L_X(t) = \frac{-tf_X(t)}{\bar{F}_X(t)\ln\bar{F}_X(t)}, \text{ where defined,} = \frac{t\lambda_X(t)}{\int_0^t \lambda_X(u)du}.$$
(1.1)

Nanda et al. (2007) and Bhattacharjee et al. (2013), Giri et al. (2021) derive the *AI* function of a few distributions. Sunoj and Rasin (2017) introduce quantile-based ageing intensity function and study its various ageing properties. To learn more on ageing intensity function, one can refer to Misra and Bhattacharjee (2018), Szymkowiak (2018a,b) to name a few.

Stochastic orders play an important role in the theory of reliability as it helps in comparison of systems based on the functions, discussed in this section, namely survival function $\bar{F}(t)$, hazard rate function $\lambda(t)$, reversed hazard rate function $\mu(t)$, mean residual function m(t), ageing intensity function L(t) etc. giving rise to usual stochastic order (*ST* order), hazard rate order (*HR* order), reversed hazard rate order (*RHR* order), mean residual order (*MRL* order) and ageing intensity order(*AI* order) respectively. The stochastic orders are mathematically represented as given in the next definition.

Definition 1.1. A random variable X is said to be smaller than another random variable Y in

- (i) usual stochastic order (denoted by $X \leq_{ST} Y$) if $\overline{F}_X(t) \leq \overline{F}_Y(t)$, for all $t \geq 0$.
- (ii) hazard rate order (denoted by $X \leq_{HR} Y$) if $\lambda_X(t) \geq \lambda_Y(t)$, for all $t \geq 0$.
- (iii) reversed hazard rate order (denoted by $X \leq_{RHR} Y$) if $\mu_X(t) \leq \mu_Y(t)$, for all $t \geq 0$.
- (iv) mean residual life order (denoted by $X \leq_{MRL} Y$) if $m_X(t) \leq m_Y(t)$, for all $t \geq 0$.
- (v) AI order (denoted by $X \leq_{AI} Y$) if $L_X(t) \geq L_Y(t)$, for all t > 0.

Based on the hazard rate function, an ageing class has been defined in the literature as follows.

Definition 1.2. A random variable X is said to have increasing (decreasing) hazard rate function, denoted by IFR(DFR), if $\lambda_X(t)$ is increasing (decreasing) in $t \ge 0$.

The words 'failure rate' and 'hazard rate' have been synonymously used in this article. Throughout the article, the words increasing (decreasing) and non-decreasing (non-increasing) are used interchangeably.

Section 2 discuss the monotonic properties of failure rate and ageing intensity functions in a few statistical distributions. Section 3 simply highlights the estimator of functions appearing in this paper. Section 4 cites an example to illustrate the study of ageing phenomena through reliability function, hazard rate, reversed hazard rate and ageing intensity functions. Section 5 demonstrates the concluding remarks of the work.

2. MONOTONICITY OF FAILURE RATE AND AGEING INTENSITY FUNCTIONS

On the basis of the monotonicity of the AI function, Nanda et al. (2007) define ageing classes, namely increasing ageing intensity class (IAI) (decreasing ageing intensity class (DAI)) if

the corresponding AI function L(t) is increasing(decreasing) in $t \ge 0$. It was pointed out that the monotonic behavior of the failure rate function is not, in general, transmitted to the monotonicity of the AI function, which is established by the following examples.

Example 2.1. (cf. Nanda et al. (2007)) Let X has Erlang distribution, with density function with $f_X(t) = \lambda^2 t e^{-\lambda t}$, $t \ge 0$. Clearly, its failure rate function is $r_X(t) = \lambda^2 t / (1 + \lambda t)$ which increases for $t \ge 0$, *i.e.*, X has increasing failure rate (IFR). On the other hand, $L_X(t) = \lambda^2 t^2 / (1 + \lambda t)(\lambda t - \ln(1 + \lambda t))$, decreases for t > 0, *i.e.*, X is DAI. So, X is IFR but DAI.

Example 2.2. (cf. Nanda et al. (2007)) Let X be a random variable having uniform distribution over $[a,b], 0 \le a < b < \infty$, i.e., Then, its failure rate $r_X(t) = 1/(b-t)$, a < t < b is increasing in $t \in (a,b)$, i.e., X is IFR. However, $L_X(t) = t/(b-t)/\ln(b/b-t)$, for a < t < b, is increasing in t, a < t < b. So, X is IFR and IAI.

In the next example, we find that a random variable is DFR and DAI.

Example 2.3. Let X be a random variable having Pareto distribution with density function or $f_X(t) = ak^a/t^{a+1}$, for $t \ge k > 0$, so that its failure rate $r_X(t) = a/t$, is decreasing in $t \in (k, \infty)$. i.e., X is DFR. However, $L_X(t) = 1/(\ln t - \ln k)$, is increasing in $t \in (k, \infty)$. Thus, X is DFR and IAI.

