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Certain modern developments in stochastic extreme value 
theory, on occasion of 110th birthday of Boris Vladimirovich Gnedenko ...............  16 

V. I. Piterbarg, I. V. Rodionov

We present a short overview of developments of the last decade in asymptotic analysis of extrema of families of 
random variables. We focus on the methods of investigating the quality of approximations as given by 
Gnedenko’s extreme value theorem, and its generalizations to the case of dependent random variables.  

Mikhail Andreevich Fedotkin: A Nonstatistical Analysis 
Of The First 80 Years Of His Life .....................................................................................  26 

Andrei V. Zorine 

Professor of the Lobachevsky University of Nizhni Novgorod celebrated his 80th anniversary in May 2021. 
This paper touches some of his personal histories, and his scintific contributions. This paper is dedicated to the 
life and scientific achievements of Mikhail Andreevich Fedotkin, on the occasion of his 80th anniversary. It is 
not an easy task to present the topic better than the protagonist did himself in his autobiographical book. No one 
has a more complete knowledge of his life facts than he does. So, we may only revew several turning points in 
his biography, maybe in a half-joking tone sometimes, with all our love and respect to the man of the hour. 

Multi-Server Markovian Queue With Successive Optional Services .......................   32

P. Vijaya Laxmi, E. Girija Bhavani

In this study, we analyze a multi-server queueing model with two successive optional services. Each server 
provides FES as well as two optional services to each arriving customer, for a total of 𝑐 servers. Every new 
customer requires the first essential service (FES). The customer may quit the system with probability (1 − 𝑟!) 
or choose optional services supplied by the same server after finishing the FES. With probability 𝑟!, customer 
chooses the first optional service (OS - 1). Following that, the customer has the option of joining the second 
optional service (OS - 2) with probability 𝑟" or leave the system with probability (1 − 𝑟"). We obtain the 
steady-state probability distributions by applying matrix-geometric method. We also derive a number of 
performance measures of the queueing model. Sensitivity analysis is used to investigate the impact of various 
parameters on performance of the queueing model.  

Markov Reliability Model Of A Wind Farm ..................................................................   44

Victor Yu. Itkin 

A Markov reliability model of a wind farm has been built using the example of Anholt wind farm, Denmark. 
Reliability indicators of wind turbine equipment are calculated as wind speed functions. Basing hourly 
measurements of the wind speed and the consumed electricity, two samples of duration time of the met and 
unmet demand of electricity were obtained. It has been found that these samples can be approximated with 
exponential mixture model of the probability distributions. The wind farm operation process has been 
approximated with a continues-time 5-states Markov process. As a result, stationary and non-stationary 
probabilities that the electricity demand will be met by wind power were estimated. 
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Estimation procedures for a flexible extension of Maxwell 
distribution with data modeling ......................................................................................  58 

Abhimanyu S. Yadav, H. S. Bakouch, S. K. Singh1 and Umesh Singh 

In this paper, we introduce a flexible extension of the Maxwell distribution for modeling various practical data 
with non-monotone failure rate. Some main properties of this distribution are obtained, and then the estimation 
of the parameters for the proposed distribution has been addressed by maximum likelihood estimation method 
and Bayes estimation method. The Bayes estimators have been obtained under gamma prior using squared error 
loss function. Also, a simulation study is gained to assess the estimates performance. A real-life application for 
the proposed distribution have been illustrated through different lifetime data. 

A Reliability-Inventory Problem Under N-policy of 
Replenishment of Component ..........................................................................................  73

Achyutha Krishnamoorthy 

In this paper a new process is introduced. To some extent it has resemblance with Queueing-Inventory 
(Inventory with positive service time) (see Sigman and Simchi-Levy [2] and Melikov and Molchanov [1]. We 
consider a k - out - of - n: G system of identical components, each of which has exponentially distributed 
lifetime with parameter l, independent of the others. When the number of working components goes down to N 
(k ≤ N ≤ n) due to failures, an order for n − k + 1 items is placed. Replenishment time is exponentially 
distributed with parameter b. On replenishment, all failed components are instantaneously replaced by the new 
arrivals, subject to a maximum of n − k + 1. This process is investigated and its long run system state 
distribution derived explicitly. An associated optimization problem is discussed. Throughout this paper the k - 
out - of - n system is assumed to be COLD. 

Safety Vs. Security – Why Architecture Makes The Difference ................................  88 

Jens Braband, Hendrik Schäbe 

Cybersecurity plays an increasing role. This also holds true for safety systems. Hence, it is necessary to 
combine systems that fulfill security and safety requirements. These requirements are partially contradictory. 
Safety related software will not be changed in an ideal world, whereas security software needs almost 
permanent updates. This leads to problems that are hard to solve. Different approaches have been proposed by 
different authors. In this paper we will show, how a suitable architecture can be applied to satisfy the security 
as well as the safety requirements. We consider some examples of such architectures and show, how systems can 
be constructed that on the one hand side contain a “golden” code for safety that is not changed and on the other 
hand side security software that can easily be patched, not touching the “golden” code. 

Effectiveness Retention Ratio And Multistate Systems ..............................................   94

Victor Netes 

This paper analyzes approaches to dependability assessment of multistate systems in which partial failures can 
occur. It is shown that for many multistate systems it is advisable to use the effectiveness retention ratio as a 
dependability measure. The paper explains the meaning and advantages of this measure and presents methods 
for its calculation for two classes of systems covering typical situations. They are additive systems in which the 
output effect is obtained by summing the output effects of the subsystems, and multimode systems that can 
perform some function or task in different modes depending on their state. Besides that, the presence and use of 
the effectiveness retention ratio in international and regional Euro-Asian standards are considered. 
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Kernel Sampling Based Parameter Estimation 
in Detected Community in Weighted Graph in Big Data ...........................................  105 

Ram Milan, Diwakar Shukla 

The social media platforms are such examples of big-data where the volume, velocity, and variety are visualized 
over time domain.  Registered users of such platforms bear frequent communication with others and that could 
be identified as a community. Many methods (algorithms) exist in literature to detect such likely groups of 
frequent communication. This paper presents contribution to estimate parameters of detected communities 
using sampling procedure. A Kernel sampling procedure is suggested in the setup of detected community 
environment. A method is suggested whose efficiency has been estimated using calculations of confidence 
interval. Simulation procedure is used to obtain the lower and upper limits of confidence intervals with the help 
of multiple samples. 

Reliability Of A Big City Sewer Network ......................................................................  121 

Baranov L. A., Ermolin Y.A., Shubinsky I. B. 

The ramified sewerage system for receiving and transferring household and industrial sewage typical for a large 
city is considered. Consideration is restricted to the sub-system of sewage conveyance (sewer network). A sewer 
network is defined as a combination of underground pipes (sewers) passing sewage through the force of gravity. 
A review of the literature reveals that there is currently no universally acceptable definition or measure for the 
reliability of urban sewer network. The aim of this article is to propose the physically obvious reliability index, 
and to develop an engineering methodology for its calculating. The relative raw sewage volume that could be 
potentially discharged to the environment as a result of component failures in the sewer network is proposed as 
a measure of overall system reliability. A simple method for quick and proper calculation of this volume is 
presented. The basis for this method is a representation of the sewer network by a combination of Y-like 
fragments. Each such fragment is formally substituted by a fictitious equivalent sewer that has a failure rate 
leading to the same output for the same input. A sequential application of this approach reduces the problem of 
estimating the discharged sewage volume to an elementary sub-problem with a simple solution is. The proposed 
approach is based on the reliability theory. The notions “failure flow” and “repair flow” are used. These flows 
are taken stationary with known parameters. Numerical examples are used to demonstrate the proposed 
approach.  

Reliability analysis for a class of exponential distribution 
based on progressive first-failure censoring ..................................................................   137

Kambiz Ahmadi 

Based on progressively first-failure censored data, the problem of estimating parameters as well as reliability 
and hazard rate functions for a class of an exponential distribution is considered. The classic and Bayes 
approaches are used to estimate the parameters. The maximum likelihood estimates and exact confidence 
interval as well as exact confidence region for parameters are developed based on this censoring scheme. Also, 
when the parameters have discrete and continuous priors, several Bayes estimators with respect to different 
symmetric and asymmetric loss functions such as squared error, linear-exponential (LINEX) and general 
entropy are derived. Finally, two numerical examples are presented to illustrate the methods of inference 
developed in this paper. 
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Transmuted Sine-Dagum Distribution and its Properties ..........................................   150

K.M. Sakthivel, K. Dhivakar

In this paper, we introduce a new four parameters continuous probability distribution called transmuted sine-
Dagum distribution obtained through the transmuted Sine-G family introduced by Sakthivel et al. [13]. We 
have obtained some distributional properties including moments, inverted moments, incomplete moments, 
central moments, and order statistics for proposed model. The reliability measures such as reliability function, 
hazard rate function, reversed hazard rate function, cumulative distribution function, mean waiting time and 
mean residual lifetime are studied in this paper. Further, we have discussed some income inequality measures 
including Lorenz curve, Bonferroni index and Zenga index. The maximum likelihood method is used to 
estimate the parameters of the proposed probability distribution. Finally, we demonstrated goodness of fit the 
proposed model with other suitable models in the literature using real life data sets. 

EPQ Models With Mixture Of Weibull Production 
Exponential Decay And Constant Demand ....................................................................  167 

V. Sai Jyothsna Devi, K. Srinivasa Rao

This paper deals with an economic production quantity (EPQ) model in which production is random and 
having heterogeneous units of production. The production process is characterized by mixture of Weibull 
distribution. It is assumed that the demand is constant and the lifetime of the commodity is random and follows 
an exponential distribution. Assuming that the shortages are allowed and fully backlogged the instantaneous 
state of inventory in the production unit is derived. The minimizing the expected total production cost, the 
optimal production quantity, the production uptime and downtime are derived. Through sensitivity analysis it 
is observed that the random production with mixture distribution have a significant influence on the optimal 
production schedules and production quantity. It is also observed that the rate of deterioration can 
tremendously influence the optimal operating policies of the system. This model also includes some of the earlier 
models as particular cases. The model is extended to the case of without shortages. A comparison of the two 
models reveals that allowing shortages will reduce expected total cost of the model. 

Estimation, Comparison And Ranking Of Operational 
Reliability Indicators Of Overhead Transmission  
Lines Of Electric Power Systems ......................................................................................  186 

Farhadzadeh E.M., Muradaliyev A.Z., Abdullayeva S.A. 

The regular increase in relative number of units of equipment, devices and installations (further - objects) 
electric power systems, which service life exceeds normative value and the consequences connected with this 
fact, including, including unacceptable ones, demand acceptance of drastic measures on increase of efficiency of 
their work. The main efforts today aimed at improving the methods of recognition and control of their technical 
condition. In other words, the problems of increasing the reliability of work and the safety of service brought to 
the fore quite justifiably. In the article, it is propos to carry out monitoring of the technical condition of 
overhead lines with a rated voltage of 110 kV and above monthly on the basis operational reliability parameters. 
New methods and algorithms for their estimation, comparison and ranking presented. As the operational 
reliability parameters are multidimensional, the existing methods for comparing and ranking one-dimensional 
statistical estimates for them are unacceptable, as the neglect preconditions of these methods conducts to 
essential growth of risk of the erroneous decision. The proposed new methods based on the fiducial approach, 
imitating modeling and the theory of statistical hypothesis testing. The cumbersomeness and laboriousness of 
manual calculation of operational reliability parameters, the science intensity of calculation methods is 
compensated by the transition to automated systems that provide information and methodological support with 
information about the technical condition of overhead lines. The recommended methods are included in the 
group of risk-focused approaches of increase the efficiency of the electric power systems. 
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On Transmuted Exponential-Topp Leon Distribution with 
Monotonic and Non-Monotonic Hazard Rates and its 
Applications ..........................................................................................................................   197

Aminu Suleiman Mohammed, Fidelis Ifeanyi Ugwuowo 

For the last decade, inspired by the increasing demand for probability distributions in numerous fields, many 
generalized distributions have been studied. Most of these distributions are developed by adding one or more 
parameter(s) to the standard probability distributions to make them flexible in capturing the sensitive parts of a 
dataset. The Topp-Leone distribution (TL) is one of the continuous probability distributions used in modelling 
lifetime datasets and sometimes is called J-shaped distribution. In this paper, we proposed a new lifetime 
distribution named transmuted Exponential- Topp Leon distribution in short (TE-TLD) which possessed 
different density shapes. Some properties of the distribution were presented in an explicit form and the 
parameters of the distribution are estimated by the method of maximum likelihood. The hazard function of the 
TE-TLD can be monotonic or non-monotonic failure rate which makes it more robust in terms of studying 
failure rates. The TE-TLD outperformed other distributions with the same underlying baseline distribution 
when applied to real datasets in the study. Furthermore, the likelihood ratio test (LRT) shows that the 
additional parameter(s) are significant which further proves the robustness of the TE-TLD over the nested 
distributions in the study. 

Curvature Tensors In SP-Kenmotsu Manifolds With Respect 
To Quarter-Symmetric Metric Connection .....................................................................  210 

S. Sunitha Devi, T. Satyanarayana, K. L. Sai Prasad

A conformal curvature tensor and con-circular curvature tensor in an SP-Kenmotsu manifold are derived in 
this article which admits a quarter-symmetric metric connection. Conclusively, we verified our results by 
considering a case of 3-D SP-Kenmotsu manifold. 

Twin-Piston Pressure Balance For Measurement And Uncertainty 
Evaluation Of Differential Pressure Digital Transducer .............................................  219 

Chanchal, Renu Singh, Deepika Garg, Ajay Kumar 

Pressure measurement plays significant role in development of various instruments and in industry. Pressure 
measurement, its control and accuracy are always attraction of scientist. There are many devices for the 
pressure measurement like U-tube manometer, Bourdon tube/Dial gauge, Dead weight tester. The present 
study focused on the precise generation of differential pressures with static pressure range in 0 MPa to 50 MPa 
using twin pressure balance in hydraulic mode. The metrological characteristics of a differential pressure 
digital transducer were evaluated. 

Performance of a Single Server Batch Queueing Model with 
Second Optional Service under Transient and Steady State Domain ......................   226

P. Vijaya Laxmi, Andwilile Abrahamu George and E. Girija Bhavani

The aim of this paper is to investigate the performance of a single server batch queueing model with second 
optional service under transient and steady state domain. It is assumed that the customers arrive in groups as 
per compound Poisson process and the server gives two types of services, First Essential Service (FES), which 
is mandatory for all arriving customers and Second Optional Service (SOS), which is given to some customers 
those who request it. Both FES and SOS are provided in batches of maximum 𝑏 capacity. The transient and 
steady state probabilities of the model are obtained by using probability generating function and Laplace 
transform techniques. Finally, some numerical examples are presented to study the effect of the parameters on 
the system performance measures. 
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Stratified Remainder Linear Systematic Sampling Based 
Clustering Model For Loan Risk Detection In Big Data Mining  ..............................   239

Kamlesh Kumar Pandey, Diwakar Shukla 

Nowadays, large volumes of data generate by numerous business organizations due to digital communications, 
web applications, social media, internet of things, cloud and mobile computing. Such has turned the nature of 
classical data into big data. Loan risk analysis is one of the most importance financial tasks, where financial 
organizations predict loan risk through customer financial history and behavioral data. Financial institutions 
face loan risk related issues when they make a loan to a bad customer. As a result, financial institutions divide 
loan applications into loan risk and non-risk clusters before making a loan for avoiding the loan risk challenges. 
Clustering approach is a data mining technique that uses data behavior and nature to discover the unexpected 
loan without any external information. Clustering algorithms face efficiency and effectiveness challenges as a 
result of the primary characteristics of big data. Sampling is of the data reduction technique that reduces 
computation time and improves cluster quality, scalability and speed of clustering algorithm. This study 
suggests a Stratified Remainder linear Systematic Sampling Extension (SRSE) approach for loan risk analysis 
in big data clustering using a single machine execution. The SRSE sampling plan enhances the effectiveness 
and efficiency of the clustering algorithm by employing maximum variance stratum formulation, remainder 
linear systematic sampling and extending sampling results into final result through centroid distance metric. 
The performance of the SRSE-based clustering algorithm has been compared to existing K-means and K-
means++ algorithms using Davies Bouldin score, Silhouette coefficient, SD Validity, Ray-Turi index and CPU 
time validation metric on risk datasets.  

Investigation of Effects of Uncertain Weather Conditions on the Power 
Generation Ability of Wind Turbines  ............................................................................  258 

Endalew Ayenew Hailez, Getachew Biru Worku, Asrat Mulatu Beyene, and Milkias 
Berhanu Tuka 

Wind energy is one of the abundant and renewable energy sources that can be harvested using wind turbines. 
Many factors affect the energy-yielding ability of wind turbines. The goal of this paper is to investigate the 
effects of uncertain weather conditions on the power generation ability of wind turbines. Uniquely, it presented 
the influence of the uncertain weather conditions and uncertain aerodynamic parameters of wind turbine on 
wind energy harvesting. The mathematical model of these factors and statistical analysis of their effects on the 
performance of wind turbines are presented using real-time data. It is found that the impact of uncertain 
weather conditions on annual average air density, and hence on the performance of wind turbines, is 1.33%. 
Whereas, the impact of variations of yearly average wind speed on the performance of wind turbines is found to 
be substantial. In particular, the annual uncertainty output power of wind turbines is found to be 32%. This 
investigation helps to find the mitigation mechanism and improve power generation efficiency from wind. 

A Case Study to Analyze Ageing Phenomenon in 
Reliability Theory ................................................................................................................  275 

Pulak Swain, Subarna Bhattacharjee, Satya Kr. Misra 

Hazard rate, and ageing intensity (AI) are measures or functions required for qualitative and quantitative 
analysis of ageing phenomena of a system with a well-defined statistical distribution respectively. In this paper, 
we reiterate upon the fact that in a few cases hazard rate and ageing intensity do not depict the same pattern as 
far as monotonicity is concerned. So, a question naturally arises which among hazard rate, and ageing intensity 
is a preferable measure for characterizing ageing phenomena of a system. As a consequence, an example 
involving two design systems are analyzed and is illustrated to answer the aforementioned question. 
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On Joint Importance Measures For Multistate Reliability Systems ..........................  286 

Chacko V M 

The use of importance and joint importance measures to identify the weak areas of a system and signify the 
roles of components in either causing or contributing to proper functioning of the system, is explained by 
several researchers in system engineering. But a few research outputs are available in literature for finding 
joint importance measures for two or more components. This paper introduces, new Joint Reliability 
Achievement Worth (JRAW), Joint Reliability Reduction Worth (JRRW) and Joint Reliability Fussell-Vesely 
measure (JRFV) for two components, of a multistate system. This is a new approach to find out the joint effect 
of group of components in improving system reliability. A steady state performance level distribution with 
restriction to the component’s states is used to evaluate the proposed measures. Universal generating function 
(UGF) technique is applied for the evaluation of proposed joint importance measures. An illustrative example is 
provided.  

Power - Exponential Geometric Quantile Function ......................................................  294 

Jeena Joseph, Asisha A P 

In this article, we introduced a new quantile function which is the sum of quantile functions of Power and 
Exponential geometric distributions. Different distributional charactaristics and reliability properties are 
discussed and also simulation study is conducted by using R software. Finally the new model is applied to a 
real data set. 

Reliability Single Sampling Plans Under The Assumption 
Of Burr Type Xii Distribution ...........................................................................................  308 

Vijayaraghavan R, Saranya C R, Sathya Narayana Sharma K 

Acceptance sampling or sampling inspection is an essential quality control technique which describes the rules 
and procedures for making decisions about the acceptance or rejection of a batch of commodities by the 
inspection of one or more samples. When quality of an item is evaluated based on the life time of the item, which 
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Abstract

We present a short overview of developments of the last decade in asymptotic analysis of extrema of
families of random variables. We focus on the methods of investigating the quality of approximations
as given by Gnedenko’s extreme value theorem, and its generalizations to the case of dependent random
variables.
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I. Introduction

Let us consider a sequence X1, ..., Xn, ... of independent identically distributed random variables
with the cumulative distribution function F(x). Let us furthermore assume that there exists
sequences of real numbers an > 0 and bn such that the limit of the distribution functions of the
sequence

max(X1, ..., Xn)− bn

an

as n→ ∞ is non-degenerate, so that

lim
n→∞

Fn(anx + bn) = G(x), (1)

where the distribution function G(x) takes more than two values. The maximum of random data
is one of the key statistics in various applications, and so various possible forms of the function
G(x) were established early on in the 20s of the previous century, see [1]. But it was only in 1941
when Gnedenko, in a short note [2], published a rigorous mathematical statement describing all
possible types of the distribution function G(x), where the type of a distribution function G(x) is
understood to be a class of distributions obtained from G(x) by shifting and scaling its argument.
Let us state this result in modern notation.

*The work of I. V. Rodionov in section 3 was performed at the Steklov Mathematical Institute of Russian Academy of
Sciences with the support of the Russian Science Foundation (grant 19-11-00290)
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Theorem 1. If (1) holds for some non-degenerate G, then there exist a > 0 and b such that G(ax + b) =
Gγ(x), where

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, (2)

the class of extreme value distributions with γ real, and for γ = 0 the exponent on the right is interpreted
as exp(−e−x).

When γ > 0 this is the Frechet class, when γ < 0 this is the Weibull class, and for γ = 0 this
is the Gumbel class, or, in this case, the standard Gumbel distribution.

The full proof of the theorem was published in 1943, [3] not in the Soviet Union for obvious
reasons, but in Annals of Mathematics, in French. The English translation appeared in 1992 in a
book Breakthroughs in Statistics published by Springer.

The importance of this work goes far beyond its use in the domain of applied probability
theory and statistics. In our view, this is one of the cornerstones of the modern mathematical
apparatus of the theory of probability. Every year since the result was discovered 80 years ago,
a large number of papers that further develop mathematical methods in this area come out. It
would not be an exaggeration to draw strong parallels with the central limit theorem which also
came out of the needs of applications but since influenced the development of core mathematical
methodologies of the whole of probability theory.

This short overview of the mathematical methods for asymptotic analysis of extrema of
families of random variables is dedicated to the latest developments in this area, primarily
covering the last decade, since the 100th birthday of Gnedenko that was widely celebrated
by the mathematical community. We focus our attention on the areas that can be called a
classical extension of the theory. Specifically we look into the quality of approximations given
by Gnedenko’s theorem, Theorem 1, and generalizations of the limit relation (2) to the case of
dependent Xi that form a stochastic sequence or a random field on an integer lattice. There also
exist various other generalizations of the original problem statement for limit distributions of
maxima. This area of research mostly focuses on distributions of maxima of random processes
and random fields in continuous time, extrema of vector sequences, and even functional limit
theorems with follow-up analysis of the so-called max-stable stochastic processes. In short, here
the focus is on limit distributions of maxima of random variables over various probabilistic
structures. Among the latest on these topics the following are worth mentioning: [4] on the
distribution of the maximum of a random number of random vectors, and [5], [6], [7] on max-
stable processes and fields, as well as vector-valued random processes. All these papers have
extensive literature reviews. From a somewhat different angle, considering triangular arrays,
rather than sequences, of identically distributed random variables expands not only the class of
possible limit distributions of normalized maxima, [8], [9], but also a class of distributions for
which the limit distribution of the normalized maxima is non-degenerate, [11], [10]. There also
exist results on the limit distribution of the maxima of stochastic sequences under non-linear
normalization [12]. Lebedev in [13], [14] considers the problems of limit distributions of maxima
of the particle scores in branching processes; the bibliography in these papers should also be
perused. The author moves away from the classical conditions of the Gnedenko limit theorem,
which is a substantial development of the theory of Lamperti-type maximal branching processes.

It is worth noting that we do not cover other types of convergence, focusing exclusively
on convergence in distribution. We mention in passing one of the latest papers here, [15] and
literature therein, on the iterated logarithm laws for almost sure convergence of sequences of
maxima. Other works of I. Matsak on this topic are also of interest.
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II. On the quality of convergence

The question of quantifying the quality of approximations in limit theorems of probability theory
has many aspects. Broadly, the main topics of interest include convergence of moments; rates of
convergence in limit theorems; rates of convergence for large and growing values of arguments
(large deviations); convergence in probability and almost surely; asymptotic expansions and
accompanying laws that improve the quality of approximations. An excellent review of relatively
latest advances in the areas of moment convergence, rates of convergence, large deviations in the
Gnedenko limit theorem, and sequences of normalized maxima can be found in Chapter 5 of a
fairly current monograph [16]. Some of the more contemporary works covered in that review are
also cited in our bibliography. The area of asymptotic expansions and accompanying measures
(laws) is relatively mature, with only a few new developments appearing recently, mostly related
to specific distributions important in certain applications, such as the Weibull distribution or the
Normal distribution, see e.g. [17], [18].

It is important to point out that establishing asymptotic expansions and their accompanying
laws is much easier for limit distributions of maxima of random variables than in the context
of the central limit theorem [19], [20]. For maxima of independent random variables, deriving
asymptotic expansions can basically just follow the approach developed by Gnedenko himself, or
its somewhat more contemporary interpretations. A cumulative distribution function F(x) from
the maximum domain of attraction of the Gumbel distribution MDA(Λ) can be characterized
in terms of the von Mises function. As shown in [21], a distribution from MDA(Λ) can be
described via the von Mises representation. Specifically, under the assumption F(x) < 1 for all x,
F ∈ MDA(Λ) if and only if there exists x0 ≥ 0 such that F(x) can be represented in the form

1− F(x) = c(x) exp
{
−
∫ x

x0

g(t)
f (t)

dt
}

, x ≥ x0, (3)

where f (x) is a positive absolutely continuous function on [x0, ∞), where f ′(x) → 0, g(t) → 1
and c(x)→ c > 0 for x → ∞. A similar statement can be made for a distribution bounded from
the right. Normalizing sequences can be chosen as follows,

bn = F←(1− n−1), an = f (bn).

It is obvious then that

Fn(anx + bn) =

(
1− exp

(
log c(anx + bn) +

∫ anx+bn

x0

g(t)
f (t)

dt
))n

=

(
1− 1

n
e−γn(x)

)n
,

where

γn(x) := − log n +
∫ anx+bn

bn

g(t)
f (t)

dt− log
c(anx + bn)

c(bn)
. (4)

Let us denote
Bn(x) := e−e−γn (x)

I{γn(x)≥− log log n}, (5)

where I is the indicator function. Paper [22] uses standard calculus techniques, under the
assumption of F(x) < 1 for all x, to demonstrate that

P(Mn ≤ anx + bn)− Bn(x) = O
(

n−1 log2 n
)

(6)

for n→ ∞, uniformly in x ∈ R. This implies that the equality

P(Mn ≤ anx + bn)− exp
(
−e−x) = exp

(
−e−x) e−x(γn(x)− x)(1 + o(1)) + O(n−1 log2 n) (7)

holds uniformly on the set {x : γn(x) ≥ − log log n} as n→ ∞. Naturally, the idea of using the
Taylor expansion applied to a power of the distribution function appears in various other works
on distributions of maxima such as [23] and other references we cite.
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Thus, the sequence Bn(x) is the natural sequence of accompanying laws, i.e. signed measures,
in Gnedenko’s limit theorem. It gives an exponential-type rate of convergence to the distribution
of the maximum. The same characterisation holds for the two other maximum domains of
attraction, Frechét and Weibull. For them, an analogue to the representation (3) is obtained using
Karamata representation for regularly varying functions, see for example [16], [24]. Expansions
and accompanying laws can be derived along the same lines as our calculations above. We remind
the reader that the Frechét maximum domain of attraction consists only of distributions with
tails that are regularly varying at infinity, and the Weibull maximum domain of attraction with
regularly varying tails at a finite right endpoint.

In [22] the authors consider the Gumbel maximum domain of attraction, where the double
exponential gives a logarithmic rate of convergence only, which is often insufficient in applications.
Another reason for considering this domain specifically is the fact that it is extremely broad,
and various applications require splitting it into reasonable, in some sense, sub-domains. For
example, this domain includes distributions whose tails are equivalent, for x → ∞, to the
tail of the Weibull distribution log(1 − F(x)) ∼ −Cxp, C, p > 0, as well as log-Weibull tail,
log(1− F(x)) ∼ −C(log x)p, C > 0, p > 1. Moreover, the exponents in the asymptotics can be
replaced by slowly varying at infinity functions. A wide variety of other distributions with heavier
(slower decaying) or lighter (faster decaying) tails belongs to the same domain. The Weibull and
log-Weibull classes of distributions are considered in detail in [22] as specific examples.

One of the principal recent approaches to the study of rates of convergence in the limit
theorem for the maxima has been an introduction of additional conditions on the distribution tail
behavior. Primarily this is the second-order condition suggested by de Haan [26]. Let us state
this condition in terms of the function γn(x).

The second-order condition for functions from MDA(Λ) with an infinite right tail. There
exists a sequence A(n) of constant sign, approaching zero as n→ ∞ and such that the limit

lim
n→∞

e−γn(x) − e−x

A(n)
= H(x) (8)

exists and is not identically zero or infinite.
This formulation is based on Theorem 2.3.8, [16]. It follows from the second-order condition

(see e.g. [16]) that A(n) is a slowly varying at infinity function of non-positive index ρ ≤ 0.
It is also known, see [27], that for the case of convergence to the Gumbel distribution we are
considering here, the function H is equal to

H(x) =
1
ρ

(
xρ − 1

ρ
− log x

)
, if ρ < 0, (9)

and
H(x) =

1
2

log2 x if ρ = 0.

Using the aforementioned Theorem 2.3.8, [16], and (4), one can obtain a somewhat different
asymptotic expansion,

P(Mn ≤ anx + bn) = exp
{
−e−x − A(n)H(x)(1 + o(1)

}
× exp

(
− 1

n

∞

∑
k=0

1
(k + 2)nk

(
1− F(anx + bn)

1− F(bn)

)k+2
)

.

We note that if ρ < −1, the main contribution to the speed of convergence to the double
exponential distribution is given by the second exponent. In the case ρ = −1, on the other hand,
one needs to know the behavior of the function A(n) = n−1ℓ(n) more precisely, i.e. how the
slowly varying function ℓ(n) behaves. In the case ρ > −1, the second term in the first exponent is
the main contributing factor to the rate of convergence.

Similar calculations can be carried out for the n-th order condition on the distribution tail
introduced in [28]. Let us state a recent estimate by Drees and de Haan (see [29]) for the rate of
convergence taking into account the accompanying law.
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If the condition (8) is satisfied with ρ < 0, see (9), then for bn = F←
(

e−1/n
)

and, correspondingly,
an = f (bn), and for any ε > 0, the following holds,

sup
x

e(1−ε)x
∣∣∣∣ Fn(anx + bn)− exp(−e−x)

A(n)
+

1
ρ

e−x+ρxe−e−x
∣∣∣∣→ 0

for n→ ∞.
Note that this can also be derived from the expansion (7).
It is also interesting to use the expansion (7) to study probabilities of large deviations in the

Gnedenko limit theorem. For example, Corollary 2.1, [29] and Theorem 5.3.12, [16], under suitable
restrictions, follow from the relation (7). [24] uses similar expansions for this purpose.

Scale in MDA(Λ). As we already mentioned, the Gumbel maximum domain of attraction
is extremely broad, and the idea of splitting it into parts and developing criteria for classifying
distributions into these sub-domains is quite reasonable. [22] proposes one such classification of
distributions with smooth tails, based on the von Mises representation. The first two “grades” in
this scale are the generalized distributions of Weibull and log-Weibull type, defined by functions
f (t) = Ct1−p, C, p > 0, and f (t) = Ct log1−p t, C > 0, p > 1 in the representation (3), respectively.
These distributions play an important role in financial and actuarial mathematics, in reliability
theory, and other industrial applications. Yet the information on distribution tails obtained
from the approximation provided by the Gnedenko theorem is far from complete. For example,
insurance premiums directly depend on the specific type of the tail of the distribution that
generates a given insurance event. Recently a number of studies appeared that aim to distinguish
tails of Weibull and log-Weibull type distributions, see for example [30], [31], [32] and their
bibliographies.

The continuation of the scale that begins with the two aforementioned classes of distributions
can proceed as follows. Distribution tails with f (t) = Ct(log log t)1−p, p > 1, are heavier than
Weibull and log-Weibull type ones. (Here C denotes some constant that could be different in
different contexts.) The number k of iterated logarithms in these expressions for f (t) could be
defined to be Gumbel’s index for the distribution. Then tails of distributions of Weibull type have
Gumbel’s index k = 0, log-Weibull type distributions have index k = 1, and so on. More details
can be found in [22].

Shubochkin in his thesis [33] determines convergence rates for approximations of distributions
of normalized maxima and their accompanying laws, see (7).

The definition of the scale the we presented above is not the only reasonable option, and
alternatives have been proposed. For example, Troshin in his thesis [34] considers an alternative
definition of Gumbel’s index, defined to be the smallest k = 0, 1, ... such that the integral∫ ∞

x0

a(t)dt
t2 log t log(2) t... log(k) t

.

converges. (Indices mean numbers of log ... log repeating.) The existence of such k for functions
from MDA(Λ) has been proved.

III. Models with dependence

One of the first follow-up questions that Gnedenko’s limit theorem elicits is whether its results
could be generalized to sequences of dependent and/or non-identically distributed random
variables. First results of this type, mostly concerning distributions of maxima of stationary
sequences, appeared back in the 60s and 70s in the works by Berman, Loynes, Cramér, and Lead-
better. The results obtained during this period are comprehensively covered in the monograph
[35] by Leadbetter, Lindgren and Rootzén.

A situation when a maximum over some collection of random variables behaves like a
maximum of independent random variables has a special name in the extreme value theory,
and is called extremal independence. For example, if {Xi}i≥1 is a sequence of random variables,
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with Fi the distribution function of Xi, and Mn = max{X1, . . . , Xn}, then this sequence possesses
extremal independence if

sup
x∈R

∣∣∣P(Mn ≤ x)−
n

∏
i=1

Fi(x)
∣∣∣→ 0, n→ ∞.

We note that if {Xi}i≥1 are identically distributed according to the (common) distribution function
F, and this sequence is extremely independent, then the distribution of the normalized maximum
converges to one of the three types of limit distributions from Gnedenko’s limit theorem, as long
as F satisfies the conditions of the theorem.

Stationary stochastic sequences provide an important example. Let us recall classical (in
extreme value theory) sufficient conditions for extremal independence of a stationary sequence,
namely the conditions D and D′ from [35]. Let {Xi}i≥1 be a (strictly) stationary sequence with a
marginal distribution function F. We say that it satisfies the condition D(un) for a sequence un if
for any integers 1 ≤ i1 < . . . < ip and j1 < . . . < jq ≤ n, for which j1 − ip ≥ l, the following holds,∣∣∣∣∣P(max(Xi1 , ..., Xip , Xj1 , ..., Xjq) ≤ un)− P(max

k∈[p]
Xik ≤ un)P(max

k∈[q]
Xjk ≤ un)

∣∣∣∣∣ ≤ αl,n, (10)

where αln ,n → 0 as n → ∞ for some index sequence ln = o(n). Furthermore, we say that the
stationary sequence {Xi}i≥1 satisfies the condition D′(un) for a sequence un if

lim sup
n→∞

n
[n/k]

∑
j=2

P(X1 > un, Xj > un)→ 0, k→ ∞ (11)

holds (here [·] is an integer part of a number). Then, if for independent copies of random
variables{Xi}i≥1 the conditions of Gnedenko’s limit theorem are satisfied for some sequences an
and bn, and the conditions D(un(x)) and D′(un(x)) are satisfied for the sequence un = anx + bn
for any x, then the sequence {Xi}i≥1 is extremely independent.

The conditions D and D′ play a foundational role in the extreme value theory for stochastic
models with dependence. The conditions have been slightly modified in [36] and [37] to extend
the result above to non-stationary sequences. Papers [38] and [39] extended it even further to sta-
tionary random fields on integer lattices, and [40] proved an equivalent result for non-stationary
random fields in dimension 2. The main technique that was used in all these proofs was the
so-called block method, where the domain of the stochastic process is split into non-overlapping
intervals in such a way that maxima over the intervals are asymptotically independent. Applica-
tions of this method to random fields required very complicated versions of the conditions D and
D′ which hindered further progress along similar lines of attack. This issue was finally overcome
in [41] (see full text in [42]). These papers derived the conditions for extremal independence of
random variables that constitute so-called stochastic systems. A stochastic system here is defined
as a sequence (X1(n), . . . , Xd(n)) ∈ Rd of random vectors of varying dimensions, where d = d(n)
is some sequence of positive integers. We should also mention here [43] whose results can be
used to derive asymptotics for the distribution of the maxima of a stochastic system under certain
conditions. Stochastic systems generalize many models such as stochastic sequences, stochastic
fields and triangular arrays. They are rich enough to even represent complicated objects such as
random networks and graphs that are otherwise quite challenging to analyze.

Gaussian stochastic sequences, a special case of stochastic sequences, exhibit extremal inde-
pendence under rather weak assumptions. Let {Xi}i≥1 be a Gaussian random sequence with
mean 0 and covariance function r(i), where r(0) = 1. Berman [44] found a simple condition for
the convergence of the distribution of the maximum of the sequence {Xi}i≥1, with the same nor-
malization as for the maximum of independent Gaussian variables in Gnedenko’s limit theorem,
to the Gumbel distribution. The Berman condition simply requires that

r(n) ln n→ 0, n→ ∞.
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It has been established that the Berman’s condition implies the conditions D and D′ for stationary
Gaussian sequences. Hüsler in [36] and [37] showed that under a certain generalization of the
Berman’s condition, a non-stationary Gaussian sequence is extremely independent. Pereira [45]
obtained this result for Gaussian non-stationary random fields in R2, while Jakubowski and
Soja-Kukieła in [46] extended it to Gaussian stationary fields of arbitrary dimension.

It is interesting that the Berman’s condition is close to being necessary (as well as sufficient)
for extremal independence of stationary Gaussian sequences. Specifically, Mittal and Ylvisaker
in [47] showed that if r(n) ln n→ γ > 0 as n→ ∞, then the limit distribution of the normalized
maximum of a Gaussian stationary sequence is completely different, and is a convolution of the
Gumbel distribution and the Gaussian one. In this case the sequence does not even possess a
phantom distribution function (to be defined shortly).

The extremal independence property is far from being always satisfied, and processes that
appear in applications often exhibit a high degree of dependence. It turns out that in many cases,
the behavior of the maximum of a stationary sequence can be described in terms of the so-called
extremal index. According to the definition from [35], a stationary sequence {Xi}i≥1 has the
extremal index θ ∈ [0, 1], if for any τ > 0 there exists a sequence un(τ) such that

n(1− F(un(τ)))→ τ and P(Mn ≤ un(τ))→ e−θτ .

It follows, in particular, that∣∣P(Mn ≤ un(τ))− Fθn(un(τ))
∣∣→ 0, n→ ∞,

so that the maximum of n terms of the stationary sequence behaves like the maximum of θn
independent copies of X1. It should now be obvious that the situation we considered just before
corresponds to the case θ = 1. The notion of the extremal index is of paramount importance
in applications of extreme value theory, because one can often reduce a sequence of real-world
observations to a stationary sequence, or simply consider it to be such.

Sufficient conditions for the existence of the extremal index were found by Chernick [48],
and they look like this. Let us assume that for τ > 0 a sequence un(τ) is defined such that
n(1− F(un(τ)))→ τ as n→ ∞, and the condition D(un(τ)) is satisfied for any such τ > 0. Then,
if for some τ the sequence P(Mn ≤ un(τ)) converges, then the extremal index exists for {Xi}i≥1.
It is interesting to note that the criterion for the existence of the extremal index has only been
found relatively recently, [49], see also Proposition 11.4, [23]. Various other properties of the
extremal index, as well as methods for its estimation, are covered in Chapter 10 of [50].

The extremal index provides a remarkably convenient mechanism for describing extremal
dependence in stationary sequences. A single index, however, is not sufficient for describing
extremal dependence of stationary random fields on integer lattices. Various attempts to extend
the idea of the extremal index to random fields and use it to analyze extremal dependence have
been undertaken in, for example, [51] and [52], with more complex models considered in [53].
However, [54] showed that the extremal index of a stationary random field on Zd can materially
depend on the direction of growth of a multi-index n = (n1, . . . , nd).

A natural generalization of the notion of the extremal index is provided by the notion of a
phantom distribution function, as discussed in [55]. We say that the distribution function G is the
phantom distribution function for the stationary sequence{Xi}i≥1 with the marginal distribution
function F if

sup
x∈R

|P(Mn ≤ x)− Gn(x)| → 0, n→ ∞.

It is not hard to see that if G could be chosen to be of the form Fθ , then the extremal index of the
sequence {Xi}i≥1 is θ. The existence of a phantom distribution function for a stationary sequence
is quite a common property. For example, it is shown in [49] that any α-mixing stationary
sequence with a continuous marginal distribution function has a phantom distribution function.
The same paper suggests a simple condition for the existence of the phantom distribution function:
it exists if and only if for some sequence νn and γ ∈ (0, 1) the convergenceP(Mn ≤ νn)→ γ holds
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as n→ ∞, and for all T > 0 the condition BT({νn}):

sup
p,q∈N:p+q≤T·n

∣∣P(Mp+q ≤ νn)− P(Mp ≤ νn)P(Mq ≤ νn)
∣∣→ 0, n→ ∞

is satisfied. Clearly the condition BT({νn}) resembles Leadbetter’s condition D. Theory of
phantom distribution functions for models other than stationary sequences is still in its infancy.
In this regard it is worth mentioning [54] where, for the first time ever, the question of existence
of phantom distribution functions for stationary random fields on integer lattices is considered.

References

[1] Fisher, R. A. and Tippett L. H. C. (1928). Limiting forms of the frequence distributions of
the largest or smallest member of a sample. Proceedings of Cambridge Philosophical Society,
24:180–190.

[2] Gnedenko, B.V. (1941). Limit theorems for maximum term in a random series. Doklady of
Russian Academy of Sciences, 32(1):7–9. In Russian.

[3] Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of Mathematics, 44:423–453.

[4] Hashorva, E., Padoan, S. A. and Rizzelli S. (2021). Multivariate extremes over a random
number of observations. Scandinavian Journal of Statistics, 48(3):845–880.

[5] Debicki, K. and Hashorva, E. (2017). On extremal index of max-stable processes. Probability
and Mathematical Statistics, 37(2):299–317.

[6] Hashorva, E. and Kume, A. (2021). Multivariate max-stable processes and homogeneous
functionals. Statistics and Probability Letters, 173:109066.

[7] Hashorva, E. (2021). On Extremal Index of Max-Stable Random Fields (2021). Lithuanian
Mathematical Journal, 61(2):217–238.

[8] Freitas, A. and Hüsler, J. (2003). Condition for the convergence of maxima of random
triangular arrays. Extremes 6(4):381–394.

[9] Morozova, E. and Panov, V. (2021). Extreme Value Analysis for Mixture Models with Heavy-
Tailed Impurity. Mathematics, 9(18):2208.

[10] Dkengne, P.S., Eckert, N. and Naveau, P. (2016). A limiting distribution for maxima of
discrete stationary triangular arrays with an application to risk due to avalanches. Extremes,
19(1):25–40.

[11] Nadarajah, S. and Mitov, K. (2002). Asymptotics of Maxima of Discrete Random Variables.
Extremes, 5:287–294.

[12] Mitov, K.V. and Nadarajah, S. (2021). Limit distributions for the maxima of discrete random
variables under monotone normalization. Lithuanian Mathematical Journal, to appear.

[13] Lebedev, A.V. (2008). Maxima of random particles scores in Markov branching processes
with continuous time. Extremes, 11(2):203–216.

[14] Lebedev, A.V. (2019). Multivariate Extremes of Random Scores of Particles in Branching
Processes with Max-Linear Heredity. Mathematical Notes, 105:376–384.
With: Lebedev, A.V. (2020). Erratum to: Multivariate Extremes of Random Scores of Particles
in Branching Processes with Max-Linear Heredity. Mathematical Notes, 107:1046.

23



V. I. Piterbarg, I. V. Rodionov
CERTAIN MODERN DEVELOPMENTS IN STOCHASTIC EXTREME
VALUE THEORY ON OCCASION OF 110th BIRTHDAY OF GNEDENKO

RT&A, No 4 (65)
Volume 16, December 2021

[15] Matsak, I. (2019). Asymptotic Behavior of Maxima of Independent Random Variables.
Lithuanian Mathematical Journal, 59:185–197.

[16] de Haan, L. and Ferreira, A. Extreme Value Theory. An Introduction. Springer, New York,
2006.

[17] Liu, C. and Liu, B. (2013). Convergence rate of extremes from Maxwell sample. Journal of
Inequalities and Applications, 477.

[18] Peng, Z., Nadarajah, S. and Lin, F. (2010). Convergence Rate of Extremes for the General
Error Distribution. Journal of Applied Probability, 47(3):668-679.

[19] Gnedenko, B. V. and Kolmogorov, A. N. Limit Theorems for Sums of Independent Random
Variables. Addison-Wesley, Cambridge, Mass, 1954.

[20] Senatov, V. V. Cental Limit Theorem: Approximation accuracy and asymptotical expansions.
“LIBROCOM”, 2009 (in Russian)

[21] Balkema, A. A., and de Haan, L. (1972). On R. von Mises’ condition for the domain of
attraction of exp{−e−x}. Annals of Mathematical Statistics, 43:1352–1354.

[22] Piterbarg, V.I., Scherbakova, Yu. A. (2022). On accompanying measures and asymptotic
expansions in limit theorems for maximum of random variables. Theory of Probability and its
Applications, in press, see also https://arxiv.org/abs/2010.10972.

[23] Novak, S.Y. Extreme Value Methods with Applications to Finance, Chapman & Hall CRC,
2012.

[24] Resnick, S.I. Extreme values, regular variation, and point processes. Springer-Verlag, New
York Berlin Heidelberg, 1987.

[25] Lin, F., Zhang, X., Peng, Z. and Jiang, Y. (2011). On the Rate of Convergence of STSD
Extremes. Communications in Statistics, Theory and Methods. 40(10):1795–1806.

[26] de Haan, L. (1984). Slow variation and characterization of domains of attraction. In Statistical
Extremes and Applications (Tiago de Oliveira, Ed.), D. Reidel, Dordrecht, 31–48.

[27] Resnick, S. and de Haan, L. (1996). Second-order regular variation and rates of convergence
in extreme-value theory. Annals of Probability, 24(1):97–124.

[28] Wang, X.Q. and Cheng, S. H. (2005) General Regular Variation of the n-th Order and 2nd
Order Edgeworth Expansions of the Extreme Value Distribution (I, II). Acta Mathematica
Sinica, English Series, 2005, 21(5):1121–1130; 2006, 22(1):27–40.

[29] Drees, H., de Haan, L. and Li, D. (2003). On large deviations for extremes. Statistics and
Probability Letters, 64:51–62.

[30] Goegebeur, Y. and Guillou, A. (2010). Goodness-of-fit testing for Weibull-type behavior.
Journal of Statistical Planning and Inference, 140(6):1417–1436.

[31] Rodionov, I.V. (2018). On discrimination between classes of distribution tails. Problems of
Information Transmission, 54(2):124–138.

[32] Kogut, N.S. and Rodionov, I.V. (2021). On tests for distinguishing distribution tails. Theory of
Probability and its Applications, 66(3):348–363.

[33] Shubochkin, E. I. (2021). Asymptotical behavior in Gnedenko limit theorem for maximum of
random variables from Gumbel maximum domain of attraction. Diploma thesis, Lomonosov
Moscow State University (in Russian).

24



V. I. Piterbarg, I. V. Rodionov
CERTAIN MODERN DEVELOPMENTS IN STOCHASTIC EXTREME
VALUE THEORY ON OCCASION OF 110th BIRTHDAY OF GNEDENKO

RT&A, No 4 (65)
Volume 16, December 2021

[34] Troshin, V. V. (2018). On rate of convergence in B. V. Gnedenko limit theorem. Diploma
thesis, Lomonosov Moscow State University (in Russian).

[35] Leadbetter, M.R., Lindgren, G. and Rootzén, H. Extremes and Related Properties of Random
Sequences and Processes. Springer, New York, 1983.

[36] Hüsler, J. (1983). Asymptotic approximation of crossing probabilities of random sequences.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 63(2):257–270.

[37] Hüsler, J. (1986). Extreme Values of Non-Stationary Random Sequences. Journal of Applied
Probability, 23(4):937–950.

[38] Leadbetter, M. and Rootzén, H. (1998). On Extreme Values in Stationary Random Fields. In:
Stochastic Processes and Related Topics. Trends in Mathematics. Birkhäuser, Boston, 275–285.

[39] Ling, C. (2019). Extremes of stationary random fields on a lattice. Extremes, 22:391–411.

[40] Pereira, L. and Ferreira, H. (2006). Limiting crossing probabilities of random fields. Journal of
Applied Probability, 3:884–891.

[41] Isaev, M., Rodionov, I.V., Zhang, R. and Zhukovskii, M.E. (2020). Extreme value theory for
triangular arrays of dependent random variables. Russian Mathematical Surveys, 75(5):968–970.

[42] Isaev, M., Rodionov, I., Zhang, R. and Zhukovskii, M. Extremal independence in discrete
random systems. arXiv:2105.04917.

[43] Arratia, R., Goldstein, L. and Gordon, L. (1989). Two Moments Suffice for Poisson Approxi-
mations: The Chen-Stein Method. Annals of Probability, 17(1):9–25.

[44] Berman, S.M. (1964). Limit theorems for the maximum term in stationary sequences. Annals
of Mathematical Statistics, 35:502–516.

[45] Pereira, L. (2010). On the extremal behavior of a nonstationary normal random field. Journal
of Statistical Planning and Inference, 140:3567–3576.

[46] Jakubowski, A. and Soja-Kukiela, N. (2019). Managing local dependencies in asymptotic
theory for maxima of stationary random fields. Extremes, 22:293–315.

[47] Mittal, Y., and Ylvisaker, D. (1975). Limit distributions for the maxima of stationary Gaussian
processes. Stochastic Processes and their Applications, 3:1–18.

[48] Chernick, M.R. (1981). A limit theorem for the maximum of autoregressive process with
uniform marginal distributions. Annals of Probability, 9:145–149.

[49] Doukhan, P., Jakubowski, A. and Lang, G. (2015). Phantom distribution functions for some
stationary sequences. Extremes, 18:697–725.

[50] Beirlant, T., Goegebeur, Y., Segers, J. and Teugels, J. Statistics of extremes. Theory and
applications. Wiley, Wiley series in probability and statistics, London, 2004.

[51] Ferreira, H. and Pereira, L. (2008). How to compute the extremal index of stationary random
fields. Statistics and Probability Letters, 78:1301–1304.

[52] Turkman, K.F. (2006). A note on the extremal index for space-time processes. Journal of
Applied Probability, 43:114–126.

[53] Goldaeva, A.A. and Lebedev, A.V. (2018). On extremal indices greater than one for a scheme
of series. Lithuanian Mathematical Journal, 58(4):384–398.

[54] Jakubowski, A., Rodionov, I. and Soja-Kukiela, N. (2021). Directional phantom distribution
functions for stationary random fields. Bernoulli, 27(2):1028–1056.

[55] O’Brien, G. (1987). Extreme values for stationary and Markov sequences. Annals of Probability,
15:281–291.

25



A. V. Zorine
FEDOTKIN’S 80

MIKHAIL ANDREEVICH FEDOTKIN:
A NONSTATISTICAL ANALYSIS 

OF THE FIRST 80 YEARS OF HIS LIFE
Andrei V. Zorine

•
Lobachevsky University

andrei.zorine@itmm.unn.ru

Abstract

Professor of the Lobachevsky University of Nizhni Novgorod celebrated his 80th anniversary in May, 
2021. This paper touches some of his personal histories, and his scintific contributions.
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This paper is dedicated to the life and scientific achievements of Mikhail Andreevich Fedotkin,
on the occasion of his 80th anniversary. It is not an easy task to present the topic better than the
protagonist did himself in his autobiographical book [1]. No one has a more complete knowledge
of his life facts than he does. So, we may only revew several turning points in his biography,
maybe in a half-joking tone sometimes, with all our love and respect to the man of the hour.

1. His life

Figure 1: Kulikovo Field surroundings, former
Tuzhilki village and Kiselevka village
marked with crosses in the bottom -right
corner

May, 1th, 1941 was Thursday. Soviet Union was
celebrating the May Day. Official governemen-
tal ‘Pravda’ newspaper reported about achieve-
ments of Soviet oil workers in socialist emulation.
Workers of the V.V. Kuybyshev Locomotive Fac-
tory at Kolomna fulfilled the four-month norm at
109,6 percents. Vasily Smyslov recieved a USSR
grandmaster rank from All-nion Committee for
physical culture and sports. There are also sum-
maries of the German commans on the sinking
of convoys, reports by Reuters about evacuation
of a part of Plymouth, on the actions of British
aviation, reports on military operations in Africa
and the Mediterranean Sea.

On the May Day, 1941 a child was born to
Andrei Artemyevich and Ksenia Prokofievna Fe-
dotkin. He was the seventh child in the family.
He was named Mikhail.

His birthplace, Kiselevka village, lies in Cen-
tral Russia, 400 kilometers to the south of
Moscow, in the rich-soiled ‘chernozem’ fields. Not far from the place we find the famous
historical Kulikovo Field (where the battle of Kulikovo took place on September, 8, 1380 between
the armies of Golden Horde and joint Russian prinipalities under the command of Prince Dmitry
Donskoy), Yasnaya Polyana (an estate where Leo Tolstoy lived and wrote his famous masterpieces
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like ‘War and Piece’ and ‘Anna Karenina’), and Konstantinovka village (where Sergei Yesenin
was born, on of the most popular and well-known poets of the 20th century).

The place and epoch definitely influenced his life. He’d got interested in the game of chess
and begged his elder brother to get him a set of pieces and a chessboard, he still keeps chessbooks
on his bookshelves, and he solves chess compositions easily in his 80. The blazing war in Europe
killed his father in 6 months after his birth, and the burden of his large family survival fell on
his 36-years old mother. That issue of ‘Pravda’ oracular. And the region was unique: together
with his school teacher and his classmates he went to old villages in the area to search for new
historical knowledge about his birthplace. One of the villages was Lyapunovka. Later, using this
data, he would reconstruct the genealogy of Lyapunov family who gave not only world-famous
mathematician A.M. Lyapunov, but also several other renowned statesmen, scientists, doctors,
and music-writers. Fedotkin even hipothesized a missing link in the family tree [1].

What else might have influenced his life trajectory? If one looks at Mikhail’s natal horoscope
just for fun, he will discover that almost all planets are in the constellation of Taurus together with
the Sun, and only the Mars planet is in Aquarius. Astrology books claim that Mars in Aquarius
signifies a searching man, eager for new approaches to even traditional problems. Aspiration to
bring together like-minded people, his confederates, to give them an interesting task, challenging
problems, to administrate them and equip with the necessary amenities. Should we trust this
elder form of data-science? A quick check using a computer astronomy program shows that
Mars was in Capricorn rather than in Aquarius that moment of time. But what is surprising, this
characteristic of a ‘Mars in Aquarius’ fits Mikhail Fedotkin quite nicely.

He went regulary by feet to elementary school in Tuzhilki, a village at distance of 4 kilometers
from Kiselevka. The school occupied the house which used to belong to Fedotkins family more
than 10 years before that and now no more. After graduation from school in 1958 he finally
enrolls to the Gorky State University. That year a novel educational program ‘computational
mathematics’, focused on cybernetics and use of computers, was opened in the university’s
department of physics and mathematics.

Figure 2: At age of 7 y.r. (on the left), 17 y.o. (in the middle), 27 y.o. (on the right)

In 1963 he was graduated from Gorky State University with diploma in mathematics and
went to graduate school to specialize in theoretical cybernetics under the supervision of Yuri
Isaakovich Neimark, one of the co-founders of the Research Institute for Applied Mathematics
and Cybernetics (NII PMK in Russian) of the Gorky State University, and of the Department of
Computational Mathematics and Cybernetics (1963). It was the first department of cybernetics in
the Soviet Union. For example, the Moscow State University opened a similar department only
10 years later.

In his graduate research M.A. Fedotkin developed a mathematical theory of road-traffic control
by means of traffic-lights. He defended his dissertation in 1968. His opponents at the defense
were renowned scientists Igor Nikolaevich Kovalenko (1935 – 2019) and Alexander Dmitrievich
Solovyev (1927 – 2001).

Beginning from 1968, on Mondays M.A.Fedotkin goes from Gorky to Moscow and back by
train to be a listener at the Seminar in probability theory mathematical statistics, and stochastic
processes, organized by academicians Andrei Nikolaevich Kolmogorov and Boris Vladimirovich
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Gnedenko. He continues delevopment of his own mathematical methods and models of control
for traffic flows. He gradually becomes one of top researchers in controlled queueing systems.
All his research is done while in positions at NII PMK and at the Chair of Control Theory and
Systems Dynamics of the Gorky State University. By year 1980 he writes his Doctoral dissertation.
It was defended in 1984 in Moscow State University under the speciality 01.01.05 – Probability
theory and mathematical statistics. The official opponents were academician V.S. Korolyuk,
corresponding member of Academy S.V. Yablonsky and prof. G.P. Klimov.

As a newly-ranked Doctor of physical and mathematical sciences, he attains the opening of
the Laboratory of methods of probability theory and mathematical statistics within NII PMK in
1985, and in 1986 he opens his own Chair of applied probability theory within the Department
of Computational Mathematics and Cybernetics of the Gorky State University. Although Chairs
of probability theory and mathematical statistics existed at several universities by that time, it
was the first Chair in applied probability theory in the country. Its creation was voted for and
supported by A. N. Kolmogorov, Yu. V. Prokhorov, B. V. Gnedenko, V. S. Korolyuk.

Figure 3: M.A. Fedotkin read a lecture for MS students of Lobachevsky University

For his creative growth, M.A. Fedotkin gives credit to the luck and happiness of meet-
ings and conversations with many famous scientists, here are a few (in alphabetical order):
T.A Azlarov, G.P. Basharin, Yu.K. Belyaev, L.N. Bolshev, A.A. Borovkov, N.P. Buslenko, B.V. Gne-
denko, B.I. Grigelionis, V.M. Zolotarev, I.N. Kovalenko, A.N. Kolmogorov, V.S. Korolyuk, J.P. Ku-
bilus, A.A. Lyapunov, N.N. Moiseev, N.N. Krasovsky, Yu.I. Neimark, B.N. Petrov, Yu.V. Prokhorov,
Yu.A. Rozanov, T.A. Sarymsakov, B.A. Sevastyanov, A.G. Sigalov, S.H. Sirajdinov, A.V. Skorokhod,
A.D. Solovyev, V.A. Statulevicius, I.A. Ushakov, A.N. Shiryaev, S.V. Yablonsky.

Apart of over 290 papers, he authored and co-authored text books and monographs on
applied probability theory [2, 3, 4, 5, 6]. In the article [7] written by I.N. Kovalenko (2018),
M.A. Fedotkin is called the leader of the Nizhni Novgorod mathematical school in the area of
control of transportation flows.

2. His science

Scientific interests of M.A. Fedotkin lay in the following areas:
1) Dymanic systems for control of transportation flows.
2) Theory of controlled queueing systems with variable structure.
3) Adaptive stochastic control systems.
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Figure 4: Books written by M.A. Fedotkin

4) Marked point processes and reliability theory.
5) Theory of functionals of sample paths of stochastic processes.
6) Cybernetic approach to construction, analysis, and optimization of probabilistic models of

evolutionary experiments with control.
In his autobiographical book [1], M.A. gives extensive lists of references to his own works for
each topic.

Below we’ll review some of his contributions.

Application of Markov chains with incomes to transportation traffic control problems. In
1960 R.A. Howard published his book [8] (a Russian translation appeared soon in 1964) where
a new branch of mathematics, dynamic programming, was applied to control problems for
random processes. In his search for new approaches to transportation traffic control problems,
M.A. Fedotkin proposed a mathematical model of a controlled intersection with a traffic-light in
form of a multivariate stochastic process, and applied then Howard’s policy iteration algorithm
to generate optimal light-switching schemes. This model together with its numerical study was
published in [9] and became a chapter in Candidate of sciences dissertation. Later, this research
was continued by his Yu.I. Neimark and one Neimark’s PhD students A.M. Preobrazhenskaya
who also defended a dissertation on that topic in 1981.

Bartlett’s traffic flow statistics. In the statistical theory of transportation flows M.A. Fedotkin
also broke barriers and proposed a new viewpoint at the subject. He proposed a so-called
‘non-local description’ of a flow. In 1963 an English statistician M.S. Bartlett published a paper [10]
with some sample data on inter-arrival times in vehicular flow near London and demonstrated
that a classical Poisson model can’t fit these data. Subsequent analysis of the data by D. Cox,
P. Lewis, and others rejected several more models, e.g. a renewal process model. Fedotkin came
to a conclusion that the reason for the failure was in desire to fit a traditional counting process
model which observes each single arrival. He proposed to count arrivals only over large intervals
of time. Since vehicles on a road move in groups with a slow vehicle in front, this idea seemed
reasonable. Fedotkin splitted the Bartlett’s data into ‘groups of vehicles’ and then he was able to
fit a probability distribution for group size. In particular, the following probability distribution
for the group size η worked:

Pr({η = 1}) = 1− p, Pr({η = k}) = p(1− q)qk−2, k = 2, 3, . . . (0 < p, q < 1). (1)

It was called the Bartlett’s distribution by M.A. Fedotkin and his disciples. Further development of
this approach resulted in several heuristic flow partitioning algorithms, and in a queueing model
for vehicular group formation that explained, after 20 years, why the Bartlett distribution (1) was
likely [3, Ch. 10] to explain road traffic. This branch of study was continued by M.A. Fedotkin’s
co-workers E.V. Kuvykina, L.N. Anisimova, M.A. Rachinskaya, E.V. Kudryavtsev.

Non-local description of a flow. From a classical point of view, a flow is just a stochastic
sequence 0 6 τ1 6 τ2 6 . . . of instants when new arrivals occur. Experience from having analysed
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Bartlett’s data led to the notion of a non-local description of a flow [11]. Basically, it can be
defined as a marked point process{(

τ
(obs)
i , η

(obs)
i , νi

)
; i = 1, 2, . . .

}
where τ

(obs)
i is an observation moment, η

(obs)
i is the number of new arrivals during the time

interval (τ(obs)
i−1 , τ

(obs)
i ], and νi ∈ M is a mark of all customers arriving during the interval, i = 1, 2,

. . . (M denotes the set of possible marks). For example, to describe traffic flows we can include
the traffic-light state into the marks. The flexibility of this new approach comes from the fact that,
when the choice of the observational moments and marks is successful, we can build, analyze,
and optimize quite sophisticated real-life systems not only in transportation traffic control, but
also in mass production, information technologies, medicine etc.

Chung functionals. Reflecting of possible optimization problem statements in traffic control,
M.A. Fedotkin came up with what he has called ‘Chung functionals’. They were named after K.-L.
Chung who extensively used taboo probabilities (transition probabilities with prohibited set) to
study Markov chains. Let {Xn; n = 0, 1, . . .} be a denumerable Markov chain with the state-space
S and f (·) : S → R a suitable function. Let S be partitioned into disjoint sets S0 (admissible
states), S+ (target states), and S− (forbidden stated). Define

τ = inf{i : Xi ∈ S+, Sj 6∈ S−, j < i}, ζ =
τ

∑
i=0

f (Xi),

J(x; S0, S+, S−) = E(ζ | {X0 = x, τ < ∞}).

Here the Chung functional J(x; S0, S+, S−) can be interpreted as the total income (or the total cost)
of a Markovian random walk from the initial state x ∈ S0 until exit from S0 to S+ without visits
to the prohibited set S− (think of the problem of unloading a crossroads without making even
larger jams). In his paper [12] in the famous Doklady AN SSSR, recommended for publication by
academician A.N. Kolmogorov, M.A. Fedotkin constructed an example where an infinite system
of linear equations for the quantities {J(x; S0, S+, S−) : x ∈ S0} might have several solutions, only
one of them solved the original probabilistic model (before that, everybody believed such a system
should have a unique solution).

This sort of optimization problems was applied to transportation traffic control by N.M. Goly-
sheva and to priority queuing systems by A.V. Zorine.

Systems with varying structure and cybernetic approach Different particular models of qeue-
ing situation with conflicting flows and algorithmic control, e.g. in road traffic control at
intersections with complex crossing geometry, airtraffic control over takeoffs and landings of
aircrafts, microwelding machines control for microchip production lines, led M.A. Fedotkin to
invention of a unified framework for building adecvate queueing models, which are relatively
feasible for analytical study and optimization. He called this framework a ‘Theory of descrete
systems with varying structure of service of quasi-regenerative flows’ (this was the title of his
doctoral dissertation). This framework assumed a non-local (integral) description of the source
data, different operation modes of the server and the possibility of structural changes in at least
one of the elements of a queueing system. Also, he advocated addition of new obligatory blocks
to a typical queueing system, such as ‘saturation flows’, ‘service algorithm’ (explicitly spelled out
as some mathematical entity, e.g. a graph), queuing discipline as a mathematical relation which
specifies the actual amount of serviced customers as a function of the numbers in the queue, new
arrivals, and saturation flows. This stage of development can be found in [13, 14].

Later he embedded this framework into even more general contept of an abstract control
system — the term was introduces by pioneers of Soviet cybernetics Aleksei Andreevich Lyapunov
and Sergey Vsevolodovich Yablonsky [15]. According to them, any abstract control system
consists of only six functional elements: input and output poles, external and internal memories,

RT&A, No 4 (65)
Volume 16, December 2021

30



A. V. Zorine
FEDOTKIN’S 80

information processing units for each memory. The link between the two approaches became
clear after conversations with A.A. Lyapunov during scientific events, and discussion of M.A.’s
dissertation with S.V. Yablonsky, an official opponent. Fedotkin added a (possibly random)
external environment and demonstrated that this approach can solve not only queueing problems,
but also management problems in hispital administration [6, 16, 17]. Moreover, this approach
allows to solve a hard problem of studying output flows from controlled queueing systems.

This area of research is the richest with respect to the number of produced models and
disciples and followers. O.A.Vaganov, E.V. Kuvykina, N.V.Litvak, A.A. Vysotsky, A.N. Kudelin,
A.V. Zorine, E.V. Proidakova, A.M. Fedotkin, M.A. Rachinskaya, E.V. Kudryavtsev.
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Abstract 

In this study, we analyze a multi-server queueing model with two successive optional services. 
Each server provides FES as well as two optional services to each arriving customer, for a total of 𝑐 
servers. Every new customer requires the first essential service (FES). The customer may quit the 
system with probability (1 − 𝑟!) or choose optional services supplied by the same server after 
finishing the FES. With probability 𝑟!, customer chooses the first optional service (OS - 1). 
Following that, the customer has the option of joining the second optional service (OS - 2) with 
probability 𝑟" or leave the system with probability (1 − 𝑟"). We obtain the steady-state probability 
distributions by applying matrix-geometric method. We also derive a number of performance 
measures of the queueing model. Sensitivity analysis is used to investigate the impact of various 
parameters on performance of the queueing model.  

Keywords: queue, multi-server,  first essential service, optional services, matrix-geometric method 

I. Introduction

A common goal of service systems is reducing customer waiting times, which is usually achieved 
by using faster services or hiring more servers. Various fields like call centers, hospitals, 
supermarkets, and other situations that occur every day make use of multi-server queues. In 
classic works like Medhi [15] and Gross, Shortle, Thompson, and Harris [5], numerous results have 
been obtained in all aspects of the 𝑀/𝑀/𝑐 queue. The steady-state distribution of a truncated 
multi-channel queueing system with customers’ impatience and general balk function has been 
considered by Abou-El-Ata and Hariri [1]. For more research topics regarding 𝑀/𝑀/𝑐 queues, 
refer to Kumar [9], Levy and Yechiali [13], Li and Stanford [11], Mora [16], Bouchentouf et al. [3] 
and the references therein. 
Real-time service systems have instances where everyone needs the first essential service (FES) and 
only a few others need optional services provided by the same server. Madan [14] was the first to 
suggest an optional second service in an 𝑀/𝐺/1 queueing system using the supplementary 
variable approach. Similarly, Ke [6] analyzed a queueing model using startup time, in which all 
arriving customers need FES, while some may require additional 𝐽 optional services. Jain et al. [10] 
investigated multiple types of optional services and vacations for an unreliable server in an 𝑀/𝐺/1 
queue, in which the customer may prefer to select an optional service with probability 𝑟" or depart 
from the system with probability (1 − 𝑟"). Further, the customer may also join for any one of 𝑖 (2 ≤
𝑖 ≤ 𝑙) optional services. In a study by Ke et al. [7], they examined an 𝑀/𝑀/𝑐 retrial queue with an 
additional optional service. In Yang et al. [19], they discussed an 𝑀/𝑀/𝑅 queueing model with a 
second optional channel and obtained steady-state probabilities and various system performance 
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measures by using a matrix-geometric method. Later, Ke et al. [8] extended this model to unlimited 
capacity. Research on a variety of queueing models dealing with optional services is available in Li 
and Wang [12], Yang and Chen [18], Anitha et al. [2], Chandrika and Kalaiselvi [4], etc. 
There has been no research on a multi-server queueing model with two successive optional 
services despite the vast body of literature. The combination of multiple servers and successive 
optional services gives the queueing model more realism and versatility. In practice, there are 
several instances in which services are provided in stages, for example, once a customer enters 
multi-channel service facilities, they may proceed to the next stage in turn after finishing the 
previous stage. This applies to many different fields, including manufacturing systems, 
transportation systems, telecommunications, and many daily operations. The main objective of this 
study is to explore the steady-state behavior of an 𝑀/𝑀/𝑐 queue with one essential service and two 
successive optional services. 
The remainder of this paper is organized as follows. Section 2 presents a model description. 
Section 3 contains the mathematical formulation of the proposed queueing model. In Section 4, we 
apply a matrix geometric approach to find the steady-state solution. The system characteristics are 
described in Section 5. Section 6 is devoted to present numerical illustrations of the queueing 
model through practical application. Finally, we wind up our study with conclusions in Section 7. 
 
 

II. Description of the Model 
 
Consider a multi-channel queueing model with infinite capacity, FES, and two successive optional 
services. The pictorial representation of the model is shown in Figure 1.  
The following is a description of system’s fundamental operation.  
 

 
                                                            Figure  1: Model diagram 
 
1.  Arrival pattern follows Poisson process with parameter 𝜆. There are 𝑐 number of servers and 
each server provides FES as well as two optional services to each arriving customer. 
2.  After completing the FES, customer may leave the system with probability (1 − 𝑟!) or choose 
optional services provided by the same server. Customer opts for first optional service (OS - 1) 
with probability 𝑟! (0 ≤ 𝑟! ≤ 1). After this, customer may join for second optional service (OS - 2) 
with probability 𝑟" (0 ≤ 𝑟" ≤ 1) or may quit the system with probability (1 − 𝑟"). During FES, OS - 
1 and OS - 2, the service times are exponentially distributed with rates of 𝜇!, 𝜇", and 𝜇#, 
respectively.  
3.  The customer quits the system as soon as OS - 2 is completed, and the next consumer in the 
queue is allocated to FES. Each server can only serve one customer at a time and can only deliver 
one of three services (FES, OS - 1, OS - 2) at any given instant.  
4.  Upon arrival, the customer finds that all the servers are busy and must wait in the queue until 
one becomes available. 
 
Practical Application 
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This model has real-time applications in motor vehicle service centers. The general services of 
vehicles include checking spark plugs, brake fluid, brake discs, checking for the normal 
functioning of lights, etc., which are mainly required by all vehicles. Engine oil replacement service 
is based on the distance traveled by the vehicle. Vehicles that have reached the certain miles enter 
the engine oil replacement service facility. After changing the oil, the mechanic performs the task 
of checking the oil filter. If it is misaligned or loose, it can be replaced. In this scenario, vehicles, 
mechanics, general service, engine oil replacement, and oil filter replacement, respectively, 
correspond to arrivals, servers, FES, OS - 1, OS - 2 in the queueing terminology.  
 

III. Mathematical Formulation of the Model 
 
Let 𝐿(𝑡) be the number of customers in the FES, 𝐽"(𝑡) be the number of customers in OS - 1, 

and 𝐽#(𝑡) be the number of customers in OS - 2 at time 𝑡. The process {(𝐿(𝑡), 𝐽"(𝑡), 𝐽#(𝑡)), 𝑡 ≥ 0} 
defines a continuous-time Markov process with state space 

𝜒 ={(𝑖, 𝑗", 𝑗#): 𝑖 ≥ 0, 𝑗" = 0,1,2, . . . , 𝑐, 𝑗# = 0,1,2, . . . , 𝑐. }. 
It is noted that if 𝑖 + 𝑗" + 𝑗# ≤ 𝑐, the customer will receive the service immediately, if 𝑖 + 𝑗" + 𝑗# > 𝑐, 
the newly arrived customer must wait in the queue. 
We define the following steady-state probabilities for mathematical formulation. 

𝑃$,&!,&" = Probability that 𝑖 number of customers in the FES, 𝑗" number of customers in OS - 
1, and 𝑗# number of customers in OS - 2, 	𝑖 ≥ 0, 0 ≤ 𝑗", 𝑗# ≤ 𝑐.  

 

Steady-State Equations: 
 Here, we develop the steady-state probability equations using the Markov process, which controls 
the dynamics of the queueing system as below. 

 
Case I: When 𝑗" = 0 and 𝑗# = 0. 

                            𝜆𝑃!,!,! = (1 − 𝑟!)𝜇!𝑃",!,! + (1 − 𝑟")𝜇"𝑃!,",! + 𝜇#𝑃!,!,", (1) 
(𝜆 + 𝑖𝜇!)𝑃$,!,! = (𝑖 + 1)(1 − 𝑟!)𝜇!𝑃$'",!,! + (1 − 𝑟")𝜇"𝑃$,",! + 𝜇#𝑃$,!," 

                                                             +𝜆𝑃$(",!,!, 1 ≤ 𝑖 ≤ 𝑐 − 1 (2) 
(𝜆 + 𝑐𝜇!)𝑃$,!,! = 𝑐(1 − 𝑟!)𝜇!𝑃$'",!,! + (1 − 𝑟")𝜇"𝑃$,",! + 𝜇#𝑃$,!," 

                                                    +𝜆𝑃$(",!,!, 𝑖 ≥ 𝑐. (3) 
Case II: When 1 ≤ 𝑗" ≤ 𝑐 − 1 and 𝑗# = 0. 

                              (𝜆 + 𝑗"𝜇")𝑃!,&!,! = (1 − 𝑟!)𝜇!𝑃",&!,! + 𝑟!𝜇!𝑃",&!(",! + (𝑗" + 1) 
                                                           (1 − 𝑟")𝜇"𝑃!,&!'",! + 𝜇#𝑃!,&!,", (4) 

(𝜆 + 𝑖𝜇! + 𝑗"𝜇")𝑃$,&!,! = 𝜆𝑃$(",&!,! + (𝑖 + 1)(1 − 𝑟!)𝜇!𝑃$'",&!,! + 
                                                                         				𝜇#𝑃$,&!," + (𝑖 + 1)𝑟!𝜇!𝑃$'",&!(",! + (𝑗" + 1) 
                                                                                  (1 − 𝑟")𝜇"𝑃$,&!'",!, 1 ≤ 𝑖 ≤ 𝑐 − 𝑗" − 1, (5) 

(𝜆 + (𝑐 − 𝑗")𝜇! + 𝑗"𝜇")𝑃$,&!,! = 𝜆𝑃$(",&!,! + (𝑐 − 𝑗")(1 − 𝑟!)𝜇!𝑃$'",&!,!+ 
                                          (𝑐 − 𝑗" + 1)𝑟!𝜇!𝑃$'",&!(",! + (𝑗" + 1)(1 − 𝑟")𝜇"𝑃$,&!'",! 
                                                                            +𝜇#𝑃$,&!,", 𝑖 ≥ 𝑐 − 𝑗". (6) 

             
Case III:  When 𝑗" = 0 and 1 ≤ 𝑗# ≤ 𝑐 − 1.  

 (𝜆 + 𝑗#𝜇#)𝑃!,!,&" = (1 − 𝑟!)𝜇!𝑃",!,&" + (1 − 𝑟")𝜇"𝑃!,",&" 
                                     +𝑟"𝜇"𝑃!,",&"(" + (𝑗# + 1)𝜇#𝑃!,!,&"'", (7) 
 (𝜆 + 𝑖𝜇! + 𝑗#𝜇#)𝑃$,!,&" = 𝜆𝑃$(",!,&" + (𝑖 + 1)(1 − 𝑟!)𝜇!𝑃$'",!,&" + 
                          (1 − 𝑟")𝜇"𝑃$,",&" + 𝑟"𝜇"𝑃$,",&"(", 1 ≤ 𝑖 ≤ 𝑐 − 𝑗# − 1, (8) 
 (𝜆 + (𝑐 − 𝑗#)𝜇! + 𝑗#𝜇#)𝑃$,!,&" = 𝜆𝑃$(",!,&" + (𝑐 − 𝑗#)(1 − 𝑟!)𝜇!𝑃$'",!,&" + 
 (1 − 𝑟")𝜇"𝑃$,",&" + 𝑟"𝜇"𝑃$,",&"(" + (𝑗# + 1)𝜇#𝑃$,!,&"'", 𝑖 ≥ 𝑐 − 𝑗#. (9) 

 
 Case IV: When 1 ≤ 𝑗" ≤ 𝑐 − 1, 1 ≤ 𝑗# ≤ 𝑐 − 1, and 𝑗" + 𝑗# ≤ 𝑐.  

 (𝜆 + 𝑗"𝜇" + 𝑗#𝜇#)𝑃!,&!,&" = (1 − 𝑟!)𝜇!𝑃",&!,&" + 𝑟!𝜇!𝑃",&!(",&" + 
 (𝑗" + 1)(1 − 𝑟")𝜇"𝑃!,&!'",&" + (𝑗" + 1)𝑟"𝜇"𝑃!,&!'",&"(" + (𝑗# + 1)𝜇#𝑃!,&!,&"'", 
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                                                                        𝑗" + 𝑗# ≤ 𝑐 − 1, (10) 
 (𝜆 + 𝑗"𝜇" + 𝑗#𝜇#)𝑃!,&!,&" = 𝑟!𝜇!𝑃",&!(",&" + (𝑗" + 1)𝑟"𝜇"𝑃!,&!'",&"(", 𝑗" + 𝑗# = 𝑐. (11) 

(𝜆 + 𝑖𝜇! + 𝑗"𝜇" + 𝑗#𝜇#)𝑃$,&!,&" = 𝜆𝑃$(",&!,&" + (𝑖 + 1)(1 − 𝑟!)𝜇!𝑃$'",&!,&" + 
 (𝑖 + 1)𝑟!𝜇!𝑃$'",&!(",&" + (𝑗" + 1)(1 − 𝑟")𝜇"𝑃$,&!'",&" + (𝑗" + 1)𝑟"𝜇"𝑃$,&!'",&"(" + 
                                                          (𝑗# + 1)𝜇#𝑃$,&!,&"'", 𝑗" + 𝑗# ≤ 𝑐 − 1, 1 ≤ 𝑖 ≤ 𝑐 − 𝑗" − 𝑗# − 1, (12) 

 (𝜆 + 𝛽𝜇! + 𝑗"𝜇" + 𝑗#𝜇#)𝑃$,&!,&" = 𝜆𝑃$(",&!,&" + 𝛽(1 − 𝑟!)𝜇!𝑃$'",&!,&" + (𝛽 + 1) 
 𝑟!𝜇!𝑃$'",&!(",&" + (𝑗" + 1)𝜇"𝑃$,&!'",&" + (𝑗# + 1)𝜇#𝑃$,&!,&"'", 𝑗" + 𝑗# ≤ 𝑐 − 1, (13) 
                                                                                                  𝑖 ≥ 𝑐 − 𝑗" − 𝑗#. 
 (𝜆 + 𝑗"𝜇" + 𝑗#𝜇#)𝑃$,&!,&" = 𝜆𝑃$(",&!,&" + (𝛽 + 1)𝑟!𝜇!𝑃$'",&!(",&" + 
                                             (𝑗" + 1)𝑟"𝜇"𝑃$,&!'",&"(", 𝑖 ≥ 𝛽 + 1, 

                                                          𝑗" + 𝑗# = 𝑐, 𝛽 = 𝑐 − 𝑗" − 𝑗#. (14) 
  
Case V:   When 𝑗" = 𝑐 and 𝑗# = 0.  

 (𝜆 + 𝑐𝜇")𝑃!,),! = 𝑟!𝜇!𝑃",)(",!, (15) 
 (𝜆 + 𝑐𝜇")𝑃$,),! = 𝜆𝑃$(",),! + 𝑟!𝜇!𝑃$'",)(",!, 𝑖 ≥ 1. (16) 

  
Case VI:  When 𝑗" = 0 and 𝑗# = 𝑐.  

 (𝜆 + 𝑐𝜇#)𝑃!,!,) = 𝑟"𝜇"𝑃!,",)(", (17) 
 (𝜆 + 𝑐𝜇")𝑃$,!,) = 𝜆𝑃$(",!,) + 𝑟"𝜇"𝑃$,",)(", 𝑖 ≥ 1. (18) 
 

IV. Matrix-Geometric Method 
 

For the QBD process introduced in Section 3, obtaining a closed form solution is very 
difficult. We employ the matrix-geometric method to analyze the probabilities of the Markov chain 
in order to develop an effective and numerically stable solution. We can simply obtain the 
stationary probability vector using the matrix-geometric method because the transition rate matrix 
contains repeated block sub-matrices. 

Applying the concept of Neuts [17], the infinitesimal generator 𝐐 for the process could be 
given as follows.  

 𝐐 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐀! 𝐂
𝐁! 𝐀" 𝐂

𝐁" 𝐀" 𝐂
𝐁# 𝐀# 𝐂

⋱ ⋱ ⋱
𝐁) 𝐀) 𝐂

𝐁) 𝐀) 𝐂
⋱ ⋱ ⋱ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

  

 We denote the transition probability from state (𝑖, 𝑗", 𝑗#) to the state (𝚤,̂ 𝚥"̂, 𝚥#̂) by 
𝑃($,&!,&"),(,̂,.̂!,.̂"). The elements of the sub-matrix 𝐀$, 𝑖 ≥ 0 are given as:   

    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + 𝑖𝜇)), for 0 ≤ 𝑖 ≤ 𝑐 − 1, 𝑗* = 𝑗+ = 0, 𝚤̂ = 𝑖, 𝚥*̂ = 𝑗*,            
	𝚥3+ = 𝑗+.  

    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + 𝑐𝜇)), for 𝑖 ≥ 𝑐, 𝑗* = 𝑗+ = 0, 𝚤̂ = 𝑖, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + 𝑖𝜇) + 𝑗+𝜇+), for 𝑖 ≥ 0, 1 ≤ 𝑗+ ≤ 𝑐, 𝑖 + 𝑗+ ≤ 𝑐, 𝑗* =

0, 𝚤̂ = 𝑖, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + (𝑐 − 𝑗+)𝜇) + 𝑗+𝜇+), for 𝑖 ≥ 0, 1 ≤ 𝑗+ ≤ 𝑐, 𝑖 + 𝑗+ > 𝑐, 

𝑗* = 0, 𝚥+̂ = 𝑗+, 𝚤̂ = 𝑖, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + 𝑖𝜇) + 𝑗*𝜇*), for 𝑖 ≥ 0, 0 ≤ 𝑗* ≤ 𝑐 𝑖 + 𝑗* ≤ 𝑐, 𝑗+ = 0, 

𝚥*̂ = 𝑗*, 𝚤̂ = 𝑖, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + (𝑐 − 𝑗*)𝜇) + 𝑗*𝜇+), for 𝑖 ≥ 0, 𝑖 = 𝚤̂, 0 ≤ 𝑗* ≤ 𝑐, 𝑖 +

𝑗* > 𝑐, 𝑗+ = 0, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
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    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = −(𝜆 + (𝑐 − 𝑗* − 𝑗+)𝜇) + 𝑗*𝜇* + 𝑗+𝜇+), for 𝑖 ≥ 0, 𝚤̂ = 𝑖, 𝑗* +
𝑗+ ≤ 𝑐, 1 ≤ 𝑗* ≤ 𝑐 − 1, 1 ≤ 𝑗+ ≤ 𝑐 − 1, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+ . 

    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑗*(1 − 𝑟*)𝜇*, for 𝑖 = 0, 𝚤̂ = 𝑖, 1 ≤ 𝑗* ≤ 𝑐, 0 ≤ 𝑗+ ≤ 𝑐 − 1, 
𝑗* + 𝑗+ ≤ 𝑐, 𝚥*̂ = 𝑗* − 1, 𝚥+̂ = 𝑗+.  

    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑗+𝜇+, for 𝑖 = 0, 𝚤̂ = 𝑖, 1 ≤ 𝑗+ ≤ 𝑐, 0 ≤ 𝑗* ≤ 𝑐 − 1,  
𝚥+̂ = 𝑗+ − 1.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑗*𝑟*𝜇*, for 𝑖 = 0, 𝚤̂ = 𝑖, 1 ≤ 𝑗* ≤ 𝑐, 0 ≤ 𝑗+ ≤ 𝑐 − 1, 𝚥*̂ =

𝑗* − 1 𝚥+̂ = 𝑗+ + 1.  
 The elements of the sub-matrix 𝐁", 𝑖 ≥ 0 are taken as:   
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑖(1 − 𝑟))𝜇), for 1 ≤ 𝑖 ≤ 𝑐 − 1, 𝚤̂ = 𝑖 − 1, 𝑗* = 𝑗+ = 0, 𝚥*̂ =

𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑐(1 − 𝑟))𝜇), for 𝑖 ≥ 𝑐, 𝚤̂ = 𝑖 − 1, 𝑗* = 𝑗+ = 0, 𝚥*̂ = 𝑗*, 𝚥+̂ =

𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑖(1 − 𝑟))𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗+ ≤ 𝑐, 𝑖 + 𝑗+ ≤ 𝑐, 

𝑗* = 0, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = (𝑐 − 𝑗+)(1 − 𝑟))𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗+ ≤ 𝑐, 𝑖 +

𝑗+ > 𝑐, 𝑗* = 0, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑖(1 − 𝑟))𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗* ≤ 𝑐, 𝑖 + 𝑗* ≤ 𝑐, 

𝑗+ = 0, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = (𝑐 − 𝑗*)(1 − 𝑟))𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗* ≤ 𝑐, 𝑖 +

𝑗* > 𝑐, 𝑗+ = 0, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = (𝑐 − 𝑗* − 𝑗+)(1 − 𝑟))𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 1 ≤ 𝑗* ≤ 𝑐 −

1, 1 ≤ 𝑗+ ≤ 𝑐 − 1, 𝚥*̂ = 𝑗*, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑖𝑟)𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗+ ≤ 𝑐, 𝑖 + 𝑗+ ≤ 𝑐, 𝑗* = 0, 

𝚥*̂ = 𝑗* + 1, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = (𝑐 − 𝑗+)𝑟)𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗+ ≤ 𝑐, 𝑖 + 𝑗+ > 𝑐, 

𝑗* = 0, 𝚥*̂ = 𝑗* + 1, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 𝑖𝑟)𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗* ≤ 𝑐, 𝑖 + 𝑗* ≤ 𝑐, 𝑗+ = 0, 

𝚥*̂ = 𝑗* + 1, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = (𝑐 − 𝑗*)𝑟)𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 0 ≤ 𝑗* ≤ 𝑐, 𝑖 + 𝑗* > 𝑐, 

𝑗+ = 0, 𝚥*̂ = 𝑗* + 1, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = (𝑐 − 𝑗* − 𝑗+)𝑟)𝜇), for 𝑖 ≥ 0, 𝚤̂ = 𝑖 − 1, 1 ≤ 𝑗* ≤ 𝑐 − 1, 1 ≤

𝑗+ ≤ 𝑐 − 1, 𝑗* + 𝑗+ ≤ 𝑐, 𝚥*̂ = 𝑗* + 1, 𝚥+̂ = 𝑗+.  
    • 𝑃(",$/,$0),(&̂,(̂/,(̂0) = 0, when 𝑗* + 𝑗+ = 𝑐.  
 The elements of sub-matrix 𝐂 are given as follows:   
    • 𝑃($,&!,&"),(,̂,.̂!,.̂") = 𝜆, for 𝑖 ≥ 0, 𝚤̂ = 𝑖 + 1, 0 ≤ 𝑗" ≤ 𝑐, 0 ≤ 𝑗# ≤ 𝑐, 𝚥"̂ = 𝑗", and 𝚥#̂ = 𝑗#. 
 
Here, the sub-matrices 𝐂, 𝐀$, 𝐁$, 𝑖 ≥ 0 are of order 1 + ∑)("12" 𝑛 + 2𝑐.  

 

4.1  Steady-state solution 
 Based on 𝐐 matrix structure, one can easily notice that the process {𝐿(𝑡), 𝐽"(𝑡), 𝐽#(𝑡), 𝑡 ≥ 0} 

is a QBD process. As per the block structure of 𝐐, the stationary distribution of the process can be 
composed as segmented vectors, denoted as,  
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 𝑃$,&!,&" = lim
3→5

𝑃{𝐿(𝑡) = 𝑖, 𝐽"(𝑡) = 𝑗", 𝐽#(𝑡) = 𝑗#}, (𝑖, 𝑗", 𝑗#) ∈ 𝜒 
According to Neuts (1981), the system is stable and the steady state probability vector exists if and 
only if 𝐘X𝐂𝐞 < 𝐘X𝐁𝐜𝐞 where 𝐘X is an invariant probability of the matrix 𝛙 = 𝐁𝐜 + 𝐀𝐜 + 𝐂. The 
equations 𝐘X𝛙 = 𝟎 and 𝐘X𝐞 = 𝟏 can be satisfied by 𝐘X. 

Under the stability condition, let 𝐏 be the stationary probability vector of the generator 𝐐 
satisfying the balance equation 𝐏𝐐 = 𝟎 and 𝐏𝐞$ = 1, where 𝟎 is the row vector with all elements as 
zero and 𝐞$ is the column vector of appropriate dimension 𝑖 with every element as one. The vector 
𝐏 partitioned as 𝐏 = [𝐏!, 𝐏", 𝐏#, . . . ], where  

𝐏$ = [𝑃$,!,!, 𝑃$,!,", 𝑃$,!,#, . . . , 𝑃$,!,) , 𝑃$,",!, 𝑃$,#,!, . . . , 𝑃$,),!, 𝑃$,",", 𝑃$,",#, . . . , 𝑃$,",)(", 
𝑃$,#,", 𝑃$,#,#, . . . , 𝑃$,#,)(#, . . . , 𝑃$,)(#,", 𝑃$,)(#,#, 𝑃$,)(","], 𝑖 ≥ 0. 
When the stability criterion is met, the sub-vectors of 𝐏 pertaining to various levels appear 

to satisfy  
 𝐏$ = 𝐏)𝐑$() , 𝑖 ≥ 𝑐, (19) 

 where the matrix 𝐑 is the minimal non-negative solution of the matrix quadratic equation  
 𝐂 + 𝐑𝐀) + 𝐑#𝐁) = 𝟎. (20) 

 The QBD process is positive recurrent if and only if the spectral radius 𝑆𝑝(𝐑) < 1. Further, it is 
rather complex to determine the explicit expression of the matrix 𝐑 by solving equation (20). Neuts 
[17] has devised an iterative algorithm for calculating 𝐑 numerically. We starting with initial 
iteration 𝐑! = 0, and calculate the successive approximations using  

 𝐑$'" = −(𝐂 + 𝐑$#𝐁))(𝐀))(", 𝑖 ≥ 0. 
Now, 𝐑 can be determined iteratively until it converges, i.e., lim

$→5
𝐑$ = 𝐑. 

Using the equation 𝐏𝐐 = 𝟎, the governing system of difference equations are expressed as 
follows  

 𝐏!𝐀! + 𝐏"𝐁" = 0, (21) 
 𝐏$("𝐂 + 𝐏$𝐀$ + 𝐏$'"𝐁$'" = 0,1 ≤ 𝑖 ≤ 𝑐 − 1, (22) 
 𝐏$("𝐂 + 𝐏$𝐀) + 𝐏$'"𝐁) = 0, 𝑖 ≥ 𝑐, (23) 

 and the normalizing condition  
 ∑5$2! 𝐏$𝐞$ = 1. (24) 

 After applying some mathematical manipulations to equations (21) to (23), we get  
 𝐏$(" = 𝐏$𝛟$ , 1 ≤ 𝑖 ≤ 𝑐, (25) 
 𝐏)[𝛟)𝐂 + 𝐀) + 𝐑𝐁)] = 𝟎, (26) 

 where  
 𝛟" = −𝐁!(𝐀!("), 𝛟$ = −𝐁$(𝐀$(" +𝛟$("𝐂)(", 1 ≤ 𝑖 ≤ 𝑐. 

 Using equations (24) and (25), we obtain  
 𝐏)[∑)&2" ∏7

12) 𝛟1 + (𝐈 − 𝐑)("]𝐞$ = 1. (27) 
 Solving equations (26) and (27) yields 𝐏). We use equations (19) and (25) to get 𝐏$ for 𝑖 ≥ 0.  

 
V.  Performance Measures 

 
 An infinite capacity multi-server queueing system with two successive optional services 

has several system characteristics, such as the expected length of the system in FES, OS - 1, and OS 
- 2, the expected number of customers in the system, the expected number of idle servers, the 
expected number of busy servers, probability that the system is empty, can be obtained by using 
steady-state probabilities. The expressions of above are given as follows:   

    • Expected number of customers in FES  
 𝐸[𝐿8] = ∑5$2" 𝑖𝑃$,!,! + ∑5$2" 𝑖 ∑)("&!2" 𝑃$,&!,! + ∑

5
$2" 𝑖 ∑)("&"2" 𝑃$,!,&" + 

 
 ∑5$2" 𝑖 ∑)("&!2" ∑

)(&!
&"2" 𝑃$,&!,&" + ∑

5
$2" 𝑖𝑃$,),! +∑5$2" 𝑖𝑃$,!,) . 

 
    • Expected number of customers in OS - 1  
 𝐸[𝐿9!] = ∑)("&!2" 𝑗"∑

5
$2! 𝑃$,&!,! +∑

)("
&!2" 𝑗" ∑

5
$2! ∑

)(&!
&"2" 𝑃$,&!,&" + 𝑐∑

5
$2! 𝑃$,),!. 
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    • Expected number of customers in OS - 2  
 𝐸[𝐿9"] = ∑)("&"2" 𝑗#∑

5
$2! 𝑃$,!,&" +∑

)("
&"2" 𝑗# ∑

5
$2! ∑

)(&"
&!2" 𝑃$,&!,&" + 𝑐∑

5
$2! 𝑃$,!,) . 

 
    • Expected number of customers in the system  
 𝐸[𝐿] = 𝐸[𝐿8] + 𝐸[𝐿9!] + 𝐸[𝐿9"]. 

 
    • Expected number of idle servers  
 𝐸[𝐼] = ∑)("$'&!'&"2! [𝑐 − 𝑚𝑎𝑥(𝑖, 𝑗", 𝑗#)]𝑃$,&!,&" . 

 
    • Expected number of busy servers  
 𝐸[𝐵] = 𝑐 − 𝐸[𝐼]. 

 
    • Probability that the system is empty is 𝑃!,!,!.  
  

VI. Numerical Investigations 
 

 To understand the system long run behaviour change with the parameters, we have 
conducted some numerical studies on the system characteristics by changing the parameter values. 
Considering the practical application given in Section 2, we perform the sensitivity analysis using 
arbitrarily selected parameters 𝜆 = 1.0, 𝜇! = 5.0, 𝜇" = 4.5, 𝜇# = 3.0, 𝑟! = 0.6, 𝑟" = 0.5, 𝑐 = 4, where 

𝜆 = The rate at which vehicles arrive at the service center, 
𝜇! = Service rate for general services, including spark plugs check,  
           brake fluid, brake discs, etc. (FES), 
𝜇" = Service rate of engine oil replacement service (OS - 1), 
𝜇# = Service rate of oil filters replacement service (OS - 2), 
𝑟! = Probability that vehicles taken for engine oil replacement, 
𝑟" = Probability that vehicles taken for oil filter replacement, 
𝑐 = Amount of mechanics in the vehicle service center. 

                                                                   
Table  1: Effect of 𝑟! on 𝐸[𝐿] 

 
  

   
 
 
 
 
 
 

 
Table  2: Effect of 𝑟" on 𝐸[𝐿] 

  
  

   
 
 
 
  

 𝐸[𝐿] 
𝑟!  𝜇# = 3.0  𝜇# = 3.2  𝜇# = 3.4  𝜇# = 3.6 
0.1 0.12143 0.11988 0.11848 0.11721 
0.3 0.32241 0.31685 0.31179 0.30718 
0.5 0.70647 0.69319 0.68101 0.66976 
0.7 1.45122 1.4277 1.40562 1.38481 
0.9 2.17964 2.16400 2.14999 2.13729 

 𝐸[𝐿] 
𝑟"  𝜇# = 3.0  𝜇# = 3.2  𝜇# = 3.4  𝜇# = 3.6 
0.2 0.81844 0.81319 0.80852 0.80434 
0.4 0.92491 0.91515 0.90642 0.89855 
0.6 1.07338 1.06013 1.04821 1.03741 
0.8 1.27478 1.25986 1.24638 1.23412 
1.0 1.55389 1.54122 1.52988 1.51967 
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Tables 1 and 2 show the impact of the probabilities 𝑟! and 𝑟", on the expected length of the system 
𝐸[𝐿] for different values of the service rates in OS - 1 (𝜇") and OS - 2 (𝜇#). We observe that   

§ As 𝑟! (𝑟") increases, the number of vehicles opting for engine oil (oil filter) 
replacement facility increases, which tends to increase the waiting time of 
vehicles at the service center. Hence 𝐸[𝐿] increases.  

§  Also, an increase in the service rate 𝜇" (𝜇#) reduces 𝐸[𝐿], which agrees with our 
intuition.  

 
Table  3: Effect of 𝜆 on performance measures 

 
  

  
 
 
 
 
 
 
 
 Table 3 shows the impact of arrival rate 𝜆 on expected number of vehicles at the service center 
𝐸[𝐿], expected amount of idle mechanics 𝐸[𝐼], and expected amount of busy mechanics 𝐸[𝐵] in two 
situations as follows: 
Case a: When no vehicle is opting for optional services (𝑟! = 0, 𝑟" = 0) 
Case b: When all arriving vehicles are opting both optional services (𝑟! = 1, 𝑟" = 1) 
It is observed that   

§ An increase in 𝜆 results in increase of 𝐸[𝐿], 𝐸[𝐵] and decrease of 𝐸[𝐼] for a fixed 
𝑟! and 𝑟", as expected.  

§  Further, for a fixed 𝜆, 𝐸[𝐿] and 𝐸[𝐵] are seen smaller when no vehicles 
adopting any optional service provided by a service center. On the other hand, 
𝐸[𝐼] is smaller when all arriving vehicles choose both optional services, as 
anticipated.  

                      
Table  4: Effect of 𝑟! and 𝑟" on performance measures 

 
  

  
 
  

  
 
   The effect of the probability of opting OS - 1 and OS - 2 (𝑟! and 𝑟") on 𝐸[𝐿] and 𝐸[𝐼] is shown in 
Table 4.   

§ For a fixed 𝑟", as 𝑟! increases,  the number of vehicles opting for engine oil 
service grows, resulting in an increase in the number of vehicles waiting for 
service at the service center 𝐸[𝐿]. Moreover, for a fixed 𝑟!, the same trend is 
observed for 𝐸[𝐿] with increase in 𝑟".  