Through these aforementioned examples, one concludes that an *IFR* random variable could be *IAI* or *DAI*. So, does a *DFR* random variable. The non-monotonic nature are also observed for some statistical distributions (cf. Nanda et al. (2007, 2013)).

Reliability analysts can obviously strive for a question, if a system (or a random variable) depicts different characteristics in terms of failure rate and ageing intensity function then which function should be used in the final conclusion of knowing the behavior of the system in terms of ageing phenomena. In this paper, we try to answer this question by giving a case study mentioned in Section 4 and analyzing it.

3. Estimator of functions

Nanda et al. (2013) gives the logical estimates of survival function $\bar{F}_X(t)$, probability density function $\bar{f}_X(t)$, hazard rate function $\lambda_X(t)$, reversed hazard rate $\mu_X(t)$ and ageing intensity function $L_X(t)$. Let *n* units be put to test at t = 0. Further, let the number of units having survived at ordered times t_j be $n_s(t_j)$. Then logical estimates of $\bar{F}_X(t)$, $f_X(t)$, $\lambda_X(t)$, $\mu_X(t)$ and $L_X(t)$ for $t_i < t < t_i + \Delta t_i$, are respectively given by

$$\hat{F}_X(t) = \frac{n_s(t_j)}{n},$$

$$\hat{f}_X(t) = \frac{n_s(t_j) - n_s(t_j + \Delta t_j)}{n\Delta t_j},$$

$$\hat{\lambda}_X(t) = \frac{\left\{n_s(t_j) - n_s(t_j + \Delta t_j)\right\}}{n_s(t_j)\Delta t_j},$$

$$\hat{\mu}_X(t) = \frac{\left\{n_s(t_j) - n_s(t_j + \Delta t_j)\right\}}{(n - n_s(t_j))\Delta t_j}.$$

Thus, logical estimate of $L_X(t)$ is

$$\hat{L}_X(t) = \frac{-t \left\{ n_s(t_j) - n_s(t_j + \Delta t_j) \right\}}{n_s(t_j) \Delta t_j \ln \frac{n_s(t_j)}{n}},$$

for $t_j < t < t_j + \Delta t_j$.

4. An Example to illustrate the study of ageing phenomena through reliability function, hazard rate, reversed hazard rate and ageing intensity functions

A good number of life testing data can be found for analysis in Shooman (1968), Ebeling (1997) and others.

Example 4.1. (cf. Ebeling (1997)) Fifteen units each of two different deadbolt locking mechanisms were tested under accelerated conditions until 10 failures of each were observed. The following failure times in thousands of cycles were recorded as in Table 1. Which design appears to provide the best function?

Note that, estimator of probability density function for $t_i \le t \le t_{i+1}$ is

$$\hat{f}(t) = -\frac{\hat{R}(t_{i+1}) - \hat{R}(t_i)}{(t_{i+1} - t_i)} \\ = \frac{1}{(t_{i+1} - t_i)(n+1)}$$
(4.2)

that of failure rate function is

$$\hat{\lambda}(t) = \frac{\hat{f}(t)}{\hat{R}(t)}
= \frac{1}{(t_{i+1} - t_i)(n+1-i))}.$$
(4.3)

The estimator of reversed hazard rate is given by,

$$\hat{\mu}(t) = (\hat{f}(t))/(\hat{F}(t))
= \frac{1/(t_{i+1} - t_i)(n+1)}{i/(n+1)}
= \frac{1}{i(t_{i+1} - t_i)}$$
(4.4)

Now, for the ageing intensity, it is given by,

$$\hat{L}(t) = \frac{-t\hat{f}(t)}{\hat{F}(t)\ln\hat{F}(t)}
= \frac{-t/(t_{i+1}-t_i)(n+1)}{\{(n+1-i)/(n+1)\}\ln\{(n+1-i)/(n+1)\}}
= \frac{-t}{(t_{i+1}-t_i)(n+1-i)\ln(n+1-i)/(n+1)}$$
(4.5)

The detailed analysis of the example considered in this Section are given in Table 2, Table 3, Table 4, Table 5 and Table 6. The Plots are also displayed in Figure 1, Figure 2, Figure 3 and Figure 4.

5. Conclusion

According to the literature on stochastic orders, we know that any system, say, here, Design-A is said to be better than design-B, if design-A has less ageing intensity, less hazard rate and higher reliability than that of design-B. The concluding remarks as noted in Table 6 at a certain interval of time are summarized as follows:

- (i) Design *A* is better than design *B* in terms of the function being doubly underlined in a time interval.
- (ii) Design *B* is better than design *A* on the basis of the function being singly underlined during a certain time interval.
- (iii) However, the function being starred in a time interval denotes the fact that we cannot specify which among *A* or *B* is of the better design.
- (iv) For example, in the interval (56.8,77], design *B* is better in terms of ageing intensity, whereas according to hazard rate, design *A* is better during (56.8,63] and design *B* is better in the interval (63,77]. Also, the analyzing the systems in terms of reliability reveal that, both the designs *A* and *B* have equal reliabilities during (56.8,63] but design-A is better on (63,77].
- (v) It is evident that Table 6 contains more singly underlined cells than that of doubly underlined cells.
- (vi) In a nutshell, design *B* is more efficient than that of design *A*.
- (vii) We attempt to identify the function which should be preferred in determining the ageing behaviour of a system.