§  However, it can be seen that increase in 𝑟! (𝑟") yields the lower 𝐸[𝐼]. This is 
because an increase in these probabilities increases the vehicle service time.  

 
§  Also, considering the cases 𝑟! < 𝑟"(= 0.7) and 𝑟! > 𝑟"(= 0.3), we notice that 

𝐸[𝐿] is higher when 𝑟! < 𝑟" for the chosen parameter values.  

 𝑟! = 0.0 and 𝑟" = 0.0 𝑟! = 1.0 and 𝑟" = 1.0 
𝜆  𝐸[𝐿] 𝐸[𝐼] 𝐸[𝐵] 𝐸[𝐿] 𝐸[𝐼] 𝐸[𝐵] 

0.3 0.01522 3.98478 0.01522 2.19881 1.49894 2.50106 
0.6 0.03085 3.96915 0.03085 2.33150 1.37036 2.62964 
0.9 0.04685 3.95315 0.04685 2.47134 1.25348 2.74652 
1.2 0.06318 3.93681 0.06319 2.61849 1.14669 2.85331 
1.5  0.07982 3.92015 0.07985 2.77359 1.04824 2.95176 
1.8 0.09671 3.90322 0.09677 2.93725 0.95641 3.04360 

   𝑟" = 0.3  𝑟" = 0.5  𝑟" = 0.7 

𝑟! 𝐸[𝐿] 𝐸[𝐼] 𝐸[𝐿] 𝐸[𝐼] 𝐸[𝐿] 𝐸[𝐼] 

0.3 0.23906 3.76450 0.31179 3.68605 0.40389 3.58498 

0.5 0.54262 3.45912 0.68101 3.28845 0.85592 3.07158 

0.7 1.38111 2.62083 1.40562 2.50599 1.51586 2.31483 
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Table  5: Effect of 𝜆 on performance measures for different 𝜇!, 𝜇", and 𝜇# 

  
         
 
 
 
 
 
 
The impact of 𝜆 on 𝐸[𝐿] and 𝐸[𝐼] for different 𝜇!, 𝜇", and 𝜇# is shown in Table 5. Here we depicted 
the comparison of cases 𝜇! > 𝜇" > 𝜇# and 𝜇! < 𝜇" < 𝜇#. As shown in Table 3, increase of 𝜆 increases 
𝐸[𝐿] and decreases 𝐸[𝐼]. Evidently, from the table, expected size of vehicles at the service center 
can be reduced by taking 𝜇! > 𝜇" > 𝜇#. This helps the service center managers to run the system 
effectively when the arrival rate of vehicles is high. 

 
                                       Figure  2: Effect of 𝜆 on 𝐸[𝐿] for different 𝑐 

  
   
Figure 2 illustrates the impact of 𝜆 on 𝐸[𝐿] for various 𝑐 values. As we seen in the tables, an 

increase in 𝜆 increases 𝐸[𝐿] for a fixed amount of mechanics 𝑐. Furthermore, an opposite effect is 
observed with the increase in 𝑐, this is due to the fact that increase of mechanics decreases vehicles 
waiting time. From this figure, we conclude that when the arrival rate of vehicles at service center 
is high, one can reduce the system size by increasing the number of mechanics, even though the 
service rates are kept constant. 

  𝜇! = 5.2, 𝜇" = 4.6, 𝜇# = 3.5 𝜇! = 3.5, 𝜇" = 4.0, 𝜇# = 5.0 
𝜆 𝐸[𝐿] 𝐸[𝐼] 𝐸[𝐿] 𝐸[𝐼] 

0.4 0.45349 3.53054 0.47686 3.52990 
0.8 0.77994 3.18595 0.82567 3.18415 
1.2 1.03378 2.91530 1.09905 2.91338 
1.6 1.24318 2.69213 1.32574 2.69058 
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                                                Figure  3: Effect of 𝑟! on 𝐸[𝐿] 
 
        Figure 3 explores the impact of 𝑟! on 𝐸[𝐿] for different values of service rates. It is clear from 
the figure that as the number of vehicles opting for the first optional service facility increases, 𝐸[𝐿] 
increases. Subsequently, system performance can be ranked, with 𝜇! = 𝜇" = 𝜇# = 5.5 being best, 
followed by 𝜇! = 5.0, 𝜇" = 4.6, 𝜇# = 3.5 and then 𝜇! = 3.5, 𝜇" = 4.0, 𝜇# = 5.0, and lastly 𝜇! = 𝜇" =
𝜇# = 3.0. 

 
 

Figure  4: Effect of 𝑟" on 𝐸[𝐼] 
  

  The impact of 𝑟" on expected number of idle servers 𝐸[𝐼] for different values of service 
rates in depicted in Figure 4. It is obvious that an increase in probability of vehicles choosing for oil 
filter service after getting engine oil service facility 𝑟" decreases the idle time of the mechanics at 
service center. Hence, 𝐸[𝐼] decreases. On the other hand, 𝐸[𝐼] is smaller when 𝜇! = 𝜇" = 𝜇# = 3.0 
and higher when 𝜇! = 𝜇" = 𝜇# = 5.5. Also, it is quite interesting to note that while comparing the 
cases 𝜇! = 5.0, 𝜇" = 4.6, 𝜇# = 3.5 and 𝜇! = 3.5, 𝜇" = 4.0, 𝜇# = 5.0, 𝐸[𝐼] is observed higher for 𝜇! =
5.0, 𝜇" = 4.6, 𝜇# = 3.5 when 𝑟" ≤ 0.6. At 𝑟" = 0.7 two curves are almost coincide and at 𝑟" = 0.8 two 
curves intersect each other. Further, for 𝑟" > 0.8, the trend is reversed and 𝐸[𝐼] is seen higher for 
𝜇! = 3.5, 𝜇" = 4.0, 𝜇# = 5.0. This reveals the fact that as more and more vehicles are opting OS - 2 
(𝑟" > 0.6), by taking 𝜇# as bigger than 𝜇! and 𝜇", 𝐸[𝐼] will be smaller (here 𝑟! value is chosen as 0.6). 

 

41



 
P. Vijaya Laxmi and E. Girija Bhavani 
MULTI-SERVER QUEUE WITH SUCCESSIVE OPTIONAL SERVICES 

RT&A, No 4 (65) 
Volume 16, December 2021  

 

 
  

Figure  5: Effect of 𝑟! on 𝐸[𝐿] and 𝐸[𝐼] 
  

  Figure 5 exhibits the effect of 𝑟! on 𝐸[𝐿] and 𝐸[𝐼]. It demonstrates that 𝐸[𝐿] and 𝐸[𝐼] 
increases and decreases, respectively, with the increase in 𝑟!. The point of intersection of two 
curves determines the value of 𝑟! at which 𝐸[𝐿] and 𝐸[𝐼] are the maximum and minimum, 
respectively. As a result, service center managers can optimize 𝐸[𝐿] or 𝐸[𝐼] by taking the 
appropriate measures using 𝑟! knowledge.  

 

VII. Conclusion 
 

 In this study, we have carried out the analysis of 𝑀/𝑀/𝑐 queueing model with two 
successive optional services. Using QBD process and matrix geometric method, we have obtained 
the stationary probability distribution of the model. Further we have derived some performance 
measures of the model such as expected length of the system, expected number of idle servers and 
expected number of busy servers. Sensitivity analysis has been carried out by considering the 
practical application of the model. Through our numerical and graphical studies, it is observed 
that   
 

§ Expected number of vehicles at the service center increases with the increase of arrival 
rate and probability of opting optional services.  

§ System size can be reduced by increasing the amount of mechanics when the arrival rate 
is high.  

§ System size is smaller when 𝜇! > 𝜇" > 𝜇# for a constant arrival rate and optional service 
probabilities.  

§ When more number of vehicles opt for optional services, 𝐸[𝐿] can be decreased by taking 
equal higher service rates in FES, OS -1,OS -2.  

This research work may extended further by incorporating the concepts of working vacations, 
customers’ impatience, server breakdowns, etc.  
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Abstract

A Markov reliability model of a wind farm has been built using the example of Anholt wind
farm, Denmark. Reliability indicators of wind turbine equipment are calculated as wind speed
functions. Basing hourly measurements of the wind speed and the consumed electricity, two
samples of duration time of the met and unmet demand of electricity were obtained. It has
been found that these samples can be approximated with exponential mixture model of the
probability distributions. The wind farm operation process has been approximated with a
continues-time 5-states Markov process. As a result, stationary and non-stationary probabilities
that the electricity demand will be met by wind power were estimated.

Keywords: wind farm, reliability, availability, met demand, unmet demand, exponential mixture
model of distributions, continues-time finite-states Markov process.

1. Introduction

The share of renewable sources in the electricity market is constantly growing, however, at the
current stage of development, they cannot guarantee the supply of electricity to consumers. The
renewable sources depend on sufficiently significant random factors such as wind speed or insolation
intensity. In this regard, it is necessary to use combined power supply systems that include both
traditional and renewable energy sources.

A study of the reliability of such systems allows assessing how much power reserve of traditional
energy sources is necessary to cover the deficit in the event of insufficient generation of renewable
energy sources. It should take into account both instability of wind speed and usual equipment
failures. In this paper, one of the most powerful wind farms, the Anholt wind farm in Denmark, is
considered as an example. It was built in 2013 and consists of 111 wind turbines Siemens Gamesa
Renewable Energy, SWT 3.6-120, the maximum capacity of each of them is 3.6 MW. The whole
power plant can generate up to 400 MW, which is about 2.7 % of Denmark’s electricity need.

There are numerous studies in literature on reliability models of wind farms and combined
energy systems. In [1], a Markov model of combined power gas and thermal networks was built and
the reliability of small business supply in Germany during a standard weekend day was investigated.
In [2], the optimal parameters of a combine power plant consisting of gas and wind generators were
evaluated. Wind energy was accounted for using a probability density, the estimate of which has not
been included in this article. In [3, 4, 5], various models of the wind farm reliability were considered.
These models take into account that the failure rates of wind turbine equipment are dependent on
wind speed. Wind speed values were modelled with the Monte-Carlo method [3, 4] or with Markov
chains [5]. In [6], reliability indicators of a wind farm were calculated with probability-generating
functions. In [7], generated power of a wind farm was evaluated with a cubic model. The wind speed,
as a random variable, was approximated by the Gnedenko-Weibull distribution. The distribution
parameters were estimated according to statistical data, and all the measurements were considered
independent, i.e. the correlation structure of measurements’ series was not taken in account.
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The correlation structure of a wind speed time series was studied in [8, 9] and other papers,
where the short-terms forecasting problems of wind speed were considered. These problems were
solved with neural network models, ARIMA models, etc. These models are not very accurate, so,
in this paper, the generated power will be predicted based on real meteorological data. In [10] and
[11], wind farm equipment reliability indicators were studied as functions of wind speed based on
statistical data.

The models presented in some of the listed articles were utilized in our paper when processing a
large amount of statistical data for a specific object – Anholt wind farm. As a result, the statistical
patterns were identified, which made it possible to build a Markov model and estimate the reliability
indicators of the wind farm.

The paper is organized as follows. In section 2, the reliability indicators of a turbine are
estimated as a function of wind speed. In section 3, statistical data and mathematical models are
investigated to evaluate the electricity demand and the wind farm capacity to produce it. Then a
Markov model of the wind farm operation process has been built and its reliability indicators are
estimated. In section 4, the results of the study are summarized.

2. Equipment Reliability of a Turbine

At first, let’s estimate equipment reliability indicators of a wind farm. To do this, it is enough to
consider any turbine. A stationary availability will be consider as a main reliability indicator:

𝐾 =
𝑇

𝑇 +𝑅
,

where 𝑇 is the mean time between failures (MTBF), 𝑅 is the mean time to repair (MTTR).
In [10], it is found that the failure rates of wind farm equipment linearly depend on wind speed

𝑊 in the speed range 𝑊 = 7− 11 m/s, but the result of extrapolating this dependence to a wider
range of real wind speed in the region of Anholt Island is implausible: the failure rate forecast for
small wind speeds is negative (Fig. 1). It is natural to assume the equipment does not fail when it
is idle, i.e. if wind speed is zero, the failure rate must be zero too. This idea leads us to a quadratic
model without a constant:

𝜆(𝑊 ) = 𝑏1𝑊 + 𝑏2𝑊
2, (1)

where 𝜆(𝑊 ) is the failure rate, 1/year, 𝑏1 = 0.353 s/(year·m) and 𝑏2 = 0.0868 s2/(year·m2) are the
model coefficients fitted by least squares. Fig. 1 shows this model does not differ from the linear
practically in speed range 7–11 m/s.
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Figure 1: Dependence of the Failure Rate on Wind Speed

In [10], the estimations of failure rates (Table 1) and of mean times to repair (Table 2) for
various equipment of a wind turbine are presented.

Table 1: Failure rates 𝜆̄𝑖, 1/year

hhhhhhhhhhhhhhhhElement

Failure Type
Replacement Major Repair Minor Repair No Cost Data

Blades 0.001 0.010 0.456 0.053
Contactor / Circuit Breaker / Relay 0.002 0.054 0.326 0.048
Controls 0.001 0.054 0.355 0.018
Electrical Components 0.002 0.016 0.358 0.059
Gearbox 0.154 0.038 0.395 0.046
Generator 0.095 0.321 0.485 0.098
Grease / Oil / Cooling Liq. 0 0.006 0.407 0.058
Heaters / Coolers 0 0.007 0.190 0.016
Hub 0.001 0.038 0.182 0.014
Other Components 0.001 0.042 0.812 0.150
Pitch / Hyd 0.001 0.179 0.824 0.072
Power Supply / Converter 0.005 0.081 0.076 0.018
Pumps/Motors 0 0.043 0.278 0.025
Safety 0 0.004 0.373 0.015
Sensors 0 0.070 0.247 0.029
Service Items 0 0.001 0.108 0.016
Tower / Foundation 0 0.089 0.092 0.004
Ransformer 0.001 0.003 0.052 0.009
Yaw System 0.001 0.006 0.162 0.020
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Table 2: Mean times to repair 𝑅𝑖, hours

hhhhhhhhhhhhhhhhElement

Failure Type
Replacement Major Repair Minor Repair No Cost Data

Blades 288 21 9 28
Contactor / Circuit Breaker / Relay 150 19 4 5
Controls 12 14 8 17
Electrical Components 18 14 5 7
Gearbox 231 22 8 7
Generator 81 24 7 13
Grease / Oil / Cooling Liq. – 18 4 3
Heaters / Coolers – 14 5 5
Hub 298 40 10 8
Other Components 36 21 5 8
Pitch / Hyd 25 19 9 17
Power Supply / Converter 57 14 7 10
Pumps/Motors – 10 4 7
Safety – 2 2 2
Sensors – 6 8 8
Service Items – 2 7 9
Tower / Foundation – 7 5 6
Ransformer 1 26 7 19
Yaw System 49 20 5 9

The failure rate of turbine subsystems should be as dependent on the wind speed as the failure
rate of the whole turbine. Assuming that this dependence has the form (1), then it can be estimated
using

𝜆𝑖(𝑊 ) =
𝜆̄𝑖∑︀

𝑘

𝜆̄𝑘
𝜆(𝑊 ).

Let the equipment failures be independent. Then simultaneous failures of different elements are
unlikely, they can be neglected. Therefore, the mean time to repair of the whole turbine can be
calculated with the law of total probability:

𝑅 =
∑︁
𝑘

𝑅𝑘𝑝𝑘,

where 𝑝𝑘 is the conditional probability of a failure of the 𝑘-th subsystem, if there is a failure of the
whole turbine. These probabilities can be estimated as the multinomial distribution parameters:

𝑝𝑘 =
𝜆𝑘(𝑊 )∑︀
𝑖

𝜆𝑖(𝑊 )
=

𝜆̄𝑘∑︀
𝑖

𝜆̄𝑖
.

Remark. Assuming the failure flow is Poisson, i.e. the time between failures is exponentially
distributed, then this result can be obtained more rigorously:

𝑝𝑘 = P{𝜉𝑘 < 𝜉𝑖,∀𝑖 ̸= 𝑘} =

∞∫︁
0

∏︁
𝑖̸=𝑘

(︀
1− 𝐹𝑖(𝑡)

)︀
𝑑𝐹𝑘(𝑡) =

∞∫︁
0

∏︁
𝑖̸=𝑘

𝑒−𝜆𝑖(𝑊 )𝑡 𝜆𝑘(𝑊 )𝑒−𝜆𝑘(𝑊 )𝑡 𝑑𝑡 =
𝜆̄𝑘∑︀
𝑖

𝜆̄𝑖
,

where 𝜉𝑗 is the time between failures of the subsystem 𝑗, 𝐹𝑗(𝑡) is the cumulative distribution
function of 𝜉𝑗 .

In spite of the fact that the failure rates of the subsystems depend on wind speed, the probabil-
ity 𝑝𝑘 does not depend on it under assumption about equality of wind speed influence on all the
equipment is true.
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Thus, the mean time to repair of a turbine is

𝑅 =

∑︀
𝑘

𝑅𝑘𝜆̄𝑘∑︀
𝑖

𝜆̄𝑖
= 0.00153 years = 13.5 hours.

To estimate the mean time between failures, we will consider a wind turbine operation process,
i.e. the number of work-repair cycles, as a renewal process. The mean number of failures to a point
in time 𝑡 is a renewal function 𝐻(𝑡), that, according elementary renewal theorem [12], is

𝐻(𝑡) ≈ 𝑡

𝑇 +𝑅
.

If 𝑡 → ∞, then
𝐻(𝑡)

𝑡
is approximately equal to the failure rate 𝜆(𝑊 ), so

𝑇 ≈ 1

𝜆(𝑊 )
−𝑅,

which implies
𝐾(𝑊 ) = 1− 𝜆(𝑊 )𝑅 = 1− 0.000542𝑊 − 0.000133𝑊 2. (2)

3. Markov Modelling of Electricity Supply and Demand

We will use a continuous-time finite state Markov process to model a wind farm operation. Let
consider a model with two states: in the state 0, the wind farm fully provides its consumers, and in
state 1, there is not enough wind energy, it is necessary to use gas, coal, etc. Such model is correct,
if the residence time of the process in each state is well approximated with the exponential law. To
prof this assumption a large amount of statistical data was researched. We have used only open
information sources, so it took some calculations to estimate the residence time distribution laws.

3.1. Estimation of Power Dependent on Wind Speed

Using experimental data from [13], a model of the dependence of the turbine power on the wind
speed 𝑃 (𝑊 ) in MW has been fitted with least squares given by (3) and represented at Fig. 2.

𝑃 (𝑊 ) = 3.6
(︁
1− 𝑒− exp(−7.6+0.23𝑊 )𝑊 2.5

)︁
. (3)
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Figure 2: Power Curve of the Turbine Siemens Gamesa Renewable Energy, SWT 3.6-120 [13]

The wind speed is measured at the weather vane height, ℎ = 10 m [14], and the power depends
on the wind speed at the height of the turbine blades, i.e. at an altitude 𝑧 = 90 m. To recalculate
the wind speed, we will utilize the logarithmic model from [15]:

𝑊 = 𝑊ℎ
ln 𝑧 − ln 𝑧0
lnℎ− ln 𝑧0

, (4)

where 𝑧0 = 0.0002 m is the roughness length [16]. Thus, knowing the wind speed at the height of
the blades we can evaluate the power generated by a turbine.

The total generated power of the wind farm is equal to 𝑁 𝑃 (𝑊 ), where 𝑁 is a number of
operable turbines, which may be less, than the nominal count 𝑛 = 111 due equipment failures of
some turbines. The random variable 𝑁 has binomial distribution with a “success” probability 𝐾(𝑊 ),
which may be calculated by the formula (2). To obtain a lower limit of the total generated power it
is necessary to take a significance level 1− 𝛼 and calculate a left quantile 𝑁𝛼. The number of the
turbines is large enough, so the distribution of the variable 𝑁 may be approximated by the normal
law. Therefore, the low limit of the number of operable turbines is evaluated by

𝑍(𝑊 ) = 𝑛𝐾(𝑊 ) + 𝑧𝛼

√︁
𝑛𝐾(𝑊 )

(︀
1−𝐾(𝑊 )

)︀
,

where 𝑧𝛼 is a standard normal quantile. In this case, the real number of operable turbines will not
be less 𝑍(𝑊 ) with the probability 1− 𝛼.

Thus, a lower limit of the power generated by the wind farm is

𝑃𝐴𝑛ℎ𝑜𝑙𝑡(𝑊 ) = 𝑍(𝑊 )𝑃 (𝑊 ). (5)

3.2. Met and Unmet Demand periods

The electricity generated by Anholt wind farm goes to the total network in Denmark, so it is
impossible to point, what consumers receive this energy. That’s why we have to evaluate the
electricity demand from Anholt as a share of the national demand, assuming it corresponds to the
share of the installed capacity of the Anholt wind farm (𝑄𝐴𝑛ℎ𝑜𝑙𝑡 = 400 MW) in the total installed
capacity 𝑄𝐷𝑒𝑛𝑚𝑎𝑟𝑘 of all the power plants in Denmark. In open access, there is information about
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the total installed capacity between 1990 and 2018 [17]. To predict the total installed capacity
𝑄𝐷𝑒𝑛𝑚𝑎𝑟𝑘(𝑦) for 2019 and 2020, a logarithmic model was used (Fig. 3):

𝑄𝐷𝑒𝑛𝑚𝑎𝑟𝑘(𝑦) = 𝑎0 + 𝑎1(𝑦 − 1989) + 𝑎2 ln(𝑦 − 1989),

where 𝑦 is the time in years and the coefficients 𝑎0 = 8749.25, 𝑎1 = 88.25, 𝑎2 = 967.3 are fitted by
least squares.
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Figure 3: Total Installed Electricity Capacity in Denmark

According to this model, the total installed capacity was 14700 MW in 2019 and 14800 MW in
2020, so the Anholt share is evaluated as 2.72% and 2.70%, respectively.

Using hourly data on total electricity consumption in Denmark [18], we have obtained an
evaluation of the electricity demand for the wind farm under study:

𝐶𝐴𝑛ℎ𝑜𝑙𝑡(𝑡) =
𝑄𝐴𝑛ℎ𝑜𝑙𝑡

𝑄𝐷𝑒𝑛𝑚𝑎𝑟𝑘(𝑦)
𝐶𝐷𝑒𝑛𝑚𝑎𝑟𝑘(𝑡),

where 𝑡 is the time in hours, 𝑦 = 𝑦(𝑡) is the time in years, 𝐶𝐷𝑒𝑛𝑚𝑎𝑟𝑘(𝑡) is the total electricity
consumption in Denmark, MWh.

Using hourly data on wind speed in Anholt Island at the height ℎ = 10 m we have obtained 𝑊 (𝑡)

– the wind speed at the height of the turbine blades for every hour 𝑡 by the Eq. (4). Then by
Eq. (5), we have calculated the power 𝑃𝐴𝑛ℎ𝑜𝑙𝑡(𝑡) = 𝑃𝐴𝑛ℎ𝑜𝑙𝑡(𝑊 (𝑡)) generated by all the turbines
of the Anholt wind farm. A positive expression 𝑃𝐴𝑛ℎ𝑜𝑙𝑡(𝑡)− 𝐶𝐴𝑛ℎ𝑜𝑙𝑡(𝑡) determines met demand
periods, and a negative determines unmet ones. Fig. 4 shows a data fragment from March 28 to
April 2, 2016.
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Figure 4: Periods of Met and Unmet Demand

The duration of the periods depends mainly on fluctuations in generated power, i.e. on wind
speed. Although the demand fluctuations have 3 cycles (daily, weekly and seasonal), their amplitude
is much less, than that of the power fluctuations. Fig. 5 shows a data fragment from January 9 to
21, 2016.
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Figure 5: Comparison of the Fluctuations’ Amplitude in Supply and Demand

After processing the data for 2016 – 2020, we have obtained two samples: the periods of met and
unmet demand (the sample sizes are 2015 and 2016 observations, respectively). These measurements
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are weakly correlated with each other (Fig. 6)), so we will consider them as independent observations.
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Figure 6: Correlation Functions of the Periods

The data may be described by the exponential mixture model, for which the probability density
functions have the form

𝑓(𝑡) =
𝑘∑︁

𝑖=1

𝑣𝑖
𝜇𝑖

𝑒
− 𝑡

𝜇𝑖 .

The parameters 𝜇𝑖 are expectations of exponential distributions, from which the mixture model
consists, and 𝑣𝑖 are weight parameters of them. To estimate these parameters, the expectation-
maximization algorithm (EM-algorithm) [19] was applied. It is a modification of the maximum
likelihood method adapted for mixture distribution models. The model parameters for the met
demand periods distribution are

𝑣⃗ = [0.63, 0.19, 0.18];

𝜇⃗ = [2.2, 11.0, 43.6] hours,

and these ones for the unmet demand periods distribution are

𝑣⃗ = [0.66, 0.34];

𝜇⃗ = [2.4, 24.0] hours.

Figures 7 and 8 show histograms and probability plots validating the models. The formal 𝜒2-test
has not confirm goodness of fit of these models, because the samples are too large, and the test
founds insignificant deviations of an empirical distribution from a hypothetical one. But if we
reduce the sample size by 4 times (up to 500) by randomly discarding a part of the observations,
the 𝑝-values will be 0.8 for met and 0.2 for unmet demand periods, that is, much greater than the
significance level 𝛼 = 0.05.
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Figure 7: Distribution Low of Met Demand Periods

0 50 100 150 200

Periods of Unmet Demand, hours

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ro
ba

bi
lit
y
D
en

si
ty

Fu
nc

ti
on

Histogram

0 50 100 150

Periods of Unmet Demand, hours

0

25

50

75

100

125

150

Q
ua

nt
ile

s

Probability Plot

Figure 8: Distribution Low of Unmet Demand Periods

3.3. The Model

The exponential mixture model can be interpreted as follows: every real process state (0 – for
met demand and 1 – for unmet one) consists from several fictive (3 or 2, respectively) states. The
residence time in each of them has an exponential distribution. Let’s number the fictive states: 0,
1 and 2 are the numbers of met demand states (shown by green vertices on the transition graph
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in Fig. 9), 3 and 4 are the numbers of unmet demand states (shown by red vertices on the transition
graph in Fig. 9).

The transition rates are inversely proportional to the mean residence times in the states from
which the process leaves, and are directly proportional to the weight coefficients of the states into
which the process comes:

𝜆𝑖𝑗 =
𝑣𝑗
𝜇𝑖

, 𝑖, 𝑗 = 0, 4.

Let’s write the transition rates estimated by the data in the matrix form:

Λ = [𝜆𝑖𝑗 ] =

⎡⎢⎢⎢⎢⎣
0 0 0 0.30 0.15

0 0 0 0.06 0.03

0 0 0 0.02 0.01

0.26 0.08 0.07 0 0

0.03 0.01 0.01 0 0

⎤⎥⎥⎥⎥⎦

0
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λ04

1
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λ14
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λ24
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λ30

λ31

λ32
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λ40
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λ42

Figure 9: Transition Graph of the Markov Model

Because the residence time of every fictive states has approximately an exponential distribution,
the process of transitions between them can be modelling as a Markov one. Therefore, the vector
of the state probabilities 𝑝(𝑡) is the solution of Kolmogorov system of equations [20]:

𝑑𝑝

𝑑𝑡
= Λ′𝑝,

4∑︁
𝑖=0

𝑝𝑖(𝑡) = 1. (6)

A detailed derivation of this equation one can be find in numerous textbooks, for example in [21].

3.4. Model Investigation

To obtain an unique solution, it is necessary to set an initial condition by choosing one of the fictive
states as the starting. With operational control at some time point 𝑡, we can attribute the last
completed period to one of the fictitious states, because the EM-algorithm allows both estimating
the parameters of a mixture of distributions and classifying observations.

The analytical solution of the system (6) is very cumbersome and is not presented here. It
is recommended to apply numerical methods for solving the system (6), for example an explicit
Runge-Kutta method.

The probabilities of the real states (0 – the met demand, 1 – unmet demand) are the sums of
the fictive state probabilities:

𝑝*0(𝑡) = P{𝑃𝐴𝑛ℎ𝑜𝑙𝑡 ≥ 𝐶𝐴𝑛ℎ𝑜𝑙𝑡} = 𝑝0(𝑡) + 𝑝1(𝑡) + 𝑝2(𝑡),

𝑝*1(𝑡) = P{𝑃𝐴𝑛ℎ𝑜𝑙𝑡 < 𝐶𝐴𝑛ℎ𝑜𝑙𝑡} = 𝑝3(𝑡) + 𝑝4(𝑡).
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Fig. 10 shows the plot of the met demand probability for various initial states. Green curves
are for met demand initial states, red ones are for unmet demand initial states.

0 20 40 60 80 100 120 140

t, hours

0.0

0.2

0.4

0.6

0.8

1.0

p∗0(t)

Stationary probilability
Initial state 0
Initial state 1
Initial state 2
Initial state 3
Initial state 4

Figure 10: Met Demand Probabilities for Various Initial States

The stationary state probabilities 𝑝 = lim
𝑡→∞

𝑝(𝑡) can be obtain form the system (6) by setting

𝑑𝑝

𝑑𝑡
= 0⃗, i.e. Λ′𝑝 = 0⃗.

This is a system of linear algebraic equations. The rank of the system matrix is 4, which is 1
less than the number of states, but with the normalisation condition

∑︀
𝑝𝑖 = 1, the system has the

full rank and its unique solution is presented in Table 3.

Table 3: Stationary Probabilities of the Process States

𝑖 0 1 2 3 4
𝑝𝑖 0.066 0.099 0.373 0.075 0.387

The process converges to the stationary one, but does not it very quickly: only in 120 hours
after a start time point, the state probabilities differ from its stationary values less than 0.01.

The stationary probability of the met demand does not depend on an initial state and is

𝑝*0 = 𝑝0 + 𝑝1 + 𝑝2 ≈ 0.537.

This value differs little from the total share of the met demand time for the studied period,
which indicate the adequacy of the constructed model:

𝑇 *
0

𝑇 *
0 + 𝑇 *

1

≈ 0.544,

where 𝑇 *
0 is the total time of the met demand, 𝑇 *

1 is the total time of the unmet demand.
Thus, the power of the wind farm is insufficient to meet the electricity demand on average 54%

of the time. At the rest of the time consumers have to use other energy sources additionally. At

RT&A, No 4 (65)
Volume 16, December 2021

55



Victor Yu. Itkin
WIND FARM RELIABILITY MODEL

the same time, the amount of energy generated during the periods of met demand is much greater
than the required one. Although an industry technology for long-term storage of electricity, for
example in the hydrogen form, has not yet been developed by now, investigations in this direction
are being actively pursued. Conservation of energy during the period when it is generated in excess
would make it possible to cover its deficit during periods of weak wind.

4. Conclusion

The electricity provision to consumers is determined both by the reliability of wind farm equipment
and by weather conditions. This paper presents a mathematical model that makes it possible to
assess the reliability indicators, such as failure rate, mean time to repair, and availability, based on
the statistical data. The assessment took into account the dependence of the indicators on wind
speed.

Based on statistical data and the already known mathematical models, the distributions of the
met and unmet demand periods have been investigated. Using hourly data over 5-years period, we
have found out that these distributions can be approximated by exponential mixture model, and,
therefore, the process of the wind farm operation can modelled as a Markov process.

Thus, the model of the wind farm operating process taking into account both the random nature
of wind speed as an energy source and usual failures of equipment is built. The main result of the
study is the estimation of stationary probability of the met demand: it is approximately 0.537. It
means that the power of the wind farm is insufficient to meet the electricity demand on average 54%
of the time.

The amount of energy generated during the periods of met demand is much greater than the
required one. Therefore, it is profitable to build an energy storage to save the energy excess. The
author intends to study a reliability problem about a rational storage volume.
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Abstract

In this paper, we introduce a flexible extension of the Maxwell distribution for modeling various practical
data with non-monotone failure rate. Some main properties of this distribution are obtained, and then the
estimation of the parameters for the proposed distribution has been addressed by maximum likelihood
estimation method and Bayes estimation method. The Bayes estimators have been obtained under gamma
prior using squared error loss function. Also, a simulation study is gained to assess the estimates
performance. A real-life applications for the proposed distribution have been illustrated through different
lifetime data.

Keywords: Family of Maxwell distributions, Entropy, Classical and Bayes estimation, Interval
estimation, Asymptotic confidence length.

1. Introduction

The Maxwell distribution has broad application in statistical physics, physical chemistry, and
their related areas. Besides Physics and Chemistry it has also a good number of applications in
reliability theory. At first, the Maxwell distribution was used as lifetime distribution by [1]. The
inferences based on generalized Maxwell distribution have been discussed by [2]. [3] considered
the estimation of reliability characteristics for Maxwell distribution under Bayes paradigm. [4]
discussed the prior selection procedure in case of Maxwell distribution. [5] studied the distri-
butions of the product |XY| and ratio |X/Y|, where X and Y are independent random variables
having the Maxwell and Rayleigh distributions, respectively. [6] proposed the Bayesian estimation
of the Maxwell parameters. [7] discussed the estimation procedure for the Maxwell parameters
under progressive type-I hybrid censored data. Furthermore, several generalizations based on
Maxwell distribution are advocated and statistically justified. Recently, two more extensions
of Maxwell distribution has been introduced by [8], [9] and discussed the classical as well as
Bayesian estimation of the parameter along with real-life applications.

A random variable Z follows the Maxwell distribution (MaD) with scale parameter α, denoted
as Z ∼ MaD(α), if its probability density function (PDF) and cumulative distribution function
(CDF) are given by

f (z, α) =
4√
π

α
3
2 z2e−αz2

z ≥ 0, α > 0 (1)
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and

F(z, α) =
2√
π

Γ
(

3
2

, αz2
)

, (2)

respectively, where Γ(a, z) =
∫ z

0 pa−1e−pdp is the incomplete gamma function.

In this article, we propose a flexible extension of the Maxwell distribution. The objective of this
article is to get some main properties of this distribution for showing its merit in modeling various
practical data, and then estimate the unknown parameters using classical and Bayes estimation
methods. Other motivations regarding the advantages of the distribution comes from its flexibility
to model the data with non-monotone failure rates. The former aim is justified, where the
proposed distribution provides better fit to the reliability/survival data comparing to the some
known and recent versions of the Maxwell distribution. Further, the distribution is that having the
nature of platykurtic, mesokurtic and leptokurtic, hence it can be used to model skewed and sym-
metric data as well. Also, the Bayes procedure under informative prior provides the more efficient
estimates as compared to the maximum likelihood estimates (MLEs) concerning the estimation
point of view. Another motivation for the confidence interval of the distribution parameters is
that increasing the sample size decreases the width of confidence intervals, because it decreases
the standard error, and this justified by simulation study and using sizes of four practical data sets.

The reminder of the considered work has been structured in the following manner. Section 2
provides some statistical properties related to the proposed model for purpose of data modeling.
In Section 3, some types of entropy are investigated. The maximum likelihood (ML) and Bayes
estimation procedures have been discussed in Section 4. Also, a simulation study is carried out to
compare the performance of Bayes estimates with MLEs. In Section 5, we illustrate the application
and usefulness of the proposed model by applying it to four practical data sets. Section 5 offers
some concluding remarks.

2. The model and some of its properties

This section provides another generalization of the MaD using power transformation of Maxwell
random variates for estimations issues of the distribution parameters and modeling practical

data. For this purpose, consider the transformation X = Z
1
β , where Z ∼ MaD(α), hence the

resulting distribution of X is called as power Maxwell distribution (for short PMaD) and denoted
by X ∼ PMaD(α, β), where, α and β are the scale and shape parameters, respectively. The PDF
and CDF of the PMaD are given by

f (x, α, β) =
4√
π

α
3
2 βx3β−1e−αx2β

, x ≥ 0, α, β > 0, (3)

F(x, α, β) =
2√
π

Γ
(

3
2

, αx2β

)
, (4)

respectively. Plots of the PDF are given by Figure 1 for different choices of α and β. The plots
show different kurtosis, positive skewness and symmetric shapes.

Some main mathematical and statistical properties of PMaD have been obtained in the
following.

2.1. Behaviour with some reliability functions

This subsection, described the asymptotic nature of density and survival functions for the pro-
posed distribution. To illustrate asymptotic behaviour, at first, we will show that lim

x→0
f (x, α, β) = 0

and lim
x→∞

f (x, α, β) = 0 . Therefore, using (2.1)

lim
x→0

f (x, α, β) =
4√
π

α
3
2 β lim

x→0
x3β−1e−αx2β

= 0,
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Figure 1: Density function and hazard function plot for different choices of α and β.

and
lim

x→∞
f (x, α, β) =

4√
π

α
3
2 β lim

x→∞
x3β−1 lim

x→∞
e−αx2β

= 0

The characteristics based on reliability function and hazard function are very useful to study
the pattern of any lifetime phenomenon. Let X be a random variable with PDF (2.1) and CDF (2.2),
different reliability measures for the proposed distribution are obtained by following equations.

The reliability function R(x) is given by

R(x) = P(X > x) = 1− 2√
π

Γ
(

3
2

, αx2β

)
(5)

The mean time to system failure M(x) is

M(x) = E(x) =
2√
π

(
1
α

) 1
2β

Γ
(

3β + 1
2β

)
(6)

The hazard function H(x) is given as

H(x) =
f (x, α, β)

1− F(x, α, β)
=

4α
3
2 βx3β−1e−αx2β

√
π − 2Γ

( 3
2 , αx2β

) (7)

The plots, in Figure 1, show that the proposed density is unimodel and positively skewed with
monotone failure rate function for the different combination of the model parameters. The
comparative behavior of the random variables can be measured by stochastic ordering concept
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that is summarized in the next proposition.

Proposition: Let X ∼ PMaD(α1, β1) and Y ∼ PMaD(α2, β2), then the likelihood ratio is

Φ =
fX(x)
fY(x)

=

(
α1

α2

) 3
2
(

β1

β2

)
x3(β1−β2)e−(α1x2β1+α2x2β2 ).

Therefore,

Φ
′
= log

(
fX(x)
fY(x)

)
=

1
x

[
3(β1 − β2)− (α1x2β1 + α2x2β2)

]
If β1 = β2 = β, then Φ

′
< 0, which implies that the random variable X is a likelihood ratio order

than Y, that is X ≤lr Y. Also, if α1 = α2 = α and β1 < β2, then again Φ
′
< 0, which shows that

X ≤lr Y. Other stochastic orderings behaviour follow using X ≤lr Y, such as hazard rate order
(X ≤hr Y), mean residual life order (X ≤mrl Y) and scholastically greater (X ≤st Y).

2.2. Moments and some conditional ones

Let x1, x2, · · · xn be random observations from the PMaD(α, β). The rth moment, µ
′
r, about origin

is

µ
′
r =

∫ ∞

x=0
xr f (x, α, β) dx =

2√
π

(
1
α

) r
2β

Γ
(

3β + r
2β

)
, r > 1.

The coefficient of skewness and kurtosis measure the convexity of the curve and its shape.
Using the moments above, the two earlier measures are obtained by moments based relations
suggested by Pearson and given by

β1 =

[
µ
′
3 − 3µ

′
2µ
′
1 + 2

(
µ
′
1

)3
]2

[
µ
′
2 −

(
µ
′
1
)2
]3

and

β2 =
µ
′
4 − 4µ

′
3µ
′
1 + 6µ

′
2

(
µ
′
1

)2
− 3

(
µ
′
1

)4

[
µ
′
2 −

(
µ
′
1
)2
]2 .

Numerical values of some measures above are calculated in Table 1 for different combination of
the model parameters, and it is observed that the shape of the PMaD is right skewed and almost
symmetrical for some choices of α, β. Also, it can has the nature of platykurtic, mesokurtic and
leptokurtic, thus PMaD may be used to model skewed and symmetric data as well.

The mode (M0) for PMaD (α, β) is obtained by solving the following expression
d

dx
f (x, α, β)|M0 =

0, which yields

M0 =

(
3β− 1

2αβ

) 1
2β

.

Moreover, the median (Md) of the proposed distribution can be calculated by using the empirical
relation among the mean, median and mode. Thus, the median is,

Md =
1
3

M0 +
2
3

µ
′
1 =

1
3

[(
3β− 1

2αβ

) 1
2β

+
4√
π

(
1
α

) 1
2β

Γ
(

3β + 1
2β

)]
.

The moment generating function (mgf) MX(t) for a PMaD random variable X is obtained as

MX(t) = E(etx) =
2√
π

∞

∑
i=0

1
j!

(
t

α2β

)r
Γ
(

3β + r
2β

)
.
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Table 1: Values of mean, variance, skewness, kurtosis, mode and coefficient of variation for different α, β

α, β
µ
′
1 µ2 β1 β2 x0 CV

when α fixed and β varying
0.5, 0.5 3.0008 5.9992 2.6675 7.0010 1.0000 0.8162
0.5, 1.0 1.5962 0.4530 0.2384 3.1071 1.4142 0.4217
0.5, 1.5 1.3376 0.1499 0.0102 2.7882 1.3264 0.2894
0.5, 2.5 1.1780 0.0445 0.0481 2.7890 1.2106 0.1792
0.5, 3.5 1.1204 0.0211 0.1037 2.4351 1.1533 0.1298

when β fixed α varying
0.5, 0.75 1.9392 1.1443 0.7425 3.8789 1.4057 0.5516
1.0, 0.75 1.2216 0.4541 0.7425 3.8789 0.8855 0.5516
1.5, 0.75 0.9323 0.2645 0.7425 3.8789 0.6758 0.5516
2.5, 0.75 0.6632 0.1338 0.7425 3.8789 0.4807 0.5516
3.5, 0.75 0.5299 0.0855 0.7425 3.8789 0.3841 0.5516

when both varying
1, 1 1.1287 0.2265 0.2384 3.1071 1.0000 0.4217
2, 2 0.8723 0.0372 0.0102 2.7895 0.8891 0.2212
3, 3 0.8484 0.0163 0.0831 2.6907 0.8736 0.1506
4, 4 0.8509 0.0094 0.1069 1.9643 0.8750 0.1140
5, 5 0.8586 0.0062 0.0677 0.1072 0.8805 0.0915

For lifetime distributions, the conditional moments are of interest in prediction. Another appli-
cation of conditional moments is the mean residual life (MRL). For this purpose, let X observed
from PDF(2.1), the conditional moments, E(Xr|X > k) and the conditional mgf E(etx|X > k) are
obtained as follows;

E(Xr|X > k) =

∫
x>k xr f (x, α, β)dx∫

x>k f (x, α, β)dx
=

2
(

1
α

) r
2β Γ

(
3β + r

2β
, αk2β

)
√

π − 2Γ
( 3

2 , αk2β
)

and

E(etx|X > k) =

∫
x>k etx f (x, α, β)dx∫

x>k f (x, α, β)dx

=

2 ∑∞
i=0

ti

i!

(
1
α

) r
2β Γ

(
3β + r

2β
, αk2β

)
√

π − 2Γ
( 3

2 , αk2β
) ,

respectively. The MRL is the expected remaining life X− x, given that the equipment has survived
to time k. The MRL function in terms of the first conditional moments is given as

m(x) = E[X− x|X > k] =
2
(

1
α

) 1
2β Γ

(
3β + 1

2β
, αk2β

)
√

π − 2Γ
( 3

2 , αk2β
) − x

3. Entropy measurements

In information theory, entropy measurement plays a vital role to study the uncertainty associated
with the random variable. In this section, we discuss the different entropy measures for PMaD.
For more detail about entropy measurement, see [10].
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3.1. Renyi entropy

Renyi entropy of a r.v. X with PDF (2.1) is given as

RE =
1

(1− ∈) ln

[∫ ∞

x=0

{
4√
π

α
3
2 βx3β−1e−αx2β

}∈
dx

]
Hence, after some algebra, we get

RE =
1

(1− ∈)

[
λ ln 4− λ

2
ln π + λ ln β− 1− λ− 2β

2β
ln α− 3λβ− λ + 1

2β
ln λ + ln

(
3βλ− λ + 1

2β

)]
.

3.2. ∆-entropy

The ∆ entropy is also known as β entropy. The ∆ entropy for a random variable X having PDF
(2.1) is defined as

∆E =
1

∆− 1

[
1−

∫ ∞

x=0
f ∆(x, α, β)dx

]
.

Using PDF (2.1) and after simplification, the expression for β-entropy is given by;

∆E =
1

∆− 1

1−
(

4√
π

)∆
β∆
(

1
α

)1− ∆− 2β

2β

Γ
(

3∆β− ∆ + 1
2β

)

∆

3∆β− ∆ + 1
2β


 . (8)

3.3. Generalized entropy

The generalized entropy is defined by

GE =
νλµ−λ − 1
λ(λ− 1)

; λ 6= 0, 1,

where, νλ =
∫ ∞

x=0 xλ f (x, α, θ)dx and µ = E(X). After some algebra, we get

GE =

(
4
π

) 1−λ
2


Γ
(

3β + λ

2β

){
Γ
(

3β + 1
2β

)}−λ

λ(λ− 1)

 , λ 6= 0, 1. (9)

4. Parameter estimation with a simulation study

Here, we describe the maximum likelihood estimation method and Bayes estimation method
for estimating the unknown parameters α, β of the PMaD. The estimators obtained under these
methods are not in nice closed form; thus, numerical approximation techniques are used to get
the solution. Further, the performances of these estimators are studied through a Monte Carlo
simulation.

4.1. Maximum likelihood estimation

The most popular and efficient method of classical estimation of the parameter(s) is maximum
likelihood estimation. The estimators obtained by this method passes several desirable properties
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such as consistency, efficiency etc. Let X1, X2, · · · , Xn be an iid random sample of size n taken
from PMaD (α, β), then the likelihood function is

L(α, θ) =
n

∏
i=1

4√
π

α
3
2 βx3β−1

i e−αx2β
i =

4n

πn/2 α
3n
2 βne−α ∑n

i=1 x2β
i

(
n

∏
i=1

x3β−1
i

)
,

hence the corresponding log-likelihood function is written as

ln L(α, θ) = l = n ln 4− n
2

ln π +
3n
2

ln α + n ln β− α
n

∑
i=1

x2β
i + (3β− 1)

n

∑
i=1

ln xi. (10)

The MLEs of α and β are the solution of
∂l
∂α

= 0 and
∂l
∂β

= 0, hence

3n
2α
−

n

∑
i=1

x2β
i = 0 (11)

n
β
− 2α

n

∑
i=1

x2β
i ln xi + 3

n

∑
i=1

ln xi = 0. (12)

The MLEs of the parameters are obtained by solving the two equations above simultaneously,
and non-linear maximization techniques is used to get the solution.

4.1.1 Uniqueness of MLEs

The uniqueness of the MLEs discussed in the previous section can be checked by using following
propositions.

Proposition 1: If β is fixed, then α̂ exists and is unique.

Proof: Let Lα =
3n
2α
−∑n

i=1 x2β
i , since Lα is continuous and it has been verified that lim

α→0
Lα = ∞

and lim
α→∞

Lα = −∑n
i=1 x2β

i < 0. This implies that Lα will have at least one root in interval (0, ∞)

and hence Lα is a decreasing function in α. Thus, Lα = 0 has a unique solution in (0, ∞).

Proposition 2: If α is fixed, then β̂ exists and is unique.

Proof: Let Lβ =
n
β
− α ∑n

i=1 x2β
i ln xi + 3 ∑n

i=1 ln xi, since Lβ is continuous and it has been

verified that lim
β→0

Lβ = ∞ and lim
β→∞

Lβ = −2 ∑n
i=1 ln xi < 0. This implies, as above, β̂ exists and it

is unique.

4.1.2 Fisher Information Matrix

Here, we derive the Fisher information matrix for constructing 100(1−Ψ)% asymptotic confidence
interval for the parameters using large sample theory. The Fisher information matrix can be
obtained, by using equations (4.2) and (4.3), as

I(α̂, β̂) = −E

lαα lαβ

lβα lββ


(α̂,β̂)

(5.2.1)

where,

lαα = − 3n
2α2 , lαβ = −2

n

∑
i=1

x2β
i ln xi, lββ = − n

β2 − 4α
n

∑
i=1

x2β
i (ln xi)

2.
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The above matrix can be inverted and the diagonal elements of I−1(α̂, β̂) provide the asymptotic
variance of α and β, respectively. Now, two sided 100(1−Ψ)% asymptotic confidence interval for
α, β can be obtained as

α ∈ [α̂− Z1− Ψ
2

√
var(α̂), α̂ + Z1− Ψ

2

√
var(α̂)],

β ∈ [β̂− Z1− Ψ
2

√
var(β̂), β̂ + Z1− Ψ

2

√
var(β̂)],

respectively.

4.2. Bayes estimation

In this subsection, the Bayes estimation procedure for the PMaD parameters has been developed.
Here, we consider two independent gamma priors for both shape and scale parameter. The
considered prior is very flexible due to its flexibility of assuming different shape. Thus, the joint
prior g(α, β) is given by;

g(α, β) ∝ αa−1βc−1e−bα−dβ ; α, β > 0, (13)

where a, b, c and d are the hyper-parameters of the considered priors. Using likelihood function
of PMaD and equation above, the joint posterior density function π(α, β|x) is derived as

π(α, β|x) = L(x|α, β)g(α, β)∫
α

∫
β L(x|α, β)g(α, β)dα dβ

=
α

3n
2 +a−1βn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
∏n

i=1 x3β−1
i

)
∫

α

∫
β α

3n
2 +a−1βn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
∏n

i=1 x3β−1
i

)
dα dβ

.

(14)

In the Bayesian analysis, the specification of proper loss function plays an important role. We
talk most frequently used the square error loss function (SELF) to obtain the estimators of the
parameters, which defined as

L(φ, φ̂) ∝
(
φ− φ̂

)2 , (15)

where φ̂ is estimate of φ. Bayes estimators under SELF is the posterior mean and evaluated by

φ̂SELF = [E(φ|x)] , (16)

provided the expectation exist and finite. Thus, the Bayes estimators based on equation no. (4.5)
under SELF are given by

α̂bs = Eα,β|x(α|β, x) = η−1
∫

α

∫
β

α
3n
2 +aβn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
n

∏
i=1

x3β−1
i

)
dα dβ, (17)

and

β̂bs = Eα,β|x(β|α, x) = η−1
∫

α

∫
β

α
3n
2 +a−1βn+ce−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
n

∏
i=1

x3β−1
i

)
dα dβ, (18)

where η−1 =
∫

α

∫
β α

3n
2 +a−1βn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
∏n

i=1 x3β−1
i

)
dα dβ.

From equations (4.8) and (4.9), it is easy to observe that the posterior expectations are appearing
in the form of the ratio of two integrals. Thus, the analytical solution of these expectations are
not presumable. Therefore, any numerical approximation techniques may be implemented to
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secure the solutions. Here, we used one of the most popular and quite effective approximation
technique suggested by [11]. The detailed description is as follows.

(α̂, β̂)Bayes =

∫
α

∫
β u(α, β)eρ(α,β)+l dαdβ∫
α

∫
β eρ(α,β)+l dαdβ

(19)

= (α̂, β̂)ml +
1
2
[(uαα + 2uαρα)ταα + (uαβ + 2uαρβ)ταβ + (uβα + 2uβρα)τβα

+ (uββ + 2uβρβ)τββ] +
α

β
[(uαταα + uβταβ)(l111ταα + 2l21ταβ + l12τββ)

+ (uατβα + uβτββ)(l21ταα + 2l12τβα + l222τββ)], (20)

where u(α, β) = (α, β), ρ(α, β) = ln g(α, β) and l = ln L(α, β|x),

lab =
∂3l

∂αa∂βb , a, b = 0, 1, 2, 3 a + b = 3, ρα =
∂ρ

∂α
, ρβ =

∂ρ

∂β

uα =
∂u
∂α

, uβ =
∂u
∂β

, uαα =
∂2u
∂α2 , uββ =

∂2u
∂β2 , uαβ =

∂2u
∂α∂β

,

ταα =
1

l20
, ταβ =

1
l11

= τβα, τββ =
1

l02
.

Since u(α, β) is the function of α, β,

• If u(α, β) = α in (4.11), then

uα = 1, uβ = 0, uαα = uββ = 0, uαβ = uβα = 0.

• If u(α, β) = β in (4.11), then

uβ = 1, uα = 0, uαα = uββ = 0, uαβ = uβα = 0,

and the rest derivatives based on likelihood function are obtained as

l30 =
3n
α3 , l11 = −2

n

∑
i=1

x2β
i ln xi, l03 =

2n
β3 − 8α

n

∑
i=1

x2β
i (ln xi)

3

l12 = −4
n

∑
i=1

x2β
i (ln xi)

2 = l21.

Using these derivatives the Bayes estimators of (α, β) are obtained by expressions

α̂bl =α̂ml +
1
2
[(2uαρα)ταα + (2uαρβ)ταβ] +

1
2
[(uαταα)(l30ταα + 2l21ταβ + l12τββ)

+ (uατβα)(l21ταα + 2l12τβα + l03τββ)],
(21)

β̂bl = β̂ml +
1
2
[(2uβρα)τβα + (2uβρβ)τββ] +

1
2
[(uβταβ)(l30ταα + 2l21ταβ + l12τββ)

+ (uβτββ)(l21ταα + 2l12τβα + l03τββ)].
(22)

4.3. Simulation study

In this section, a Monte Carlo simulation study has been performed to assess the performance of
the obtained estimators in terms of their mean square errors (MSEs). The MLEs of the parameters
are evaluated by using nlm() function, and also the MLEs of reliability characteristics are obtained
by using invariance properties. The Bayes estimates of the parameters are evaluated by Lindley’s
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approximation technique. The hyper-parameters values are chosen in such a way that the prior
mean is equal to the true value, and prior variance is taken as very small, say 0.5. All the
computations are done by R3.4.1 software. At first, we generated 5000 random samples from
the PMaD (α, β) using the Newton-Raphson algorithm for different variation of sample sizes
as n = 10 (small), n = 20, 30 (moderate), n = 50 (large) for fixed (α = 0.75, β = 0.75) and
secondly for different variation of (α, β) when sample size is fixed (n = 20), respectively. Average
estimates and mean square error (MSE) of the parameters are calculated for the above mentioned
choices, and the corresponding results are reported in Table 2. The asymptotic confidence interval
(ACI) and asymptotic confidence length (ACL) are also obtained and presented in Table 3. From
this simulation study, it has been observed that the precision of MLEs and Bayes estimator are
increasing when the sample size is increasing while average ACL is decreasing. The Bayes
estimates under informative prior is more precise as compared to the MLEs especially for small
sample sizes while for large sample the precision of the estimators is almost same for all the
considered parametric choices.

Table 2: Average estimates and mean square errors (in each second row) of the parameters and reliability characteristics
based on simulated data.

n α, β αml βml M(t)ml R(t)ml H(t)ml αbl βbl

10

0.75,0.75

0.5070 1.1598 1.5119 0.9691 0.1663 0.5063 1.1028
0.0631 0.2588 0.0164 0.0049 0.0947 0.0631 0.2027

20
0.6560 0.8848 1.4922 0.9343 0.2965 0.6521 0.8647
0.0098 0.0326 0.0093 0.0014 0.0703 0.0105 0.0263

30
0.7096 0.8064 1.4883 0.9163 0.3504 0.7058 0.7951
0.0022 0.0103 0.0071 0.0004 0.0010 0.0025 0.0087

50
0.7542 0.7453 1.4869 0.8988 0.3968 0.7514 0.7397
0.0003 0.0031 0.0046 0.0001 0.0003 0.0003 0.0031

for fixed n and different α, β

20

0.5,0.75
0.6603 0.6832 1.7380 0.9044 0.3400 0.6574 0.6716
0.0261 0.0125 0.0585 0.0017 0.0099 0.0252 0.0117

0.5, 1.5
0.7290 0.3033 4.6222 0.7871 0.3556 0.7258 0.3229
0.0528 1.4330 11.9171 0.0402 0.1139 0.0513 1.3866

1.5, 0.5
0.5090 2.9297 1.1531 0.9983 0.0207 0.5517 2.8634
0.9907 6.6465 0.0242 0.1274 26.0695 0.9087 6.3006

2.5,2.5
1.0448 0.5958 1.4084 0.7953 0.6393 1.2825 0.6727
2.1402 3.6573 0.3860 0.0373 0.3553 1.5058 3.3715

Table 3: Interval estimates and asymptotic confidence length (ACL) of the parameters.

n α, β αL αU ACLα βL βU AClβ

10 0.75,0.75 0.0874 0.9266 0.8393 0.5711 1.7485 1.1775
20 0.75,0.75 0.3209 0.9911 0.6703 0.5525 1.2171 0.6646
30 0.75,0.75 0.4263 0.9928 0.5665 0.5555 1.0574 0.5019
50 0.75,0.75 0.5290 0.9794 0.4505 0.5631 0.9275 0.3644

for fixed n and different α, β

20

0.5, 0.75 0.3255 0.9951 0.6696 0.4142 0.9523 0.5381
0.5, 1.5 0.3794 1.0785 0.6991 0.4819 1.7425 1.2429
1.5, 0.5 0.4206 1.7812 0.76058 0.2260 1.8334 1.3807
2.5, 2.5 0.5804 2.9509 0.9788 0.54133 2.7783 1.1365
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Figure 2: Empirical cumulative distribution function and QQ plot for the data set-I.

5. Practical data modeling

This section demonstrates the practical applicability of the proposed model in real-life scenario,
especially for the survival/reliability data taken from different sources. The proposed distri-
bution is compared with Maxwell distribution (MaD) and its different generalizations, such as,
length biased Maxwell distribution (LBMaD), see [9], area biased Maxwell distribution (ABMaD),
see [9], extended Maxwell distribution (EMaD), see [8] and generalized Maxwell distribution
(GMaD), see [2]. For these models the estimates of the parameter(s) are obtained by method of
maximum likelihood and the compatibility of PMaD has been discussed using model selection
tools (which depend on the MLE) such as log-likelihood (-log L), Akaike information criterion
(AIC), corrected Akaike information criterion (AICC), Bayesian information criterion (BIC) and
Kolmogorov Smirnov (K-S) test. In general, the smaller values of these statistics indicate the
better fit to the data.

The data sets description is as follows.
Data Set-I (Bladder cancer data): This data set represents the remission times (in months) of

a 128 bladder cancer patients, and it was initially used by [12]. The same data set is used to show
the superiority of extended Maxwell distribution by [8].

Data Set-II (Item failure data): This data set is taken from [13]. It shows 50 items put into
use at initial time t = 0 and failure items recorded in weeks.

Data Set-III (Airborne communication transceiver): The data set was initially considered by
[14]. It represent the 46 repair times (in hours) for an airborne communication transceiver.

Data Set-IV (Flood data). The data are the exceedances of flood peaks (in m3/s) of the
Wheaton River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for
the years 1958-1984, rounded to one decimal place. This data set was analyzed by [16].

Summary of the considered data sets is given in Table 5 and it can be seen that skewness is
positive for all data sets which indicates that they have positive skewness which appropriately
suited to the proposed model. This table also shows platykurtic, mesokurtic and leptokurtic
nature of the data, which proves again the suitability of the proposed model to the data.
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Table 4: Goodness of fit values for different model.

Bladder cancer data N=128
Model α̂ β̂ -logL AIC AICC BIC K-S
PMaD 0.7978 0.1637 366.3820 736.7639 732.8599 742.4680 0.3675
MaD 0.0076 – 1014.4440 2030.8870 2028.9190 2033.7400 0.4144

LBMaD 98.6386 – 669.3668 1340.7340 1338.7650 1343.5860 0.4906
ABMaD 78.9109 – 767.8122 1537.6240 1535.6560 1540.4770 0.5608
ExMaD 0.8447 1.4431 412.1232 828.2464 824.3424 833.9504 0.8265
GMaD 0.7484 527.2314 426.6019 857.2037 853.2997 862.9078 0.7086

Item failure data N=50
Model α̂ β̂ -logL AIC AICC BIC K-S
PMaD 0.8339 0.1820 135.8204 275.6407 271.8961 279.4648 0.2625
MaD 0.0104 – 367.8528 737.7056 735.7890 739.6177 0.4268

LBMaD 72.1146 – 315.1624 632.3248 630.4081 634.2368 0.5112
ABMaD 57.6917 – 374.1247 750.2494 748.3328 752.1615 0.5825
ExMaD 0.6186 1.0139 151.2998 306.5996 302.8550 310.4237 0.7327
GMaD 0.5400 534.1569 151.2643 306.5287 302.7840 310.3527 0.3920

Airborne communication transceiver N=46
Model α̂ β̂ - logL AIC AICC BIC K-S
PMaD 0.8735 0.2709 101.9125 207.8249 204.1040 211.4822 0.2136
MaD 0.0406 – 245.1383 492.2766 490.3675 494.1052 0.5027

LBMaD 18.4603 – 237.4945 476.9890 475.0799 478.8176 0.5771
ABMaD 14.7683 – 284.7017 571.4034 569.4943 573.2320 0.6324
ExMaD 0.7290 0.8672 103.3052 210.6104 206.8895 214.2677 0.2989
GMaD 0.6015 122.7666 110.8521 225.7042 221.9833 229.3615 0.4392

River data N=72
Model α̂ β̂ - logL AIC AICC BIC K-S
PMaD 0.805185 0.1504145 212.8942 429.7884 425.9623 434.3418 0.2760
MaD 0.005032 – 610.9235 1223.847 1221.904 1226.124 0.3821

LBMaD 149.0315 – 426.3076 854.6153 852.6724 856.8919 0.4113
ABMaD 119.2252 – 493.3271 988.6543 986.7114 990.9309 0.4529
ExMaD 0.697471 1.306933 251.9244 507.8487 504.0226 512.4021 0.7487
GMaD 0.648149 919.7356 251.2767 506.5534 502.7273 511.1068 0.4998

Table 5: Summary of the data sets.

Data Min Q1 Q2 Mean Q3 Max Kurtosis Skewness
I 0.080 3.348 6.395 9.366 11.838 79.050 18.483 3.287
II 0.013 1.390 5.320 7.821 10.043 48.105 9.408 2.306
III 0.200 0.800 1.750 3.607 4.375 24.500 11.803 2.888
IV 0.100 2.125 9.500 12.204 20.125 64.000 5.890 1.473

Table 6: ML and Bayes estimates of the four data sets.

Data αml βml αbl βbl
I 0.7978 0.1637 0.7962 0.1639
II 0.8339 0.1820 0.8292 0.1821
III 0.8735 0.2709 0.8675 0.2703
IV 0.8052 0.1504 0.8023 0.1506
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Table 7: Interval estimates based on the four data sets.

Data αL αU ACLα βL βU ACLβ

I 0.6545 0.9411 0.2866 0.1373 0.1902 0.0529
II 0.5962 1.0717 0.4754 0.1376 0.2263 0.0888
III 0.6202 1.1269 0.5067 0.2081 0.3337 0.1256
IV 0.6126 0.9978 0.3852 0.1186 0.1822 0.0636
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Figure 3: Empirical cumulative distribution function and QQ plot for the data set-II.
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Figure 4: Empirical cumulative distribution function and QQ plot for the data set-III.
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Figure 5: Empirical cumulative distribution function and QQ plot for the data set-IV.

From Table 4, it is clear that the proposed model (PMaD) has least value of the model selection
tools, which reflects the merit of PMaD for modeling such four practical data sets than the the
existing versions of the Maxwell distributions. The empirical cumulative distribution function
(ECDF) plots and corresponding QQ plots for all the considered data set are plotted for PMaD,
see Figures 2-5. From ECDF and QQ plots, it is clear that the considered data sets are adequately
fitted to the proposed model. The point (ML and Bayes) estimates of the parameters for each data
set are reported in Table 6. The Bayes estimates are calculated under non-informative prior, and it
is observed that the obtained estimates (ML and Bayes) are almost same. The interval estimate of
the parameter and corresponding asymptotic confidence length are also evaluated and presented
in Table 7. This table shows that as the size of the data increases, the length of the interval is
decreases, because it decreases the standard error, which support to our simulation part.

6. Conclusion

This article proposed the power Maxwell distribution (PMaD) as a flexible extension of the
Maxwell distribution and studied some of its main properties for data modeling. We also study
the skewness and kurtosis of the PMaD and found that it is capable of modeling the positively
skewed as well as symmetric data. The unknown parameters of the PMaD are estimated by the
maximum likelihood estimation (MLE) and Bayes estimation methods. The MLEs of the reliability
function and hazard function are also obtained by using the invariance property. The 95%
asymptotic confidence interval for the parameters are constructed using Fisher information matrix.
The MLEs and Bayes estimators are compared through the Monte Carlo simulation and observed
that Bayes estimators are more precise under informative prior. Finally, medical/reliability data
have been used to show practical utility of the PMaD, and it is observed that it provides the better
fit comparing to other versions of the Maxwell distributions. Thus, it can be recommended as an
alternative model for the non-monotone failure rate models.
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Abstract

In this paper a new process is introduced. To some extent it has resemblance with Queueing-Inventory
(Inventory with positive service time) (see Sigman and Simchi-Levy [2] and Melikov and Molchanov [1].
We consider a k - out - of - n: G system of identical components, each of which has exponentially distributed
life time with parameter λ, independent of the others. When the number of working components goes
down to N (k ≤ N ≤ n) due to failures, an order for n − k + 1 items is placed. Replenishment time is
exponentially distributed with parameter β. On replenishment, all failed components are instantaneously
replaced by the new arrivals, subject to a maximum of n − k + 1. This process is investigated and its
long run system state distribution derived explicitly. An associated optimization problem is discussed.
Throughout this paper the k - out - of - n system is assumed to be COLD.

Keywords: COLD system, System Reliability, k - out - of - n System, Replenishment policy, Serial
and Parallel Systems

1. Introduction

The purpose of this paper is to introduce a notion similar to Queueing - Inventory (QI), introduced
in 1992 by two groups of researchers: Sigman and Simchi-Levy [2] and Melikov and Molchanov
[1], independently of each other. Until then service time associated with providing an inventoried
item was assumed to be negligible. In reality, that assumption is rarely valid. A brief description
of QI is as follows. In classical queue, if the server is ready to serve and customers are waiting
then the service starts. The notion of the requirement of some materials is totally missing in it.
However, to provide service some item(s) is often required. It was Kazimirsky [7] who came
up with the idea of an item required to provide service. In the absence of such an item(s)
service cannot be given. In classical inventory, it is assumed that the service time is negligible.
That is to say, if the item is of demand is available, the server provides it to the customer in a
negligible amount of time and the customer leaves the system. In case the item is not available,
customers may wait until the inventory gets replenished. Thus absence of inventory alone results
in customers joining a queue of demands. The waiting space may be of finite or infinite capacity.
On replenishment, a certain number of waiting customers equal to min{number waiting, number
of inventoried items replenished}, leave the system with the inventory - it is assumed that each
customer asks for exactly one unit of the item. The assumption of negligible service time is
often unrealistic. This is the one that prompted Sigman and Simchi-Levy as well as Melikov and
Molchanov to introduce positive service time. This results in the formation of queue even when
inventory is available. The reader may refer to the recent survey paper by Krishnamoorthy et al
[4] for further details on the work done up to 2018 in QI.
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We consider a service providing system, namely a k-out-of-n system. Such a system has n
identical components/units. The system continuously operates. When the number of operational
component hits k − 1, the system fails. We assume that the life times of these n units are indepen-
dent and identically distributed random variables with exponential distribution having parameter
λ. Up on the number of working components going down to N(k ≤ N ≤ n) due to failures, an
order for n − k + 1 items are placed. Lead time is exponentially distributed with parameter β.
The life time of components and lead time are independent random variables. On replenishment,
all failed components are replaced by the new arrivals, subject to a maximum of n − k + 1. This
process is analysed to derive its long run system state distribution. In this paper the case of
COLD system alone is analysed and an associated optimization problem discussed. The system
is referred to as COLD if the components that were operational at the time of system failure, do
not deteriorate further until the system is again put back to operation by replacement/repair of
failed components. We can consider different types of replenishment policies and also systems
of that are WARM or HOT. In a warm system, components that remain operational at the time
of system failure continue to deteriorate, but at a slower rate than when the system is up. We
restrict the discussion to COLD system because the very purpose of this work is to announce the
above indicated new direction of thoughts. For this reason we also assumed that all distributions
involved are exponential.

Next we present a brief discussion in the investigation done on the reliability of k - out - of
- n : G system. This system is extensively investigated. Its particular cases, serial and parallel
systems are of special interest. A detailed discussion on these can be found in Sivazlian and
Stanfel [3]. Krishnamoorthy and Ushakumari [5] extended a repairable k - out - of - n : G system
to the case of retrial of failed components for repair. Krishnamoorthy et al [6] introduced the
N-policy of repair in k - out - of - n : G system and investigated the optimal number N of failed
components that should accumulate in order to start the repair of failed components in a cycle to
maximize the reliability of the system. Here a cycle is defined as the time interval that starts at the
epoch all the n components are in working condition until the moment all components that fail
during this time period are repaired and the system is back with all components in operational
state.

Barlow and Heidtmann [9] present a linear-time algorithm and its short computer program
in BASIC for the computation of reliability of a k - out - of - n : G system. We now turn to
a few more recent investigations on k - out - of - n : G system. Zhang et al. [10] analyse a
k - out - of - n : G system with repairman’s single vacation and shut off rule. The working
times and repair times of components follow exponential distributions, and the duration of the
repairman’s vacation is governed by a phase type distribution. Both transient and long run
system availability are obtained. Time-dependent behavior of the system performance measures
under different initial system states, are obtained. Monte Carlo simulation and special cases of
the system are investigated to check the correctness of the results obtained. Ji-EunByun et al [11]
investigate the reliability growth of k-out-of- N systems using matrix-based system reliability
method. To increase the reliability of a specific system, using redundant components is a common
method which is called redundancy allocation problem (RAP). Some of the RAP studies have
focused on k-out-of-n systems. However, all of these studies assumed predetermined active or
standby strategies for each subsystem. Mahsa Aghaei et al [12] propose a k - out - of - n series -
parallel system when the redundancy strategy can be chosen for each subsystem. Because the
optimization of RAP belongs to the NP-hard class of problems, a modified version of genetic
algorithm (GA) is developed. The exact method and the proposed GA are implemented on a
well-known test problem and the results obtained demonstrate the efficiency of the approach of
the authors compared to the previous studies.

In this paper we introduce the concept of replacement of failed components through a pur-
chase of new items that have the same life time distribution as the failed components. The
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order for purchase is placed when the number of operational components in the system falls
down to N, k ≤ N ≤ n. It takes an exponentially distributed amount of time, called the lead
time, for the replenishment of items to take place. The order quantity is fixed at n − k + 1. On
physical realization of the order, failed components are replaced by the new arrivals. The time
for replacement is assumed to be negligible. It may be noted that at most n − k + 1 components
need replacement at the time when replenishment takes place because operational components
do not deteriorate when the system is down (COLD system). As a result none, one , ... up to a
maximum of N − k + 1 excess/spare components will be available as standby units. This means
that the system is working now with all n components in operation and the remaining, if any,
stay as spares. These are brought to operation, one at a time, as and when components fail. This
process gets repeated.

The reader may wonder about the distinction from the classical queueing-inventory (QI)
problem and may even ask the question: are they not the same if the number of customers in the
QI is restricted to a finite number? The answer is a firm NO. This is so because at a replenishment epoch
the number of failed units of the k - out - of - n system can be smaller than n − k + 1, the replenishment
quantity. Thus there could be excess inventory to be stored, which are put into operation when failure
of components of the system takes place. Those excess components alone have holding cost. However,
in QI the inventory level may at most reach S at a replenishment epoch. Further all items held in the
inventory have holding cost associated with them. Also notice that all components of the system that
are in operation, deteriorate, though those on Şstandby (the excess remaining after failed components are
replaced)Ť do not deteriorate (because the system is COLD). Thus there are valid reasons for analysing
the reliability-inventory (RI) problem presented in the previous paragraph.

The remaining part of this paper is arranged as follows. In section 2, the mathematical model
of the problem is presented. The long run system state distribution is explicitly computed. In
section 3, we compute a few distributions of interest, associated with the model. Section 4
provides a cost function involving the decision variable N. Its analysis is then presented. This cost
function is shown to be convex. Thus there is a global optimum value for N. Finally a concluding
section tells about future plans for extensions and generalizations.

Notations and abbreviations:
In the sequel the following notations and abbreviations are employed:
i.i.d - independent and identically distributed.
rv(s) - random variable(s).
CTMC - Continuous time Markov Chain.
IPV Ů initial probability vector.
X(t) Ű Number of operational components in the system at time t.
Y(t) Ű Number of spare/standby components available at time t.
Note that only when X(t) = n, the value of Y(t) can be positive.

2. Mathematical Modeling and Analysis of the problem

The system under consideration is COLD: when the system fails in the absence of at least k
operational components, the components that are still operational do not deteriorate until system
again starts operation, with the failed components replaced by new ones. Though only one new
component suffices to put the system back into operation, we follow the policy of replacing
all failed components at the time when replenishment of the ordered items take place. The
replenishment quantity is n − k + 1. All of them may not be immediately required. Therefore the
excess items are kept as spares/standby for future replacements as and when required. Life times
of components are i.i.d rvs having exponential distribution with parameter λ. When number of
operational components drops down to N, with k ≤ N ≤ n, an order is placed for n − k + 1 new
components. It takes an exponentially distributed time with parameter β for the materialization
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of this order. This is referred to as lead time in inventory management. During this time, none,
one, ... , up to a maximum of N − k + 1 components may fail. Up on replenishment, all failed
components are replaced by new ones and the system continues to operate. It may be noted as
stated earlier, that all of these n − k + 1 units may not be required to bring back the number of
operational components in the system to n. Therefore only that much of these new components
that are required.

With X(t) defined as the number of operational components at time t and Y(t), that of
spares, we see that {(X(t), Y(t)), t ≥ 0)} is a two-dimensional CTMC with state space {(i, 0)|i =
k − 1, 2, ..., n} ∪ {(n, j)|j = 1, 2, ..., N − k + 1}. This process is not skip - free to the right because,
immediately after replenishment the number of operational components increases by at least
n − N (with none, one or more left as excess) and at most by n − k + 1(without any unit left
as standby). We employ the difference-differential equation technique to compute the long run
system state distribution. The figure below provides the working of the system: 2 - out - of - 5 : G
system.

β 

5λ 4λ 3λ 2λ 

(5, 0)  (4, 0) (3, 0) (2, 0) (1, 0) 

β 5λ  β 

(5, 2) (5, 1) 

5λ 

 

 

Figure 1: Transition diagram of 2 - out - of - 5 : G system with N = 3 when the failure rate is λ.

The transition rate matrix of the 2 - out - of - 5 : G system is as given below:

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (5, 1) (5, 2)



(1, 0) −β β
(2, 0) 2λ −(β + 2λ) β
(3, 0) 3λ −(β + 3λ) β
(4, 0) 4λ −4λ
(5, 0) 5λ −5λ
(5, 1) 5λ −5λ
(5, 2) 5λ −5λ

In this we have, n = 5, k = 2 and N = 3. For that system we get the long run behavior of the
system as

q4,0 = 5
4 q5,0;

q3,0 = 4λ
β+3λ

5
4 q5,0;

q2,0 = 3λ
β+2λ

4λ
β+3λ

5
4 q5,0;

q1,0 = 2λ
β

3λ
β+2λ

4λ
β+3λ

5
4 q5,0;

q5,2 = β
5λ q3,0 = β

5λ
4λ

β+3λ
5
4 q5,0

q5,1 = q5,0 − β
5λ q1,0 = q5,0 − β

5λ
2λ
β

3λ
β+2λ

4λ
β+3λ

5
4 q5,0.
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Now we add these limiting probabilities. Since their sum is 1, we immediately get q5,0.

A different failure rate case also will be discussed in the numerical section; this one considers
inverse variation of rate of failure with the number of operational components: when the number
of components in operation is j, the failure rate is λ/j. This leads to more compact expressions
for the system state probabilities. Therefore, we can expect a much nicer expression for the
optimal N value as well. The figure below provides the working of the system: 2 - out - of - 5 : G
system.

β 

λ λ λ λ 

(5, 0)  (4, 0) (3, 0) (2, 0) (1, 0) 

β λ   β 

(5, 2)  (5, 1) 

λ 

 

 

Figure 2: Transition diagram of 2 - out - of - 5 : G system with N = 3, when the failure rate is λ/j.

The transition rate matrix of the 2 - out - of - 5 : G system is as given below:

(1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (5, 1) (5, 2)



(1, 0) −β β
(2, 0) λ −(β + λ) β
(3, 0) λ −(β + λ) β
(4, 0) λ −λ
(5, 0) λ −λ
(5, 1) λ −λ
(5, 2) λ −λ

Nevertheless, the long run system state probabilities are indicated below for the 2-out-of- 5 : G
system, in the case where the failure rate is λ/j when j components are operating. We continue
to use the same notation for the system state probability.

q5,1 = (1 + λ
λ+β )q5,2;

q5,0 = (1 + λ
λ+β + λ

β
λ

λ+β )q5,2;

q4,0 = (1 + λ
β )q5,2;

q3,0 = ( λ
β )q5,2;

q2,0 = ( λ
β )(

λ
λ+β )q5,2;

q1,0 = ( λ
β )

2( λ
λ+β )q5,2.

These, together with the normalizing condition, gives q5,2.
Assume that the process initially starts in state (n, 0). Up to the state (N, 0), the process is a

pure death process, with linear death rates (depending on the number of operational components).
An order for replenishment for n − k + 1 units is placed on reaching (N, 0). The replenishment
may precede next failure or may be after the next failure and so on, could be even after the system
fails. Therefore there is a chance of system reliability getting affected. Since the system is COLD,
no more working component fails until they are again put into operation which can happen
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only after the replenishment. When replenishment takes place, all failed units are replaced
instantaneously. Thus from (N, 0) onwards the process is no more a pure death process nor it can
be called a birth and death process because the replenishment is in bulk. Thus it is not skip-free
to the right. Denote by Pij(t), the probability that the system is in state (i, j) at time t and P′

ij(t)
its derivative. Then the difference-differential equations satisfied by Pi,j(t) are:

P′
nj(t) = −λnPnj(t) + λnPnj+1(t) + βPi0(t); j = 0, 1, ..., i − k + 1, i = k − 1, ..., N;

P′
i0(t) = −(λi + β)Pi0(t) + λ(i + 1)Pi+10(t) for i = k − 1, ..., N;
P′

i0(t) = −λiPi0(t) + λ(i + 1)Pi+10(t) for i = N + 1, ..., n − 1.

These three systems of equations can be solved for computing the time dependent behavior of
the system state probabilities (see Karlin and Taylor [13], Chapter 4). When transient effect fades,
the system gets stabilized. Denote by qij the limit distribution, as t → ∞, of Pij(t). The CTMC
under study is aperiodic and irreducible, though it may get absorbed into state (k − 1, 1), only to
stay there for an exponentially distributed duration. Later on we will consider that state as an
absorbing state for deriving the distribution of time during which the system provides failure
free operation. Thus the above system of equations gives us:

nλqn,j = nλqn,j+1 + βqi,0 for j = 0, 1, ..., n − k + 1 − (n − i) : i = k − 1, ..., N;
(λi + β)qi,0 = λ(i + 1)qi+1,0 for i = k − 1, ...N;
iλqi,0 = (i + 1)λqi+1,0 for i = N + 1, ..., n − 1.

These are recursively solved to arrive at the long run system state probability as given below.

Theorem 1. : With qij defined as the limit as t → ∞ of Pij(t), we get:

qi,0 = i+1
i qi+1,0 for i = N + 1, ..., n − 1;

qi,0 = λ(i+1)
(λi+β)

qi+1,0 for i = k − 1, ..., N and

qn,j = qnj+1 +
β

nλ qi,0 for j = 0, 1, ..., i − k + 1 and i = k − 1, ..., N.

Proof. These show that we can express the system state probability in terms of qn,0, for
example. Then by total probability argument (the normalizing condition), we get qn,0. Thus
we have explicit analytical expressions for the system state probability. Next we use these to
derive several system characteristics which, in turn, are used in analyzing a related optimization
problem. �

3. Performance Characteristics

∙ Mean number of operational components when the system is working (excluding spares, if
any), OCW = ∑

j=N−k+1
j=1 nqn,j + ∑n

i=k iqi,0.

∙ Mean number of spare components, SC = ∑N−k+1
j=1 jqn,j.

∙ Fraction of time system is down, FTD = qk−1,0.

∙ Fraction of time the system is up, FTU = 1 − qk−1,0.

FTU is the complement of FTD. Our objective is to make it as close to one as possible, subject
to constraints of funds and at the same time the significance of the role of the machine. Thus N
plays the most crucial role.
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3.1. Related Distributions

In this section we derive a few distributions of interest that arise in the study of the system. We
may assume, without loss of generality, that the system starts in state (n, N − k). The distributions
that are derived include the distribution of the time until first failure; distribution of the number
of replenishments that take place before the system failure; distribution of the number of times
the replenishment results in excess inventory and in particular, the distribution of the number
of times the excess number of spares reached N − k + 1 and those that resulted in no excess
inventory.

Distribution of the time until first failure

We consider the Markov chain with state space {(i, 0)|i = k, ..., n} ∪ {(n, j)|j = 0, 1, ..., N − k + 1}.
Notice that we have dropped two states from the state space: The state (k − 1, 0) is excluded
because we want the distribution of the time during which the process remains continuously
in the transient states of the Markov chain. Because of that, in consequence to a replenishment,
the excess inventory/spare parts level cannot be zero. The initial probability vector γ of the
Markov chain has entries 1 at the place corresponding to (n, 0) and 0 at the remaining positions.
The reason for starting in state (n, 0) is that a new cycle starts after the machine failed. Thus
the state (k − 1, 0) is reached before replenishment of components. So after replacing all failed
components by the new arrivals, the system is left with no spare unit. Our objective is to compute
the distribution of the time T until the state (k − 1, 0) is reached for the first time. This is given in
the following theorem.

Theorem 2. Starting in state one of the states in the set, the distribution of the time T until
absorption takes place is phase type with representation (γ, U) of order n + N − 2k + 1. U is
that part in the infinitesimal generator of the Markov chain corresponding to the set of states
{(i, 0)|i = k, ..., n} ∪ {(n, j)|j = 0, 1, ..., N − k + 1} and γ is the IPV vector with 1 at the position
corresponding to the state (n, 0) and 0 at the remaining places.

NOTE We may relax the assumption that the initial state is (n, 0) by associating probabilities
for starting in any state. In that case there will be corresponding changes in the IPV γ. However,
for computing the distribution of the time till next failure (i.e., distribution of the time duration
between two successive failures of the system), the state (n, 0) has to be the starting state. Proof.
Write the difference - differential equations satisfied by the probabilities of the system occupying
any state belonging to {(j, 0)|j = k, ..., n} ∪ {(n, j)|j = 0, 1, ..., N − k + 1}. Now solve this matrix
differential equation to get the tail distribution of T as P(T > t) = γe(Ut)e, where e is a column
vector of 1Šs having the same order as that of γ. Therefore P(T < t) = 1 − γe(Ut)e. The expected
time to failure is given by - γU−1e.(see Neuts [8]). �

Distribution of the number of times the replenishment results in excess inventory before
absorption to (k − 1, 0)

To compute this distribution we proceed as follows. We start at an epoch of replenishment
that takes the state space to one of (n, 1), ...., (n, N − k + 1). These precisely correspond to those
replenishments that take place while the system is in states (k, 0), ..., (N, 0), respectively. The IPV
will be defined accordingly. Further we assume that the immediately preceding replenishment
took place only after reaching the state (k − 1, 0). The initial probability vector of the Markov
chain associated with these states is Θ = (θk0, ..., θn0, ..., θnN−k) and at the remaining positions,
including (k − 1, 0) and (n, 0) the entries are all zeros. If we look at the time t (i.e., pre-event
occurrence epoch), when the replenishment takes place during [t, t + h) for h infinitesimally small,
we notice that in the initial probability vector the only non-zero elements are θk0, ..., θN0. We
introduce an additional component called level, as the first coordinate, into the state space of the
process. We start at level 0 assuming that no replenishment order has so far materialized. It may
happen that the process reaches (0, k − 1, 0) before the materialization of the replenishment order
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that was placed on reaching (0, N, 0). In this case the required number turns out to be zero. We
call this a failure. Suppose that replenishment against the order which was placed on reaching
(0, N, 0), materializes before dropping to (0, k− 1, 0). We label this as a success. Then the level goes
up by 1 and the resulting state is an element of {(1, n, j)|j = 1, ..., N − k, N − k + 1}. This is the
first success. Thus the level, the first coordinate in the triplet, stands for the number of consecutive
successes. The components start failing with passage of time and on reaching down to (1, N, 0),
the next replenishment order Is placed. The two possibilities thereafter are: i) replenishment only
after the system breaks down (ie., state (1, k − 1, 0)is reached) or ii) replenishment takes place
before falling to state (1, k − 1, 0). In case the event mentioned as (ii) occurs, then we have the
second success. The Śconsecutive success counting processŠ goes on like this. In this we notice
that the time elapsed between consecutive replenishment epochs are i.i.d.rvs following the tail of
the phase type distribution with representation PH(Θ, V) where V is the part of the infinitesimal
generator corresponding to these transient states. It is important to note that, because (k − 1, 0) is
absorbing state, we have not brought it into the above computational argument. For this reason
the state (., n, 0) also does not come into play.

Now back to the computation of the required probability distribution. Denote by Y, the
random variable that represents the number of successes before the first failure where success and
failure are in the context as described in the previous paragraph. Denote the tail of the PH(Θ, V)
distribution described above by p and its complement by q. Then the distribution of Y is given
by P(Y = m) = pmq for m = 0, 1, ... which is the geometric distribution. We sum up these in the
following theorem.

Theorem 3. The distribution of the number of times the replenishment results in excess inventory
before absorption to (k − 1, 0) is given by the geometric distribution with parameter p where p is
the tail of the PH(Θ, V) distribution which is the time until absorption into state (k − 1, 0) of the
Markov chain describing the state space of the k - out - of - n : G system.

Corollary 1. From theorem 3.2, we conclude that the distribution of number of consecutive
failures of the system between two successive failure free cycles is also geometrically distributed.
Let Z denote this random variable. Then P(Z = m) = qm p for m = 0, 1, 2, ....

Corollary 2. From the state space description of the Markov chain of the k - out - of - n : G
system, it is clear that the consecutive number of times the excess inventory is positive (i.e., it hits
the set {1, 2, ..., N − k, N − k + 1} between two successive system failures, also has the geometric
distribution: Denote this rv by D. Then P(D = m) = pmq for m = 0, 1, 2, ....

Remark 1. It can be easily proved that the distribution of the time between two successive visits
to any state, say (k − 1, 0), is phase-type distributed with appropriate representation (see Theorem
3.1). A similar procedure can be adopted to compute the distribution of the time duration for
successive visits to any state in the state space of the Markov chain.

4. An Optimization Problem

In this section we construct a cost function involving the decision variable N. The relevant costs
are:
K - Fixed cost of placing an order for replenishment
C - Purchase cost/ unit item
h - Holding cost/excess units held/time
R - Penalty cost/time when system is down.
We consider the cost function: Average cost per unit time when the replenishment order for spare
items is placed when number of operating components drops down to N,
F(N) = [K + C(n − k + 1)]/(Expected time elapsed between two consecutive order placements)+
h. ∑

j=N−k+1
j=1 jqn,j + Rqk−1,0

First we compute the expected length of a cycle. Here a cycle time is the time duration, starting
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from an epoch at which state (N, 0) is reached to the next epoch at which that state is revis-
ited. . Denote the length of this cycle by W. We have to compute E(W). First we compute
the distribution of W. Figure 1 gives an idea about W in the special case discussed therein.
In the general case also the state space was described earlier. We incorporate a major modi-
fication in the order in which the state space appears and also an Şadditional elementŤ to it
for the computation of the distribution of W : {(N, 0), (N − 1, 0), ..., , (k, 0), (k − 1, 0), (n, N − k +
1), ..., (n, N − k), ...., (n, 1), (n, 0), ..., (n − 1, 0), ..., (N + 1, 0), *}. In this * is an absorbing state and
the remaining states are transient. This * is the same as the state (N, 0); however the intention of
using a distinct notation is to indicate that the state (N, 0) is revisited. Thus we can compute the
distribution of the distribution of the time duration elapsed, starting from (N, 0) back to (N, 0)
for the first time after the next replenishment at the same level or a lower level followed by de-
terioration of components. The infinitesimal generator of the corresponding CTMC is given below.

𝒢 =

[
Q Q*

0 0

]

Q =

 Z11 Z12
Z22 Z23

Z33


and Q* the column vector with entry (N + 1)λ in the last position.

Z11 =

(N, 0) (N − 1, 0) (N − 2, 0) . . . (k, 0)


(N, 0) −(β + Nλ) Nλ
(N − 1, 0) −(β + (N − 1)λ) (N − 1)λ

...
. . . . . .

(k, 0) −(β + kλ)

Z12 =

(k − 1, 0) (n, N − k + 1) (n, N − k) . . . (n, 1)


(N, 0) β
(N − 1, 0) β

...
. . .

(k, 0) kλ β

Z22 =

(k − 1, 0) (n, N − k + 1) (n, N − k) . . . (n, 1)


(k − 1, 0) −β
(n, N − k + 1) −nλ nλ
(n, N − k) −nλ

...
. . .

(n, 1) −nλ

Z23 =

(n, 0) . . . (N + 2, 0) (N + 1, 0)


(k − 1, 0) β
(n, N − k + 1) 0
(n, N − k) 0

...
...

(n, 1) nλ
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Z33 =

(n, 0) (n − 1, 0) . . . (N + 2, 0) (N + 1, 0)


(n, 0) −nλ nλ
(n − 1, 0) −nλ

...
. . .

(N + 2, 0) −(N + 2)λ (N + 2)λ
(N + 1, 0) −(N + 1)λ

It follows from it that the time until absorption to * has the Coxian distribution with representation
(δ, Q) where Q is that part of the infinitesimal generator sans the row and column corresponding
to *. Its dimension is n + N − 2(k − 1) and δ is the initial probability vector with 1 at the first
position and the remaining elements are 0sŠ. Its dimension is obvious from this description. Thus
we have proved the following:

Theorem 4. The distribution of a cycle (starting from state (N,0), returning to it for the first time),
has Coxian distribution with representation (δ, Q) of order n + N − 2(k − 1). Denoting by W the
length of this cycle, we have E(W) = δQ(−1)e.

Now we go back to the cost function described above. We compute this for two cases:
(a) 2 - out - of - 5 : G system in which N can take values 2, 3, 4, 5;
(b) 5 - out - of - 10 : G system in which N can take values 5, 6, 7, 8, 9.
Fix the various costs as K = $10, C = $1, h = $3, R = $20.
We have computed the long run probability distribution of the system (a), as an illustration for
the k - out - of - n : G system under N - policy for placing order for replenishment. First we take
up that case. The expression for cost function is as follows: F(N) = [10 + 1(5 − 2 + 1)]/(Expected
time elapsed between two consecutive order placements)+3. ∑

j=N−2+1
j=1 jq5,j + 50q1,0. The results

for various values of λ and β are summarized in the following table:

Table 1: Effect of N on Cost Function for a 2 - out - of - 5 : G system.

(λ, β) N = 2 N = 3 N = 4 N = 5

(1, 1) 28.0085 24.75 24.444 24.5
(1, 2) 23.8617 19.1453 19.8726 21.0732
(2, 1) 40.1261 38.1405 38.1920 38.3339

In the case when individual rate of failure is λ/j when the number of operating components
is j, the system state probabilities are computed and given in section 2. (b) For this system the
state space is{(i, 0)|i = 4, ..., 10} ∪ {(10, j)|j = 1, 2, ...N − 4}.
The expression for cost function is as follows: F(N) = [10+ 1(10− 5+ 1)]/(Expected time elapsed
between two consecutive order placements)+3. ∑

j=N−2+1
j=1 jq10,j + 50.q4,0. The results for various

values of λ and β are summarized in the following table:

Table 2: Effect of N on Cost Function for a 5 - out - of - 10 : G system.

(λ, β) N = 5 N = 6 N = 7 N = 8 N = 9

(1, 1) 34.7209 34.0944 33.75 33.6134 33.64
(1, 2) 28.9071 28.2580 28.2174 28.6125 29.3370
(1.5, 1) 41.8150 41.6413 41.6096 41.6771 41.8181

A much more realistic but simple way of looking at the component deterioration would have
been as follows: the rate of component deterioration is λ/j when j components in the system are
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operational. This leads to the system deterioration rate as j.λ/j = λ. This is the case describing
the load balance on the system as stronger when a larger number of components are operational
which is more realistic. In this case the expression for the system state probability gets much
more simplified and looks more elegant.

The long run system state probabilities in this case are:

q(k−1,0) = ( λ
β )(

λ
λ+β )

(N−k)q(N,0);

q(N−i,0) = ( λ
λ+β )

(N−i)q(N,0) for i = 1, 2, .., N − k;

q(N+1,0) = q(N+2,0) = ... = q(n−1,0) = q(n,0) = ( λ+β
λ )q(N,0)

The case when failure rate is inversely proportional to the number of operating components, the
system state probabilities can be deduced from the above or directly computed. These are as
given below:

q(N+1,0) = q(N+2,0) = ... = q(n−1,0) = q(n,0) = (1 + β
λ )q(N,0);

q(n,N−k+1) = ( β
λ )q(N,0);

q(n,N−k−j) = ( β
λ ){1 + ( λ

λ+β ) + ... + ( λ
λ+β )

(j+1)}q(N,0) for j = 0, 1, 2, .., N − k − 1;

q(N−j,0) = ( λ
λ+β )

jq(N,0) for j = 0, 1, ..., N − k

q(k−1,0) =
λ
β (

λ
λ+β )

(N−k)q(N,0).

Table 3: Effect of N on Cost Function for a 2 - out - of - 5 : G system, when failure rate is λ/j when the number of
operating components in the system is j.

(λ, β) N = 2 N = 3 N = 4 N = 5

(1, 1) 11.4589 7.4706 7.7273 9.3385
(1, 2) 8.9415 5.7808 7.2535 9.7473
(1.5, 1) 16.67 11.5242 10.8677 11.5857

Table 1 shows that, for the 2−out-of−5 system, the optimal values of N for the various
combinations of (λ, β) given by (1, 1), (1, 2) and (2, 1) are respectively, 4, 3, 3 and the minimum
costs are $24.444, $19.1453 and $38.1405. In contrast to this, Table 3 shows pretty small values for
the cost function. This shows the effect of reduced failure rate when the number of operating
units is closer to the maximum value.

Table 4: Effect of N on Cost Function for a 5 - out - of - 10 : G system, when failure rate is λ/j when the number of
operating components in the system is j.

(λ, β) N = 5 N = 6 N = 7 N = 8 N = 9

(1, 1) 6.5385 5.4 5.5306 6.5876 8.3679
(1, 2) 4.2703 4.2018 5.1754 6.8345 9.0552
(1.5, 1) 10.1739 8.4537 7.9051 8.3293 9.5734

Table 2 shows that, for the 5−out-of−10 system, the optimal values of N for the various com-
binations of (λ, β) given by (1, 1), (1, 2), 1.5, 1) are respectively, $33.6134, $28.2174 and $41.6096.
In contrast to this, when failure rate is inversely proportional to the number of operating units,
the cost gets considerably reduced and a shift in the optimal N value is also observed.
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In this case we can easily see that the holding cost of excess (spare) components increases
with the increase in value of N because N − k increases under this condition; the order for
replenishment is placed when N is closer to n and so there is higher chance of replenishment
taking place before the system reaches the state (k − 1, 0), thereby ensuring smooth functioning
of the system thereby reducing the risk involved due to system failure. Conversely, if we move
down N towards k, the reliability of the system can get seriously affected because the order
materialization may get delayed. Consequently the number of operating components could get
reduced to k − 1, thus affecting system reliability. In other words the order for replenishment
is placed when the number of operating components is closer to k. So the replenishment could
get correspondingly delayed, endangering system reliability. Of course, one can argue that the
replenishment time is exponentially distributed and so it lacks memory. In any case for the
same parameter of the lead time exponential distribution, we will see the distinction through the
examples. In the case of failure rate inversely proportional to number of operating components,
we see that the cost function constructed is convex. In particular for parallel (1-out-of-n : G
system) and serial (n-out-of-n : G system) systems we get the corresponding optimal N value
from the general case.

The eight figures (titled as Figure 3) given below, provide a very clear picture of how the
system performs. The first two among these indicate that, with faster replenishment rate the
number of components in operation goes up in the two types of failure rates indicated. This
trend is also seen to be true for the number of spares available (see the 3rd and 4th figures).
Fraction of time the system is up, is considerably smaller when failure rate of the system is
directly proportional to the number of operational components than when the system failure rate
is inversely proportional to that number (the last two pair of figures). The third pair of figures
tells us about the fraction of time the system is down in the two distinct scenarios.
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Figure 3: Effect of β and N on performance measures, when failure rate is λ and λ/j respectively.
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5. Concluding remarks

In this paper we considered a k - out - of - n : G system with N - policy for placing orders for
replacement of failed components. The long run system state probability distribution is computed
when failure rate is linear. The case of constant failure rate is shown to be a particular case of that.
A number of distributions associated with the system are derived. In particular, the time duration
between two successive failures of the system is shown to be of phase-type with appropriate
representation. The distribution of consecutive number of failure free cycles (each replenishment
taking place before the system drops to (k − 1, 0), and thus system failure is averted) is shown to
have geometric distribution. An optimization problem for determining the optimal value of the
control variable N, is constructed and its optimal value is computed. Computational experience
indicates that the function so constructed, is convex in N.

There are several extensions and generalizations of the problem investigated in this paper.
For example, instead of exponential distribution any continuous distribution with non - negative
part of real line as support which does not lack memory, could be introduced. However, this
may result in the loss of CTMC status for the system. The component life times also could be
replaced by such distributions; however, this will lead to a very complex system. Yet another
direction of investigation is the case of repair of failed components under N-policy. In this case,
when the number of failed components reaches n − N, repair of failed units starts. Thus either a
machinery/server for repair of failed components has to be hired. Questions such as immediate
availability arises in this case just as the role played by the lead time in the model analysed. Also
there arises the repair time. A comparison between the model analysed and the case of repair
of failed components may lead to interesting results. There is a very important extension of the
problem presented in this paper to what can be called Reliability - Queueing - Inventory problem.
Another direction for future work is to have a permanent server for repair of failed components.
He/she will also process items that can be used to replace failed components. The server does
this while waiting for accumulation of n − N failed components of the system. Work on these
directions are in progress.

Acknowledgment: The author expresses his deep sense of gratitude to Ms. Anu Nuthan
Joshua, Department of Mathematics, Union Christian College, Aluva, India, for carefully going
through the manuscript and for correcting a few errors.
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[7] Kazimirsky, A.V. (2006).Analysis of BMAP/G/1 queue with reservation of service. Stochastic
Analysis and Applications, 24(4):703 – 718.

[8] Neuts, M.F.(1981). Matrix - Geometric Solutions in Stochastic Models: An Algorithmic
Approach. The Johns Hopkins University Press, Baltimore.

RT&A, No 4 (65)
Volume 16, December 2021

86



Achyutha Krishnamoorthy
A Reliability-Inventory Problem

[9] Barlow, R.E. and Heidtmann, K.D. (1984).Computing k - out - of - nSystem Reliability, IEEE
Transactions on Reliability; 30(4):322 – 323.

[10] Zhang, Y., Wu, W., and Tang, Y.(2017).Analysis of an k -out-of-n : G system with repairmanŠs
single vacation and shut off rule, Operations Research Perspectives,30(4): 29 – 38.

[11] Ji-EunByun, Hee-MinNoh, Junho Song (2017). Reliability growth analysis of k-out-of-N
systems using matrix-based system reliability method, Reliability Engineering and System
Safety, 165: 410 – 421.