In Table 6, one can observe that if at some interval of time the ageing intensity, hazard rate and the reliability have the same nature (either single underlined or doubly underlined) or (doubly underlined with starred) or (singly underlined with starred), then all the three measures give the same conclusion in choosing the best system design. But if one function is doubly underlined and another is singly underlined, then it gives different conclusion with regard to the performance of the systems.

- (viii) For example, on the interval (56.8,63], the ageing intensity and the hazard rate show different behaviour, whereas on the interval (63,77] hazard rate and reliability show different behaviour. And on (897.8,1043.6], all the three measures show same behaviour.
- (ix) Clearly, from Table 6 we can see that, hazard rate doesn't have opposite behaviour with the other two measures simultaneously. For example, on the interval (56.8,63], hazard rate shows opposite behaviour to ageing intensity function only, but not to reliability. Also, it shows opposite behaviour to reliability on (63,77], but not to the ageing intensity function in that interval. We note that, hazard rate doesn't have any doubtful situations ($\lambda_1 = \lambda_2$), which are in the case of ageing intensity or reliability at some intervals. (as, the equality sign doesn't say anything about which design is better, so these are the doubtful situations.)

Therefore, we conclude that, hazard rate should be preferred as a measure of ageing phenomena, while comparing the two systems in the problem concerned.

Table 1: Failure Times

Design A	44	77	218	251	317	380	438	739	758	1115
Design B	32	63	211	248	327	404	476	877	903	1416

Table 2: Analysis of Design A

i	ti	$R_1(t)$	$\lambda_1(t)$	$\mu_1(t)$	$L_1(t)$
0	0	1	0.002066		
1	44	0.909	0.00303	0.022727	0.3179t
2	77	0.8182	0.000788	0.015152	0.00393t
3	218	0.7273	0.003788	0.002364	0.01189t
4	251	0.6364	0.002165	0.007576	0.00479t
5	317	0.5455	0.002646	0.00303	0.00436t
6	380	0.4546	0.003448	0.002646	0.00437t
7	438	0.3636	0.000831	0.002463	0.00082t
8	739	0.2727	0.017544	0.000415	0.0135t
9	758	0.1818	0.001401	0.005848	0.00082t
10	1115	0.0909		0.00028	

Table 3: Analysis of Design B

i	ti	$R_2(t)$	$\lambda_2(t)$	$\mu_2(t)$	$L_2(t)$
0	0	1	0.002841		
1	32	0.909	0.002933	0.03125	0.0339t
2	63	0.8182	0.000614	0.016129	0.00374t
3	211	0.7273	0.002457	0.002252	0.0106t
4	248	0.6364	0.001151	0.006757	0.004t
5	327	0.5455	0.001181	0.002532	0.00357t
6	404	0.4546	0.001263	0.002165	0.00352t
7	476	0.3636	0.000227	0.001984	0.00062t
8	877	0.2727	0.003497	0.000312	0.00987t
9	903	0.1818	0.000177	0.004274	0.00057t
10	1416	0.0909		0.000195	