[12] Mahsa Aghaei, Ali Zeinal Hamadani, Mostafa Abouei Ardakan (2017).Redundancy allocation
problem for k-out-of-n systems with a choice of redundancy strategies, Journal of Industrial
Engineering International, 13: 81 – 92

[13] Karlin S., Taylor H. E. (1975) A first course in Stochastic Processes, 2nd ed., Academic Press,
New York.

RT&A, No 4 (65)
Volume 16, December 2021

87



 
Jens Braband & Hendrik Schäbe 
SAFETY vs. SECURITY 

RT&A, No 4 (65) 
Volume 16, December 2021  

 

 
 
 

SAFETY vs. SECURITY – WHY ARCHITECTURE 
MAKES THE DIFFERENCE 

Jens Braband 
• 

Siemens Mobility GmbH 
 Jens.braband@siemens.com 

 
Hendrik Schäbe 

• 
TÜV Rheinland InterTraffic GmbH 

Schaebe@de.tuv.com 
 

Abstract 
 

Cybersecurity plays an increasing role. This also holds true for safety systems. Hence, it is 
necessary to combine systems that fulfill security and safety requirements. These requirements are 
partially contradictory. Safety related software will not be changed in an ideal world, whereas 
security software needs almost permanent updates. This leads to problems that are hard to solve. 
Different approaches have been proposed by different authors. In this paper we will show, how a 
suitable architecture can be applied to satisfy the security as well as the safety requirements. We 
consider some examples of such architectures and show, how systems can be constructed that on 
the one hand side contain a “golden” code for safety that is not changed and on the other hand side 
security software that can easily be patched, not touching the “golden” code. 

 
Keywords: Safety architecture, cybersecurity architecture, patching 
 
 

I. Introduction 
 
It is often claimed that safety and security shall be separated as much as possible but coordinated 
well. This is also the mantra of new TS 50701 [1]. Also, this is part of the requirements of the EN 
50129 [2], see section 7.2 and table E.4 entry 1, which require the separation of safety and non-safety 
parts of the system. Since usually a security component is not a safety component in a first 
approximation, this is just what the standard requires. 

But the problem is, how to achieve a good implementation of safety and security requirements. 
There are concepts, that that proper management is the optimal solution, others believe in 
coordinated lifecycles, and there are also other approaches [3,4,5,6]. 

However, in the view of the authors, architecture is the decisive factor. Safety and security 
architecture makes the difference. It is hard to generalize the good practices that are known, but this 
paper tries to give a few patterns. 
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II. The “Detect Single Faults” Pattern 
 
Let us consider the first example, which is more or less a straightforward solution. We start with a 
well-known qualitative design pattern, which works for many safety-related systems. This is the  
often so-called “fail-safe” system, see EN 50129 [2 for the requirements. See also [7] for further 
research. This pattern has also its merits for safety vs. security. 
Assume, one adds a single component K to a class 2 system S (or zone) according to EN 50159 [8], 
see figure 1. 

 
Figure 1: Adding a security component K to a safety system S 

 
 

Even if one just adds K to S, some safety homework still needs to be done, as K may have impact 
on S even if K does not implement a function for S. For example K may increase latency, decrease 
reliability etc. The situation gets worse when K is connected to some outside network. Then, in 
addition a security risk assessment must be carried out, as intrusion may now be possible. Let us 
assume that this has been managed. However, the solution is not yet complete. One has still to make 
sure that the security functions implemented in K are functioning according to their specification 
and that they persist doing this. 

Normally the safety standards require that the security mechanisms of K are monitored by S. 
But the detailed requirements depend on the function that K implements and its architecture. 

Example 1: Single-Component-Architecture. Assume K is a filter or firewall just as a kind of 
gatekeeper that lets only permitted traffic pass (simple whitelisting). If there is a reasonable single 
failure mode that (partially) deactivates the function, then it is very likely that some monitoring has 
to be included and that results safely need to be checked – possibly this is not done by a technical 
function) 

Example 2: Two-Component-Architecture: Assume K encrypts transparently all traffic from S 
to a neighboring zone S*, which has a counterpart K*. If now K fails to decrypt or encrypt any 
messages, then this will be immediately noticed at the other network when messages start missing. 
So given a sufficient traffic flow, it is highly unlikely that both components suffer from similar faults 
with the same effect within a few milliseconds. One can neglect this risk and there is no need to 
implement any additional monitoring on the safety level. However, it is necessary to ensure that 
there are no common causes in the two components or in supporting processes as e. g. maintenance 
that led to the same failure on both sides. Examples are the deactivation of encryption on both sides, 
use of default keys outdated algorithms etc. 
 
 

III. The “Safety Channel” Pattern 
 

In this section, we consider another possible architecture. Patching is a particular hot topic when 
considering systems that need to fulfil safety and security requirements as well. In safety 

System SKIntrusion retroaction
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applications, everybody is reluctant to change the certified “golden code”, while in security some 
applications shall be updated or patched every day. This seems to be a contradiction. It can be solved 
using an appropriate architecture. 
Example 3: Assume one has a safety application, which needs to be protected by a virus checker 
(VC). This situation is equivalent to a situation, where 3rd party SW needs to be run on the same 
entity, be it a computer, a kernel or a virtual machine. Assume you need a majority of votes of the 
different entities for a safety critical decision, e.g., moving a switch. 

The basic idea is to split the population of entities into two tribes: the entities labeled N are 
never changed - or only when the safety application needs to be updated, the entities labeled P can 
be patched as often as necessary. Of course, some integration tests need to be carried out before 
patching.. Additionally, the architecture contains voters V that check the outputs before execution. 
It goes without saying, that all components must be type checked before first operation. 
 

 
 

Figure 2: Patch-friendly architecture 
 
 

Figure 2 shows this architecture for a 2002 configuration with one N and one P entity. Both have 
the same safety application, but on entity P has another software is implemented that needs regular 
updates. Entity N is sealed, physically and logically protected, e. g. tamper-proof. It is never touched 
(unless you want to change the safety app). In P the safety application is also never changed. On 
both channels this may be checked, e.g., by using a hash code on the application or other means as 
a command from the voter requiring a specific response from both channels, which must coincide. 
Functional differences in both channels can be detected by the voter command. Now whenever a 
safety decision needs to be taken, both N and P must agree, which is checked by the voter. So, a final 
decision of the system is only possible, if the unchanged safety application of N agrees with the 
decision of the application in P. And thus, it does not matter what other SW runs on P or if it is 
patched or not. If P was hacked or tampered with or the safety app influenced by the other apps, 
then P could not change the decision of N. But also, N can’t take any decisions of its own, it always 
needs an agreement of P, the channel that is virus protected etc. 

This may now be generalized e. g. to 2 N and 2 P channels demanding that always a majority 
agrees etc. 
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Note that some architecture elements have been left out for the clarity of the argument e. g. the 
inputs, power supply, communication as well as separation between the channels. So, there is still 
some homework to do. Nevertheless, this architecture is suitable to roll out patches with this 
architecture. 

 
 

IV. The “Mixed Architecture” or “EN 50159” pattern 
 
In some cases, it is not possible or not wanted do strictly divide the safety and the security 
components. 

Assume that in the safety part some security functions are integrated, i.e. because on the 
application level some encryption or message authentication is running. This type of functions is 
implemented since measures described in EN 50159 [8] are implemented. One must note that EN 
50159 is not a cybersecurity standard, it is for safety related communications. So, the measures, 
although partially the same as in cybersecurity, are dedicated against technical processes that might 
influence or degrade communication. The mechanisms are others than with hackers, see Braband 
and Schäbe [9]. Nevertheless, we arrive at the following architecture. 
 
 
 
Figure 3 Mixed system 
 

 
 
 
 
 
 

Figure 3: Mixed Architecture 
 
 

Assume that such a system is connected to a similar one. This means, that the safe transmission 
part of the system as well as the safety parts should not be changed (golden code). All patches should 
be applied in the cybersecurity part, which then also must compensate for those measures for 
cybersecurity that cannot and will not be implemented in the safety block.  
Example 4: Let us consider the following example. In the safe transmission block, there is an 
encryption algorithm to protect the data with regards to confidentiality and authenticity (like ETCS). 
Of course, this protection would not be complete since a hacker might attack the safety part of the 
system and get access to the data and the code. Therefore, the additional security module is 
necessary to ensure complete cybersecurity protection. In this example, the security part is split: a 
never change tribe consisting of the safety part – including the safe transmission part and a patch 
tribe consisting of the security part. This is a bit similar to example 2 described above. In order to 
cope with the increasing possibilities of hackers, the security parts is patched. This might even lead 
to a situation, where the encryption algorithms implemented in the safe transmission part will 
become superfluous, since in the security part an additional encryption method is installed. The 
system might thus evolve to the situation described in example 1. However, it is also possible, when 
carrying out an update of the safety part, also to update the safe transmission part by implementing 
a more efficient encryption algorithm. This makes it possible, to remove it then from the 
cybersecurity part. 

From example 4, we see that it is only partially possible to design combined systems. Only 
methods that would not require permanent patching can be implemented in the safety part. 
Regarding the algorithms, they must work with a certain reserve, i.e., not only provide the simplest 
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(EN 50129) Safe transmission 

EN 50159 

Cybersecurity 
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and most basic solutions to the problems. In the safety part, encryption can be used, where a method 
needs to be chosen that cannot be broken within the next months. Here, one must also not only look 
for the time that the method can withstand brute force attacks, but backdoors and exploits need to 
be absent. But of course, these basis security measures in the safety part do not need to be perfect. 
The main security protection is implemented in the cybersecurity part. Other components as 
interface drivers, firewalls etc. should not be contained in the safety part since they are candidates 
for permanent patching. 

The architecture discussed in [10] can also be seen as an example of this architecture. In [10] the 
authors proposed an architecture, where a complete separation of safety and security issues had 
been carried out. The security mechanisms generate conduits through which the safety functions 
could be implemented. This leads to the onion skin model shown on figure 4. The onion skin model 
can only be implemented in this rigorous manner, if a struct separation of safety functions and 
security functions is possible. In that case, it is the most efficient architectural solution. 

 
Figure 4: The onion skin model, taken from [10] 

 
 

V. Conclusion 
In this paper, we have presented examples system architectures that allow to fulfill the requirements 
arising from security as well as from safety. We have shown, that with the help of an appropriate 
architecture, the dilemma of conflicting requirements can be solved in an efficient manner. Surely, 
not each architecture is applicable for each situation. Therefore, we have presented several examples. 
We believe that by this approach the problem can be solved in an efficient manner. 
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Abstract 
 

This paper analyzes approaches to dependability assessment of multistate systems in which 
partial failures can occur. It is shown that for many multistate systems it is advisable to use the 
effectiveness retention ratio as a dependability measure. The paper explains the meaning and 
advantages of this measure, and presents methods for its calculation for two classes of systems 
covering typical situations. They are additive systems in which the output effect is obtained by 
summing the output effects of the subsystems, and multimode systems that can perform some 
function or task in different modes depending on their state. Besides that, the presence and use of 
the effectiveness retention ratio in international and regional Euro-Asian standards are 
considered. 

 
Keywords: dependability, multistate systems, partial failures, effectiveness retention ratio, 

international standards, additive and multimode systems. 
 
 

I. Introduction 
 

The traditional assumption in dependability theory is that there are two possible states of an 
item: up and down (definitions of these and other basic terms necessary for a proper 
understanding of this paper are given in Section II.). However, many complex systems can have 
intermediate states that they go to as a result of partial failures. These states are characterized by a 
loss of the ability to perform some, but not all, required functions, or by reduced performance. This 
led to the need to consider multistate systems. In recent years, a number of books have been 
published specifically dedicated to this topic: [1–4]. Besides that, a number of well-known 
handbooks [5–7] and monographs [8–10] have sections on multistate systems. They described 
different approaches and measures for such systems. Interestingly, in [6, 9], two approaches are 
described independently in different sections written by different authors. Thus, systematization is 
required. 

This paper identifies and discusses two main approaches to assessing the dependability of 
multistate systems. The mathematical models used in each of the approaches are described, the 
corresponding dependability measures are given, the approaches are compared, i.e. their 
advantages and disadvantages are indicated. The first approach is based on the evaluation of 
system effectiveness. I. A. Ushakov, the founder and first editor-in-chief of the journal “Reliability: 
Theory & Applications”, in the first paper of its first issue pointed out effectiveness 
(“performability”) among “main directions of modern reliability theory” [11]. The principal 
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dependability measure that arises within this approach is the effectiveness retention ratio (ERR) 
[12, 13]. The paper gives its definition, explains the meaning and advantages. All these issues 
constitute the content of Section III. 

Standardization plays an important role in any field of engineering. Dependability is no 
exception. Therefore, Section IV analyzes the presence and use of the ERR in standards. 
International and regional Euro-Asian standards are considered. 

A number of methods can be used to calculate the ERR (see e.g. [5–7, 9, 10, 12, 13], some other 
works will be given below). Section V presents methods for its calculation for two classes of 
systems covering typical situations. They are additive systems in which the output effect is 
obtained by summing the output effects of the subsystems, and multimode systems that can 
perform some function or task in different modes depending on their state. In particular, for 
multimode systems, a technique is proposed that allows calculating the ERR in a fairly general 
situation and going beyond the two previously known special cases. 
 

II. Some Terminology Remarks 
 
Standardization plays an important role in any field of engineering. The leading international 
organization for the standardization of dependability is the International Electrotechnical 
Commission (IEC), or rather, its special technical committee No. 56 (TC56). In accordance with an 
agreement with the International Organization for Standardization (ISO), the TC56 develops 
dependability standards not only for the electrotechnical field, but address generic dependability 
issues across all disciplines, thus making it what is referred to as a horizontal committee [14]. 

An important area of standardization is terminology. It is necessary to ensure an 
unambiguous interpretation of terms and mutual understanding. This section is devoted to basic 
standardized dependability terms, and other aspects of standardization within the topic of this 
paper will be discussed later. 

The standard [15] gives the general terminology used in the field of dependability. It is one of 
the parts (namely 192) of the International Electrotechnical Vocabulary (IEV), which is presented 
on the portal Electoropedia (also known as the “IEV Online”): https://electropedia.org/. The terms 
in [15] are generic and are applicable to all fields of dependability methodology. Unfortunately, 
some researchers and engineers do not know and do not use this standard. Some examples of 
incorrect and sometimes misleading use of terms related to dependability in modern information 
and communication technologies were given in [16]. Therefore, the definitions of the basic terms 
necessary for a proper understanding of this paper are given below. 

Dependability of an item is its ability to perform as and when required. The same definition 
with the reference to [15] is repeated in the well-known standard [17]. There are two notes to this 
term in [15]. The first one states that dependability includes availability, reliability, recoverability, 
maintainability, and maintenance support performance (and, in some cases, other characteristics). 
The second note states that dependability is used as a collective term for the time-related quality 
characteristics of an item. In other words, dependability is an umbrella term for the above 
characteristics [14]. 

By the way, this definition was created as a result of long and active discussions, and some 
experts still disagree with it. The issue of developing such a definition was discussed in detail in 
[18]. 

The main states of an item are up state and down state. Up (or available) state is the state of 
being able to perform as required. Down (or unavailable) state is the state of being unable to 
perform as required, due to internal reason. 

Reliability of an item is its ability to perform as required, without failure, for a given time 
interval, under given conditions. Availability of an item is its ability to be in a state to perform as 
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required. Reliability and availability may be quantified using appropriate measures. Some of them 
have the same words in their names: 

• reliability is the probability of performing as required for the time interval (t1,	t2), 
under given conditions; 

• instantaneous (point) availability is the probability that an item is in a state to 
perform as required at a given instant; 

• steady state (asymptotic) availability is the limit, if it exists, of the instantaneous 
availability when the time tends to infinity. 

In other words, reliability is the probability of being in up state during the given time interval, 
and availability is the probability of being in up state at an instant of time (usually, very far from 
the original moment). 
 

III. Two Approaches to Dependability Assessment of Multistate Systems 
 
The traditional assumption in dependability theory is that there are two possible states of an item: 
up and down. Under this assumption, consider a system consisting of n elements. Then the states 
of the elements and the whole system can be expressed as binary variables. The following symbols 
are usually used for them. The indicator of the state of the ith element is denoted by xi:  xi	=	1,  if 
the ith element is in up state, and  xi	=	0,  if the ith element is in down state. To describe the state of 
the system, the n-dimensional binary vector  x	=	(x1,…,xn)  is introduced. If we denote the two-
element set {0, 1} by B, then the set of all states of the system S  is 𝐵!. 

For the system, the structural function  φ ∶ 𝐵! → 𝐵  is defined [19]:  φ(x)	=	1,  if the state x is 
up state for the system, and  φ(x)	=	0,  if the state x is down state for the system. Usually, 
monotone systems (or coherent structures) are considered, which imposes certain restrictions on 
the function φ(x) [19]. Namely, structural functions are 0-preserving, 1-preserving, and monotonic 
(in the terminology of Boolean functions). 

The set of all states of the system S  is divided into two disjoint subsets: the subset of up states  
S1	=	{x	|	φ(x)	=	1}  and the subset of down states  S0	=	{x	|	φ(x)	=	0}.  The main dependability 
measure in this case is the probability that the system is in up state, which is equal to the 
mathematical expectation of the structural function: 

 
P	=	P{φ(x)	=	1}	=	E[φ(x)].	 	 	 	 (1)	

 
However, many complex systems can have intermediate states that they go to as a result of 

partial failures. These states are characterized by a loss of the ability to perform some, but not all, 
required functions, or by reduced performance. This led to the need to consider multistate systems. 
There are two main approaches to assessing the dependability of such systems, which are 
discussed below. 

The first of them originated in the late 1950s [20] and was developed in the 1960s. Its idea was 
well expressed in the classic monograph [21] (its original Russian edition was published in 1965). 
According to it, for complex systems “the reliability of the system should be understood to mean 
the stability of the efficiency with consideration of the reliability of the parts composing the 
system”. However, this idea was not further developed in this book. 

I. A. Ushakov made a significant contribution to the development and promotion of this 
approach. He considered system effectiveness, determined by taking into account the reliability of 
system’s elements. This was the subject of his works [22, 23] and many subsequent ones, the 
corresponding sections were included in popular handbooks [5–7] and monographs [9, 10] (two 
handbooks by B. A. Kozlov and I. A. Ushakov have been translated into German, Bulgarian, and 
Czech; there was also a German version of [9]). 
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In practice, it is much more convenient to deal with dimensionless relative values. This leads 
to a dependability measure called the effectiveness retention ratio (ERR). It is defined as the ratio 
of the value of the effectiveness index of an item’s intended use over a certain period of operation 
to the nominal value of this index, calculated on the assumption that the item did not affected by 
failures during the specified period. The ERR has a simple and clear meaning. For example, if 
ERR	=	0.95, it means that due to failures, the effectiveness is reduced by an average of 5%. 

The effectiveness index is usually defined as the expectation of the output effect of the system. 
Particular form of the output effect depends on the nature of the considered system. For example, 
it can be the quantity of released products for production systems, the amount of information 
transmitted, collected or processed for information and communication systems, and so on. For 
systems that perform individual tasks or jobs, the probability of successful completion of the task 
can be used as an index of effectiveness. Note that this index can also be represented as a 
mathematical expectation of the output effect. To do this, the output effect is assumed to be 1 if the 
task is completed and 0 otherwise. In this case, the ERR has a direct probabilistic meaning. It is 
equal to the probability that the task completion is not disrupted by failures [12]. 

Although I. A. Ushakov pointed out the expediency of relative effectiveness (for example, in 
[24]), the term ERR was not used in his works. The first book to discuss the ERR in detail was [12]. 
In English it was described in [13]. 

To construct a mathematical model when determining the ERR, the effectiveness function 
φ(x)	can be introduced. It generalizes the classical structural function, and can take not only the 
values 0 and 1, but also any value from the unit interval I	=	[0,	1], so in this case  φ ∶ 𝐵! → 𝐼.  The 
value φ(x) is the relative output effect of the system in the state x. Its maximum value, which is 
reached when all elements are in up state, is taken as one. Effectiveness functions, as well as 
structural functions, are 0-preserving, 1-preserving, and monotonic. Of course, the image of such a 
function is always a finite set, the number of its elements cannot be greater than 2!. However, it is 
often unknown in advance and is determined during the dependability assessment. 

This can be interpreted as the fuzzification of the failure criterion [25]. In other words, we can 
also consider the subsets of up and down states for the system, but they are complementary fuzzy 
ones with membership functions φ(x) and φ(𝐱)AAAAAA = 1 − φ(𝐱) for the subsets of up and down states 
respectively. 

The ERR can be expressed as the mathematical expectation of φ(x),	which is similar to the 
right member of the equality (1): 
 

𝐸𝑅𝑅 = 𝐄[φ(𝐱)] = 	Fφ(𝐱)𝑝(𝐱)
𝐱∈$

,																																																											(2) 

 
where p(x) is the probability that the system is in state x. 

The ERR can also be used for traditional two-state items, in which cases it is usually reduced 
to measures such as availability and reliability [12, 13]. This can make it easier to choose the right 
dependability measures. 

Unfortunately, this approach and the ERR are little known outside of Russia, despite the 
above-mentioned publications in English and other languages and the fact that works on this topic 
by I. A. Ushakov, E. V. Dzirkal and V. A. Netes were mentioned in the survey [26] (these 
researchers based their works on extensive practical experience in assessing the dependability of 
complex information, control, and communication systems). 

If necessary, besides the ERR, the probability P{φ(x)	≥	u}	 (0	<	u	≤	1) can be used as 
dependability measure. However, it is often difficult to reasonably choose the level u. Besides that, 
choosing a single value of u actually leads to the traditional scheme: then  {x	|	φ(x)	≥	u}	 is the set 
of up states, and  {x	|	φ(x)	<	u}  is the set of down states. This means that some partial failures are 
considered as complete ones, while others are not considered at all. In some situations, this may be 

97



 
Victor Netes 
EFFECTIVENESS RETENTION RATIO 

RT&A, No 4 (65) 
Volume 16, December 2021     

 

justified, but in most cases it can lead to a misconception about the system dependability. If we 
calculate such probabilities for several values u1,	...,	uk	∈	(0,	1],  then the dependability assessment 
becomes more complicated, and its results are less clear and inconvenient for analysis. 

The second approach emerged in the late 1970s (see [27–29], just name a few). It is used and 
described in a number of publications by authors from many countries (e.g. [6, 8, 9]). It is assumed 
that each element and the entire system can be in a finite set of states. Let  Di	=	{0,	1,	…,	mi} be the 
set of states for the ith element and D	=	{0,	1,	…,	m} be the set of states for the system. In a 
frequently used special case,  mi	=	m,		so		Di	=	D		"i.  The elements of the sets Di and D  are arranged 
in ascending order of the performance level. In this case, a generalized structural function can be 
introduced: φ ∶ 𝐷% ×…× 𝐷! → 𝐷.  Such functions are also monotonic, 0-preserving, and satisfy the 
condition  φ(m1,	…,	mn)	=	m. 

The main dependability measures are the probabilities of keeping a given performance level; 
they are similar to the middle member of the equality (1): 
 

P(ν)	=	P{φ(x)	≥	ν}			(xi	∈	Di,		ν	∈	D).	 	 	 	 (3) 
 
The drawbacks of such measures for multistate systems were discussed above. 

Comparing these two approaches to each other, the first immediately noticeable thing is the 
wider possibilities for describing the states of elements in the second approach. However, in the 
first approach, some parts composing the system can, if necessary, be considered as subsystems 
with more than two states. This can lead to the decomposition of systems, considered in particular 
in [6, 7, 9, 13]. However, this interesting issue is beyond the scope of this paper. 

On the other hand, a less obvious but important circumstance is that the values of the 
cstructural function and the effectiveness function are expressed using different scales of measure 
(levels of measurement). These are the ordinal scale for the structural function and the absolute 
scale (the ratio scale having fixed natural 0 and 1) for the effectiveness function. The former is non-
metric (qualitative), and the latter is metric (quantitative). Therefore, the values of the structural 
function can only be compared (equal, greater, or less), and arithmetic operations can be 
performed with the values of the effectiveness function. This explains and justifies the use of 
measures (2) and (3). Some works (e.g. [9]) have also introduced the mathematical expectation of 
the performance level similar to (2), but this does not make sense for ordinal variables. 
 

III. Standardization 
 

The standardization of ERR was specifically reviewed in [31]. However, it mainly discussed 
Russian and interstate standards. This section is mainly devoted to IEC standards. But first, a brief 
summary on the ERR in the interstate standards is given. These are regional standards adopted by 
the Euro-Asian Council for Standardization, Metrology and Certification (EASC) of the 
Commonwealth of Independent States. The terminology standard [32] gives the definition of the 
ERR. By the way, it first appeared in the Soviet terminology standard on dependability in 1983. 
The scope of application and recommendations for using the ERR are given in [33]. Besides that, 
this standard explains that the effectiveness of an item’s intended use is understood as its property 
to create some useful result (output effect) during the operation under certain conditions. 

The ERR is not included in the international terminology standard on dependability [15]. 
However, the previous version of such a standard [34] contained terms “effectiveness 
(performance)” and “capacity”. They had the following definitions. Effectiveness (performance) is 
the ability of an item to meet a service demand of given quantitative characteristics. The note to 
this definition states that this ability depends on the combined aspects of the capability and the 
availability performance of the item. Capability is the ability of an item to meet a service demand 
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of given quantitative characteristics under given internal conditions. The note explains that 
internal conditions refer for example to any combination of faulty and non faulty sub-items. These 
concepts made it possible to go to the ERR, but this step was not taken, on the contrary, they were 
excluded during the development of [15]. 

As noted above, the ERR is primarily required for systems that might be affected by partial 
failures. This term is defined in [15] as a failure characterized by the loss of some, but not all, 
required functions. The note to this definition states that a partial failure may lead to a degraded 
state. The latter is defined as a state of reduced ability to perform as required, but with acceptable 
reduced performance. 

Thus, the definition of partial failure in [15] is only suitable for multifunctional items. 
However, this concept also makes sense for single-function items, which may be in a degraded 
state with reduced performance. Therefore, it is advisable to expand this definition by stating it as 
follows: a failure characterized by the loss of the ability to perform some, but not all, required 
functions or by reduced performance (output effect). 

There are two IEC standards in which the ERR is actually implicitly present. The first of them 
is [35]. Its subsection on availability contains paragraph 6.1.2.4, which deals with multistate 
systems with reference to [2]. It gives a simple example of such a system consisting of two 
elements. In fact, the measure introduced there is the ERR [31]. 

Another IEC standard that implies the ERR is [36]. It is devoted to communication network 
dependability. There are two network service scenarios of interest to network dependability. The 
first of them has the objective to determine the network dependability characteristics of end-to-end 
(E2E) network services from the perspective of network end-users. It is associated with the specific 
service paths selected for the E2E connections. The objective of the second scenario is to determine 
the network dependability characteristics of the entire network from the network operator or the 
network service provider perspective. Accordingly, two dependability measures are 
recommended: the E2E network availability and the full-end network availability. 

The E2E network availability is the availability of an E2E network connection between a pair 
of nodes in question, including all available service paths. However, the full-end network 
availability is not really availability, that is, the probability that some item is in up state. It is the 
weighted sum of E2E availabilities for different pairs of nodes and actually turns out to be the ERR 
[37]. In this case, the output effect is defined as the number of connected pairs of users. In general, 
the feasibility of using the ERR for communication networks and some methods of its calculation 
were given in [37]. 

Notable that both of these examples in [35, 36] fit into the same fairly general scheme, which is 
discussed below. 
 

IV. Calculation of the ERR 
 

I. General Consideration 
 
According to the above definition, 
 

ERR	=	E	/E0,	
 
where  E  is the index of effectiveness and  E0  is the nominal value of this index calculated under 
the condition that failures do not occur. However, this formula is usually not suitable for 
calculating in practice. On the contrary, if necessary, E can be calculated as the product of E0 and 
the ERR. Formula (2) is suitable for calculations only with a small number of elements. Various 
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techniques that can be used to calculate the ERR are given in the above-mentioned publications [5–
7, 9, 10, 12, 13, 22–25]. 

Here we present methods for calculating the ERR for two classes of systems, for which it is 
expressed in terms of dependability measures of subsystems. They cover typical situations and 
have not been published in English. In both cases, it is assumed that the system has a certain 
number of subsystems. Generally speaking, they can intersect, i.e. have common elements. Each 
subsystem is considered binary, i.e. it can be either in up state or in down state. Denote Pj the 
probability that the j-th subsystem is in up state. Depending on the situation, it can be its 
availability or reliability. 

 
II. Additive Systems 
 
The first class consists of so-called additive systems. For such systems, the output effect is obtained 
by summing the output effects of the subsystems. In particular, the systems mentioned above, 
which are considered in the standards [35, 36], belong to this class. It also includes multifunctional 
systems, in which it is possible to allocate subsystems responsible for performing functions, and 
the output effects for all functions are added up. 

Let the system have k subsystems and each non-failed subsystem contributes to the overall 
output effect. Then 
 

𝐸 =	F𝐸&

'

&(%

, 𝐸) =	F𝐸&)

'

&(%

	, 

 
where  Ej	 	and Ej0  are the effectiveness and the nominal effectiveness of the j-th subsystem. Also, 
for binary subsystems  Ej	=	Pj	Ej0. 

From these equalities, the formula for calculating the ERR follows: 
 

𝐸𝑅𝑅 =	𝐸 𝐸) =F𝐸&

'

&(%

𝐸) =YY F𝑃&𝐸&)

'

&(%

𝐸) =Y F(𝐸&)/𝐸))𝑃& =
'

&(%

F𝑤&𝑃& ,
'

&(%

 

 
where  wj		=	Ej0	/E0  is the “weight” of the j-th subsystem. 
 
III. Multimodal Systems 
 
The second class is multimodal systems. They have been known for a long time (see, for example, 
[38, 20, 23, 5–7]). In some publications (in particular, in [5–7]), they were called multifunctional, 
which does not fully correspond to the principle of their functioning. Indeed, such a system 
performs one function or task, but can do it in different modes, depending on its state. For each 
state, the mode that is possible for it, which gives the maximum output effect, is applied. Each 
mode corresponds to a specific subsystem that must be in up state in order for the system to 
operate in this mode. 

An example is a communication network in which several paths with different performance 
parameters (bandwidth, delay, packet loss ratio, etc.) can be used to transmit information. The 
paths can be characterized by the probability of successful delivery (in time, without errors), and 
the best of the available paths is chosen. 

Let there are m modes, the corresponding subsystems are 𝐺%, … , 𝐺*, and the corresponding 
values of the relative output effect are 𝑣%, … , 𝑣*. They are assumed to be numbered in decreasing 
order: 𝑣% ≥ 𝑣% ≥ ⋯ ≥ 𝑣* > 0. If we denote by 𝐻+ the probability of performing the function in the 
lth mode, then 
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𝐸𝑅𝑅 =F𝑣+

*

+(%

𝐻+ . 

 
Thus, the calculation of the ERR is reduced to the calculation of the probabilities 𝐻+. It is clear 

that  𝐻% = 𝑃%. For 𝑙 > 1, 𝐻+ is the probability that the subsystem Gl is in up state, and all subsystems 
with smaller numbers have failed. 

Formulas for calculating the probabilities 𝐻+ for 𝑙 > 1 were known for two special cases [5–7, 
23]. 

1. Each element can be included in only one subsystem, i.e. the subsystems are pairwise 
disjoint. Then 

 

𝐻+ = 𝑃+cd1− 𝑃&e	
+,%

&(%

. 

 
2. Each subsequent subsystem is contained in the previous one, that is  𝐺% ⊃ 𝐺- ⊃ ⋯ ⊃ 𝐺*. 

This means that the 1st (the best) mode require all elements, the 2nd mode require fewer elements, 
and so on. Then 
 

𝐻+ = 𝑃+ − 𝑃+,%. 
 

Let all subsystems are series ones. Then 
 

𝑃+ =c𝑝.
.∈/!

, 

 
where pi = P{xi = 1} is the probability that the ith element is in up state. In this case, a general 
technique can be proposed for calculating the probabilities 𝐻+. It is based on their representation in 
the following form: 

 

𝐻+ = 𝐏hi1 −c𝑥.
.∈/"

k…i1 − c 𝑥.
.∈/!#"

kc𝑥.
.∈/!

= 1l = 𝐄 hi1 −c𝑥.
.∈/"

k…i1 − c 𝑥.
.∈/!#"

kc𝑥.
.∈/!

l. 

 
The expression in the brackets in the right member of this formula should be transformed so that 
there are no repeated variables xi in it, i.e. that they are all different. This can be done by using the 
following equalities: 

 
(1 – xy)·x = (1 – y)·x,   (1 – xy)·(1 – x) = (1 – x),   (1 – xy)·(1 – xz) = 1 – x·(y + z – yz). 

 
They are valid for any variables  x, y, z Î B  since they are idempotent. After that, the final result is 
obtained by substituting pi instead of xi in the resulting expression. This follows from the 
properties of the mathematical expectation and the equality  pi = E[xi]. 

This technique is similar to the one used in [39] to calculate the interval reliability of 
communication networks. 

 
V. Conclusion 

 
This paper analyzes approaches to dependability assessment of multistate systems in which partial 
failures can occur. Along the way, the incompleteness of the definition of partial failure in the basic 
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terminology standard on dependability IEC 60050-192:2015 is revealed and its extended 
formulation is proposed. 

It is shown that for many multistate systems it is advisable to use the effectiveness retention 
ratio as a dependability measure. It is defined as the ratio of the value of the effectiveness index of 
an item’s intended use over a certain period of operation to the nominal value of this index, 
calculated on the assumption that the item did not affected by failures during the specified period. 
The effectiveness index is usually defined as the expectation of the output effect of the system. This 
approach can be interpreted as the fuzzification of the failure criterion. Unfortunately, this 
measure is not very well known (especially outside of Russia), and it is used less often than it 
deserves. Its usage is recommended in reginal interstate (Euro-Asian) standards adopted by EASC 
(GOST 27.002–2015 and GOST 27.003–2016). It is also implicitly present in two international 
standards IEC 61703:2016 and IEC 62673:2013, which do not quite correctly attribute it to 
availability measures. 

The paper explains the meaning and advantages of the effectiveness retention ratio, and 
presents methods for its calculation for two classes of systems covering typical situations. They are 
additive systems in which the output effect is obtained by summing the output effects of the 
subsystems, and multimode systems that can perform some function or task in different modes 
depending on their state. Additive systems include, in particular, the systems considered in the 
above-mentioned IEC standards. For multimode systems, a technique is proposed that allows 
calculating the ERR in a fairly general situation and going beyond the two previously known 
special cases. 

The author hopes that this paper will contribute to the dissemination of information about the 
effectiveness retention ratio and its wider application. 
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Abstract 

The social media platforms are such examples of big-data where the volume, velocity, and 
variety are visualized over time domain.  Registered users of such platforms bear frequent 
communication with others and that could be identified as a community. Many methods 
(algorithms) exist in literature to detect such likely groups of frequent communication. This 
paper presents contribution to estimate parameters of detected communities using sampling 
procedure. A Kernel sampling procedure is suggested in the setup of detected community 
environment. A method is suggested whose efficiency has been estimated using calculations 
of confidence interval. Simulation procedure is used to obtain the lower and upper limits of 
confidence intervals with the help of multiple samples. 

Keywords: Community Detection, Weighted Graph, Big Data, Internet Technology, 4G, 
Sampling, Simulations Confidence interval. 

I. Introduction 

With the expansion of social media platforms and technologies, large numbers of users are interacting 
with each other by forming groups, based on commonness of characters. Some most popular social 
networking sites are Face-book, Twitter, Instagram and Whatsapp etc. Where users register them self and 
communicate with the likeminded peoples. This motivates to think over for the identification of 
phenomena of community formation and community detection. The formation is usually on commonness 
but detection needs scientific methodologies.  

One can assume that each registered user, on social networking platforms, is a vertex of a graph 
and his social communication with other people represents an edge of a graph. The quantum of 
connectivity with each other varies exponentially over time which generates voluminous data in a small 
span of time. The communication defers in modes like text, voice, image, videos, and many other similar 
which reveal variety in data. Moreover, in a fraction of time, growth of data on social networking 
platforms is immensely high which reveal velocity characteristics. 

The community size and type detection is one such aspect which generates information in terms of 
popularity and security. Dongsheng Duan Li et al.[1] suggested algorithms for community mining 
assuming each user a vertex and density of connecting edges a community. An approach to community 
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discovery based on evaluation of partition matrix has also been considered along with detection of 
change points. Pizzuti et al. [2] used Genetic algorithms approach for detecting communities in social 
media platform with mathematical approach using concept of graph theory. The Nan Du, et al. [3] 
detected community development in large scale social networks. An efficient approach based on faster 
algorithm for obtaining close community structure was suggested due to Newman et al.[4]. A community 
may be subdivided into small sub communities whose formation and analysis performed by Ferrara E. 
[5] .The graph theoretical application for community designing and analysis was attempted by Fortunato 
S. [6]. 

Communication at the social networking platform when become highly frequent, close and 
intense then it reaches up to sentimental level. Deitrick et al. [7] suggested sentiment analysis approach 
on data obtained through social media platform. Leskovec et al.[8] considered several algorithms for 
network community detection. A methodological survey based contributions over community detection 
procedures are due to Plantie et al. [9] and Uthayasankar et al. [10]. This paper focuses on developing 
parameter estimation approach as a posterior application to the detected community. 

II. Graph Based Rules 

The methodology of community detection targets to the detection of groups of vertices within which 
connections are dense. Consider a graph G which is set of vertices V (G), and set of Edges E (G). One can 
construct rules for cliques and kernel formation based on collection of vertices and corresponding edges 
as under. 

III. Community detection in weighted graph 

The clique is referring to a kind of cohesive sub structure whose maxima provide a tool for community 
detection. The overlapping maximal clique is kernel. In view to N.Du, et al.[3] some of rule are as under: 

Rule 1. S Í V (G), "u,ve S,u ≠ v, such that (u,v) e E, then S is a clique in G. if any other S’ is a 
clique and S ’Ê S iff S’= S, S is a maximal clique of G. 

Rule 2. For a given vertex v, N(v)= {u|(v,u) e E (G) }, we call N (v) is the set of all neighbors of v. 
Given set S Í V (G) , N|s= È N (vi ) – S, Vi e S, N|s is the set of all neighbors of S. 
Rule 3.  Let Com (G) be the set of all components in G. the giant component is denoted by Cg and 
M (Cg) is the set of all the maximal cliques of Cg. We use VmÍ V(G)  to represent the set of all 
vertices covered by M (Cg).  
Rule 4. Let P0,P1,--,-- Pn-1 be the sub graph of G such that " Pi, Pj, V(pi )ÇV(Pj)=f, and V (P0) È,---,V 
(Pn-1)=V(G). For any pair of Pi and Pj , if | E (Pi)| > |(N| PiÇ Pj)|, Pi is defined as a community of 
G.  
Rule 5. Given vertex vi e Vm, define Ci= {S|S e M (Cg), Vie S} to be the set of all maximal cliques 

containing Vi and C the set of all Ci’ ‘s. "Ci,  ,Cj e C,if |"#Ç$%|
$%

>= f which is a threshold to describe the 

extent to which Ci overlaps with Cj, we call Cj  is contained in Ci , denoted by Cj < Ci .If ci is not 
contained by any other element in C, Ci is called the kernel of G and Vi is the center of Ci . 
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Rule 6. Let K be the set of all kernels in G. Vk= { Vi|Vi e K, Kj e K } is the set of all vertices covered 
by K. and Ik= È (Ki Ç kj), ki, kj e K, i¹j  is the union of all the vertices that any pair of element in K 
has in common. 

IV. Problem undertaken 
Assume, using any of existing algorithms several communities have been detected. One may be 
interested to estimate unknown parameter of characteristics associated with edge between any pair of 
vertices, within the community formed in graphical population structure of a social media platform in the 
setup of big data. For example, large numbers of registered users are on social networking platform then 
the average time consumed between any pair of users within a community is a problem to work out. 
Being a large data setup, growing fast over time and space, the estimation of such is time and cost 
consuming. This paper considers a solution approach for a problem described herein using sampling 
procedure. 

V.A Graphical Structure: 

Assume a fig. 1 where enumeration of cliques is taken into consideration. Among constituted cliques, 
there exist maximal clique which is a complete sub graph which can represent closed relationship for 
single entity in a given network. 

 

For enumerate the cliques of a graph using rules 1-5: one can get:  
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C0 = {(V0, W1,w2), (V1,W1,w2), (V4,W1,w2), (V5,W1,w2)}, {(V0, W1,w2), (V1,W1,w2), (V3,W1,w2), (V4,W1,w2)}, {(V0, 
W1,w2), (V2,W1,w2), (V3,W1,w2), (V4,W1,w2)}, {(V0, W1,w2), (V6,W1,w2), (V4,W1,w2), (V5,W1,w2)} V0 being  as 
the center. 
C1={(V0, W1,w2), (V1,W1,w2), (V4,W1,w2), (V5,W1,w2)}, {(V0, W1,w2), (V1,W1,w2), 
        (V3, W1, w2),(V4,W1,w2)} 
C2 = {(V0, W1, w2), (V2, W1, w2), (V4, W1, w2), (V3, W1, w2)}  
       C3 = {(V0, W1, w2), (V2, W1, w2), (V4, W1, w2), (V3, W1, w2)}, 
       C4={(V0, W1,w2), (V1,W1,w2), (V4,W1,w2), (V6,W1,w2)}, {(V0, W1,w2), (V2,W1,w2),                                                                                                                               
(V3,W1,w2), (V4, W1, w2)}, {(V1, W1, w2), (V4, W1, w2), (V5, W1, w2), (V6, W1, w2)} 
       C5= {(V5, W1, w2), (V1, W1, w2), (V4, W1, w2), (V6, W1, w2)} 
        C6= {(V5, W1, w2), (V1, W1, w2), (V4, W1, w2), (V6, W1, w2)} 
        C7={(V7, W1,w2), (V8,W1,w2), (V9,W1,w2), (V10,W1,w2)}, {(V7, W1,w2), (V9,W1,w2), (V11,W1,w2),   
  (V10, W1, w2)}, 
        C8 = {(V7, W1, w2), (V8, W1, w2), (V9, W1, w2), (V10, W1, w2)} 
        C9= {(V7, W1, w2), (V8, W1, w2), (V9, W1, w2), (V10, W1, w2)} 
        C10= {(V7, W1, w2), (V8, W1, w2), (V9, W1, w2), (V10, W1, w2)} 
        C11= {(V7, W1, w2), (V8, W1, w2), (V9, W1, w2), (V10, W1, w2)} 
          C8, C9 C10, C11 are contained by C7. 
Therefore C0 and C7 are two different kernels respectively with weight associated with vertices. 
 

VI. Parameter estimation 
Consider the following graph in figure 3 where first weight the age of the users registered in the social 
networking sites and the other weight is the number of hours of   the social networking sites used. In 
figure 2, social media communities detected through algorithms and unknown parameters existence are 
given from which one can extract sample based implementation.  

             Community 1    Community2 ………               Community p 

 

 

 

 

 

Figure 2: Social media communities & unknown parameters 

Consider the graph as population having kernel based k   groups classification likes below:- 

Table 1: Kernel based groups 
I II III IV V VI VII VIII IX X XI XII …..Kth 
Ke1 Ke2 Ke3 Ke4 Ke5 Ke6 Ke7 Ke8 Ke9 Ke10 Ke11 Ke12 …... 

Ken 
 

Unknown parameter q1, 
q2, q3, q4, 

Unknown parameter q1, 
q2, q3, q4, 

 

Unknown parameter q1, 
q2, q3, q4, 

 

Sampl
e 

Sampl
e  

Sampl
e 
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VII. Kernel Sampling: 

 One can consider the graphical population of vertices (node) and edges G= (V, E) divided into k 
Kernel based groups, derived from given a graphical population (see table 1). This constitutes setup of 
Kernel Sampling. Assume the strata sizes are N1, N2, N3…………Nk such that ∑ 𝑁#&

#'( = 𝑁 
Let the total size of population is N from which a sample of size of population n (n< N) is drawn which is 
divided into Kernel based group wise as n1, n2, n3,….nk.. Such that ∑ 𝑛#&

#'( =n.  Let the sample means are  
𝑚&( ,𝑚&)	, 𝑚&*	,…,….  𝑚&&of the k strata respectively P.V. Sukhatme[11] and  Cochran [12]. 
Consider vertices of graph G= (V, E) having two variables W2: number of hours the user is consuming 
social media website is used in a month (auxiliary variable) and W1: the age of user (in completer years) as 
main variable. The unknown parameter is average number of hours consumed by a user W2. It may 
assume that mean age of users 𝑊&(   in population is known (due to registration data while creating 
account on social networking sites). The ith Kernel based group has size Ni and pair of values (W1ij, W2ij) 
where W1ij, W2ij are jth value ith  Kernel based group relating to number of hours consumed by users and 
ages fo users. 

𝑊&(=(
-

=∑ ∑ 𝑊(#%
-.
.'(

/
#'(     (Known parameter)     (4.1) 

𝑊&)=(
-

=∑ ∑ 𝑊)#%
-.
%'(

/
#'(    (Unknown parameter and to be estimated)    (4.2) 

Moreover some other symbols are as under: 

𝑊&(#:  Population mean of ith strata of variable W1 

𝑊&)#:  Population mean of ith strata of variable W2   

Estimation method under Kernel Sampling: 

To estimate unknown𝑊&), the random samples of sizes ni are drawn from ith  group Ni paired values (   w1ij 

, w2ij ) such that 

 𝑤&(# =
(
0!
∑ 𝑤(#%0#
%'(        (4.3) 

𝑤&)# =
(
0!
∑ 𝑤)#%0#
%'(           (4.4) 

and (𝑤(#% , 𝑤)#%) are pair of sample observations from ith  group 

Method to use for estimation of 𝑊&)is  

M = ∑ f&
#'( (𝑧# , 𝑧́#)𝑊&)# , where  f(  zi ,z’i)= (  zi .z’i) and 𝑧# = 𝑤&(# , 𝑧́# = (

12 "!
 and 𝑊&)# assumed known.  (4.5) 

The Mean Square Error of method M is 

MSE (M)= ∑ 𝑍#) 0
(
0!
− (

-!
2&

#'( (Si*)2           (4.6)  
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R=𝑊&(/𝑊&);  Zi=-!
-

;                                      (4.7) 

Where (Si*)2 = [𝑆#1() +R2𝑆#1)) -2RSiw1w2] 

𝑆#1() = (
-!3(

∑ 4𝑊(#% −𝑊&(#5
)/

#'( ,  𝑆#1)) = (
-!3(

∑ 4𝑊)#% −𝑊&#)5
)/

#'( ;        (4.8) 

𝑊&(#=
(
-#
∑ 𝑊(#%
-(
%'(    ;𝑊&)#=

(
-"
∑ 𝑊)#%
-)
%'( ;  Siw1w2 = (

-!$#
  ∑ 4𝑊(#% −	𝑊&(#5/

#'( .	4𝑊)#% −	𝑊&#)5	       (4.9) 

The estimate of (Si*)2is est(MSE) = ∑ 𝑍#) 0
(
0!
− (

-!
2&

#'(  (Si*)2 

Where (Si*)2 =[𝑆#1() +R2𝑆#1)) -2RSiw1w2] , the 𝑆#1() ,	𝑆#1)) , Siw1w2  are estimated from sample and r=42#
42"

 exist 

in sample. 
 
The 95% Confidence interval for estimating 𝑊&(	is: 
P [M- 1.96 6𝑀𝑆𝐸(𝑀)< M+1.96 6𝑀𝑆𝐸(𝑀)]=0.95      (4.10) 
 

VIII. Simulation procedure for confidence interval 
 Step I: Draw a random sample of size n 
 Step II:  Compute the lower limit and upper limit of confidence interval  
 Step III: Repeat step I and II for k times (K=200) 
 Step IV: Compute the less than type and more than type cumulative frequency over all k samples                         
for lover limit and upper limit of confidence interval. 
Step V: Plot data of step IV on graph. The perpendicular from point of intersection on the x-axis is the 
simulated value of lover limit and upper limit of confidence interval for parameter to be estimated. 

IX. Numerical illustration: 
Consider figure 2 having 11 vertices and consisting of data in the tuple (Vi, W1i, W2i). The relationship of 
vertices is in the form of edges which is used to constitute form clique and kernel.   

 Figure 3: Graph with weight representing Age and hours of use. 
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The figure has 2 kernels C0 and C7.The Kernel constituted based group structure of graphical 
population is as under. From figure 4 we are extracting samples from group 1(C0) and group 2(C7). 

 
 

 

  As per figure 3, the representation of the vertices with weight (W1: ages of users) and (W2: time       
consumed by users) are given below in terms of Vi=( W1i ,W2i ) 

V0=(15,6) ,     V1=(16,9),       V2=(17,4)       V3=(18,2)             V4=(12,6)     V5=(15,7) 

V6=(13,7),      V7=(15,3),        V8=(12,7),      V9=(18,7)   V10=(19,3),          V11=(18,2) 

The group 1 Kernels contains 16 tuple (N1=16) and group 2 contains 20 tuple (N2=20).  