Table 4: Comparison of R(t), $\lambda(t)$, $\mu(t)$

Time	$R_1(t)$	$R_2(t)$	Order R(t)	$\lambda_1(t)$	$\lambda_2(t)$	Order $\lambda(t)$	$\mu_1(t)$	$\mu_2(t)$	Order $\mu(t)$
(0, 32]	1	1	$R_1 = R_2$	0.002066	0.002841	$\lambda_1 < \lambda_2$	0.022727	0.03125	$\mu_1 < \mu_2$
(32, 44]	1	0.909	$R_1 > R_2$	0.002066	0.003226	$\lambda_1 < \lambda_2$	0.022727	0.016129	$\mu_1 > \mu_2$
(44, 63]	0.909	0.909	$R_1 = R_2$	0.00303	0.003226	$\lambda_1 < \lambda_2$	0.015152	0.016129	$\mu_1 > \mu_2$
(63,77]	0.909	0.8182	$R_1 > R_2$	0.00303	0.000751	$\lambda_1 < \lambda_2$	0.015152	0.002252	$\mu_1 > \mu_2$
(77,211]	0.8182	0.8182	$R_1 = R_2$	0.000788	0.000751	$\lambda_1 < \lambda_2$	0.002364	0.002252	$\mu_1 > \mu_2$
(211, 218]	0.8182	0.7273	$R_1 > R_2$	0.000788	0.003378	$\lambda_1 < \lambda_2$	0.002364	0.006757	$\mu_1 > \mu_2$
(218, 248]	0.7273	0.7273	$R_1 = R_2$	0.003788	0.003378	$\lambda_1 < \lambda_2$	0.007576	0.006757	$\mu_1 > \mu_2$
(248, 251]	0.7273	0.6364	$R_1 > R_2$	0.003788	0.001808	$\lambda_1 < \lambda_2$	0.007576	0.002532	$\mu_1 > \mu_2$
(251, 317]	0.6364	0.6364	$R_1 = R_2$	0.002165	0.001808	$\lambda_1 < \lambda_2$	0.00303	0.002532	$\mu_1 > \mu_2$
(317, 327]	0.5455	0.6364	$R_1 < R_2$	0.002646	0.001808	$\lambda_1 < \lambda_2$	0.002646	0.002532	$\mu_1 > \mu_2$
(327, 380]	0.5455	0.5455	$R_1 = R_2$	0.002646	0.002165	$\lambda_1 < \lambda_2$	0.002646	0.002165	$\mu_1 > \mu_2$
(380, 404]	0.4546	0.5455	$R_1 < R_2$	0.003448	0.002165	$\lambda_1 < \lambda_2$	0.002463	0.002165	$\mu_1 > \mu_2$
(404, 438]	0.4546	0.4546	$R_1 = R_2$	0.003448	0.002778	$\lambda_1 < \lambda_2$	0.002463	0.001984	$\mu_1 > \mu_2$
(438, 476]	0.3636	0.4546	$R_1 < R_2$	0.000831	0.002778	$\lambda_1 < \lambda_2$	0.000415	0.001984	$\mu_1 > \mu_2$
(476,739]	0.3636	0.3636	$R_1 = R_2$	0.000831	0.000623	$\lambda_1 < \lambda_2$	0.000415	0.000312	$\mu_1 > \mu_2$
(739,758]	0.2727	0.3636	$R_1 < R_2$	0.017544	0.000623	$\lambda_1 < \lambda_2$	0.005848	0.000312	$\mu_1 > \mu_2$
(758, 877]	0.1818	0.3636	$R_1 < R_2$	0.001401	0.000623	$\lambda_1 < \lambda_2$	0.00028	0.000312	$\mu_1 > \mu_2$
(877, 903]	0.1818	0.2727	$R_1 < R_2$	0.001401	0.012821	$\lambda_1 < \lambda_2$	0.00028	0.004274	$\mu_1 > \mu_2$
(903, 1115]	0.1818	0.1818	$R_1 = R_2$	0.001401	0.000975	$\lambda_1 < \lambda_2$	0.00028	0.000195	$\mu_1 > \mu_2$
(1115, 1416]	0.0909	0.1818	$R_1 < R_2$		0.000975				