 A random sample of size n1=6 is drawn from N1=16. Similarly, random sample of size n2 is drawn from 
N2=20 (n1< N1, n2 < N2). Using these sample values, the objective is to estimate unknown population 
mean𝑊&(. 
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Table 2: Description of population parameters 

 Group size Ni Group mean W1 Group mean W2 

Group I      N1=16 
       Z1=N1/N 
      =0.44 

𝑊&(5(= 14.75 
𝑆1(5() =4.2 

𝑊&)5(=5.93 
𝑆1)5() =3.02 

    
Group II N2=20 

Z2=N2/N 
=0.55 

𝑊&(5)=16.6 
𝑆1(5)) =6.25 

𝑊&)5)=4.5 
𝑆1)5)) =4.47 

 
  

N=N1+N2=36 
 

R= 1
2#
12"

=14.75/16.6=0.88 

Table 3: Sample based computation (First Sample) 

Table 4: Sample based computation (Second sample) 

 Sam
ple 
size 

Sample 
values(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est. .(Si*)2 

 
Group I 

 
n1=6 

(V0,15,6),(V4,12,6), 
(V5,15,7) (V3,18,2) 
,(V6,13,7), (V1,16,9) 

𝑤&(5(=14.83 
𝑆1(5() =4.51
  

𝑤&)5(=6.16 
𝑆1)5() =5.47 

r1=2.40 (S1*)2=12.8
2 

[10.98-17.98] 

Group II n2=4 (V7,15,3) ,(V11,18,2)  
(V8,12,7), (V9,18,7) 

𝑤&(5)=15.75 
𝑆1(5)) =8.25 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 

r2=3.31 (S2*)2=52.3
1 

M=14.48  Est.(MSE)=3.37 
Table 5: Sample based computation (Third sample) 

 Sampl
e size 

Sample 
Values(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est 
.(Si*)2 

 
Group I 

 
n1=6 

(V3,18,2) (V4,12,6) 
(V5,15,7) (V6,13,7) 
(V1,16,9) (V0,15,6) 

𝑤&(5(=14.83 
𝑆1(5() = 4.51 

𝑤&)5(=6.16 
𝑆1)5() =5.47 

r1=2.40 (S1*)2=1
2.77 

[13.19-22.47] 

Group II n2=4 (V7,15,3) (V11,18,2) 
(V9,18,7) (V10,19,3) 

𝑤&(5)=17.5 
𝑆1(5)) =3.0 

𝑤&)5)=3.75 
𝑆1)5)) =4.91 

r2=4.66 (S1*)2=5
2.57 

M=17.831 Est.(MSE)=5.56 

 

 Sam
ple 
size 

 Sample values  
(V0,w1,w2) 

Mean 95% C.I. 
 w1 

 
w2 ri est .(Si*)2 

Group I 
 

n1=6 (V0,15,6),(V1,16,9),(
V4,12,6),(V5,15,7),(
V3,18,2),(V6,13,7) 

𝑤&(5(=14.83 
𝑆1(5() = 4.51 

𝑤&)5(=6.16 
𝑆1)5() =5.47 
 

r1=2.4 (S1*)2=12.9
2 

 
[8.70-
19.67] 

 
Group 

II 

 
n2=4 

(V7,15,3),(V8,12,7) 
(V9,18,7),(V10,19,3) 

𝑤&(5)=16.0 
𝑆1(5)) = 10 

𝑤&)5)=5.0 
𝑆1)5)) = 5.33 

r2=3.2 (S2*)2=131.
2 

M=14.19 Est.(MSE)=7.89 
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Table 6: Sample based computation (Fourth Sample) 

 Samp
le 
size 

Sample 
Values(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2 

Group I n1=6 (V5,15,7) (V4,12,6) 
(V6,13,7) (V0,15,6) 
(V1,16,9) (V2,17,4) 

𝑤&(5(=14.66 
𝑆1(5()

= 3.46 

𝑤&)5(=6.5 
𝑆1)5() =2.7 

r1=2.25 (S1*)2=22.75 [8.74-18.84] 

Group II n2=4 (V10,19,3) (V9,18,7)  
(V8,12,7) (V7,15,3) 

𝑤&(5)=16 
𝑆1(5)) = 10 

𝑤&)5)=5 
𝑆1)5)) 5.33  

r2=3.2 (S1*)2=103.9 

M=13.79  Est.(MSE)=6.66 

 
Table 7: Sample based computation (Fifth Sample) 

   Mean 95% C.I. 
  

Sample 
Size 

 
Sample 
Values(V0,w1,w2) 

w1 w2 ri est .(Si*)2 

Group I n1=6 (V4,12,6), (V3,18,2), 
(V6,13,7) (V2,17,4) 
(V1,16,9) (V0,15,6) 
 

𝑤&(5(=15.16 
𝑆1(5() =5.36 
 

𝑤&)5(=5.66 
𝑆1)5() 5.86 

 
r1=2.67 

(S1*)2=69.31 [11.48-19.9] 

Group 
II 

n2=4 (V8,12,7) ,(V9,18,7)  
(V10,19,3) ,(V11,18,2) 

𝑤&(5)=16.75 
𝑆1(5)) =10.24 
 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 

r2=3.52 (S1*)2=55.57 

M=15.69 Est.(MSE)=4.64 
 

Table 8: Sample based computation (Sixth Sample) 

 Samp
le 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2  

Group I 
 

n1=6 (V4,12,6)  (V0,15,6)  
(V2,17,4)  (V5,15,7)  
(V1,16,9)  (V3,18,2) 

𝑤&(5(=15.5 
𝑆1(5() =4.3 

𝑤&)5(=5.66 
𝑆1)5() =5.86 

 
r1=2.73 

(S1*)2=49.05  
 
[7.91-23.81] 

Group II  n2=4 (V11,18,2)  (V10,19,3)  
(V9,18,7)  (V8,12,7) 

𝑤&(5)=16.75 
𝑆1(5)) =10.2
4 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 

 

r2=3.52 
 

 

(S1*)2=260.1
1 

M=15.86  Est.(MSE)= 16.52 
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Table 9: Sample based computation (Seventh Sample) 

 Samp
le 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2 

Group I 
 

n1=6 (V0,15,6) (V1,16,9), 
(V4,12,6)  (V5,15,7)  
(V2,17,4)  (V3,18,2) 

𝑤&(5(=15.5 
𝑆1(5() =4.3 

𝑤&)5(=5.66 
𝑆1)5() =5.86 

r1=2.7
3 

(S1*)2=49.43 [9.48-
21.46] 

Group II  n2=4 (V7,15,3)  (V8,12,7) 
(V9,18,7) (V10,19,3) 

𝑤&(5)=16.00 
𝑆1(5)) =10.0 

𝑤&)5)=4.75 
𝑆1)5)) =5.41 

 
r2=3.3
6 

 
(S1*)2=140.67 

M=15.47 Est.(MSE)=     9.37                                                   
 

Table 10: Sample based computation (Eighth Sample) 

 
Table 11: Sample based computation (Ninth Sample) 

 Samp
le 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 
w1 w2 ri est .(Si*)2  

Group 
I 
 

n1=6 (V4,12,6)  (V3,18,2), 
(V6,13,7)  (V0,15,6)  
(V2,17,4)  (V1,16,9) 

𝑤&(5(=15.16 
𝑆1(5() =5.36 

𝑤&)5(=5.66 
𝑆1)5() =5.86 

r1=2.67 (S1*)2=59.16 [8.93-21.59] 

Group 
II 

n2=4 (V8,12,7)  (V10,19,3), 
(V9,18,7)  (V11,18,2)  

𝑤&(5)=16.75 
𝑆1(5)) =10.24 

𝑤&)5)=5.00 
𝑆1)5)) =8 

r1=3.35 (S1*)2=155.7
8 

 

M=15.26 Est(MSE)=10.45    
 
 
 
 
 
 
 
 
 
 

 Sam
ple 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 
w1 w2 ri est .(Si*)2 

Group 
I 
 

n1=6 (V3,18,2)  (V4,12,6), 
(V5,15,7)  (V6,13,7)  
(V2,17,4)  (V1,16,9) 

𝑤&(5(=14.83 
𝑆1(5() =5.44 

𝑤&)5(=5.83 
𝑆1)5() =6.15 

r1=2.54 (S1*)2=55.55 [10.1,19.54
] 

Group 
II 

 
n2=4 

V7,15,3)  (V8,12,7)  
(V9,18,7)  (V11,18,2) 

𝑤&(5)=15.75 
𝑆1(5)) =8.25 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 
 

r2=3.31 (S1*)2=79.59 

M=14.82 Est.(MSE)=5.82 
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Table 12: Sample based computation (Tenth Sample) 

 Samp
le 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2 

Group 
I 

 

n1=6 (V6,13,7)  (V5,15,7), 
(V4,12,6)  (V0,15,6)  
(V2,17,4)  (V1,16,9) 

𝑤&(5(=14.66 
𝑆1(5() =3.46 

𝑤&)5(=6.5 
𝑆1)5() =2.7 

r1=2.25 
 

(S1*)2=21.55 [8.86-23.98] 

Group 
II 

 n2=4 (V7,15,3)  (V10,19,3)  
(V11,18,2)  (V8,12,7) 

𝑤&(5)=16.00 
𝑆1(5)) =10.0 

𝑤&)5)=3.75 
𝑆1)5)) =4.91 

r2=4.26 (S1*)2=242.52 

M=16.42 Est.(MSE)=14.95 
 

Table 13: Sample based computation (Eleventh Sample) 

   S Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 
w1 w2 ri est 

.(Si*)2 
Group 
I 
 

n1=6 (V6,13,7)  (V5,15,7), 
(V4,12,6)  (V3,18,2)  
(V2,17,4)  (V1,16,9) 

𝑤&(5(=15.16 
𝑆1(5() =5.36 

𝑤&)5(=5.83 
𝑆1)5() =6.15 

r1=2.60 (S1*)2

=56.9
8 

[8.87-22.11] 

Group 
II 

 n2=4 (V8,12,7)  (V10,19,3)  
(V11,18,2)  (V9,18,7) 

𝑤&(5)=16.75 
𝑆1(5)) =10.24 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 
 

 
r2=3.52 

(S1*)2

=172.
80 

M=15.49 Est.(MSE)=11.43 
Table 14: Sample based computation (Twelfth Sample) 

 
 
 
 
 
 
 
 
 
 
 

 Samp
le 
size 

Sample Values 
(V0,w1,w2) 

Mean  95% C.I. 
w1 w2  est .(Si*)2 

Group 
I 

 

n1=6 (V2,17,4)  (V1,16,9), 
(V0,15,6)  (V4,12,6)  
(V5,15,7)  (V6,13,7) 

𝑤&(5(=14.66 
𝑆1(5() =3.46 

𝑤&)5(=6.5 
𝑆1)5() =2.7 

 
r1=2.25 

(S1*)2=22.7
6 

[8.19-19.39] 

Group 
II 

 n2=4 (V7,15,3)  (V10,19,3) 
(V9,18,7)  (V8,12,7) 

𝑤&(5)=16.00 
𝑆1(5)) =10.0 

𝑤&)5)=5.00 
𝑆1)5)) =5.33 
 

r2=3.2 (S1*)2=129.
42 

M=13.79 Est.(MSE)=8.19 
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Table 15: Sample based computation (Thirteenth Sample) 

 Sampl
e size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 
w1 w2 ri est 

.(Si*)2 
Group 
I 
 

n1=6 (V2,17,4)  (V1,16,9), 
(V3,18,2)  (V5,15,7)  
(V6,13,7)  (V0,15,6) 

𝑤&(5(=15.66 
𝑆1(5() =3.06 

𝑤&)5(=5.83 
𝑆1)5() =6.15 

r1=2.68  
(S1*)2=
39.85 

[9.23-22.19] 

Group 
II 

 n2=4 (V11,18,2)  (V10,19,3)  
(V9,18,7)  (V8,12,7) 

𝑤&(5)=16.75 
𝑆1(5)) =10.24 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 
 

r2=3.52  
(S1*)2=
172.80 

M=15.71 Est.(MSE=11.10 

 
Table 16: Sample based computation (Fourteenth Sample) 

 Sample 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2  
Group 
I 
 

n1=6 (V5,15,7)  (V4,12,6), 
(V6,13,7)  (V3,18,2)  
(V2,17,4)  (V1,16,9) 

𝑤&(5(=15.16 
𝑆1(5() =5.36 

𝑤&)5(=5.83 
𝑆1)5() =6.15 

r1=2.60 (S1*)2=56.98 [9.82-
24.82] 

Group 
II 

 n2=4 (V10,19,3)  (V11,18,2)  
(V7,15,3)  (V8,12,7) 

𝑤&(5)=16.00 
𝑆1(5)) =10.0 

𝑤&)5)=3.75 
𝑆1)5)) =4.91 
 

r2=4.26 (S1*)2=229.74 

M=17.32 Est.(MSE)=14.85 
 

Table 17: Sample based computation (Fifteenth Sample) 

 Sampl
e size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est 
.(Si*)2 

 

Group I 
 

n1=6 (V1,16,9)  (V0,15,6), 
(V4,12,6)  (V5,15,7)  
(V2,17,4)  (V3,18,2) 

𝑤&(5(=15.5 
𝑆1(5() =4.3 

𝑤&)5(=5.66 
𝑆1)5() =5.86 

r1=2.73 (S1*)2

=49.4
3 

[9.27-22.43] 

Group II  n2=4 (V11,18,2)  (V10,19,3)  
(V9,18,7)  (V8,12,7) 

𝑤&(5)=16.75 
𝑆1(5)) =10.24 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 
 

r2=3.52 (S1*)2

=172.
8 

M=15.85 Est.(MSE)=11.29 
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Table 18: Sample based computation (Sixteenth Sample) 

 Sample 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 
w1 w2 ri est .(Si*)2 

Group I 
 

n1=6 (V6,13,7) (V5,15,7), 
(V4,12,6)  (V0,15,6)  
(V2,17,4)  (V3,18,2) 

𝑤&(5(=15.0 
𝑆1(5() =5.2 

𝑤&)5(=5.33 
𝑆1)5() =3.85 

r1=2.81 (S1*)2=66.45 [14.31-
23.43] 

Group II  n2=4 (V11,18,2)  
(V10,19,3)  (V9,18,7)  
(V7,15,3) 

𝑤&(5)=17.50 
𝑆1(5)) =3.0 

𝑤&)5)=3.75 
𝑆1)5)) =4.91 

r2=4.66 (S1*)2=70.39 

M=18.87 Est.(MSE)=5.46 
 

Table 19: Sample based computation (Seventeenth Sample) 

 Sample 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 
w1 w2  ri 

Group 
I 

 

n1=6 (V5,15,6)  (V4,12,6), 
(V6,13,7)  (V2,17,4)  
(V1,16,9)  (V0,15,6) 

𝑤&(5(=14.66 
𝑆1(5() =3.46 

𝑤&)5(=6.5 
𝑆1)5() =2.7 

 
r1=2.25 

(S1*)2=26.08 [8.84-24] 

Group 
II 

 n2=4 (V11,18,2)  (V10,19,3)  
(V7,15,3)  (V8,12,7) 

𝑤&(5)=16.00 
𝑆1(5)) =10.0 

𝑤&)5)=3.75 
𝑆1)5)) =4.91 

r2=4.26 (S1*)2=242.52 

M=16.42 Est.(MSE)= 15.04 
 

Table 20: Sample based computation (Eighteenth Sample) 

 Sampl
e size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2  
Group I 

 
n1=6 (V4,12,6)  (V3,18,2), 

(V2,17,4)  (V1,16,9)  
(V0,15,6)  (V5,15,7) 

𝑤&(5(=15.5 
𝑆1(5() =4.3 

𝑤&)5(=5.66 
𝑆1)5() =5.86 

r1=2.
73 

(S1*)2=-
0.476 

[9.35-22.35 

Group 
II 

 n2=4 (V11,18,2)  (V10,19,3)  
(V9,18,7)  (V8,12,7) 

𝑤&(5)=16.75 
𝑆1(5)) =10.24 

𝑤&)5)=4.75 
𝑆1)5)) =6.91 
 

r2=3.
52 
 
 

(S1*)2=172.8
0 

M=15.85 Est.(MSE)=10.37 
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Table 21: Sample based computation (Nineteenth Sample) 

 Sample 
size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2  
Group 
I 
 

n1=6 (V4,12,6)  (V3,18,2), 
(V2,17,4)  (V1,16,9)  
(V0,15,6)  (V6,13,7) 

𝑤&(5(=15.16 
𝑆1(5() =5.36 

𝑤&)5(=5.66 
𝑆1)5() =5.86 

r1=2.67 (S1*)2=60.92 [9.05-20.73] 
 
 

Group 
II 

 n2=4 (V7,15,3)  (V10,19,3)  
(V9,18,7)  (V8,12,7) 

𝑤&(5)=16.00 
𝑆1(5)) =10.0 

𝑤&)5)=5.00 
𝑆1)5)) =5.33 
 

r2=3.2 (S1*)2=129.42 

M=14.89 Est.(MSE)=8.90 
Table 22: Sample based computation (Twenty Samples) 

 Sampl
e size 

Sample Values 
(V0,w1,w2) 

Mean 95% C.I. 

w1 w2 ri est .(Si*)2 

Group I 
 

n1=6 (V2,17,4)  (V1,16,9), 
(V4,12,6)  (V5,15,7)  
(V6,13,7)  (V0,15,6) 

𝑤&(5(=14.66 
𝑆1(5() =3.46 

𝑤&)5(=6.5 
𝑆1)5() =2.7 

r1=2.25 (S1*)2=22.96  
[13.4-21.42] 
 

Group II  n2=4 (V9,18,7)  (V7,15,3)  
(V10,19,3)  (V11,18,2) 

𝑤&(5)=17.50 
𝑆1(5)) =3.0 
  

𝑤&)5)=3.75 
𝑆1)5)) =4.9 
 

r2=4.66 (S1*)2=63.47 

M=17.41 Est.(MSE)=4.23 
Table 23: For Confidence interval calculations 

For lower limit of Confidence Interval For upper limit of Confidence Interval 
Class Interval Probabil

ity over 
200 
samples 

LTT MTT Class 
Interval 

Probabili
ty over 
200 
samples 

LTT MTT 

Below 8.0 0.08 0.08 1.00 Below 17.0 0.05 0.05 1.00 
8.0-9.0 0.38 0.46 0.92 17.0-18.0 0.13 0.18 0.95 
9.0-10.0 0.29 0.75 0.54 18.0-19.0 0.16 0.34 0.82 
10.0-11.0 0.14 0.89 0.25 19.0-20.0 0.18 0.52 0.66 
11.0-12.0 0.04 0.93 0.11 20.0-21.0 0.23 0.75 0.48 
12.0-13.0 0.05 0.98 0.07 21.0-22.0 0.14 0.89 0.25 
13.0-14.0 0.01 0.99 0.02 22.0-23.0 0.09 0.98 0.11 
Above 14.0 0.01  1 0.01 23.0-24.0 0.01 0.99 0.02 
LTT: Less Than Type; MTT: More Than Type Above 24.0 0.01 1.00 0.01 

 
Probability = 0𝑓# ∑𝑓#A 2;             fi : frequency of ith  class interval 

∑𝑓#: total frequency;                  P[A]= probability of event A. 
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a=2.2, b=4.9 
Confidence Interval = P[a<2.3<b]=0.95  ; where P[A] is probability of event A. 
Other Computations: -  (𝑆1∗)2 =17.64, (𝑆2∗)2= 39.08  
MSE (M) = 𝑍12 0

1
01
− 1

-1
2 (𝑆1∗)2+𝑍22 0

1
02
− 1

-2
2 (𝑆2∗)2 = 4.70 

 
X. Conclusion 

In this paper, a graphical structure of population has been considered and using the Kernel creation 
procedure rules and closed communities have been detected. The closeness is based on criteria of click 
formation. In order to estimate the unknown population parameter (average hours used) a scheme 
named after as Kernel Sampling estimation method is used. The 95% confidence intervals have been 
computed. It has been found that 95% confidence intervals are catching the true values. The simulation 
procedure suggested herein provides the well predicted estimated interval. This contribution opens up 
avenues and opportunities to think for mixing of community detection and parameter estimation. 
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Abstract 

The ramified sewerage system for receiving and transferring household and industrial sewage typical for 
a large city is considered. Consideration is restricted to the sub-system of sewage conveyance (sewer 
network). A sewer network is defined as a combination of underground pipes (sewers) passing sewage 
through the force of gravity. A review of the literature reveals that there is currently no universally 
acceptable definition or measure for the reliability of urban sewer network. The aim of this article is to 
propose the physically obvious reliability index, and to develop an engineering methodology for its 
calculating. The relative raw sewage volume that could be potentially discharged to the environment as 
a result of component failures in the sewer network is proposed as a measure of overall system reliability. 
A simple method for quick and proper calculation of this volume is presented. The basis for this method 
is a representation of the sewer network by a combination of Y-like fragments. Each such fragment is 
formally substituted by a fictitious equivalent sewer that has a failure rate leading to the same output for 
the same input. A sequential application of this approach reduces the problem of estimating the discharged 
sewage volume to an elementary sub-problem with a simple solution is. The proposed approach is based 
on the reliability theory. The notions “failure flow” and “repair flow” are used. These flows are taken 
stationary with known parameters. Numerical examples are used to demonstrate the proposed approach. 

Keywords: Sewer network; Reliability; Sewage discharge; Y-like network fragment; 
Decomposition-equivalence method. 

I. Introduction

The proper functioning of the urban sewage disposal system is a primary determinant of the city’s 
ecological and sanitary-hygienic conditions. Confronting problems associated with the sewer 
network maintenance as a subsystem of an entire sewage disposal system, is a necessary step for 
improving operation efficiency in an urban waste water disposal system as a whole. In recent years, 
in response to increasing congestion in urban sewer networks and the adverse environmental impact 
of such congestion, substantial attention has been focused on working out the proposals to improve 
waste water disposal processes. A critical issue in the evaluation and effective implementation of 
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these proposals is the development of the best, in some specified sense, sewage disposal strategies. 
In practice sometimes, very significant improvements in management efficiency could be 
accomplished simply by better maintenance of the waste water disposal system. 

There is a great deal of research dedicated to the reliability problems of water supply systems 
reported in the literature [1-6]. From the latest publications we emphasize the work [2], which 
provides an in-depth review of the relevant research literature in the context of the mathematical 
methods for measuring water distribution system reliability. However, as note in other works, for 
example, [4]: “A review of the literature reveals that there is currently no universally acceptable 
definition or measure of the reliability of water distribution systems … For a large system … it is 
extremely difficult to analytically compute the mathematical reliability”. 

By contrast, the reliability problems of the sewage disposal systems are still uninvestigated [7-
13]. Therefore, any effort to comprehend, set up and refine the issue of sewer network reliability 
takes on great significance. The final objective of these investigations is to develop sewer network 
design, reconstruction and maintenance methods with due regard for reliability.      

II. Short description of the object and problem statement

An urban wastewater disposal system is a network of structurally and technologically 
interconnected structures intended for sewage collection and its conveyance to the purification 
facilities. 

Usually the city sewage disposal system is designed and constructed according to the head-
and-gravity concept. This means that the sewage passes through underground sewers having a 
specified fall by gravity, and pumping stations lift sewage in areas where gravity flow is impossible. 
(As a rule, the sewage pumping station is designed as a system providing a redundancy of the 
pumping equipment. Because of this, in the following, we assume that the pumping stations are 
absolutely reliable). By this means the sewer network, by nature, is a peculiar water distribution 
system. The reliability of such systems is often defined by heuristic guidelines, like having all pipe 
diameters greater than a minimum prescribed value. By using such guidelines it is implicitly 
assumed that reliability will be assured, but the level of reliability provided is not quantified or 
measured. Thus, the question: “Is the system reliable?” is usually well understood and easy to 
answer, while the question “What is its reliability level?” is not straightforward. As a result, only 
limited confidence can be placed on such rules, as reliability is not considered explicitly. 

The underground pipes, as sewer network components, are subject to so many influences that 
it is difficult, if not impossible, to predict their combined effect in advance. These influences include 
the corrosive action of the soil and sewage, ground movements, the weather, etc. Most of these 
factors are random, and are characterized by significant variability. These circumstances adversely 
affect sewer network reliability. Currently, traditional wastewater disposal system design and 
maintenance methods usually fail to account for this situation. 
A determination of the timeline and the sequence of a sewerage modernization plan is an important 
problem of the applied reliability theory. The strategy development for the object  reconstruction 
falls into two stages. At the first stage, the object technical condition is established, and a need for 
renovation is determined. The second stage is job scheduling for the specific network elements 
requiring repair or replacements. 

Depending on the purpose of the study and the specifics of an object, its technical state may 
be estimated, from the viewpoint of a reliability, using different quantitative measures: for example, 
by the average time between failures or by the probability of trouble-free functioning over a given 
period of time. We note that these traditional measures accepted in theory, as applied to sewer 
networks, provide not enough information because it is very hard to interpret them physically. 

Here the specific reliability index is proposed. This index is intended for functioning 
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efficiency estimation of tree-like hierarchical structures; an urban sewer network is a typical 
representative of such structure. The damage due to raw sewage discharged to the environment 
resulting from sewer network failures is considered as a quantitative reliability measure [7]. 
At the moment there are no universally accepted procedures for assessment of the economic and 
ecological damage due to raw sewage discharge resulting from sewer network failures. Within any 
particular region, sewer basin or city district this damage and the methods of assessing it may differ 
significantly and may change with the time. What is considered acceptable for one area or time 
period may not be appropriate for another area or time. In any case however, it is evident that this 
damage is dependent on the volume of raw sewage discharged to the environment (in actual practice 
this sewage is usually pumped over into a suitable nearly manhole by a mobile emergency pumping 
plant). 

For this reason, the volume of raw sewage potentially discharged from the sewer network to 
the environment over some time period (for example, one year) may be taken as a measure of the 
damage caused by the network unreliability, and, therefore, as an indirect measure of the sewer 
network reliability. 
Thus, the problem reduces to finding of the raw sewage volume potentially discharged from the 
sewer network. 

III. Reliability analysis of the sewer network fragment

Systems like a urban sewer network, are often described in terms of a graph, with links representing 
the pipes (sewers), and nodes representing connections between the pipes. The behavior of a sewer 
network is governed by the physical laws that describe the flow relationships in the pipes (laws of 
conservation), and the network layout. 

Two features of a sewer network should be pointed out: 1) a sewage gravitates through each 
sewer in one direction only, and 2) the hydraulic elements used to link different sewer basins are 
lacking. This means particularly that the sewage entering into any network inlet, may be piped to a 
certain its outlet by a strictly specified sequence of sewers, i.e. along the only path. Thus, 
mathematically, the graph of an urban sewer network is a simply connected, oriented, and acyclic 
graph; in theory such graphs are also known as tree-like graphs. 

We consider the three-component Y-like sewer network fragment shown in Fig. 1. 

Figure. 1: Y-like sewer network fragment. 

Each enumerated sewer of this fragment is characterized by its length ; in 

addition, we suppose that the unidirectional sewage flow rates in the inlets of sewer 1and 2 (  and 

, respectively) are known, constant and equal to the mean values calculated by averaging the 
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historical data obtained over a long period of time. We assume that, from time to time, each sewer 
fails, is repaired and, thereafter, put back in service again. Thus, each sewer can be either up 
(operable) or down (failed). In terms of the reliability theory, this means that so-called failure and 
repair flows are both acting on each sewer. 

For a mathematical description of these flows, what is meant by term “failure” must be 
ascertained. 

The exact definition of failure is somewhat fluid and depends on the level of detail of the 
required analysis, and has a variety of meanings to different individuals. In actual practice, a 
disturbance of the normal operation of the sewer can be manifested as a reduction of its capacity 
caused by cracks in the pipe, sewer breaks under extreme mechanical load, increasing rates of 
infiltration, repeated overflows, etc. Here, we shall define “failure” as an event implying a need for 
immediate overhaul or replacement of the pipe. In other words, the failure of a sewer is defined as 
an event when the sewer capacity becomes equal to zero, and consequently, all sewage entering into 
the sewer discharges to the environment. 

The repair is taken here to mean that a renewal process reaches completion and the sewer is 
returned to service. 

Usually, such events are documented with accompanying parameters. This information is 
systematically renewed, statistically processed and stored in relevant data bases. In the following, 
we assume that these data (in particular, the mean time to failure and mean time to repair) are known 
and available for analysis. 

Both of these flows are characterized by their rates. Physically, the failure rate is the mean 
number of failures in a unit of time. The repair rate is defined similarly. In line with a much used 
assumption, we suppose that the failure flow as well as the repair flow are exponentially distributed 
flows [4]. From this it follows that the specific failure rate (the failure rate per unit sewer length) for 
each sewer , respectively) is constant. Analogously, the repair rates for sewers 

1, 2 and 3  are constant as well. We assume that all these values are given. 

The problem is stated as follows: given the values of all quantities listed above, it is necessary 
to estimate the volume of raw sewage discharged from the sewer network to the environment over 
some time period (one year in this study). 

In order to solve this problem, we must first bring out the possible states of the system taken 
as a whole. These states are enumerated and listed below; what is meant by each state is explained 
in parentheses, and, next, the associated probability  of the system residing in state  is

introduced: 
0: (sewers 1, 2 and 3 up) - ;

1: (sewer 1 down, sewers 2 and 3 up) - ; 

2: (sewer 2 down, sewers 1 and 3 up) - ; 

3: (sewer 3 down, sewers 1 and 2 up) - ; 

4: (sewers 1 and 2 down, sewer 3 up) - ; 

5: (sewers 1 and 3 down, sewer 2 up) - ; 

6: (sewers 2 and 3 down, sewer 1 up) - ; 

7: (sewers 1, 2 and 3 down) - .

With time, under the influence of failure and repair flows, the system goes from one state to 
another accidentally. This process is conveniently described by the use of the state space graph [14] 
(see Fig. 2), in which the possible system states are represented by circles with their number inside. 
The arrows indicate the transitions between states. The associated failure or repair rate is placed by 
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an arrow; in this case , and . 

Such a graph gives a descriptive idea of the changing system states. As an example, we 
consider state 4 (sewers 1 and 2 down, sewer 3 up). From this state the system departs to state 1 if 
the renewal process of sewer 2 reaches completion (the repair rate is ), to state 2 when sewer 1 is 

returned to service ( ), and to state 7 when sewer 3 breaks down as well ( ). We note incidentally 

that the transition of the system, for example, from state 4 to state 0 is impossible due to the features 
of the exponentially distributed flow. 

With the state space graph in hand it becomes possible to find all state probabilities 

as functions of time. For this purpose so-called Kolmogorov’s equations are formed [14]. 

Figure. 2: State space graph for the Y-like network fragment. 

For the graph shown in Fig. 2 these equations take the form: 
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When a system state is changed, transition processes on the probabilities  take place. 

But, as shown this in [15] for real values  and , these processes are very rapid. Usually, 

engineering practice uses so-called stationary probabilities. The probability of the system residing 
in state  assumes that stochastic transition process is stationary. By this is meant that all 
probabilities are independent of time (otherwise, they are also known as the stationary or limiting 
probabilities [14]. They may be obtained from Eqs. (1) taking all derivatives with respect to time 
equal to zero. In line with a common procedure [14], we form a set of linear algebraic equations for 
stationary probabilities :

 (2) 

Due to the fact that the set of Eqs. (2) fails to involve constant terms, there are infinitely many 
different solutions satisfying Eqs. (2). In order to be able to choose the unique solution in terms of 

, it is necessary to substitute any one of the equations in (2) by the normalizing condition: 

3) 

which reflects the fact that the considered system is in any one state at all time. 

We can notice the following rules for forming each individual equation by inspecting the set 
(2) and the associated graph (Fig. 2). The left-hand side of the equation contains the product of the
probability of residing in state and of the summarized rate of all flows departing the system from 
the th state. The right-side of the equation is the sum of products of the probability of the state from 
which it is possible to arrive to state , and of the corresponding failure or repair flow rate. Thus, 
given the state space graph, forming a set of equations allows us to calculate the stationary 
probabilities. 

Solving the set of Eqs. (2), we have the values of all stationary probabilities. Physically, the 

value of  obtained is the relative mean time of the system residing in state . We point 

out that this method is known as the state-enumeration method [14]. 
We calculate the stationary probabilities for eight possible states  for  the  graph shown in 

Fig. 2. We assume: = 1 km, = 1.5 km, = 2 km. Let also = 0.42 1/(yr km), 

= 0.37 1/(yr km), = 0.3 1/(yr km). Then = 0.42 1/yr, = 0.56 
1/yr and =0.6 1/yr.1/yr. For the sake of calculation simplicity it is assumed as well 

that . We take = 0.02 1/h = 175.2 1/yr. By substituting these values in Eqs.(2) 

(replacing one of  them by (3)) and  solving  the set (2) for , we obtain:  = 0.9; = 2.376 10
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; = 3.168 10 ; = 3.394 10 ; =7.594 10 ; = 8.136 10 ; = 1.085 10
; = 2.596 10 . 

With every system state one can associate a certain volume  of raw sewage discharged 

to the environment that can be represent by the following correspondence relations: 

(4) 

where T  is the interval of time for which the discharged sewage volume  is to be estimated. 

For the sake of concreteness, we assume that = 0.4 m /s, = 0.6 m /s and T = 1 yr = 
31.536 10  s. Then = 0, = 126.144 10 m , = 189.216 10  m , 

= 315.360 10  m . The raw sewage volume is calculated as 

expectation of the random variable 

= 1.978 10  m                                         (5) 

that is 0.63 % of the total volume of sewage  = 315.360 10  m that entered the inlets 
of the considered network during the year. 

Thus, the problem formulated for the sewer network, shown in Fig. 1, is solved. 
A more realistic and much used approach proceeds from the fact that the probabilities of 

simultaneous failure of two or more sewers are extremely low. This fact is easy to verify by analyzing 
the results of numerical calculations cited above. Taking this into account and assuming that these 
probabilities are equal to zero, it can be seen that for the network fragment shown in Fig. 1 only four 
possible states are available, namely: 

0: (sewers 1, 2 and 3 up) -  

1: (sewer 1 down, sewers 2 and 3 up) - 

2: (sewer 2 down, sewers 1 and 3 up) - 

3: (sewer 3 down, sewers 1 and 2 up) - 

The corresponding state space graph is shown in Fig. 3,a. 

Figure. 3:  Simplified state space graph for the Y-like fragment a) and its transformation b). 
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The set of equations written with respect to the stationary probabilities takes the form: 

 (6) 

It is possible to solve this set of equations analytically. Granting that  , we get: 

(7) 

where dimensionless parameters  characterizing the rate of the “failure-repair” process for each 
sewer of Y-like network fragment are introduced. 

By analogy with (4) we can write for volumes  : 

 (8) 

and to make an estimate of the raw sewage discharge  as: 

 (9) 

For data used in this numerical example, the calculation by (9) yields: = 1.969 10 m ,

that is coincident practically with the result (5) obtained above. 

IV. Equivalenting of the network fragment

Difficulties emerge when we estimate the raw sewage discharge resulting from sewer network 
failures for a sufficiently branched, multicomponent sewer network. The problem is that the number 
of the possible states rapidly increases with number n of network elements (sewers), and equals 
. For example, for n = 15  we have 32768 possible states. The high order of the problem presents 
difficulties in solving an associated set of equations, equals to the number of possible states, in actual 
practice. Below is proposed an approach that provides a way of simplifying the procedure of 
estimating the discharged sewage volume for a sufficiently branched sewer network. 

First of all, we recall that the mean relative time of the system residing in the inoperable 
state having only two possible states (up and down), is numerically equal [16]: 

 (10) 

where . 
Return again to Fig. 1 and imagine a fictitious sewer 123 with unknown, for now, failure 

and repair  rates, at the inlet of which the sewage flow rate  is the case, that

substitute, in some sense, the Y-like network fragment shown in Fig. 1. 
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Schematically, such substitution is represented in Fig. 4. 

Figure. 4: Three-component network a) and its equivalent b). 

The state space graph corresponding to Fig. 4b) is shown in Fig. 3b). 

It is easy to verify that the volume of raw sewage  discharged from this sewer for 

time T, is: 

 (11) 

We call attention to the fact that, at given flow rates  and  at the inlets of Y-like network 
fragment, the volume of discharged sewage for time T is dependent on the dimensionless parameter 

 of fictitious sewer only. In this case, under equivalenting of Y-like network fragment, is no need 

to find  and  separately, but their ratio only. 

We find  leading to the same output for the same input. To this end we equate (11) to (9) 

and solve the equation obtained for  This leads to 

 (12) 

Usually, in actual practice the mean time to failure is far in excess of mean time to repair, 
that , and, then, Eq. (12) can be written as: 

 (13) 

Thus, the Y-like sewer system shown in Fig. 4a) is superseded formally with an equivalent 
fictitious sewer 123, having the dimensionless parameter  and sewage flow rate at the inlet 

 (see Fig. 4b)). 
Sometimes, the cases occur when at one point of network more than two (generally, k) 

sewers are connected (Fig. 5a)). 
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Figure. 5:. Extension of an equivalenting procedure 

In this case  must be calculated by formula [16]: 

(14) 

and, then, the system depicted in Fig. 5a) can be superseded by one sewer as shown in Fig. 5b). 
Now we find out a physical meaning of the dimensionless parameter . 

Because , the Eq. (11) may be rewritten as . It is evident

that cofactor  in the right-hand side of this expression is a total volume of raw 

sewage that entered the inlets of the considered network at time T . Then,  is a part of Q that is 

not conveyed to the network outlet, i. e. is discharged to the environment. When multiplied by 100,   
physically shows the raw sewage discharge resulting from sewer network failures, expressed as a 
percentage of total sewage volume entered to its inlets. By virtue of the fact that  is varied from 0 

(absolutely reliable network) to 1 (theoretically, completely inoperable network), the parameter , 

in our opinion, may be used as an objective, single-valued measure of the sewer network reliability. 
We emphasize that the sewer network fragment of Fig. 4a) (or Fig.5a)) is a structure-forming 

component in the sense that any arbitrary complicated dendritic sewer network may be thought of 
as a composition of such components that substantially reduces and simplifies a body of calculations 
in estimating raw sewage discharged from the network. Below we give a technique of how to apply 
this approach. 

V. Decomposition-equivalence technique

We shall call this procedure as the “decomposition-equivalence technique”. It is more convenient to 
demonstrate this technique by the following example.  

Consider the network in Fig. 6a) consisting of seven sewers, each determined by the values 
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and , and, hence, by the value . In addition, the sewage flow rate at the 

network inlets  will be considered to have constant values. 

It is necessary to estimate the raw sewage volume discharged from the network throughout 
the year as a consequence of possible failures. 

Figure. 6:.Decomposition-equivalence technique. 

First we consider the contours I and II in Fig. 6a). Either contour includes the Y-like system, 
and, consequently, can be substituted by one equivalent sewer with its associated value of parameter 

 calculated according to the method proposed above. Using Eq. (13), we have  for contour I. 

Similarly, with assigned notations, for contour II we have . 
The results obtained enable one to present the initial network in the form shown in Fig. 6b). 

But this is an Y-like system (contour III) again. Using Eq. (13), we have finally the parameter 
 of one equivalent sewer substituting the initial network (see Fig. 6c)). Thus, the problem 

is solved. 
As may be seen from this example, unlike the state-enumeration method here, there is no 

need to solve an unwieldy set of equations. The problem reduces to a sequence of simple 
computations using, at every stage, the results of a preceding step. 

Although this methodology has been applied to a comparatively simple case, it can be 
extended easily to multicomponent networks. 

VI. Applications

The method developed in this paper may be used to solve many practical problems. Some of these, 
in the form of numerical examples, are considered below in a deliberately simplified but well 
realistic statement. 

6.1. Problem 1.The sewer network shown in Fig. 7a) is given. 
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Figure 7: Initial sewer network a) and its sequential transformations b), c), d), e). 
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The network consists of 15 enumerated sewer sections; the number of inlets is equal to 8. 
The direction of the sewage flow through an each sewer is shown by the arrow. There is a need to 
estimate a reliability level of this network (in the sense of the proposed criterion). 

To carry out the calculations we need some data. Such data are represented in Table 1. 

Table 1: Input data for calculations 

Section, i 1 2 3 4 5 6 7 8 9 10 

Failure rate , (1/yr)
0.52 0.68 0.79 0.91 1.34 0.83 0.75 0.03 0.85 0.62 

Repair rate , (1/yr) 
220 220 220 220 220 220 220 220 200 150 

Parameter 
2.36 3.09 3.59 4.14 6.09 3.77 3.41 0.14 4.25 4.13 

11 12 13 14 15 
0.84 1.10 0.03 0.50 0.05 

120 120 200 200 90 

7.00 9.17 0.15 2.50 0.56 

Besides, the inlets sewage flow rates in Table 2 are shown. 

Table 1: Network inlets sewage flow rate. 
Inlet, i 1 2 3 4 5 6 7 8 

Sewage flow rate 
, (m /s)      

3 9 6 4 5 1 5 7 

In addition, without loss of generality, we assume that the length of each sewer section is 
equal to 1 km. We note also that all values are hypothetical, convenient for calculations only. 

First we consider the contours I, II and III (Fig. 7a)) at the network periphery. Either contour 
includes the Y-like system, and, consequently, can be substituted by one equivalent sewer with its 
associated value of parameter  calculated according to the method proposed above. Using Eq. (13) 
where now, taking account of the new notations, and the data from Table 1 and Table 2 we have for 
contour I: 

Similarly, for contour II: 

and for contour III: 

The results obtained enable one to present the initial network in the form shown in Fig. 7b). 
But here are the Y-like systems (contours IV and V) again. Using Eq. (13) we have the parameter 

for contour IV: 
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and  for contour V: 

As a result, the structure shown in Fig. 7b) substitutes by the structure depicted in Fig. 7c) 
where the Y-like sub-system (contour VI) may be selected. Equivalenting this contour again by one 
sewer section with the parameter 

we are going to the Fig. 7d). 
But the structure shown in Fig. 7d) is the Y-like fragment (contour VII) in itself that may be 

substituted by one sewer (see Fig. 7e)). Thus, finally we have the parameter  of one equivalent 

sewer substituting the initial network depicted in Fig. 7a): 

The sequence of “decomposition-equivalence” operations is completed. Hence, in this case, 
. This means that, on the average, 1.6 % of the total sewage volume that entered 

the network inlets during time T , discharges from the sewer network to the environment arising 
from the network component failures. The accuracy of this measure increases as T increase, that is 
characteristic for probabilistic problems at all. 

6.2. Problem 2.Let us assume that specialists analyzing the results obtained in preceding 
Problem 1 come to the conclusion that the raw sewage discharge from the sewer network (Fig. 7a)) 
is much too large, and, consequently, the network reliability needs to be increased. The question 
concerning replacement of some components by a new sewer pipe is discussed, but it is possible to 
replace only one sewer because available funds are limited. On the present evidence, it may be 
argued that the failure rate for a new sewer (manufacturer’s data) is 0.02  1/yr; the repair rate 

 is taken to be equal to 200. It is desired to identify the preferential alternative. 

First of all, we compute . As before, we will take the discharged 

sewage volume as an efficiency index of the alternative to be accepted. Calculate this quantity 
assuming that the replacement of sewer section 1 in the initial network (Fig. 7a)) has just been made. 
For this purpose, we substitute the input data (associated with the sewer 1) of the Problem 1, for one 
another (corresponding to the new sewer), namely . Carrying out the relevant 

calculations, we obtain the discharged sewage volume expressed as a percentage of the total sewage 
entered the network: 1.582 %. By repeating the similar calculations with respect to each network 
section we come to the results represented in Table 3. 

Table 3: Example table Result of calculations. 

Section to be replaced Relative 
sewage volume discharge from 
network,% 

1 2 3 4 5 6 7 8 
1.582 1.532 1.547 1.559 1.524 1.590 1.558 1.559 

9 10 11 12 13 14 15 
1.444 1.408 1.220 1.191 1.599 1.527 1.523 

Referring to Table 3, it is seen that the smallest volume of sewage to be discharged from the 
network occurs when the network’s section 12 is replaced (in Table 3 this is highlighted in bold 
print). It is obvious that, under otherwise equal conditions, this alternative is preferable from the 
viewpoint of the reliability index accepted in this work. 
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The problems considered are simple as well; for this reason, the results seem to be trivial. 
Note, however, that the simplicity of the examples makes it possible to see the potential of the 
proposed method for practical use. 

VII. Conclusion

Although sewer reliability depicts a fairly complete reliability measure of the sewer network, it is 
convenient to use a single index to represent the composite effect of the component reliabilities. We 
propose to assess sewer network reliability as a whole by a volume of raw sewage discharged from 
the system because of failures of its components for an appreciable length of time. The traditional 
method for solving such problems is the so-called state-enumeration method. But, for the 
multicomponent networks, this generates a need to solve a set of equations having very high order, 
which renders the method unsuitable for many practical applications. The approach proposed in 
this work makes it possible to circumvent these difficulties by using the concept of equivalent sewer. 
As a result, the problem reduces to a sequential consideration of elementary sub-problems the 
solution of which is easily accomplished. 

As the methodology is applicable for sewer networks, each component of which can be 
either up (operable) or down(failed), additional research is need for extending the method for more 
complex cases.  

In our view, similar problems exist also in the course of maintenance of oil, gas and other 
pipeline systems. Such a setting and solving of problems may also be of interest for specialists 
working with general reliability issues. 
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Abstract

Based on progressively first-failure censored data, the problem of estimating parameters as well as relia-
bility and hazard rate functions for a class of an exponential distribution is considered. The classic and
Bayes approaches are used to estimate the parameters. The maximum likelihood estimates and exact con-
fidence interval as well as exact confidence region for parameters are developed based on this censoring
scheme. Also, when the parameters have discrete and continuous priors, several Bayes estimators with
respect to different symmetric and asymmetric loss functions such as squared error, linear-exponential
(LINEX) and general entropy are derived. Finally two numerical examples are presented to illustrate
the methods of inference developed in this paper.

Keywords: Bayes estimator, Confidence region, Exponential distribution, Maximum likelihood
estimator, Loss function, Progressive first-failure censoring scheme

1. Introduction

In many life test studies, it is common that the lifetimes of the test units may not be able to
record exactly. Censoring is very common in reliability data analysis, in the past several decades.
It usually applies when the exact lifetimes are known for only a portion of the products and
the remainder of the lifetimes has only partial information. There are several types of censoring
schemes in survival analysis and the type-II censoring scheme is one of the most common for
consideration. In type-II censoring, the test terminates after a predetermined number of failure
occurs in order to save time or cost, but the conventional type-II censoring scheme does not
has the flexibility of allowing removal of units at points other than the terminal point of the
experiment. For this reason, a more general censoring scheme called progressive type-II right
censoring is proposed. Although, progressive censoring scheme was introduced long ago in the
statistical literature, in recent years the progressive censoring scheme has received considerable
attention in the statistical literature, see for instance [1], [2] and [3]. For an exhaustive list of
references and further details on progressive censoring, readers are referred to [4]. In some
cases, the lifetime of products is quite long and so the experimental time of the progressive type-
II censoring scheme can still be too long. In order to give an efficient experiment, the other test
methods are proposed by statisticians where one of them is the progressive first-failure censoring
scheme. It can be described as follows.

Suppose that n independent groups with k items within each group are put on a life test
and experimenter decides beforehand the quantity m, the number of units to be failed. At the
time of the first failure, Xr

1;m,n,k, r1 groups and the group in which the first failure is observed
are randomly removed. r2 groups and the group with observed failure are randomly removed
as soon as the second failure, X r

2;m,n,k, has occurred. The procedure is continued until all rm
groups and the group with observed failure are removed at the time of the m-th failure, Xr

m;m:k:n.
Then Xr

1;m,n,k < Xr
2;m,n,k < . . . < Xr

m;m,n,k are called progressively first-failure censored order
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statistics with the censoring scheme r = (r1, r2, . . . , rm). We notice that if k = 1, progressively
first-failure censored reduces to the progressive type-II censoring. Also, if k = 1 and r1 = r2 =
· · · = rm−1 = 0, rm = n − m, it reduce to the type-II censoring. Wu et al. [5] and Wu and
Yu [6] obtained the maximum likelihood estimates (MLEs), exact confidence intervals and exact
confidence regions for the parameters of the Gompertz and Burr type XII distributions based on
first-failure censored sampling, respectively. Wu and Kuş [7] studied the Weibull distribution
under progressive first-failure censoring to make some classical inference on the parameters
of a Weibull distribution and they proved that the progressive first-failure censoring scheme
had shorter expected test times than the progressive type-II censoring scheme. Abou-Elheggag
[8] studied the Rayleigh distribution under progressive first-failure censoring. He derived the
maximum likelihood estimates and Bayes estimates of scale parameter, survival and hazard rate
functions. Also, one can refer to [9], [10], [11],[12] and [13].

To simplify the notation, we will use Xi in place of Xr
i;m,n,k. Let X = (X1, X2, . . . , Xm) be a pro-

gressive first-failure censored sample from a continuous population with the cumulative distribu-
tion function (CDF), F(x), the probability density function (PDF), f (x), and x = (x1, x2, . . . , xm)
is an observed value of X. The joint pdf of X is given by [7] as follows

f1,2,...,m(x) = Akm
m

∏
i=1

f (xi)[1 − F(xi)]
k(ri+1)−1, 0 < x1 < x2 < . . . < xm < ∞, (1)

where A = n(n − r1 − 1)(n − r1 − r2 − 2) · · · (n − r1 − r2 − · · · − rm−1 − m + 1).
In this paper, our main object is to study the classical and Bayes estimation procedures for

the parameter(s) of a general class of exponential- type distribution based on a progressively
first-failure censored sample.

The rest of this paper is organized as follows. In Section 2, the model is described. Some clas-
sical estimation, such as maximum likelihood estimation and interval estimation are presented
in Section 3. Section 4 develops the Bayes estimators for different loss functions such as squared
error, LINEX and general entropy. One illustrative example and a simulation study via a Monte
Carlo method are conducted in Section 5. Finally, we conclude the paper in Section 6.

2. Model description

Suppose the lifetime random variable T has a continuous distribution with two parameters as α
and λ, and with the PDF and CDF as

f (t; α, λ) = αψ(t; λ) exp{−αΨ(t; λ)}, 0 < t < ∞, (2)

F(t; α, λ) = 1 − exp{−αΨ(t; λ)}, (3)

where ψ(t; λ) = ∂Ψ(t;λ)
∂t , Ψ(t; λ) is increasing in t with Ψ(0; λ) = 0 and Ψ(∞; λ) = ∞. The

corresponding reliability and hazard rate functions becomes:

R(t) = exp{−αΨ(t; λ)}, (4)

h(t) = αψ(t; λ), (5)

respectively. This general form for lifetime model including some well-known and useful mod-
els such as Burr XII distribution with Ψ(t; λ) = ln(1+ tλ), Gompertz distribution with Ψ(t; λ) =
eλt−1

λ , Weibull distribution with Ψ(t; λ) = tλ, two parameters bathtub-shaped lifetime distribu-
tion (see [14]) with Ψ(t; λ) = etλ − 1 and so on. For more details, we refer the reader to [15].

3. Classical estimation

In this section, we consider the maximum likelihood estimation and interval estimation for the
unknown parameters when the data are progressively first-failure censored.
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3.1. Point estimation

Let X = (X1, X2, . . . , Xm) be a progressive first-failure censored sample from (2), with censoring
scheme (r1, r2, . . . , rm). From (1) the likelihood function is given by

L(α, λ; x) = Akmαm exp{−αk
m

∑
i=1

(ri + 1)Ψ(xi; λ)}
m

∏
i=1

ψ(xi; λ). (6)

By setting the derivatives of the log-likelihood function with respective to α or λ to zero, the
MLE of λ, say λ̂, is the solution to the following likelihood equation

m

∑
i=1

(∂/∂λ)ψ(xi; λ)

ψ(xi; λ)
=

m ∑m
i=1(ri + 1)(∂/∂λ)Ψ(xi; λ)

∑m
i=1(ri + 1)Ψ(xi; λ)

, (7)

and the MLE of α, say α̂, can be obtained as

α̂ =
m

k ∑m
i=1(ri + 1)Ψ(xi; λ̂)

. (8)

It is not easy to solve the equation(7) analytically in order to achieve the MLE of λ. Some
numerical methods can be employed such as the Newton-Raphson method. Finally, using the
invariance property, the MLEs of R(t) and h(t) are obtained as

R̂(t) = exp{−α̂Ψ(t; λ̂)}, t > 0,

and
ĥ(t) = α̂ψ(t; λ̂), t > 0,

respectively.

3.2. Interval estimation

Let Yi = kαΨ(Xi; λ) for i = 1, 2, . . . , m. It can be seen that Y1 < Y2 < . . . < Ym, are the progressive
first-failure censored order statistics from an exponential distribution with mean 1. Consider the
following transformation:

Z1 = nY1,

Zi = (n − r1 − r2 − · · · − ri−1 − i + 1)(Yi − Yi−1), i = 2, 3, . . . , m.

The generalized spacings Z1, Z2, . . . , Zm are independent and identically distributed as an expo-
nential distribution with mean 1 (see [1]). Hence, for j = 1, 2, . . . , m − 1,

τj = 2
j

∑
i=1

Zi = 2kα[
j

∑
i=1

(ri + 1)Ψ(Xi; λ) +
m

∑
i=j+1

(ri + 1)Ψ(Xj, λ)] (9)

and

γj = 2
m

∑
i=j+1

Zi = 2kα
m

∑
i=j+1

(ri + 1)[Ψ(Xi; λ)− Ψ(Xj; λ)] (10)

are independently Chi-squared distributed with 2j and 2(m− j) degrees of freedom, respectively.
We consider the following pivotal quantities:

ηj =
j

m − j
.

∑m
i=j+1(ri + 1)(Ψ(Xi; λ)− Ψ(Xj; λ))

∑
j
i=1(ri + 1)Ψ(Xi; λ) + ∑m

i=j+1(ri + 1)Ψ(Xj; λ)
, j = 1, 2, . . . , m − 1, (11)

ξ = 2kα
m

∑
i=1

(ri + 1)Ψ(Xi; λ). (12)
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It is clearly that ηj has a F distribution with 2(m − j) and 2j degrees of freedom and ξ has a
Chi-squared distribution with 2m degree of freedom. Meanwhile, ηj and ξ are independent. To
construct an exact confidence interval for λ and the joint confidence region for the parameters α
and λ, we need the following lemma.

Lemma 1. Suppose that for x1 < x2 < · · · < xm,

wj(λ) =
∑m

i=j+1(ri + 1)(Ψ(xi; λ)− Ψ(xj; λ))

∑
j
i=1(ri + 1)Ψ(xi; λ) + ∑m

i=j+1(ri + 1)Ψ(xj; λ)
, j = 1, 2, . . . , m − 1. (13)

Then wj(λ) is strictly increasing in λ, if function Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t, where Ψ′(t; λ)

is (∂/∂λ)Ψ(t; λ).

Proof. Let wj(λ) = w1j(λ)/w2j(λ), where

w1j(λ) =
m

∑
i=j+1

(ri + 1)
Ψ(xi; λ)

Ψ(xj; λ)
−

m

∑
i=j+1

(ri + 1), (14)

w2j(λ) =
j

∑
i=1

(ri + 1)
Ψ(xi; λ)

Ψ(xj; λ)
+

m

∑
i=j+1

(ri + 1). (15)

Since w1j(λ) and w2j(λ) are positive, the proof is obtained if we can show that w1j(λ) and w2j(λ)
are strictly increasing and decreasing functions in λ, respectively. It is observed that

w′
1j(λ) =

1
Ψ2(xj; λ)

m

∑
i=j+1

(ri + 1)[Ψ′(xi, λ)Ψ(xj; λ))− Ψ(xi; λ)Ψ′(xj; λ)] > 0, (16)

w′
2j(λ) =

1
Ψ2(xj; λ)

j

∑
i=1

(ri + 1)[Ψ′(xi; λ)Ψ(xj; λ))− Ψ(xi; λ)Ψ′(xj; λ)] ≤ 0, (17)

Since, when Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t, then Ψ′(xi ;λ)

Ψ(xi ;λ)
<

Ψ′(xj ;λ)
Ψ(xj ;λ)

for i = 1, 2, . . . , j − 1, and

Ψ′(xi ;λ)
Ψ(xi ;λ)

>
Ψ′(xj ;λ)
Ψ(xj ;λ)

for i = j + 1, j + 2, . . . , m. ■

Remark 1. For all of well-known lifetime distributions mentioned in Section 2, it can be shown
that Ψ′(t;λ)

Ψ(t;λ) is strictly increasing in t. For instance, when Ψ(t; λ) = ln(1 + tλ), it turns out to be
Burr XII distribution and see [5].

Let Fv1,v2(p) is the percentile of F distribution with v1 and v2 degrees of freedom with the
right-tail probability p. An exact confidence interval for the parameter λ, and the joint confidence
region for the parameters α and λ are given in the following theorems, respectively.

Theorem 1. Suppose that X = (X1, X2, . . . , Xm) be a progressive first-failure censored sample
from (2), with censoring scheme (r1, r2, . . . , rm),

Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t, and

Wj(λ) =
j

m − j
wj(λ), j = 1, 2, . . . , m − 1, (18)

where wj(λ) is defined in (13). Then, for any 0 < ν < 1 and j = 1, 2, . . . , m− 1, when F2(m−j),2j(
ν
2 )

and F2(m−j),2j(1 − ν
2 ) are in the range of the function Wj(λ)

φj
(
X, F2(m−j),2j(1 −

ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

ν

2
)
)

(19)

is a 100(1 − ν)% confidence interval for λ, where φj(X, u) is the solution of λ for equation
Wj(λ) = u.
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Proof. By Lemma 1, Wj(λ) is a strictly increasing function in λ and since F2(m−j),2j(1 − ν
2 )

and F2(m−j),2j(
ν
2 ) are in the range of function Wj(λ), then equations Wj(λ) = F2(m−j),2j(

ν
2 ) and

Wj(λ) = F2(m−j),2j(1 − ν
2 ) have unique solutions with respect to λ. Also we know that ηj has an

F distribution with 2(m − j) and 2j degrees of freedom. Thus for 0 < ν < 1,

P
(

F2(m−j),2j(1 −
ν

2
) < ηj < F2(m−j),2j(

ν

2
)
)
= 1 − ν

is equivalent to

P
(

φj
(
X, F2(m−j),2j(1 −

ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

ν

2
)
))

= 1 − ν.

■

Theorem 2. Suppose that X = (X1, X2, . . . , Xm) be a progressive first-failure censored sample
from (2), with censoring scheme (r1, r2, . . . , rm),

Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in t. Then, for any

0 < ν < 1 and j = 1, 2, . . . , m − 1, when F2(m−j),2j(
1+

√
1−ν

2 ) and F2(m−j),2j(
1−

√
1−ν

2 )are in the
range of function Wj(λ), a 100(1 − ν)% confidence region for (α, λ) is given by

φj
(
X, F2(m−j),2j(

1+
√

1−ν
2 )

)
< λ < φj

(
X, F2(m−j),2j(

1−
√

1−ν
2 )

)
χ2

2m( 1+
√

1−ν
2 )

2k ∑m
i=1(ri+1)Ψ(xi ;λ)

< α <
χ2

2m( 1−
√

1−ν
2 )

2k ∑m
i=1(ri+1)Ψ(xi ;λ)

, (20)

where χ2
v1
(p) is the percentile of Chi-squared distribution with v1 degree of freedom with the

right-tail probability p and φj(X, u) is defined in Theorem 1 .

Proof. For 0 < ν < 1,

P
(

φj
(
X, F2(m−j),2j(

1 +
√

1 − ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

1 −
√

1 − ν

2
)
)
,

χ2
2m(

1+
√

1−ν
2 )

2k ∑m
i=1(ri + 1)Ψ(xi; λ)

< α <
χ2

2m(
1−

√
1−ν

2 )

2k ∑m
i=1(ri + 1)Ψ(xi; λ)

)
=

P
(

F2(m−j),2j(
1 +

√
1 − ν

2
) < ηj < F2(m−j),2j(

1 −
√

1 − ν

2
)

)
P
(

χ2
2m(

1 +
√

1 − ν

2
) < ξ < χ2

2m(
1 −

√
1 − ν

2
)

)
=

√
1 − ν

√
1 − ν = 1 − ν,

and the first equality follows from the fact that ηj and ξ are independent. ■
It is observed that Theorems 1 and 2 provides the different confidence intervals and confidence
regions, respectively for various j. We can derive optimal confidence interval and region based
on different criteria such as shortest interval length and minimum region area.

4. Bayes Estimation

The Bayesian approach in statistical inference provides an alternative choice for parameters es-
timation. We consider the Bayesian estimates of the unknown parameters α and λ as well as
reliability function R(t) and hazard rate function h(t) under symmetric and asymmetric loss
functions.
The loss function plays a critical role in Bayes perspective. In many practical situations, usually
symmetric loss function such as squared error loss function is taken into consideration to pro-
duce Bayes estimates. In most cases, it is done for convenience but may not be appropriate in
many real life situations. Since under this loss function overestimation and underestimation are
equally penalized which is not a good criteria from practical point of view. As an example, in
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reliability estimation overestimation is considered to be more serious than the underestimation.
Thus, it is important to consider Bayes estimates under asymmetric loss function. The squared
error loss function is defined as

L1

(
f (µ), f̂ (µ)

)
=
(

f̂ (µ)− f (µ)
)2

,

with f̂ (µ) begins an estimator of f (µ). Here f (µ) denotes some parametric function of µ. Bayes
estimator, say f̂SB(µ) is evaluated by the posterior mean of f (µ).

One of the most commonly used asymmetric loss function is LINEX loss function which
introduced first by [16] and further properties of this loss function have been investigated by
[17] . It is defined as follows:

L2

(
f (µ), f̂ (µ)

)
= ec∆ − c∆ − 1, c ̸= 0,

where ∆ = f̂ (µ)− f (µ). When c is negative, underestimation is more serious than overestima-
tion and it is opposit for positive c. The Bayes estimator of f (µ) for the loss function L2 can

be obtained as f̂LB(µ) = −1
c

ln
{

Eµ

(
e−c f (µ)|data

)}
, provided that Eµ(.) exists and is finite. An-

other useful asymmetric loss function is the general entropy loss which is a generalization of the
entropy loss and is given as

L3

(
f (µ), f̂ (µ)

)
∝

(
f̂ (µ)
f (µ)

)−q

− q ln

(
f̂ (µ)
f (µ)

)
− 1, q ̸= 0.

For this loss function, overestimation is heavily penalized when q is positive, and vice versa. The
Bayes estimator of f (µ) under general entropy loss function is obtained as

f̂EB(µ) =
{

E
[
( f (µ))−q|data

]}− 1
q ,

provided that Eµ(.) exists and is finite.

4.1. Prior distribution and posterior analysis

In this subsection, we need to assume some prior distributions for the unknown parameters.
Under the assumption that two parameters α and λ are unknown, specifying a general conjugate
joint prior forα and λ is not easy task. In this case, we develop the Bayesian set-up by considering
the idea of [18] regarding the choice of prior distributions. We assume that for j = 1, 2, . . . , M, λ
has a discrete prior say,

P(λ = λj) = θj,
M

∑
j=1

θj = 1, (21)

while the conditional distribution of α given λj has a conjugate prior distribution, with density

g(α|λj) = β j exp{−αβ j}, α, β j > 0, (22)

where β j, j = 1, 2, . . . , M, are hyper-parameters. Combining (6) and (22), the conditional poste-
rior of the parameter α,

π(α|x, λj) =
g(α|λj)L(α, λj; x)∫

α g(α|λj)L(α, λj; x) dα
, (23)

takes the form

π(α|x, λj) =
1

Γ(m + 1)
cm+1

j αm exp{−αcj}, j = 1, 2, . . . , M, (24)
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where cj = k ∑m
i=1(ri + 1)Ψ(xi; λj) + β j. Also by applying (6), (21), (22) and the discrete version

of Bayes theorem, the marginal posterior distribution of λ can be expressed as

pj = P(λ = λj|x) =
∫

α P(λ = λj)g(α|λj)L(α, λj; x) dα

∑M
j=1
∫

α P(λ = λj)g(α|λj)L(α, λj; x) dα

=
β jθjc

−(m+1)
j ∏m

i=1 ψ(xi; λj)

∑M
j=1 β jθjc

−(m+1)
j ∏m

i=1 ψ(xi; λj)
, j = 1, 2, . . . , M. (25)

Therefore, the Bayes estimators of α and λ under the squared error loss function L1 are

α̂SB = (m + 1)
M

∑
j=1

pj

cj
, (26)

λ̂SB =
M

∑
j=1

pjλj, (27)

respectively. Also, the Bayes estimators of R(t) and h(t) against the loss function L1 are given
respectively, by

R̂SB(t) =
M

∑
j=1

pj
[
1 +

Ψ(t; λj)

cj

]−(m+1), (28)

ĥSB(t) = (m + 1)
M

∑
j=1

pjψ(t; λj)

cj
. (29)

For the loss function L2, the Bayes estimators of α, λ, R(t) and h(t) are respectively obtained as

α̂LB = −1
c

ln
[ M

∑
j=1

pj(1 +
c
cj
)−(m+1)

]
, (30)

λ̂LB = −1
c

ln
[ M

∑
j=1

pje
−cλj

]
, (31)

R̂LB(t) = −1
c

ln
[ M

∑
j=1

∞

∑
l=0

(−1)l

Γ(l + 1)
pjcl(1 +

lΨ(t; λj)

cj
)−(m+1)

]
, (32)

ĥLB(t) = −1
c

ln
[ M

∑
j=1

pj(1 +
cψ(t; λj)

cj
)−(m+1)

]
. (33)

Finally, against the loss function L3, the Bayes estimators of α, λ, R(t) and h(t) can be expressed
as

α̂EB =

[
Γ(m + 1 − q)

Γ(m + 1)

M

∑
j=1

pjc
q
j

]− 1
q

, m + 1 > q, (34)

λ̂EB =

[ M

∑
j=1

pjλ
−q
j

]− 1
q

, (35)

R̂EB(t) =
[ M

∑
j=1

pj(1 −
qΨ(t; λj)

cj
)−(m+1)

]− 1
q

, (36)

ĥEB(t) =
[

Γ(m + 1 − q)
Γ(m + 1)

M

∑
j=1

pj(
cj

ψ(t; λj)
)q
]− 1

q

, m + 1 > q, (37)

respectively.
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4.2. The choice of hyper-parameters

The priors specification are completed by specifying λj, θj and hyper-parameters β j, for j =
1, 2, . . . , M, in practice. The values of λj and θj are fairly straightforward to specify, but some-
times it is not always possible to know the values of the hyper-parameters β j, in prior (22). In
practice, the values of β j are difficulty to know, since it is necessary to condition prior beliefs
about α on each λj, j = 1, 2, . . . , M. Thus, the estimation problem for hyper-parameters β j,
j = 1, 2, . . . , M, is considered in this subsection.

There are different methods to estimate the hyper-parameters β j, j = 1, 2, . . . , M. First, we
consider the maximum likelihood type-II method (see [19, pp. 99]).

Let Ui = Ψ(Xi; λ), i = 1, 2, . . . , m. It can be shown that U1 < U2 < · · · < Um, are the progres-
sive first-failure censored order statistics with censoring scheme (r1, r2, . . . , rm), from conditional
density

fU(u; α) = αe−αu, u > 0. (38)

For given λj, the marginal PDF and CDF of U are given by

fU(u) =
∫

α
g(α|λj) fU(u; α) dα =

β j

(β j + u)2 , u > 0, (39)

FU(u) = 1 −
β j

β j + u
, u > 0, (40)

respectively. From (1), the log-likelihood function of U = (U1, U2, . . . , Um), can be written as

logL(β j; u) = ln(Akm) + nk ln(β j)−
m

∑
i=1

(k(ri + 1) + 1) ln(β j + ui). (41)

By setting the derivative of the log-likelihood function with respective to β j to zero, the MLE of
β j, is the solution to the likelihood equation 1

β j
= H(β j), where

H(β j) =
1

nk

m

∑
i=1

k(ri + 1) + 1
β j + ui

, (42)

and it is unique (see Appendix). Most of the standard iterative process can be used for finding
the MLE. We propose a simple iterative scheme to finding the MLE of β j. Start with an initial

guess of β j, say β
(0)
j , then obtain β

(1)
j = 1/H(β

(0)
j ), and proceeding in this way iteratively to

obtain β
(N)
j = 1/H(β

(N−1)
j ). Stop the iterative procedure, when |β(N)

j − β
(N−1)
j | < ε, some

pre-assigned tolerance limit.
Another useful alternative method to estimate the hyper-parameters β j, j = 1, 2, . . . , M, is

based on the idea of [20]. By applying (22), the expected value of the reliability function R(t)
conditional on λ = λj, can be written as

E(R(t)) =
∫

α
R(t)g(α|λj) dα =

β j

β j + Ψ(t; λj)
, j = 1, 2, . . . , M. (43)

For given time t, by considering E(R(t)) = R̂(t), the estimate of β j is

β̂ j =
R̂(t)Ψ(t; λj)

1 − R̂(t)
, j = 1, 2, . . . , M. (44)

Similarly, we can use the expected value of the hazard rate function h(t) conditional on λ =
λj, j = 1, 2, . . . , M. It can be shown that

E(h(t)) =
∫

α
h(t)g(α|λj) dα =

ψ(t; λj)

β j
, (45)
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and

β̂ j =
ψ(t; λj)

ĥ(t)
, j = 1, 2, . . . , M. (46)

It is obviously the second method to estimate the hyper-parameters β j, j = 1, 2, . . . , M, depend
on the value of MLEs α̂ and λ̂. Therefore, the author recommends the first method.

5. Data analysis

To illustrate the above procedures, we present the analysis of one real data set. Also, we report
some numerical experiments performed to evaluate behavior of the different estimators.

Example 1.(Real Data) In this example, we analyze a data set from [21], which represents the
number of 1000s of cycles to failure for electrical appliances in a life test. The complete data have
been used earlier by [22]. They showed that the bathtub-shaped distribution is suitable to fitting
the data. The CDF of the bathtub-shaped distribution is form(3), where Ψ(t; λ) = etλ − 1, t > 0.
It can be shown that Ψ′(t;λ)

Ψ(t;λ) , is strictly increasing in t (see [14]).

Table 1: progressively first-failure censored sample of size 8 out of 20 groups.

i 1 2 3 4 5 6 7 8
xi 0.014 0.034 0.059 0.061 0.069 0.142 0.165 1.270
ri 4 0 3 0 0 2 3 0

The data are randomly grouped into 20 groups with k = 3 items within each group. The
progressively first-failure censored sample is given in Table 1. For this example, 12 groups of
failure times are censored, and 8 first-failures are observed. By applying, (19) and (20), the 95%
exact confidence intervals (CI) for λ, confidence regions (CR) for (α, λ), are obtained and the
length of confidence intervals (LCI) and area for confidence regions (ACR) are presented in
Table 2, where A(λ) = ∑8

i=1(ri + 1)(exλ
i − 1).

Table 2: The 95% confidence intervals and regions and their some properties for λ and (α, λ).

j CI CR LCI ACR
1 0.3933 < λ < 1.7034 0.3397 < λ < 1.8545 , 1.0114

A(λ) < α < 5.2012
A(λ) 1.3101 1.3904

2 0.3694 < λ < 1.4175 0.3192 < λ < 1.5198 , 1.0114
A(λ) < α < 5.2012

A(λ) 1.0481 1.0334
3 0.3538 < λ < 1.3167 0.3044 < λ < 1.4039 , 1.0114

A(λ) < α < 5.2012
A(λ) 0.9629 0.9081

4 0.2317 < λ < 1.0946 0.1920 < λ < 1.1696 , 1.0114
A(λ) < α < 5.2012

A(λ) 0.8629 0.6805
5 0.1391 < λ < 0.9320 0.1092 < λ < 1.0014 , 1.0114

A(λ) < α < 5.2012
A(λ) 0.7929 0.5232

6 0.1302 < λ < 0.9750 0.0963 < λ < 1.0462 , 1.0114
A(λ) < α < 5.2012

A(λ) 0.8448 0.5708
7 0.0212 < λ < 0.7932 0.0109 < λ < 0.8646 , 1.0114

A(λ) < α < 5.2012
A(λ) 0.7720 0.4094

From Table 2, It is observed that, the 95% optimal confidence interval for λ is (0.0212, 0.7932),
and the optimal confidence region for (α, λ) is given by

0.0109 < λ < 0.8646 ,
1.0114
A(λ)

< α <
5.2012
A(λ)

,

and ACR =
∫ 0.8646

0.0109
4.1898
A(λ)

dλ = 0.4094.
Since there is no prior information about α, to compute the Bayes estimates, we estimate the

hyper-parameters β j, j = 1, 2, . . . , 8, using the maximum likelihood type-II method. The values
of β j and pj, for each given λj and θj, j = 1, 2, . . . , 8, are summarized in Table 3. The MLEs as
well as Bayes estimates of α, λ, reliability function R(t), and hazard rate function h(t), for t = 0.5,
are presented in Table 4.
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Table 3: Prior information, hyper-parameter values and the posterior probabilities.

j 1 2 3 4 5 6 7 8
λj 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
θj 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
β j 3.5605 3.1398 2.7814 2.4735 2.2073 1.9756 1.7727 1.5942
pj 0.0308 0.0549 0.0859 0.1206 0.1532 0.1778 0.1897 0.1871

Table 4: The ML and the Bayes estimates of α, λ, R(t) and h(t), with t = 0.5, c = 1 and q = 1.

α̂ α̂SB α̂LB α̂EB λ̂ λ̂SB λ̂LB λ̂EB
0.4800 0.4252 0.4132 0.3674 0.7200 0.6268 0.6220 0.6099
R̂(t) R̂SB(t) R̂LB(t) R̂EB(t) ĥ(t) ĥSB(t) ĥLB(t) ĥEB(t)

0.6697 0.6871 0.6833 0.6753 0.7700 0.6584 0.6267 0.5570

Table 5: The estimated MSE values of the estimators of α and λ.

n m k C.S α̂ α̂SB α̂LB α̂EB λ̂ λ̂SB λ̂LB λ̂EB
20 10 1 I 0.0026 0.0018 0.0017 0.0018 0.0300 0.0088 0.0082 0.0069

II 0.0034 0.0025 0.0024 0.0023 0.0089 0.0054 0.0052 0.0047
III 0.0027 0.0021 0.0021 0.0019 0.0111 0.0059 0.0056 0.0051

5 I 0.0216 0.0031 0.0029 0.0020 0.0919 0.0088 0.0081 0.0063
II 0.0025 0.0020 0.0020 0.0016 0.0262 0.0080 0.0075 0.0064
III 0.0040 0.0025 0.0024 0.0018 0.0342 0.0082 0.0077 0.0065

30 10 1 I 0.0023 0.0018 0.0018 0.0016 0.0463 0.0089 0.0082 0.0067
II 0.0034 0.0025 0.0024 0.0023 0.0079 0.0049 0.0048 0.0043
III 0.0024 0.0021 0.0020 0.0018 0.0106 0.0058 0.0056 0.0051

5 I 0.0658 0.0041 0.0038 0.0024 0.0955 0.0086 0.0079 0.0061
II 0.0025 0.0021 0.0020 0.0016 0.0216 0.0077 0.0072 0.0062
III 0.0066 0.0029 0.0028 0.0020 0.0291 0.0079 0.0074 0.0063

30 15 1 I 0.0016 0.0011 0.0011 0.0012 0.0156 0.0073 0.0069 0.0060
II 0.0021 0.0017 0.0017 0.0016 0.0051 0.0037 0.0036 0.0034
III 0.0016 0.0013 0.0013 0.0013 0.0059 0.0042 0.0040 0.0038

5 I 0.0037 0.0016 0.0016 0.0012 0.0390 0.0080 0.0074 0.0061
II 0.0011 0.0010 0.0010 0.0009 0.0139 0.0068 0.0065 0.0057
III 0.0018 0.0013 0.0013 0.0011 0.0167 0.0070 0.0066 0.0058

Example 2.(Simulation study) To evaluate the performance of the MLEs and Bayes estima-
tors, a simulation study using Monte Carlo method is performed. In this example, we ex-
clusively focus on the bathtub-shaped distribution. For comparison purpose different n, m, k,
and censoring schemes(C.S) are considered. We present the results for α = 0.1 and λ = 0.5.
For generating progressively first-failure censored samples, we use the algorithm suggested
in [23]. We take into consideration that the progressive first-failure censored order statistics
Xr

1;m,n,k, Xr
2;m,n,k, ..., Xr

m;m,n,k is a progressively type-II censored sample from a population with
distribution function 1 − (1 − F(x))k. We considered the following censoring schemes:
• Scheme I: rm = n − m, ri = 0, for i ̸= m.
• Scheme II: r1 = n − m, ri = 0, for i ̸= 1.
• Scheme III: r m

2
= n − m, ri = 0, for i ̸= m

2 if m is even, and r m+1
2

= n − m, ri = 0, for i ̸= m+1
2 if m is odd.

The Bayes estimates are obtained for c = 1, q = 1, and λj and θj were given in previous example. The
performance of all estimators has been compared numerically in terms of their mean squared errors (MSEs).
In each case, for a particular censoring scheme the estimated MSEs are computed over 10,000 simulations.
The simulation study was conducted in R software (R x64 4.0.3) and the R code can be obtained on request
from the author. Based on tabulated the estimated MSEs, following conclusions can be drawn from Tables
5 and 6.

1. For all censoring schemes, it can be observed that the Bayes estimators are superior to MLE for the
parameters α, λ. We also observe that Bayes estimators of h(t) perform better than MLEs of h(t).

2. It is clearly observed that the performance of all estimators of R(t) are very fine in respect to MSE in
all situations.

3. In the case of λ, when n and m are fixed, the censoring scheme (n − m, 0, . . . , 0) posses the smallest
estimated MSE values.
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4. For fixed n and k, it is observed that as m increases the performance of all estimators improve in
terms of the estimated MSE values.

Table 6: The estimated MSE values of the estimators of R(t) and h(t), fot t = 0.75.

n m k C.S R̂(t) R̂SB(t) R̂LB(t) R̂EB(t) ĥ(t) ĥSB(t) ĥLB(t) ĥEB(t)
20 10 1 I 0.0040 0.0038 0.0040 0.0043 0.0039 0.0039 0.0037 0.0033

II 0.0048 0.0053 0.0056 0.0062 0.0046 0.0036 0.0034 0.0034
III 0.0038 0.0049 0.0051 0.0055 0.0040 0.0036 0.0034 0.0031

5 I 0.0060 0.0072 0.0075 0.0082 0.1122 0.0114 0.0100 0.0054
II 0.0028 0.0048 0.0050 0.0054 0.0084 0.0060 0.0056 0.0040
III 0.0033 0.0058 .0060 0.0065 0.0176 0.0084 0.0076 0.0048

30 10 1 I 0.0032 0.0042 0.0043 0.0046 0.0058 0.0050 0.0047 0.0036
II 0.0047 0.0055 0.0058 0.0064 0.0047 0.0038 0.0036 0.0035
III 0.0034 0.0048 0.0050 0.0054 0.0040 0.0037 0.0036 0.0031

5 I 0.0118 0.0091 0.0095 0.0107 0.4210 0.0161 0.0135 0.0064
II 0.0028 0.0050 0.0052 0.0055 0.0078 0.0062 0.0058 0.0040
III 0.0043 0.0066 0.0069 0.0075 0.0320 0.0103 0.0091 0.0056

30 15 1 I 0.0026 0.0027 0.0027 0.0029 0.0022 0.0020 0.0020 0.0020
II 0.0032 0.0043 0.0044 0.0048 0.0029 0.0022 0.0022 0.0022
III 0.0024 0.0035 0.0037 0.0039 0.0023 0.0019 0.0019 0.0018

5 I 0.0025 0.0047 0.0048 0.0051 0.0210 0.0065 0.0059 0.0036
II 0.0015 0.0031 0.0031 0.0033 0.0028 0.0029 0.0028 0.0022
III 0.0018 0.0039 0.0040 0.0042 0.0071 0.0046 0.0043 0.0030

6. Conclusions

Lifetime studies are very important to assess the reliability of products. This article investigates
the problem of reliability analysis for a class of an exponential distribution based on progressive
first failure censoring. It is note that many well-known and useful lifetime distributions which
have wide application in reliability theory and failure time modeling as well as other related
fields, are included in this class of exponential distribution. Both classical and Bayesian point
estimations have been developed. Additionally, the exact confidence interval and region respec-
tively for α and (α, λ) have been conducted. In the future, we can study the problem of predicting
times to failure of units censored in multiple stages in progressive first failure censored sample
based on model (2).
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the equation (47) is equivalent to Q1(β j) − Q2(β j) = 0. The functions Q1(β j) and Q2(β j) are
strictly decreasing and convex, since

∂Q1(β j)

∂β j
= −

m

∑
i=1

k(ri + 1)
ui

β2
j (β j + ui)2

< 0,

∂2Q1(β j)

∂β2
j

= 2
m

∑
i=1

k(ri + 1)
u2

i
β3

j (β j + ui)3
> 0,

∂Q2(β j)

∂β j
= −

m

∑
i=1

1
(β j + ui)2 < 0,

∂2Q2(β j)

∂β2
j

= 2
m

∑
i=1

1
(β j + ui)3 > 0.

Also,

lim
β j→0

Q1(β j) = +∞, lim
β j→+∞

Q1(β j) = 0,

lim
β j→0

Q2(β j) =
m

∑
i=1

1
ui

, lim
β j→+∞

Q2(β j) = 0,

lim
β j→∞

Q2(β j)

Q1(β j)
= +∞,

thus the equation (47), has only one root.
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Appendix

We show that the equation

1
β j

− H(β j) = 0, (47)

where H(β j) is defined in (42), has only one root. By considering

Q1(β j) =
i=1

k(ri + 1)
ui

β j(β j + ui)
,

Q2(β j) =

m

∑
m

∑
i=1

1
β j + ui

,
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Abstract

In this paper, we introduce a new four parameters continuous probability distribution called trans-
muted sine-Dagum distribution obtained through the transmuted Sine-G family introduced by Sakthivel
et al. [13]. We have obtained some distributional properties including moments, inverted moments,
incomplete moments, central moments and order statistics for proposed model. The reliability measures
such as reliability function, hazard rate function, reversed hazard rate function, cumulative distribution
function, mean waiting time and mean residual life time are studied in this paper. Further, we have
discussed some income inequality measures including Lorenz curve, Bonferroni index and Zenga index.
The maximum likelihood method is used to estimate the parameters of the proposed probability distribution.
Finally, we demonstrated goodness of fit the proposed model with other suitable models in the literature
using real life data sets.

Keywords: Dagum distribution, Sine-G family, Reliability function, Order statistics, Lorenz curve,
Maximum likelihood method.

.

I. Introduction

The lifetime model is playing a vital role in different fields such as life sciences, biological sciences,
environmental sciences, medicine, finance and actuarial science. The last three decades, the
development and applications of new probability distributions for lifetime data are remarkable in
the literature. In this information era, the data generated from different fields are voluminous
and dynamic in nature. Therefore, the need for generating new family of probability distributions
is inevitable. As a result, the generating new family of probability distribution has attracted many
researchers. The main advantage of generating new family of probability distributions is provide
better flexibility and better fit at the cost of one or more additional parameters. The following
are a list of few well-known generating new family of probability distributions: exponential
family is introduced by Gupta et al. [6], Marshall-Olkin family is introduced by Marshal and
Olkin [9], transmuted family is introduced by Shaw and Bucklay [14], Kumaraswamy-G family
is introduced by Cordeiro and Castro [3], Topp-Leone family is introduced by Al-Shomrani et
al. [1], Power Lindley-G family is introduced by Hassan and Nassr [7] and gamma-G family is
introduced by Cordeiro et al. [4], to mention a few.

Dagum distribution is introduced by Camilo Dagum [5] in the year 1977 for modeling income
data. It has been extensively used in various fields including wealth data, reliability analysis,
survival analysis and meteorological data. The Dagum distribution is an alternative to log-normal,
Pareto and generalized beta distributions. This distribution is also called Burr-XII distribution,
particularly in the actuarial literature.
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A continuous random variable X is said to have Dagum distribution with three parameters
σ, θ and β if its probability density function and cumulative distribution function are given
respectively as

f (x; σ, θ, β) = σθβ x−θ−1(1 + σx−θ
)−β−1; x > 0, σ > 0, θ > 0 and β > 0. (1)

and

F(x; σ, θ, β) =
(
1 + σx−θ

)−β; x > 0, σ > 0, θ > 0 and β > 0. (2)

where σ is scale parameter, while θ and β are shape parameters. It is to be noted that if σ=1 the
Dagum distribution becomes Burr III distribution and if θ=1, the Dagum distribution becomes
log-logistic or Fisk distribution.

In this paper, we introduce a new four parameter continious probability distribution namely
transmuted Sine-Dagum distribution. This generating probability distribution provides better fit
and flexibility for real life problem.

This paper is organized as follows: In Section 1, a brief introduction and need for the
generating family of distributions is given. In Section 2, we present the transmuted Sine-G
family and the proposed probability distribution namely transmuted Sine-Dagum distribution.
In Section 3, we discuss some reliability measures like reliability function, hazard rate function,
reversed hazard rate function, cumulative hazard function, mean waiting time, mean residual life
function and mean past life time. In Section 4, we present some distributional properties including
moments, inverted moments, incomplete moments, central moments and order statistics. The
income inequality measures are discussed in Section 5. The method of maximum likelihood
estimation is presented in Section 6. In Section 7, the real time application is presented. Finally,
the concluding remarks are presented in Section 8.

II. Transmuted Sine-G Family

Transmuted Sine-G family is introduced by Sakthivel and Rajkumar [13]. This transmuted Sine-G
family is the mixture of Sine function and quadratic rank transmuted map. The probability
density function of transmuted Sine-G family of distributions is given by

f (x; λ) =
π

2
h(x)cos

(π

2
H(x)

) [
(1 + λ)− 2λsin

(π

2
H(x)

)]
; x > 0, λ > 0. (3)

and the corresponding cumulative distribution function is given by

F(x; λ) = (1 + λ)sin
(π

2
H(x)

)
− λ

[
sin
(π

2
H(x)

)]2
; x > 0, λ > 0. (4)

where, λ is the parameter of transmuted Sine-G family of distributions. If λ = 0, the transmuted
Sine-G family is becomes Sine-G family.

I. Transmuted Sine-Dagum Distribution

A continuous random variable X is said to be follow the transmuted Sine-Dagum distribution
with parameters σ, θ, β and λ, (i.e.,) X ∼ TSD(X; σ, θ, β, λ), then the probability density function
of X is of the form

f (x; σ, θ, β, λ) =
π

2
σθβ x−θ−1

(
1 + σx−θ

)−β−1
cos
(

π

2

(
1 + σx−θ

)−β
)

×
[
(1 + λ)− 2λ sin

(
π

2

(
1 + σx−θ

)−β
)]

;

x > 0, σ > 0, θ > 0, β > 0 and− 1 ≤ λ ≤ 1 (5)
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The above equation can be rewritten as

f (x; σ, θ, β, λ) =(1 + λ)
π

2
σθβ x−θ−1

(
1 + σx−θ

)−β−1
cos
(

π

2

(
1 + σx−θ

)−β
)
− λπσθβ x−θ−1

×
(

1 + σx−θ
)−β−1

cos
(

π

2

(
1 + σx−θ

)−β
)

sin
(

π

2

(
1 + σx−θ

)−β
)

(6)

The cumulative distribution function is given by

F(x; σ, θ, β, λ) =

[
(1 + λ)sin

(
π

2

(
1 + σx−θ

)−β
)
− λ

(
sin

π

2

(
1 + σx−θ

)−β
)2
]

;

x > 0, σ > 0, θ > 0, β > 0 and− 1 ≤ λ ≤ 1. (7)

where θ is scale parameter; σ and β are shape parameters and λ is the parameter of quadratic
rank transmutation map.

Figure 1: Pdfs of transmuted Sine-Dagum distribution for fixed values of σ = 0.5, θ = 1, β = 2 and different values
of λ.
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Figure 2: Pdfs of transmuted Sine-Dagum distribution for fixed values of θ = 2, β = 3, λ = 0.5 and different values
of σ.

Figure 3: Cdfs of transmuted Sine-Dagum distribution for fixed values of θ = 4, β = 2, λ = 1 and different values of
σ.
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Figure 4: Cdfs of transmuted Sine-Dagum distribution for fixed values of σ = 4, θ = 2, λ = 0.7 and different values
of β.

Figure 5: Reliability function of transmuted Sine-Dagum distribution for fixed values of σ = 3.5, θ = 2.2, λ = 0.8
and different values of β.

RT&A, No 4 (65)
Volume 16, December 2021

154



Sakthivel and Dhivakar
TRANSMUTED SINE-DAGUM DISTRIBUTION

III. Reliability Measures

In this Section, we deal with some reliability measures for transmuted Sine-Dagum distribution.
If X∼TSD (X;σ,θ,β,λ), then the reliability measures of random variable X are given by;

I. Reliability function

The reliability function is defined by

R(x; σ, θ, β, λ) = 1− F(x; σ, θ, β, λ)

= 1−
[
(1 + λ)sin

(
π

2

(
1 + σx−θ

)−β
)
− λ

(
sin

π

2

(
1 + σx−θ

)−β
)2
]

. (8)

II. Hazard rate function

The hazard rate function is defined by

h(x, σ, θ, β, λ) =
f (x, σ, θ, β, λ)

1− F(x, σ, θ, β, λ)

=

π
2 σθβ x−θ−1 (1 + σx−θ

)−β−1 cos
(

π
2
(
1 + σx−θ

)−β
) [

(1 + λ)− 2λ sin
(

π
2
(
1 + σx−θ

)−β
)]

1−
[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin π

2
(
1 + σx−θ

)−β
)2
] .

(9)

III. Reversed hazard rate function

The reversed hazard rate function is given by

r(x, σ, θ, β, λ) =
f (x, σ, θ, β, λ)

F(x, σ, θ, β, λ)

=

π
2 σθβ x−θ−1 (1 + σx−θ

)−β−1 cos
(

π
2
(
1 + σx−θ

)−β
) [

(1 + λ)− 2λsin
(

π
2
(
1 + σx−θ

)−β
)]

[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin π

2
(
1 + σx−θ

)−β
)2
] .

(10)

IV. Cumulative hazard function

The cumulative hazard function is defined by

H(x, σ, θ, β, λ) = −log R(x, σ, θ, β, λ)

= −log

[
1−

(
(1 + λ)sin

(
π

2

(
1 + σx−θ

)−β
)
− λ

(
sin

π

2

(
1 + σx−θ

)−β
)2
)]

. (11)
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V. Mean waiting time

The mean waiting time is defined by

ϕ(x) = x−
[

1
F(x)

∫ x

0
s f (s)ds

]

ϕ(x) =x−
[

1
F(x)

∫ x

0

π

2
σθβ s−θ

(
1 + σs−θ

)−β−1
cos
(

π

2

(
1 + σs−θ

)−β
)

×
(
(1 + λ)− 2λsin

(
π

2

(
1 + σs−θ

)−β
))]

ds

Therefore, the mean waiting time of transmuted Sine-Dagum distribution is given by

= x−

∑∞
n=0

(−1)n( π
2 )

2n

(2n)!

[
B
(

1− 1
θ , 2βn + β + 1

θ ; y
)

−∑∞
n=0

(−1)n( π
2 )

2n+1

(2n+1)! 2λβσ
1
θ B
(

1− 1
θ , 4βn + 2β + 1

θ ; y
)]

[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin π

2
(
1 + σx−θ

)−β
)2
] . (12)

VI. Mean residual life function

The mean residual life function is defined by

φ(x) =
1

S(x)

∫ ∞

x
x f (x)dx− x

=

∫ ∞
0 x

[
π
2 σθβ x−θ−1 (1 + σx−θ

)−β−1 cos
(

π
2
(
1 + σx−θ

)−β
)

×
(
(1 + λ)− 2λsin

(
π
2
(
1 + σx−θ

)−β
))]

dx− x

1−
[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin π

2
(
1 + σx−θ

)−β
)2
]

Therefore, the mean residual life function of transmuted Sine-Dagum distribution is given by

=

∑∞
n=0

(−1)n( π
2 )

2n

(2n)!

[
(1 + λ)π

2 βσ
1
θ B
(

1− 1
θ , 2βn + β + 1

θ

)
−∑∞

n=0
(−1)n( π

2 )
2n+1

(2n+1)! λβσ
1
θ B
(

1− 1
θ , 4βn + 2β + 1

θ

)]
1−

[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin π

2
(
1 + σx−θ

)−β
)2
] − x. (13)

VII. Mean past lifetime

The mean past lifetime of the component can be defined as

K(x) = E [x− X|X ≤ x] =

∫ x
0 F(t)dt

F(x)
= x−

∫ x
0 t f (t)dt

F(x)

K(x) = x−

∫ x
0 t
[

π
2 σθβ t−θ−1 (1 + σt−θ

)−β−1 cos
(

π
2
(
1 + σt−θ

)−β
)

×
(
(1 + λ)− 2λsin

(
π
2
(
1 + σt−θ

)−β
))]

dt[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin
(

π
2
(
1 + σx−θ

)−β
))2

]
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Therefore, the mean past life time is given by

= x−

∑∞
n=0

(−1)n( π
2 )

2n

(2n)!

[
(1 + λ)π

2 βσ
1
θ B
(

1− 1
θ , 2βn + β + 1

θ ; y
)

−∑∞
n=0

(−1)n( π
2 )

2n+1

(2n+1)! λβσ
1
θ B
(

1− 1
θ , 4βn + 2β + 1

θ ; y
)]

[
(1 + λ)sin

(
π
2
(
1 + σx−θ

)−β
)
− λ

(
sin π

2
(
1 + σx−θ

)−β
)2
] . (14)

Figure 6: Reliability function of transmuted Sine-Dagum distribution for fixed values of σ = 1.4, β = 2.4, λ = 0.7
and different values of θ.

Figure 7: Hazard rate function of transmuted Sine-Dagum distribution for fixed values of θ = 4, β = 6, λ = 0.5 and
different values of σ.

RT&A, No 4 (65)
Volume 16, December 2021

157



Sakthivel and Dhivakar
TRANSMUTED SINE-DAGUM DISTRIBUTION

IV. Distributional Properties

I. Moments

The rth moment of transmuted Sine-Dagum distribution of the random variable X is obtained as

µ
′
r =

∫ ∞

0
xr
[
(1 + λ)

π

2
σθβ x−θ−1

(
1 + σx−θ

)−β−1
cos
(

π

2

(
1 + σx−θ

)−β
)

−λπσθβ x−θ−1
(

1 + σx−θ
)−β−1

cos
(

π

2

(
1 + σx−θ

)−β
)

sin
(

π

2

(
1 + σx−θ

)−β
)]

dx

Using the Taylor series of the sine and cosine functions for moments, we have

sin x =
∞

∑
n=0

(−1)nx2n+1

(2n + 1)!
, cos x =

∞

∑
n=0

(−1)nx2n

(2n)!

Therefore, we have

cos
(

π

2

(
1 + σx−θ

)−β
)
=

∞

∑
n=0

(−1)n(π
2 )

2n (1 + σx−θ
)−2βn

(2n)!

sin
(

π

2

(
1 + σx−θ

)−β
)
=

∞

∑
n=0

(−1)n(π
2 )

2n+1 (1 + σx−θ
)−2nβ−β

(2n + 1)!

Hence, the rth moment of transmuted Sine-Dagum distribution is given by

µ
′
r =

∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

[
(1 + λ)

π

2
βσ

r
θ B
(

1− r
θ

, 2βn + β +
r
θ

)
−

∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
λβσ

r
θ B
(

1− r
θ

, 4βn + 2β +
r
θ

)]
(15)

We have obtained the mean and variance of this distribution as

µ
′
1 =

∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

[
(1 + λ)

π

2
βσ

1
θ B
(

1− 1
θ

, 2βn + β +
1
θ

)

−
∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
λπβσ

1
θ B
(

1− 1
θ

, 4βn + 2β +
1
θ

)]

and

v(x) =

[
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

(
(1 + λ)

π

2
βσ

2
θ B
(

1− 2
θ

, 2βn + β +
2
θ

)

−
∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
2λπβσ

2
θ B
(

1− 2
θ

, 4βn + 2β +
2
θ

))]
−[

∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

(
(1 + λ)

π

2
βσ

1
θ B
(

1− 1
θ

, 2βn + β +
1
θ

)

−
∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
λπβσ

1
θ B
(

1− 1
θ

, 4βn + 2β +
1
θ

))]2

(16)
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The moment generating function of transmuted Sine-Dagum distribution is given by

MX(t) =
∞

∑
r=0

tr

r!

[
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

(
(1 + λ)

π

2
βσ

r
θ B
(

1− r
θ

, 2βn + β +
r
θ

)
−

∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
2λπβσ

r
θ B
(

1− r
θ

, 4βn + 2β +
r
θ

))]
(17)

The characteristic function is given by

ΦX(t) =
∞

∑
r=0

(it)r

r!

[
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

(
(1 + λ)

π

2
βσ

r
θ B
(

1− r
θ

, 2βn + β +
r
θ

)
−

∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
2λβσ

r
θ B
(

1− r
θ

, 4βn + 2β +
r
θ

))]
(18)

and the cumulant generating function is given by

KX(t) = log

[
∞

∑
r=0

tr

r!

[
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

[
(1 + λ)

π

2
βσ

r
θ B
(

1− r
θ

, 2βn + β +
r
θ

)
−

∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
λπβσ

r
θ B
(

1− r
θ

, 4βn + 2β +
r
θ

) ]]]
. (19)

II. Inverted moments

The inverted moment is defined by

µ∗r =
∫ ∞

−∞
x−r f (x)dx

Thus, the inverted moment for this distribution is given by

µ∗r =
∫ ∞

0
x−r

[
(1 + λ)

π

2
σθβ x−θ−1

(
1 + σx−θ

)−β−1
cos
(

π

2

(
1 + σx−θ

)−β
)
− λπσθβ x−θ−1

×
(

1 + σx−θ
)−β−1

cos
(

π

2

(
1 + σx−θ

)−β
)

sin
(

π

2

(
1 + σx−θ

)−β
)]

dx

=
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

[
(1 + λ)

π

2
βσ

r
θ B
(

1 +
r
θ

, 2βn + β− r
θ

)
−

∞

∑
n=0

(−1)n(π
2 )

2n+1

(2n + 1)!
λπβσ−

r
θ B
(

1 +
r
θ

, 4βn + 2β− r
θ

)]
. (20)

III. Incomplete moments

The rth incomplete moment is defined by

mr(x) =
∫ x

0
sr f (s)ds

mr(x) =
∫ x

0
sr
[

π

2
σθβ s−θ−1

(
1 + σs−θ

)−β−1
cos
(

π

2

(
1 + σs−θ

)−β
)
− λπσθβ s−θ−1

×
(

1 + σs−β−1
)

cos
(

π

2

(
1 + σs−θ

)−β
)

sin
(

π

2

(
1 + σs−θ

)−β
)]

ds
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Hence, the rth incomplete moments of transmuted Sine-Dagum distribution is given by

=
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

[
(1 + λ)

π

2
βσ

r
θ B
(

1− r
θ

, 2βn + β +
r
θ

; y
)

−
∞

∑
n=0

(−1)n(π/2)2n+1

(2n + 1)!
2λβσ

r
θ B
(

1− r
θ

, 4βn + 2β +
r
θ

; y
)]

. (21)

IV. Central moments

The central moment is defined by

µr =
∫ ∞

−∞
(x− µ

′
1)

r f (x)dx =
r

∑
m=0

(
r
m

)
(−1)m(µ

′
1)

mµ
′
r−m

Therefore, the central moments of transmuted Sine-Dagum distribution is given by

µr =
r

∑
m=0

(
r
m

)
(−1)m ×

[
∞

∑
n=0

(−1)n(π
2 )

2n

(2n)!

[
(1 + λ)

π

2
βσ

1
θ B
(

1− 1
θ

, 2βn + β +
1
θ

)

−
∞

∑
n=0

(−1)n(π
2 )
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. (22)

V. Order statistics

The pdf of the jth order statistics for transmuted Sine-Dagum distribution is given by

fX(j)
(x) =

n!
(j− 1)(n− j)!
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(
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(
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(23)

The pdf of the smallest order statistics X(1) is given by

fX(1)
(x) =n

[
1−

(
(1 + λ)sin

(
π

2

(
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)
− λ

(
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(
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2
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(
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(24)
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The pdf of the largest order statistics X(n) is given by

fX(n)
(x) =n

[(
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(
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(25)

The pdf of the median order statistics is given by

fm+1:n(x) =
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V. Income inequality measures

In this section, we deal with different basic income inequality measures including Lorenz curve,
Bonferroni index and Zenga index. The following measures are given below.