Figure 1: *Plot of* R_1 *and* R_2 *versus time t.*

Figure 2: *Plot of* HR_1 *and* HR_2 *versus time t*

Table 5: $L_1(t)$ and $L_2(t)$

Table 6: Interval-wise Study

t $L_1(t)$ t $L_2(t)$ 32 1.0848 44 1.39876 38.2 1.29498 50.6 1.608574 44.4 1.50516 57.2 1.818388 50.6 1.71534 63.8 2.028202 56.8 1.92552 70.4 2.238016 63 0.23552 77 0.30261 92.6 0.346324 105.2 0.413436 122.2 0.457028 133.4 0.524262 151.8 0.567732 161.6 0.635088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.59022 218.4 2.31504 224.6 2.670494 225.8 2.39348 231.2 2.48905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 </th <th>Design A</th> <th></th> <th>Design B</th> <th></th>	Design A		Design B	
32 1.0848 44 1.39876 38.2 1.29498 50.6 1.008574 44.4 1.50516 57.2 1.818388 50.6 1.71534 63.8 2.028202 56.8 1.92552 70.4 2.238016 63 0.23562 77 0.30261 92.6 0.346324 105.2 0.413436 122.2 0.457028 113.3.4 0.524262 151.8 0.567732 161.6 0.435088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.59202 218.4 2.31504 224.6 2.670494 225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.26518 279.6 1.1184 2774 1.437056	t	$L_1(t)$	t	$L_2(t)$
38.2 1.29498 50.6 1.608574 44.4 1.50516 57.2 1.818388 50.6 1.71534 63.8 2.02802 56.8 1.92552 70.4 2.238016 63 0.23562 77 0.30261 92.6 0.346324 105.2 0.413436 122.2 0.457028 133.4 0.524262 151.8 0.67732 161.6 0.635088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.59202 218.4 2.31504 224.6 2.670494 225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.39174 311.2 1.2448 303.8 1.45502 327 1.6739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.382324 354.8 1.546928 388.6 1.387302 367.4 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.52356 403.2 1.761984 447.2 1.57444 49	32	1.0848	44	1.39876
44.41.5051657.21.81838850.61.7153463.82.02820256.81.9255270.42.238016630.23562770.3026192.60.346324105.20.413436122.20.457028133.40.524262151.80.567732161.60.635088181.40.678436189.80.7459142112.23662182.59202218.42.31504224.62.670494225.82.39348231.22.748968233.22.47192237.82.827442240.62.55036244.42.9059162480.9922511.20229263.81.0552264.21.265518279.61.1184277.41.328746295.41.1816290.61.391974311.21.2448303.81.455023271.167393171.38212342.41.222368329.61.437056357.81.277346342.21.491992373.21.332324354.81.546928388.61.387302367.41.6616644041.422083801.6606418.41.472768391.61.711292432.81.523456403.21.761984447.21.574144414.81.812676461.61.624832426.41.863368716.60.44292618.60.507252796.80.494016<	38.2	1.29498	50.6	1.608574
50.61.71534 63.8 2.028202 56.8 1.92552 70.4 2.238016 63 0.23562 77 0.30261 92.6 0.3463241105.20.413436 122.2 0.457028133.40.524262 151.8 0.567732161.60.635088 181.4 0.678436189.80.745914 2111 2.23662182.5902 225.8 2.39348231.22.670494 225.8 2.39348231.22.748968 233.2 2.47192237.82.827442 240.6 2.55036244.42.905916 248 0.9922511.20229 263.8 1.0552264.21.265518 279.6 1.1184277.41.328746 295.4 1.1816290.61.391974 311.2 1.2448303.81.45502 327 1.167393171.38212 342.4 1.22286329.61.437056 357.8 1.277346342.21.491992 373.2 1.332324354.81.546928 388.6 1.387302367.41.601644 404 1.422083801.6666 418.4 1.472768391.61.711292 432.8 1.523456403.21.761984 447.2 1.574144414.81.812676 461.6 1.624832426.41.863368 716.6 0.444929618.60.057252 796.8 0.49401667	44.4	1.50516	57.2	1.818388
56.8 1.92552 70.4 2.238016 63 0.23562 77 0.30261 92.6 0.346324 105.2 0.413436 122.2 0.457028 113.4 0.524265 151.8 0.567732 161.6 0.635088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.57029 218.4 2.31504 224.6 2.670494 225.8 2.332.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 248 0.992 251 1.20229 263.8 1.0552 264.2 1.26518 279.6 1.1184 277.4 1.328746 1.43205 332 1.47039 317 1.38212 342.4 1.22288 329.6 1.437056 1.437056 1.437056 357.8 1.277346 342.2 1.49192 373.2 1.332324 354.8 1.546928 388.	50.6	1.71534	63.8	2.028202
63 0.23562 77 0.30261 92.6 0.346324 105.2 0.413436 122.2 0.475028 133.4 0.524262 151.8 0.567732 161.6 0.635088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.59202 218.4 2.31504 224.6 2.670494 225.8 2.39348 221.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 279.6 1.391974 311.2 1.2448 303.8 1.45502 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2	56.8	1.92552	70.4	2.238016
92.6 0.346324 105.2 0.413436 122.2 0.457028 133.4 0.524262 151.8 0.567732 161.6 0.63088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.5902 218.4 2.31504 224.6 2.670494 225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.3917974 311.2 1.2448 303.8 1.45502 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 <t< td=""><td>63</td><td>0.23562</td><td>77</td><td>0.30261</td></t<>	63	0.23562	77	0.30261
122.2 0.457028 133.4 0.524262 151.8 0.57732 161.6 0.635088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.59202 218.4 2.31504 224.6 2.670494 225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.455020 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4<	92.6	0.346324	105.2	0.413436
151.8 0.567732 161.6 0.635088 181.4 0.678436 189.8 0.745914 211 2.2366 218 2.5902 218.4 2.31504 224.6 2.670491 225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.45502 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.47076 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.601864 404 1.42208 380	122.2	0.457028	133.4	0.524262
181.4 0.678436 189.8 0.745914 211 2.2366 218 2.50202 218.4 2.31504 224.6 2.670494 225.8 2.332.0 2.47192 237.8 2.827442 240.6 2.55036 2.44.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 2.642.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.45502 327 1.16739 317 1.38212 342.4 1.222568 329.6 1.437056 357.8 1.277346 342.2 1.49192 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.6066 418.4 1.42208 338.0 1.6660 418.4 1.42276 438.8 0.35916 555.2 0.34484 <td< td=""><td>151.8</td><td>0.567732</td><td>161.6</td><td>0.635088</td></td<>	151.8	0.567732	161.6	0.635088
211 2.2366 218 2.59202 218.4 2.31504 224.6 2.670494 225.8 2.39348 221.2 2.748968 223.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.38274 311.2 1.2448 303.8 1.45502 327 1.16739 317 1.38212 342.4 1.22268 392.6 1.43056 357.8 1.27346 342.2 1.49192 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.601864 404 1.42208 380.4 1.66066 418.4 1.427656 391.6 1.711292 423.8 1.52456 403.2 1.761984 447.2 1.574144 414.8 1.81	181.4	0.678436	189.8	0.745914
218.4 2.31504 224.6 2.670494 225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 2.44192 237.8 2.827442 240.6 2.55036 244.4 2.905916 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.455202 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.5046928 388.6 1.6606 1.4414 1.412208 380 1.6606 4414.4 1.472768 391.6 1.711292 432.8 1.52456 403.2 1.761984 447.2 1.574144 414.8 1.863668	211	2.2366	218	2.59202
225.8 2.39348 231.2 2.748968 233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905161 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 3112 1.2428 303.8 1.455020 327 1.1673 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.66166 4404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.863368 476 0.29512 438 0	218.4	2.31504	224.6	2.670494
233.2 2.47192 237.8 2.827442 240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.26518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 033.8 1.455202 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387030 367.4 1.60164 404 1.42208 380 1.6666 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.86388 716.6 0.444292 618.6	225.8	2.39348	231.2	2.748968
240.6 2.55036 244.4 2.905916 248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 279.4 1.328746 295.4 1.11816 290.6 1.391974 311.2 1.2448 303.8 1.45502 327.7 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.601864 404 1.42208 390.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.86358 716.6 0.49452 618.6 0.507252 796.8 0.494016 678.8 0.55616 877 8.65599 750.4	233.2	2.47192	237.8	2.827442
248 0.992 251 1.20229 263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.455202 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.001864 404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.524456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 <	240.6	2.55036	244.4	2.905916
263.8 1.0552 264.2 1.265518 279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.455202 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.337302 367.4 1.601864 404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.863666 4461.6 1.624832 426.4 1.863368 716.6 0.44292 618.6 0.556212 636.4 0.394568 558.4 0.45788 716.6 0.44292 618.6 0.556216 8877 8.65599 739	248	0.992	251	1.20229
279.6 1.1184 277.4 1.328746 295.4 1.1816 290.6 1.39174 3112 1.2448 303.8 1.455202 327 1.1673 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 386.6 1.387302 367.4 1.610864 404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.571444 414.8 1.816366 4476 0.29512 438 0.35916 556.2 0.34844 498.2 0.408524 636.4 0.394568 558.4 0.45788 716.6 0.44292 618.6 0.507252 786.5 9.739 9.9765 882.2 8.70314 742.8 10.0278	263.8	1.0552	264.2	1.265518
295.4 1.1816 290.6 1.391974 311.2 1.2448 303.8 1.4550202 327 1.16739 31.7 1.38212 342.4 1.222368 529.6 1.437055 357.8 1.227346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.38702 367.4 1.60164 404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.86368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.45788 716.6 0.44492 618.6 0.507252 796.8 0.494016 676.8 0.50616 877 8.6599 739.4	279.6	1.1184	277.4	1.328746
311.2 1.2448 303.8 1.455202 327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.38702 367.4 1.601864 404 1.42208 380 1.66066 418.4 1.472768 391.6 1.711292 432.8 1.52456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.663368 576.2 0.34844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.55621 887.4 8.758638 746.6 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4	295.4	1.1816	290.6	1.391974
327 1.16739 317 1.38212 342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.601864 404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.524456 403.2 1.761984 447.2 1.574144 414.8 1.812676 4461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 648.6 0.507512 796.8 0.494016 678.8 0.0078 887.4 8.555863 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 </td <td>311.2</td> <td>1.2448</td> <td>303.8</td> <td>1.455202</td>	311.2	1.2448	303.8	1.455202
342.4 1.222368 329.6 1.437056 357.8 1.277346 342.2 1.491992 373.2 1.332324 354.8 1.546928 388.6 1.337302 367.4 1.601864 404 1.42208 360 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.863368 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.44292 618.6 0.575612 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.80926 750.4 10.1317 903 0.51471 758 0.62156 1005.6 0.573192 829.4 <td>327</td> <td>1.16739</td> <td>317</td> <td>1.38212</td>	327	1.16739	317	1.38212
357.8 1.277346 342.2 1.491992 373.2 1.323244 354.8 1.546928 388.6 1.387302 367.4 1.601864 404 1.42208 380. 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.50752 786.8 0.494016 678.8 0.56616 877 8.6559 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809262 750.4 10.1817 903 0.51471 758	342.4	1.222368	329.6	1.437056
373.2 1.332324 354.8 1.546928 388.6 1.387302 367.4 1.601864 404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.86368 476 0.29512 438 0.35916 555.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 7754.2 10.1817 903 0.51471 758	357.8	1.277346	342.2	1.491992
388.6 1.387302 367.4 1.601864 404 1.42208 380 1.66066 418.4 1.472068 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.405524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507525 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.756388 754.4 10.1304 897.6 8.861286 754.4 10.1304 897.8 8.861286 754.2 10.1314 0.051471 758 0.62156 1005.6 1005.6 0.573192 829.4 <td>373.2</td> <td>1.332324</td> <td>354.8</td> <td>1.546928</td>	373.2	1.332324	354.8	1.546928
404 1.42208 380 1.6606 418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.55638 746.6 10.0791 892.6 8.80962 750.4 10.1304 897.8 8.861286 754.2 10.1317 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8	388.6	1.387302	367.4	1.601864
418.4 1.472768 391.6 1.711292 432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.34844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.505212 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.80926 750.4 10.1304 897.8 8.861286 754.2 10.1317 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.69056 972.2 <td>404</td> <td>1.42208</td> <td>380</td> <td>1.6606</td>	404	1.42208	380	1.6606
432.8 1.523456 403.2 1.761984 447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556161 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.69156 972.2 0.797204 1313.4 0.748638 1043.6 0.85752	418.4	1.472768	391.6	1.711292
447.2 1.574144 414.8 1.812676 461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.348434 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.069166 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	432.8	1.523456	403.2	1.761984
461.6 1.624832 426.4 1.863368 476 0.29512 438 0.35916 556.2 0.344844 498.2 0.40524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.756638 746.6 10.0791 897.8 8.861286 754.2 10.1304 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.69156 972.2 0.797204 1313.4 0.748638 1043.6 0.87525	447.2	1.574144	414.8	1.812676
476 0.29512 438 0.35916 556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.55638 746.6 10.0791 892.6 8.809962 754.2 10.1304 897.8 8.861286 754.2 10.1314 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.85552	461.6	1.624832	426.4	1.863368
556.2 0.344844 498.2 0.408524 636.4 0.394568 558.4 0.457888 716.6 0.444292 618.6 0.507522 796.8 0.494016 678.8 0.556616 877 8.6559 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690166 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	476	0.29512	438	0.35916
636.4 0.394568 558.4 0.457888 716.6 0.44292 618.6 0.50752 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.801286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.69156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	556.2	0.344844	498.2	0.408524
716.6 0.444292 618.6 0.507252 796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.739204 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	636.4	0.394568	558.4	0.457888
796.8 0.494016 678.8 0.556616 877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	716.6	0.444292	618.6	0.507252
877 8.65599 739 9.9765 882.2 8.707314 742.8 10.0278 887.4 8.756638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	796.8	0.494016	678.8	0.556616
882.2 8.707314 742.8 10.0278 887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	877	8.65599	739	9.9765
887.4 8.758638 746.6 10.0791 892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752 1416 1115 1115 1115	882.2	8.707314	742.8	10.0278
892.6 8.809962 750.4 10.1304 897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752 1416 1115 1115	887.4	8.758638	746.6	10.0791
897.8 8.861286 754.2 10.1817 903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752	892.6	8.809962	750.4	10.1304
903 0.51471 758 0.62156 1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752 1416 1115	897.8	8.861286	754.2	10.1817
1005.6 0.573192 829.4 0.680108 1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752 1416 1115 115	903	0.51471	758	0.62156
1108.2 0.631674 900.8 0.738656 1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752 1416 1115	1005.6	0.573192	829.4	0.680108
1210.8 0.690156 972.2 0.797204 1313.4 0.748638 1043.6 0.855752 1416 1115	1108.2	0.631674	900.8	0.738656
1313.4 0.748638 1043.6 0.855752 1416 1115	1210.8	0.690156	972.2	0.797204
1416 1115	1313.4	0.748638	1043.6	0.855752
	1416		1115	

Interval	Compare L(t)	Interval	Compare $\lambda(t)$	Interval	Compare R(t)
(56.8,77]	$L_1 > L_2$	(56.8,63]	$\underline{\lambda_1 < \lambda_2}$	(56.8, 63]	$R_1 = R_2^*$
		(63,77]	$\frac{\lambda_1 > \lambda_2}{2}$	(63,77]	$\underline{R_1 > R_2}$
(77, 211]	$L_1 = L_2^*$	(77,211]	$\frac{\lambda_1 > \lambda_2}{}$	(77, 211]	$R_1 = R_2^*$
(211, 240.6]	$L_1 > L_2$	(211,218]	$\underline{\lambda_1 < \lambda_2}$	(211, 218]	$\underline{R_1 > R_2}$
		(218,240.6]	$\underline{\lambda_1 > \lambda_2}$	(218, 240.6]	$R_1 = R_2^*$
(240.6, 248]	$L_1 = L_2^*$	(240.6, 248]	$\frac{\lambda_1 > \lambda_2}{2}$	(240.6, 248]	$R_1 = R_2^*$
(248, 418.4]	$\frac{L_1 > L_2}{2}$	(248, 418.4]	$\frac{\lambda_1 > \lambda_2}{2}$	(248, 251]	$\underline{R_1 > R_2}$
				(251, 317]	$R_1 = R_2^*$
				(317, 327]	$\frac{R_1 < R_2}{2}$
				(327, 380]	$R_1 = R_2^*$
				(380, 404]	$\frac{R_1 < R_2}{2}$
				(404, 418.4]	$R_1 = R_2^*$
(418.4, 476]	$\underline{L_1 < L_2}$	(418.4, 438]	$\frac{\lambda_1 > \lambda_2}{2}$	(418.4, 438]	$R_1 = R_2^*$
		(438, 476]	$\underline{\lambda_1 < \lambda_2}$	(438, 476]	$R_1 = R_2^*$
(476, 636.4]	$L_1 = L_2^*$	(476,636.4]	$\frac{\lambda_1 > \lambda_2}{2}$	(476, 636.4]	$R_1 = R_2^*$
(636.4, 796.8]	$L_1 > L_2$	(636.4,796.8]	$\frac{\lambda_1 > \lambda_2}{2}$	(636.4, 739]	$R_1 = R_2^*$
				(739, 758]	$\frac{R_1 < R_2}{2}$
				(758, 796.8]	$\frac{R_1 < R_2}{2}$
(796.8, 897.8]	$\underline{L_1 < L_2}$	(796.8,877]	$\frac{\lambda_1 > \lambda_2}{2}$	(796.8, 877]	$\frac{R_1 < R_2}{2}$
		(877, 897.8]	$\underline{\lambda_1 < \lambda_2}$	(877,897.8]	$\underline{R_1 < R_2}$
(897.8, 1043.6]	$L_1 > L_2$	(897.8, 1043.6]	$\frac{\lambda_1 > \lambda_2}{\lambda_1 > \lambda_2}$	(897.8, 903]	$\frac{R_1 < R_2}{2}$
				(903, 1043.6]	$R_1 = R_2^*$

Figure 3: *Plot of RHR*₁ *and RHR*₂ *versus time t*

Figure 4: *Plot of AI*₁ *and AI*₂

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their useful comments.

References

- [1] Barlow, R.E. and Proschan, F. (1975), *Statistical Theory of Reliability and Life Testing, Probability Models.* Holt Rinehart and Winston Inc. New York.
- [2] Bhattacharjee, S., Nanda A.K. and Misra, S.K. (2013), Reliability Analysis using ageing intensity function. *Statistics and Probability Letters*, 83, 1364–1371.
- [3] Block, H.W., Savits, T. and Singh, H. (1998), Reversed hazard rate functions. *Probability in the Engineering and Informational Sciences*, 12, 69–90.
- [4] Ebeling C.E. (1997), An Introduction to Reliability and Maintainability Engineering Michigan: Mcgraw Hill.
- [5] Deshpande, J.V. and Purohit, S.G. (2005), *Life Time Data: Statistical Models and Methods*. Series in Quality, Reliability and Engineering Statistics, Vol 11, World scientific Publishing Co. Pte Ltd.
- [6] Giri, R. L., Nanda, A. K., Dasgupta, M., Misra, S. Kr. and Bhattacharjee, S., On ageing intensity function of some Weibull models, *Communications in Statistics-Theory and Methods*, DOI: 10.1080/03610926.2021.1910845, Published online on 26 April 2021.
- [7] Jiang, R., Ji, P., and Xiao, X. (2003), Ageing property of univariate failure rate models, *Reliability Engineering and System Safety*, 79, 113-116.
- [8] Misra, S.K. and Bhattacharjee, S. (2018), A case study of ageing intensity function on censored data, *Alexendria Engineering Journal*, 57, 3931–3952.
- [9] Nanda, A. K., Bhattacharjee, S. and Balakrishnan, N. (2010), Mean residual life fuction, associated orederings and properties, *IEEE Transactions on Reliability*, 59(1), 55-65.
- [10] Nanda, A.K., Singh, H., Misra, N. and Paul, P. (2003), Reliability properties of reversed residual lifetime, *Communications in Statistics-Theory and Methods*, 32(10), 2031-2042. [Addendum: *Communications in Statistics-Theory and Methods*, (2004), 33(4), 991–992].
- [11] Nanda, A.K. and Sengupta, D. (2005), Discrete life distributions with decreasing reversed hazard. *Sankhyā* 67, Part 1, 1-19.
- [12] Nanda, A. K., Bhattacharjee, S., Alam, S.S. (2007), Properties of ageing intensity function, *Statistics and Probability Letters*, 77, 365–373.
- [13] Nanda, A.K., Bhattacharjee, S. and Balakrishnan, N. (2010), Mean Residual Life Function, Associated Orderings and Properties, *IEEE Transactions on Reliability*, 59(1),55–65.
- [14] Nanda, A.K., Bhattacharjee, S. and Alam, S.S. (2006), On Up Shifted Reversed Mean Residual Life Order, *Communications in Statistics: Theory and Methods*, 35(8), 1513–1523.
- [15] Shaked, M., and Shanthikumar, J.G. (2007), Stochastic Orders. New York: Springer.
- [16] Shooman, M. L. (1968), Probabilistic Reliability: An Engineering Approach. McGraw-Hill, Inc.
- [17] Sunoj, S. M., and Rasin, R. S. (2018). A quantile-based study on ageing intensity function, *Communications in Statistics: Theory and Methods*, 47 (22), 5474–5484.
- [18] Szymkowiak, M. (2018a), Characterizations of Distributions Through Ageing Intensity, *IEEE Transactions on Reliability*, 67, 446–458.
- [19] Szymkowiak, M. (2018 b), Lifetime Analysis by Ageing Intensity Functions Studies in Systems, Decision and Control Volume 196 Series editor, Springer.