I. Lorenz curve

The lorenz curve was introduced by Lorenz [8] in the year 1905. it is widely used in economic
and many other fields and its defined by

L(x) =
1
µ

∫ x

0
s f (s)ds

Hence, the Lorenz curve of transmuted Sine-Dagum distribution is given by

L(x) =
1
µ
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0
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(
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θ

)]
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(27)

II. Bonferroni index

The Bonferroni index was introduced by Bonferroni [2] in the year 1930. it is ratio of Lorenz curve
and cumulative distribution function of the distribution. The Bonferroni index is defined as

B(x) =
L(x)
F(x)
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Hence, the Bonferroni index of transmuted Sine-Dagum distribution is given by

B(x) =
δ

η

where
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.

III. Zenga index

Zenga index is introduced by Zenga [15] in the year 1980. The Zenga index is defined by

Z = 1−
µ̄(x)

µ+
(x)

where
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1
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Therefore, we get
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]
Hence, the Zenga index of transmuted Sine-Dagum distribution is given by

Z = 1− γ

δ
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where
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VI. Parameter Estimation

Let x1, x2, ... , xn be a random sample from the transmuted Sine-Dagum distribution then the
likelihood function is given by

L(σ, θ, β, λ; x) =
n

∏
i=1

[
π

2
σθβ x−θ−1

(i)
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1 + σ−θ
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(
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(28)

Hence, the log likelihood function is given by

L(σ, θ, β, λ; x) =n log
π

2
+ n logσ + n logθ + n logβ + (−θ − 1)
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(
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))

The MLE of parameters σ, θ, β and λ are obtained from the following equations

∂logL
∂σ

= 0,
∂logL

∂θ
= 0,

∂logL
∂β

= 0 and
∂logL

∂λ
= 0

That is,
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=
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π
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) = 0 (29)
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The above mentioned four nonlinear equations are difficult to solve analytically. Therefore, these
equations can be solved through iteration methods like Newton-Raphshon method etc., However,
we estimate the parameters using R software.

VII. Applications

The data set is about the time-to-failure of a 100 cm polyster/viscose in a textile experiment to
evaluate the tensile fatigue characteristics of the yarn when its strain level is 2.3 percentage. This
data set is used early by Quesenberry and Kent [12], Pal and Tiensuwan [11] and Nasiru et al. [10].

We have fitted the model based on the minimum value of different goodness of fit mea-
sures values represented by -2log likelihood, corrected Akaike Information Criterion (CAIC),
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC). We have compared
the Topp-Leone generated Dagum distribution with other competitive statistical models like
Exponentiated generalized exponential Dagum distribution (EGEDD), Exponentiated generalized
Dagum distribution (EGDD), Dagum distribution (DD), Exponentiated generalized exponential
Burr distribution (EGEBD), Exponentiated generalized Burr distribution (EGBD), Exponentiated
generalized exponential Frechet distribution (EGEFD), Exponentiated generalized Frechet distri-
bution (EGFD), Mc-Dagum distribution (McD), exponentiated Kumaraswamy Dagum distribution
(EKDD) for this yarn data. The transmuted Sine-Dagum distribution provides better fit for tensile
fatigue characteristics of the yarn data compared to other above mentioned competitive statistical
models. The details are given in the following tables.

Table 1: Summary of statistics for tensile fatigue characteristic of the yarn data

n Mean Median Minimum Maximum Q1 Q3

100 222.0 195.5 15.0 829.0 129.2 283.0
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Table 2: The values of estimated parameters for tensile fatigue characteristic of the yarn data

Model Estimated value of the parameters

TSDD σ̂=10868.26, θ̂=1.732, β̂=1.0574, λ=-0.473
EGEDD σ̂=0.026, σ̂=75 .310, β̂=0.017, θ̂=3.513, ĉ=45.692, d̂=0.090
EGDD α̂=1.992, β̂=10.480, θ̂=4.733, ĉ=75.487, d̂=0.223
DD α̂=19.749, β̂=11.599, θ̂=1.126
EGEBD λ̂=35.463, β̂=35.965, θ̂=4.859, ĉ=15.667, d̂=0.070
EGBD β̂=24.801, θ̂=4.196, ĉ=73.9120, d̂=0.258
EGEFD α̂=20.662, λ̂=34.477, θ̂=5.217, ĉ=16.438, d̂=0.65
EGFD α̂=10.537, θ̂=5.239, ĉ=21.341, d̂=0.140
McD λ̂=0.027, δ̂=0.600, β̂=98.780, â=0.333, b̂=25.042, ĉ=46.276
EKD α̂=546.109, λ̂=39.413, δ̂=5.188, φ̂=0.203, θ̂=31.169

Table 3: Statistical model selection for tensile fatigue characteristic of the yarn data

Model -2LL AIC AICC BIC

TSDD 1252.689 1260.689 1261.11 1271.11
EGEDD 1256.34 1268.336 1269.553 1283.967
EGDD 1306.14 1316.137 1317.040 1329.163
DD 1298.52 1304.517 1304.938 1312.333
EGEBD 1261.74 1271.745 1272.648 1284.771
EGBD 1306.06 1314.056 1314.694 1324.447
EGEFD 1261.52 1271.523 1272.426 1284.549
EGFD 1333.76 1341.757 1342.395 1352.177
McD 1256.4 1268.399 1269.616 1284.030
EKD 1307.92 1317.913 1318.816 1330.938

VIII. Conclusion

In this paper, we have presented a new transmuted Sine-Dagum distribution using transmuted
Sine-G family of distributions. We have studied some reliability measures like reliability function,
hazard rate function, reverse hazard rate function, cumulative hazard rate function, second failure
rate function, mean waiting time, mean past lifetime and mean residual life. We have obtained
some distributional properties like moments, moment generating function, characteristic function,
cumulant generating function, incomplete moments, central moments and order statistics. We
have also investigated some income inequality measures including Lorenz curve, Bonferroni
index and Zenga index for proposed new probability distribution. The maximum likelihood
method is used to estimate the parameters of proposed new probability distribution. Finally,
we have analysed a real lifetime data set for proposed probability distribution. The proposed
distribution fits well for this data compared to other competitive models.
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Abstract 
 

This paper deals with an economic production quantity (EPQ) model in which production is random and 
having heterogeneous units of production. The production process is characterized by mixture of Weibull 
distribution. It is assumed that the demand is constant and the lifetime of the commodity is random and 
follows an exponential distribution. Assuming that the shortages are allowed and fully backlogged the 
instantaneous state of inventory in the production unit is derived. The minimizing the expected total 
production cost, the optimal production quantity, the production uptime and downtime are derived. 
Through sensitivity analysis it is observed that the random production with mixture distribution have a 
significant influence on the optimal production schedules and production quantity. It is also observed 
that the rate of deterioration can tremendously influence the optimal operating policies of the system. This 
model also includes some of the earlier models as particular cases. The model is extended to the case of 
without shortages. A comparison of the two models reveals that allowing shortages will reduce expected 
total cost of the model. 

 
Keywords: Stochastic production, Mixture of Weibull Distribution, Exponential decay, Production 
Schedules, Sensitivity analysis. 

 
I. Introduction 

 
In production quantity models much emphasis is given for the lifetime of the commodity. In many 
production processes the lifetime of the commodity is random and can be characterized by a 
probability distribution. The literature on inventory models for deteriorating items are reviewed 
by Pentico and Drake (2011), Ruxian Lie et al (2010), Goyal and Giri (2001), Raafat (1991) and 
Nahmias (1982). The exponential decay models of inventory are studied by Ghare and Schrader 
(1963), Shah and Jaiswal (1977), Cohen (1977), Aggarwal (1978), Dave and Shah (1982), Pal (1990), 
Kalpakam and Sapna (1996), Giri and Chaudhari (1999). The exponential decay is used when the 
rate of deterioration is constant which coincide with the deterioration of several perishable items 
such as medicine, sea foods, vegetable oils, cement and paints. Hence it is reasonable to assume 
exponential decay of the product.  

Another important consideration in EPQ models is the rate of production and it is studied 
by several authors Perumal and Arivarignan (2002), Pal and Mandal (1997), Sen and Chakrabarthy 
(2007), Lin and Gong(2006), Maity et al(2007), Hu and Liu(2010), Uma Maheswararao et al (2010), 
Venkata Subbaiah et al (2011), Essey and Srinivasa Rao (2012), Ardak and Borade (2017), Anindya 
Mandal, Brojeswar Pal and Kripasindhu Chaudhuri (2020), Sunit Kumar, Sushil Kumar and 
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Rachna Kumari (2021). In all these papers they assumed that the production is deterministic and 
having finite rate. However, in many production processes the production is not deterministic and 
random.  

 Stochastic production is a reality in the modern technological industrial developments. 
One of the major consideration for scheduling the production and determining the optimal 
production quantity lies on several factors such as availability of raw material, power supply, man 
power skill level, machine tool wear which are governed by laws of chance and become stochastic. 
Because of the stochastic factors the production process in many industries is random and can be 
characterized by a probability distribution. 

Recently Sridevi et al. (2010), Srinivasa Rao et al. (2010), Laxmana Rao et al. (2015), 
Srinivasa Rao et al. (2017), Madhulatha et al. (2017), Punyavathi et al. (2020) have developed and 
analyzed production quantity models with random production. In all these papers they assumed 
that the production is homogeneous even though governed by stochastic nature i.e., all the 
production is done in one unit or in a single machine. But in practice several of the products are 
produced by different machines or in different units which are operated under different 
conditions. Hence these heterogeneous production processes can be characterized by mixes of 
probability distributions. It is also observed that in each unit the production rate may be 
increasing/decreasing/remains constant. This type of variable rate of production can be 
represented by Weibull probability distribution. Hence in this paper we develop and analyze 
stochastic production quantity models assuming that the production is random and follows a two 
component Weibull mixture distribution. It is also further assumed that the demand is constant 
and in the production backorders are allowed and fully backlogged.  

Using the differential equations the production quantity at a given time is derived. With 
suitable costs the total expected production cost is derived. By minimizing the total expected 
production cost the optimal production schedules, the production quantities are derived. Through 
sensitivity analysis the effect of the change in parameters and cost on optimal production 
schedules and production quantity is discussed. This model is extended to the case of without 
shortages. 

II. Assumptions 
 
For developing the model the following assumptions are made: 

• The demand rate is constant say k.                            (1) 
• The production is random and follows a mixture of two-parameter Weibull distribution. The 

instantaneous rate of production is: 
 

𝑅(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
; 𝛼!, 𝛼& > 0, 𝛽!, 𝛽& > 0, 0 ≤ 𝑝 ≤ 1								(2) 

• Lead time is zero. 
• Cycle length is T. It is known and fixed. 
• Shortages are allowed and fully backlogged. 
• A deteriorated unit is lost. 
• The lifetime of the item is random and follows a exponential distribution with probability 

density function: 
𝑓(𝑡) = ѳ𝑒#'%; 	ѳ > 0, 𝑡 > 0 

         
Therefore the instantaneous rate of deterioration is 
 

																																																																															ℎ(𝑡) = ѳ; 	ѳ > 0                                                                       (3) 
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The following notations are used for developing the model.  
Q is the production quantity 
A	 is setup cost 
C  is cost per unit 
h Inventory holding cost per unit per unit time 
π	 Shortages cost per unit per unit time 

 
III. EPQ Model with Shortages 

 
Consider a production system in which the stock level is zero at time t	=	0. The stock level 

increases during the period (0, 𝑡!), due to production after fulfilling the demand and deterioration. 
The production stops at time t! when stock level reaches S. The inventory decreases gradually due 
to demand and deterioration in the interval (𝑡!, 𝑡&). At time 𝑡& the inventory reaches zero and 
backorders accumulate during the period (𝑡&, 𝑡(). At time 𝑡( the production again starts and fulfills 
the backlog after satisfying the demand. During (𝑡(, 𝑇) the backorders are fulfilled and inventory 
level reaches zero at the end of cycle T. The Schematic diagram representing the inventory level is 
given in Figure 1. 

  

Figure 1: Schematic Diagram representing the inventory level 
      

Let I(t) be the inventory level of the system at time ‘t’ (0 ≤ t ≤ T). The differential equations 
governing the instantaneous state of I(t) over the cycle of length are: 

 
𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
− 𝑘; 0 ≤ 𝑡 ≤ 𝑡!																																	(4) 

𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) = −𝑘;	𝑡! ≤ 𝑡 ≤ 𝑡&																																																																																																																										(5) 

𝑑
𝑑𝑡 𝐼

(𝑡) = −𝑘;	𝑡& ≤ 𝑡 ≤ 𝑡(																																																																																																																																															(6) 

𝑑
𝑑𝑡 𝐼

(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
− 𝑘;	𝑡( ≤ 𝑡 ≤ 𝑇																																																					(7) 

 
Where, h(t) is as given in equation (3), with the initial conditions I(0)	=	0, 𝐼(𝑡!) = 𝑆, 𝐼(𝑡&) = 0 and 
𝐼(𝑇) = 0 
Solving the differential equations, the on hand inventory at time ‘t’ is obtained as: 
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𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑒#%'K L
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
− 𝑘N 𝑒+'𝑑𝑢

%!

%
; 0 ≤ 𝑡 ≤ 𝑡!(8) 

𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑘𝑒#%'K 𝑒+'
%

%!
𝑑𝑢; 	𝑡! ≤ 𝑡 ≤ 𝑡&																																																																																																					(9) 

𝐼(𝑡) = 𝑘(𝑡& − 𝑡); 𝑡& ≤ 𝑡 ≤ 𝑡(																																																																																																																																							(10) 
 

𝐼(𝑡) = K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%
+ 𝑘(𝑇 − 𝑡); 𝑡( ≤ 𝑡 ≤ 𝑇																														(11) 

 
Production quantity Q	in the cycle of length T	is: 
 

𝑄 = K 𝑅(𝑡)𝑑𝑡 + K 𝑅(𝑡)𝑑𝑡
,

%$

%!

-
 

		= K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

			

+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

																																																				(12) 

 
From equation (8) and using the initial condition I(0) = 0, we obtain the value of ‘S	’ as: 
 

𝑆 = 𝑒#'%!K R
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
S𝑒+ѳ𝑑𝑢

%!

-
−
𝑘
ѳ T1 − 𝑒

#'%!U																					(13) 

 
When 	𝑡 = 𝑡(, then equations (10) and (11) become: 
 
𝐼(𝑡() = 𝑘(𝑡& − 𝑡()																																																																																																																																																											(14) 
 

and 

𝐼(𝑡() = 𝑘(𝑇 − 𝑡() −K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑑𝑢

,

%$
																																												(15) 

 
Equating the equations (14) and (15) and on simplification one can get: 
 

𝑡& =
1
𝑘K L

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
N 𝑑𝑢 + 𝑇 = 𝑥(𝑡()	𝑠𝑎𝑦																																	(16)

,

%$
 

 
 Let 𝐾T𝑡!,𝑡&, 𝑡(U be the total production cost per unit time. Since the total production cost is the sum 
of the set up cost, cost of the units, the inventory holding cost. Hence the total production cost per 
unit time become: 
 
𝐾T𝑡!,𝑡&, 𝑡(U =

0
,
+ 12

,
+ 3

,
\∫ 𝐼(𝑡)𝑑𝑡 + ∫ 𝐼(𝑡)𝑑𝑡%#

%!
%!
- ^ + 4

,
\∫ −𝐼(𝑡)𝑑𝑡 + ∫ −𝐼(𝑡)𝑑𝑡,

%$
%$
%#

^																																			(17)  
 
Substituting the values of I(t) given in equations (8), (9), (10) and (11) and Q given in equation (12) 
in equation (17) one can obtain 𝐾T𝑡!,𝑡&, 𝑡(U as: 
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					𝐾(𝑡!, 𝑡&, 𝑡() =
𝐴
𝑇 +

𝐶
𝑇 aK

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

 

																							+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

b 

							+
ℎ
𝑇 aK a𝑆𝑒'(%!#%) − 𝑒#%'K R

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
− 𝑘S 𝑒+'𝑑𝑢

%!

%

b 𝑑𝑡

%!

-

		 

								+ K a𝑆𝑒'(%!#%) − 𝑘𝑒#%' K𝑒+'
%

%!

𝑑𝑢b𝑑𝑡b

%#

%!

 

	−
𝜋
𝑇 a𝑘 K

(𝑡& − 𝑡)𝑑𝑡

%$

%#

+ KadK
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

,

%

𝑑𝑢e𝑑𝑡b + 𝑘 K(𝑇 − 𝑡)
,

%$

,

%$

b (18) 

 

Substituting  the  value  of  S  given  in  equation  (13)  in  the  total  production  cost  equation  
(18),  we  obtain: 

𝐾(𝑡!, 𝑡&, 𝑡() =
𝐴
𝑇 +

𝐶
𝑇 aK

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

 

+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

b 

+
ℎ
𝑇 f
1 − 𝑒#'%#

ѳ K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢

%!

-

+
𝑘
ѳ& T1 − 𝑒

#%#'U 

															−	
𝑘
ѳ 𝑡& −K 𝑒#'% dK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

%!

%

𝑒+'𝑑𝑢e

%!

-

𝑑𝑡b 

−
𝜋
𝑇 a
𝑘
2
[(𝑇 − 𝑡()& − (𝑡& − 𝑡()&] 			+ KdK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

,

%

𝑑𝑢e𝑑𝑡
,

%$

b (19) 

Substituting the value of ′𝑡&′ given in equation (16) in the total production cost equation (19), we 
obtain: 

		𝐾(𝑡!, 𝑡&, 𝑡() =
𝐴
𝑇 +

𝐶
𝑇 aK

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

%!

-

 

	+ K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡

,

%$

b 

		+
ℎ
𝑇 L
1 − 𝑒#'5(%$)

ѳ K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'

%!

-
𝑑𝑢 +

𝑘
ѳ& T1 − 𝑒

#'5(%$)U 
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				−
𝑘
ѳ 𝑥
(𝑡() − K 𝑒#'% RK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢

%!

%
S𝑑𝑡

%!

-
N 

	−
𝜋
𝑇 a
𝑘
2
[(𝑇 − 𝑡()& − (𝑥(𝑡() − 𝑡()&] 	

+ KdK
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#

,

%

𝑑𝑢e𝑑𝑡
,

%$

b																															(20) 

 

 

IV. Optimal Production Schedules of the Model 
 

In this section we obtain the optimal policies of the system under study. To find the 
optimal values of t1  and t3, we obtain the first order partial derivatives of K(t1,t3) given in equation 
with respect to t1 and t3  and equate them to zero. The condition for minimization of K(t1,t3) is 
 
Where D		is the Hessian matrix 

𝐷 = mm

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡!&

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡!𝜕𝑡(

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡!𝜕𝑡(

𝜕&𝐾(𝑡!, 𝑡()
𝜕𝑡(&

mm > 0 

Differentiating 𝐾(𝑡!, 𝑡() given in equation (20) with respect to t1		and equating to zero, we get  

							o
𝐶
𝑇 L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
N 

   

						+
	ℎ
𝑇 L
1 − 𝑒#5(%$)'

ѳ L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
N 𝑒%!'Np = 0			(21) 

 

Differentiating 𝐾(𝑡!, 𝑡() given in equation (20) with respect to t3		and equating to zero, we get 

						o−
𝐶
𝑇 L
𝑝𝛼!𝛽!𝑡("!#!𝑒#$!%$

"! + (1 − 𝑝)𝛼&𝛽&𝑡("##!𝑒#$#%$
"#

𝑝𝑒#$!%$"! + (1 − 𝑝)𝑒#$#%$"#
N 

							+
ℎ
𝑇 L
1
ѳ L
𝑝𝛼!𝛽!𝑡("!#!𝑒#$!%$

"! + (1 − 𝑝)𝛼&𝛽&𝑡("##!𝑒#$#%$
"#

𝑝𝑒#$!%$"! + (1 − 𝑝)𝑒#$#%$"#
N T1 − 𝑒#'5(%$)U 

	− 6%&'()$)

7
f8$!"!%$

"!%!6%+!)$
"!9(!#8)$#"#%$"#%!6%+#)$

"#

86%+!)$
"!9(!#8)6%+#)$

"# q ∫ f8$!"!+
"!%!6%+!,

"!9(!#8)$#"#+"#%!6%+#,
"#

86%+!,"!9(!#8)6%+#,"#
q 𝑒+'%!

- 𝑑𝑢q  

−
𝜋
𝑇 a𝑘

(𝑡( − 𝑇) + (𝑥(𝑡() − 𝑡() aL
𝑝𝛼!𝛽!𝑡("!#!𝑒#$!%$

"! + (1 − 𝑝)𝛼&𝛽&𝑡("##!𝑒#$#%$
"#

𝑝𝑒#$!%$"! + (1 − 𝑝)𝑒#$#%$"#
N + 𝑘b 
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							− K
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑑𝑢

,

%$

br = 0																														(22) 

 Solving the equations (21) and (22) simultaneously, we obtain the optimal time at which 
production is stopped 𝑡!∗ of 𝑡! and the optimal time 𝑡(∗ of 𝑡( at which the production is restarted 
after accumulation of backorders. 

The optimum production quantity Q* of Q in the cycle of length T	 is obtained by 
substituting the optimal values of 	𝑡!∗, 𝑡(∗  in equation (12).  
 

V. Numerical Illustration 
 

In this section we discuss the solution procedure of the model through a numerical 
illustration by obtaining the production uptime, production downtime, optimum production 
quantity and the total production cost of an inventory system. Here, it is assumed that the 
production is of deteriorating nature and shortages are allowed and fully backlogged. For 
demonstrating the solution procedure of the model the parameters are considered as A	= Rs.300/-,  
C = Rs.10\-, h	 = Re.0.2\-, π	 = Rs.3.3\-, T	 = 12 months. For the assigned values of production 
parameters (α1,	α2,	β1,	β2,	p) = (11, 15, 0.55, 2, 0.5), deterioration parameter ѳ	= 3, demand rate k	= 3.3. 
The values of parameters above are varied further to observe the trend in optimal policies and the 
results are obtained are shown in Table 1. Substituting these values the optimal production 
quantity 𝑄∗, the production uptime, production downtime and total production cost are computed 
and presented in Table 1. 

From Table 1 it is observed that the deterioration parameter and production parameters 
have a tremendous influence on the optimal values of production times, production quantity and 
total production cost. 

When the ordering cost ‘A	’ increases from 300 to 345, the optimal production quantity Q* 
decreases from 33.867 to 33.863, the optimal production down time 𝑡!∗ remains constant, the 
optimum production uptime 𝑡(∗ increases from 3.685 to 3,686, the total production cost per unit 
time 𝐾∗ increases from 80.793 to 84.529. As the cost parameter ‘C	 ’ increases from 10 to 11.5, the 
optimal production quantity	𝑄∗ increases from 33.867 to 33.872, the optimal production down time  
𝑡!∗ and optimal production uptime 𝑡(∗ remains constant, the total production cost per unit time 𝐾∗  
increases from 80.793 to 82.451. As the holding cost ‘h	 ’ increases from 0.2 to 0.23, the optimal 
production quantity 	𝑄∗, the optimal production down time 𝑡!∗, the optimal production uptime 𝑡(∗ 
remains constant, the total production cost per unit time  𝐾∗ decreases from 80.793 to 80.755. As the 
shortage cost ‘π	 ’ increases from 3.3 to 3.795, the optimal production quantity 	𝑄∗ increases from 
33.867 to 33.966, the optimal production down time 𝑡!∗ remains constant, the optimal production 
uptime 𝑡(∗ decreases from 3.685 to 3.655, the total production cost per unit time 𝐾∗ increases from 
80.793 to 87.753. 

 As the production parameter ‘α1	’ varies from 11 to 12.65, the optimal production quantity 
	𝑄∗ increases from 33.867 to 39.086, the optimal production down time 𝑡!∗ increases from 1.274 to 
1.277, the optimal production uptime 𝑡(∗ decreases from 3.685 to 3.628, the total production cost 
per unit time 𝐾∗ increases from 80.793 to 93.146.As the production parameter ‘α2	’ varies from 15 to 
17.25, the optimal production quantity 	𝑄∗, the optimal production down time 𝑡!∗, the optimal 
production uptime 𝑡(∗, the total production cost per unit time 𝐾∗ remains constant.  
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Table 1: Numerical Illustration 

A	 C	 h	 π	 T	 𝜶𝟏	 𝜶𝟐	 𝜷𝟏	 𝜷𝟐	 ѳ	 k	 p	 𝒕𝟏∗ 	 𝒕𝟑∗ 	 Q*	 K*	

300 10 0.2 3.3 12 11 15 0.55 2 3 3.3 0.5 1.274 3.685 33.867 80.793 

315            1.274 3.685 33.866 82.039 

330            1.274 3.686 33.865 83.284 

345            1.274 3.686 33.863 84.529 

 10.5           1.274 3.685 33.869 81.346 

 11           1.274 3.685 33.87 81.898 

 11.5           1.274 3.685 33.872 82.451 

  0.21          1.274 3.685 33.867 80.781 

  0.22          1.274 3.685 33.867 80.768 

  0.23          1.274 3.685 33.867 80.755 

   3.465         1.274 3.675 33.9 83.1 

   3.63         1.274 3.665 33.933 85.42 

   3.795         1.274 3.655 33.966 87.753 

     11.55       1.275 3.666 35.599 84.778 

     12.1       1.276 3.647 37.338 88.895 

     12.65       1.277 3.628 39.086 93.146 

      15.75      1.274 3.685 33.867 80.793 

      16.5      1.274 3.685 33.867 80.793 

      17.25      1.274 3.685 33.867 80.793 

       0.578     1.275 3.648 36.366 88.423 

       0.605     1.276 3.609 38.996 97.002 

       0.633     1.277 3.565 41.973 107.394 

        2.1    1.274 3.685 33.867 80.793 

        2.2    1.274 3.685 33.867 80.793 

        2.3    1.274 3.685 33.867 80.793 

         3.15   1.274 3.685 33.867 80.805 

         3.3   1.274 3.685 33.867 80.816 

         3.45   1.274 3.685 33.867 80.826 

          3.465  1.274 3.689 33.853 79.886 

          3.63  1.274 3.693 33.841 79.062 

          3.795  1.274 3.696 33.83 78.31 

           0.525 1.274 3.685 33.818 80.753 

           0.55 1.274 3.685 33.772 80.714 

           0.575 1.274 3.685 33.728 80.677 
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As the production parameter ‘β1	 ’ varies from 0.55 to 0.633, the optimal production 
quantity 	𝑄∗ increases from 33.867 to 41.973, the optimal production down time 𝑡!∗ increases from 
1.274 to 1.277, the optimal production uptime 𝑡(∗ decreases from 3.685 to 3.565, the total 
production cost per unit time 𝐾∗ increases from 80.793 to 107.394. As the production parameter ‘β2’ 
varies from 2 to 2.3, the optimal production quantity	Q∗, the optimal production down time 𝑡!∗, the 
optimal production uptime 𝑡(∗ and the total production cost per unit time 𝐾∗ remains constant. As 
the production parameter ‘p	 ’ varies from 0.5 to 0.575, the optimal production quantity 	𝑄∗ 
decreases from 33.867 to 33.728, the optimal production down time 𝑡!∗ and the optimal production 
uptime 𝑡(∗ remains constant, the total production cost per unit time 𝐾∗ decreases from 80.793 to 
80.677. 

 As the deterioration parameter ‘ѳ’ varies from 3 to 3.45, the optimal production quantity 
	𝑄∗, the optimal production down time 𝑡!∗ and the optimal production uptime 𝑡(∗ remains 
constant, the total production cost per unit time 𝐾∗ increases from 80.793 to 80.826.     

As the demand rate parameter ‘k	 ’ increases from 3.3 to 3.795 the optimal production 
quantity 	𝑄∗ decreases from 33.867 to 33.83, the optimal production down time 𝑡!∗ remains 
constant, the optimal production uptime 𝑡(∗ increases from 3.685 to 3.696, the total production cost 
per unit time 𝐾∗ decreases from 80.793 to 78.31. 
 

VI. Sensitivity Analysis of the Model 
 
Sensitivity analysis is carried to explore the effect of changes in model parameters and costs on the 
optimal policies, by varying each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) at a time for the 
model under study. The results are presented in Table 2. The relationships between the parameters 
and the optimal values of the production schedule are shown in Figure 2. 

       
Table 2: Sensitivity Analysis of the Model - With Shortages 

 
Variation 

Parameters 
Optimal 
Policies -15% -10% -5% 0% 5% 10% 15% 

A	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.684 3.684 3.685 3.685 3.685 3.686 3.686 
	 𝑄∗ 33.871 33.869 33.868 33.867 33.866 33.865 33.863 
	 𝐾∗ 77.058 78.303 79.548 80.793 82.039 83.284 84.529 
C	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.684 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.862 33.864 33.866 33.867 33.869 33.87 33.872 
	 𝐾∗ 79.138 79.689 80.241 80.793 81.346 81.898 82.451 
h	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.832 80.819 80.806 80.793 80.781 80.768 80.755 
π	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.715 3.705 3.695 3.685 3.675 3.665 3.655 
	 𝑄∗ 33.766 33.8 33.834 33.867 33.9 33.933 33.966 
	 𝐾∗ 73.95 76.218 78.499 80.793 83.1 85.42 87.753 
𝜶𝟏	 𝑡*∗ 1.271 1.272 1.273 1.274 1.275 1.276 1.277 
	 𝑡+∗ 3.74 3.722 3.704 3.685 3.666 3.647 3.628 
	 𝑄∗ 28.718 30.427 32.143 33.867 35.599 37.338 39.086 
	 𝐾∗ 69.61 73.212 76.939 80.793 84.778 88.895 93.146 
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Variation 
Parameters 

Optimal 
Policies -15% -10% -5% 0% 5% 10% 15% 

𝜶𝟐	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.793 80.793 80.793 80.793 80.793 80.793 80.793 
𝜷𝟏	 𝑡*∗ 1.27 1.272 1.273 1.274 1.275 1.276 1.277 
	 𝑡+∗ 3.776 3.748 3.719 3.685 3.648 3.609 3.565 
	 𝑄∗ 27.639 29.56 31.58 33.867 36.366 38.996 41.973 
	 𝐾∗ 63.978 68.832 74.257 80.793 88.423 97.002 107.394 
𝜷𝟐	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.793 80.793 80.793 80.793 80.793 80.793 80.793 
Ѳ	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 33.867 33.867 33.867 33.867 33.867 33.867 33.867 
	 𝐾∗ 80.749 80.766 80.78 80.793 80.805 80.816 80.826 
k	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 	𝑡+∗ 3.67 3.676 3.68 3.685 3.689 3.693 3.696 
	 𝑄∗ 33.917 33.899 33.882 33.867 33.853 33.841 33.83 
	 𝐾∗ 84.168 82.916 81.798 80.793 79.886 79.062 78.31 
p	 𝑡*∗ 1.274 1.274 1.274 1.274 1.274 1.274 1.274 
	 	𝑡+∗ 3.685 3.685 3.685 3.685 3.685 3.685 3.685 
	 𝑄∗ 34.029 33.972 33.918 33.867 33.818 33.772 33.728 
	 𝐾∗ 80.929 80.881 80.836 80.793 80.753 80.714 80.677 

VII. Observations 
 

The major observations drawn from the numerical study are: 

• t1*	and	t3*	are less sensitive, Q*	is slightly sensitive and K* is moderately sensitive to changes 
of ordering cost ‘A’. 

• t1*	and	t3*	are less sensitive, Q*	is slightly sensitive and K* is moderately sensitive to changes 
of cost per unit ‘C’. 

• t1*,	t3*	and	Q*	are less sensitive, K*	is slightly sensitive to changes of holding cost ‘h’. 
• t1*	 is	 less sensitive, t3*	and	Q*	are slightly sensitive and K* is highly sensitive to change in 

parameter ‘π’. 
• t1*	and t3*	are slightly sensitive, Q*	and	K* are highly sensitive to change in the production 

parameter ‘α1’. 
• t1*,	t3*,	Q*	and	K*	are less sensitive to change in the production parameter ‘α2’. 
• t1*	and t3*	are slightly sensitive, Q*	and	K* are highly sensitive to change in the production 

parameter ‘β1’. 
• t1*,	t3*,	Q*	and	K*	are less sensitive to change in the production parameter ‘β2’. 
• t1*	and	 t3*	are less sensitive, Q*	and	 K* are slightly sensitive to change in the production 

parameter ‘p’. 
• t1*,	 t3*	 and	 Q*	 are less sensitive, K*	 is slightly sensitive to change in the deterioration 

parameter ‘ѳ’. 
• t1*	is	less sensitive, t3*	and	Q*	are slightly sensitive and K* is highly sensitive to change in the 

demand parameter ‘k’. 
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Figure 2: Relationship between parameters and optimal values with shortages 

 
VIII. EPQ Model without Shortages 

 
In this section the inventory model for deteriorating items without shortages is developed and 
analyzed. Here, it is assumed that shortages are not allowed and the stock level is zero at time t	=0. 
The stock level increases during the period (0, 𝑡!) due to excess production after fulfilling the 
demand and deterioration. The production stops at time 𝑡! when the stock level reaches S. The 
inventory decreases gradually due to demand and deterioration in the interval (𝑡!, 𝑇) . At time T 
the inventory reaches zero. The schematic diagram representing the instantaneous state of 
inventory is given in Figure 3.  

 
Figure 3: Schematic diagram representing the inventory level 

Let I(t) be the inventory level of the system at time ‘t	’ (0	≤	t	≤	T). Then the differential equations 
governing the instantaneous state of I(t) over the cycle of length T	are: 
 
𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) =
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
− 𝑘; 	0 ≤ 𝑡 ≤ 𝑡!																														(23) 
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𝑑
𝑑𝑡 𝐼

(𝑡) + ℎ(𝑡)𝐼(𝑡) = −𝑘;	𝑡! ≤ 𝑡 ≤ 𝑇																																																																																																																									(24)	
  
Where, h(t) is as given in equation (3), with the initial conditions I(0)	=	0, 𝐼(𝑡!) = 𝑆 and I(T)	=0.  
Substituting h(t) given in equation (3) in equations (23) and (24) and solving the differential 
equations, the on hand inventory at time ‘t	’ is obtained as: 

𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑒#%'K L
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
− 𝑘N 𝑒+'𝑑𝑢

%!

%
; 0 ≤ 𝑡 ≤ 𝑡!	

(25)	

𝐼(𝑡) = 𝑆𝑒'(%!#%) − 𝑘𝑒#%'K 𝑒+'
%

%!
𝑑𝑢; 𝑡! ≤ 𝑡 ≤ 𝑇																																																																																																						(26)	

Production quantity Q	in the cycle of length T		is 

𝑄 =	K 𝑅(𝑡)𝑑𝑡

%!

-

 

 

																																																															= K
𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%

"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%
"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
𝑑𝑡																			(27)

%!

-
 

 
From equation (25) and using the initial conditions I(0)	=	0, we obtain the value of ‘S		’ as 

𝑆 = 𝑒#'%!K R
𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+

"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+
"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
S𝑒+ѳ𝑑𝑢

%!

-
−
𝑘
ѳ T1 − 𝑒

#'%!U																						(28) 

Let 𝐾(𝑡!) be the total production cost per unit time. Since the total production cost is the sum of the 
set up cost, cost of the units, the inventory holding cost. Therefore the total production cost per 
unit time becomes 

𝐾(𝑡!) = 	
𝐴
𝑇 +

𝐶𝑄
𝑇 +

ℎ
𝑇 aK 𝐼(𝑡)𝑑𝑡

%!

-

+ K𝐼(𝑡)𝑑𝑡
,

%!

b																																																																																																							(29) 

Substituting the values of I(t) and Q from equations ,(25), (26) and (27) in equation (29), we obtain 
K(t1)	 as 

𝐾(𝑡!) =
𝐴
𝑇 +

𝐶
𝑇K L

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
N 𝑑𝑡

%!

-

 

	+
ℎ
𝑇 aK L𝑆𝑒'(%!#%) − 𝑒#%'K L

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑑𝑢 − 	𝑘N 𝑒+'𝑑𝑢

%!

%
N 𝑑𝑡

%!

-

 

   

				+K f𝑆𝑒'(%!#%) − 𝑘𝑒#%'K 𝑒+'
%

%!
𝑑𝑢q 𝑑𝑡

,

%!
q																																																																																																															(30) 

 
Substituting the value of S		given in equation (28) in the total cost equation (30), we obtain 
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𝐾(𝑡!) =
𝐴
𝑇 +

𝐶
𝑇K L

𝑝𝛼!𝛽!𝑡"!#!𝑒#$!%
"! + (1 − 𝑝)𝛼&𝛽&𝑡"##!𝑒#$#%

"#

𝑝𝑒#$!%"! + (1 − 𝑝)𝑒#$#%"#
N 𝑑𝑡

%!

-
 

  

	+
ℎ
𝑇 LT1 − 𝑒

#',U L
1
ѳK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢 +

𝑘
ѳ&

%!

-
N	 

 

	−
𝑘
ѳ 𝑇 −K 𝑒#%' RK

𝑝𝛼!𝛽!𝑢"!#!𝑒#$!+
"! + (1 − 𝑝)𝛼&𝛽&𝑢"##!𝑒#$#+

"#

𝑝𝑒#$!+"! + (1 − 𝑝)𝑒#$#+"#
𝑒+'𝑑𝑢

%!

%
S𝑑𝑡

%!

-

b																														(31) 

 

IX. Optimal Production Schedules of the Model 

In this section we obtain the optimal policies of the inventory system under study. To find the 
optimal values of t1, we equate the first order partial derivatives of K(t1) with respect to t1  equate 
them to zero. The condition for minimum of K(t1) is 
 

𝜕&𝐾(𝑡!)
𝜕𝑡!&

> 0 

Differentiating 𝐾(𝑡!) with respect to 𝑡! and equating to zero, we get 
 

o
𝐶
𝑇 L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
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𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
N 

 

+
ℎ
𝑇 a
T1 − 𝑒#',U𝑒%!'

ѳ L
𝑝𝛼!𝛽!𝑡!"!#!𝑒#$!%!

"! + (1 − 𝑝)𝛼&𝛽&𝑡!"##!𝑒#$#%!
"#

𝑝𝑒#$!%!"! + (1 − 𝑝)𝑒#$#%!"#
Nbr = 0																																					(32) 

 
Solving the equation (32), we obtain the optimal time 𝑡!∗ of 𝑡!at which the production is to be 
stopped. 
The optimal production quantity 𝑄∗ of Q in the cycle of length T is obtained by substituting the 
optimal values of 𝑡! in equation (27). 
 

X. Numerical Illustration 

In this section we discuss the solution procedure of the model through a numerical illustration by 
obtaining the production time, optimum production quantity and the total production cost of an 
inventory system. For demonstrating the solution procedure of the model the parameters are 
considered as A	= Rs.310\-, C = Rs.15\-, h = Re.0.2\-, (α1,	α2,	β1,	β2,	p) = (11, 14, 0.55, 3, 0.5), ѳ= 3, 
k=3.3 and T=12 months. The values of parameters above are varied further to observe the trend in 
optimal policies and the results are obtained are shown in Table 3. Substituting these values the 
optimal production quantity 𝑄∗, the production time and total production cost are computed and 
presented in Table 3 
From Table 3 it is observed that the deterioration parameters and production parameters have a 
tremendous influence on the optimal values of the model. 
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Table 3: Numerical Illustration 

A	 C	 h	 T	 𝜶𝟏	 𝜶𝟐	 𝜷𝟏	 𝜷𝟐	 ѳ	 k	 p	 𝒕𝟏∗ 	 Q*	 K*	
310 15 0.2 12 11 14 0.55 3 3 3.3 0.5 5.495 28.771 61.871 

325.5           5.495 28.771 63.163 
341           5.495 28.771 64.454 

356.5           5.495 28.771 65.746 
 15.75          5.496 28.775 63.698 
 16.5          5.497 28.778 65.477 
 17.25          5.499 28.782 67.281 
  0.21         5.495 28.772 61.875 
  0.22         5.495 28.772 61.879 
  0.23         5.495 28.772 61.883 
    11.55       5.5 30.217 63.686 
    12.1       5.501 31.598 65.402 
    12.65       5.503 33.01 67.143 
     14.7      5.493 28.767 61.859 
     15.4      5.492 28.763 61.825 
     16.1      5.491 28.761 61.788 
      0.578     5.499 30.157 63.607 
      0.605     5.504 31.56 65.366 
      0.633     5.509 33.088 67.281 
       3.15    5.496 28.773 61.89 
       3.3    5.496 28.775 61.907 
       3.45    5.497 28.777 61.923 
        3.15   5.495 28.772 61.886 
        3.3   5.495 28.773 61.901 
        3.45   5.496 28.773 61.92 
         3.465  5.495 28.771 61.86 
         3.63  5.495 28.771 61.85 
         3.795  5.495 28.771 61.839 
          0.525 5.495 28.722 61.806 
          0.55 5.494 28.675 61.743 

          0.575 5.494 28.629 61.681 
 

When the ordering cost ‘A	’ increases from 310 to 356.5, the optimal production quantity Q* and the 
optimal production down time t1* remains constant, the total production cost per unit time K*  
increases from 61.871 to 65.746. As the cost parameter ‘C	 ’ increases from 15 to 17.25, the optimal 
production quantity Q* increases from 28.771 to 28.782, the optimal production down time t1	
increases from 5.495 to 5.499, the total production cost per unit time	K* increases from 61.871 to 
67.281. As the inventory holding cost ‘h	 ’ increases from 0.2 to 0.23, the optimal production 
quantity Q* increases from 28.771 to 28.772, the optimal production down time t1* remains constant, 
the total production cost per unit time K* increases from 61.871 to 61.883. 

As the production parameter ’α1	’ varies from 11 to 12.65, the optimal production quantity	
Q* increases from 28.771 to 33.01, the optimal production down time t1* increases from 5.495 to 
5.503, the total production cost per unit time	K*  increases from 61.871 to 67.143. As the production 
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parameter ’α2		’ varies from 14 to 16.1, the optimal production quantity Q* decreases from 28.771 to 
28.761, the optimal production down time t1* decreases from 5.495 to 5.491, the total production 
cost per unit time K* decreases from 61.871 to 61.788. As the production parameter ‘β1	’ varies from 
0.55 to 0.633, the optimal production quantity	 Q*	 increases from 28.771 to 33.088, the optimal 
production down time	 t1* increases from 5.495 to 5.509, the total production cost per unit time	K* 
increases from 61.871 to 67.281. As the production parameter ‘β2	’ varies from 3 to 3.45, the optimal 
production quantity Q*	 increases from 28.771 to 28.773, the optimal production down time t1*    
increases from 5.495 to 5.497, the total production cost per unit time K* increases from 61.871 to 
61.923. As the production parameter ‘p’ varies from 0.5 to 0.575 the total production quantity Q*   
decreases from 28.771 to 28.629, the optimal production down time t1* decreases from 5.495 to 
5.494, the total production cost per unit time K* decreases from 61.871 to 61.681. 

As the deterioration parameter  ‘ѳ	’ varies from 3 to 3.45, the optimal production quantity	
Q* increases from 28.771 to 28.773, the optimal production down time t1* increases from 5.495 to 
5.496, the total production cost per unit time K* increases from 61.871 to 61.92. 

As the demand parameter ‘k	 ’ varies from 3.3 to 3.795, the total production quantity Q*   
remains constant, the optimal production down time	t1* remains constant, the total production cost 
per unit time K*  decreases from 61.871 to 61.839. 

 
XI. Sensitivity Analysis of the Model 

 
The sensitivity analysis is carried to explore the effect of changes in model parameters and 

costs on the optimal policies, by varying each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) at a 
time for the model under study. The results are presented in Table 4. The relationship between the 
parameters and the optimal values of the production schedule is shown in Figure 4.  

 
Table 4: Sensitivity analysis of the model - Without Shortages 

Variation 
Parameters 

Optimal 
Policies -15% -10% -5% 0% 5% 10% 15% 

A	 𝑡*∗ 5.495 5.495 5.495 5.495 5.495 5.495 5.495 

	 𝑄∗ 28.772 28.772 28.771 28.771 28.771 28.771 28.771 

	 𝐾∗ 57.996 59.288 60.579 61.871 63.163 64.454 65.746 

C	 𝑡*∗ 5.491 5.492 5.494 5.495 5.496 5.497 5.499 

	 𝑄∗ 28.761 28.765 28.768 28.771 28.775 28.778 28.782 

	 𝐾∗ 56.465 58.266 60.068 61.871 63.698 65.477 67.281 

h	 𝑡*∗ 5.495 5.495 5.495 5.495 5.495 5.495 5.495 

	 𝑄∗ 28.771 28.771 28.771 28.771 28.772 28.772 28.772 

	 𝐾∗ 61.859 61.863 61.867 61.871 61.875 61.879 61.883 

𝜶𝟏	 𝑡*∗ 5.485 5.489 5.491 5.495 5.5 5.501 5.503 

	 𝑄∗ 24.537 26.203 27.358 28.771 30.217 31.598 33.01 

	 𝐾∗ 56.463 58.599 60.076 61.871 63.686 65.402 67.143 

𝜶𝟐	 𝑡*∗ 5.496 5.496 5.496 5.495 5.493 5.492 5.491 

	 𝑄∗ 28.775 28.775 28.774 28.771 28.767 28.763 28.761 

	 𝐾∗ 61.901 61.885 61.880 61.871 61.859 61.825 61.788 

181



 
V.Sai Jyothsna Devi and K.Srinivasa Rao 
EPQ MODELS WITH MIXTURE OF WEIBULL PRODUCTION 
EXPONENTIAL DECAY AND CONSTANT DEMAND 

RT&A, No 4 (65) 
Volume 16, December 2021                         

 

𝜷𝟏	 𝑡*∗ 5.484 5.487 5.491 5.495 5.499 5.504 5.509 

	 𝑄∗ 25.171 26.286 27.453 28.771 30.157 31.56 33.088 

	 𝐾∗ 57.359 58.756 60.219 61.871 63.607 65.366 67.281 

𝜷𝟐	 𝑡*∗ 5.494 5.494 5.494 5.495 5.496 5.496 5.497 

	 𝑄∗ 28.768 28.769 28.77 28.771 28.773 28.775 28.777 

	 𝐾∗ 61.811 61.831 61.851 61.871 61.89 61.907 61.923 

Ѳ	 𝑡*∗ 5.494 5.495 5.495 5.495 5.495 5.495 5.496 

	 𝑄∗ 28.77 28.771 28.771 28.771 28.772 28.773 28.773 

	 𝐾∗ 61.832 61.845 61.857 61.871 61.886 61.901 61.92 

k	 𝑡*∗ 5.495 5.495 5.495 5.495 5.495 5.495 5.495 

	 𝑄∗ 28.771 28.771 28.771 28.771 28.771 28.771 28.771 

	 𝐾∗ 61.903 61.892 61.882 61.871 61.86 61.85 61.839 

p	 𝑡*∗ 5.496 5.495 5.495 5.495 5.495 5.494 5.494 

	 𝑄∗ 28.936 28.878 28.823 28.771 28.722 28.675 28.629 

	 𝐾∗ 62.082 62.009 61.939 61.871 61.806 61.743 61.681 

XII. Observations 
 

The major observations drawn from the numerical study are: 

• t1*	is	less sensitive, Q*	is slightly sensitive and K* is moderately sensitive to the changes in 
ordering cost ‘A’. 

• t1*	and	Q*	are slightly sensitive and K* is moderately sensitive to the changes in cost per unit 
‘C’. 

• t1*	is	less sensitive, Q*	and	K* are slightly sensitive to the changes in holding cost ‘h’. 
• t1*	 is slightly sensitive, Q*	 and	 K* are highly sensitive to the change in the production 

parameter ‘α1’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the production parameter ‘α2’. 
• t1*	is slightly sensitive, Q*	and	K* are moderately sensitive to the change in the production 

parameter ‘β1’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the production parameter  ‘β2’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the production parameter ‘p’. 
• t1*,	Q*	and	K*	are slightly sensitive to the change in the deterioration parameter ‘ѳ’. 
• t1*	and	Q*	are less sensitive, K* is slightly sensitive to change the  demand parameter ‘k’. 
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Figure 4: Relationship between parameters and optimal values without shortages 
 

XIII. Conclusions 
 
This paper introduces a new EPQ model with random production having mixture of two 

component Weibull production rate and exponential decay having constant demand. The mixture 
of two parameter Weibull distribution characterises the heterogeneous process more close to 
reality. By using the historical data we can estimate the replenishment and deterioration 
distribution parameters. The production manager can estimate the optimal production downtime 
and uptime with the distributional data of production and deterioration parameters. The Weibull 
rate of production can include increase/ decrease/constant rates for different values of parameters. 
Sensitivity analysis is used to understand the change in the parameters of Weibull rates of 
production and exponential deterioration. It is observed that random production and deterioration 
have significant influence on optimal values of the production schedule and production quantity. 
This model also includes some of the earlier models as particular cases. This model can be used to 
analyse production processes where the production is done in two different units/ machines and 
rate of deterioration is constant. It is possible to extend this model with other types of demand 
functions such as stock dependent demand, time and selling price dependent demand which will 
be taken up elsewhere. This paper is useful for analyzing optimal production schedules for the 
industries dealing with deteriorating items such as sea foods and edible oil. This model also 
includes some of the earlier EPQ models as particular cases for specific values of the parameters. 
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Abstract 
 

The regular increase in relative number of units of equipment, devices and installations (further 
- objects) electric power systems, which service life exceeds normative value and the 
consequences connected with this fact, including, including unacceptable ones, demand 
acceptance of drastic measures on increase of efficiency of their work. The main efforts today 
aimed at improving the methods of recognition and control of their technical condition. In other 
words, the problems of increasing the reliability of work and the safety of service brought to the 
fore quite justifiably. In the article, it is propos to carry out monitoring of the technical condition 
of overhead lines with a rated voltage of 110 kV and above monthly on the basis operational 
reliability parameters. New methods and algorithms for their estimation, comparison and 
ranking presented. As the operational reliability parameters are multidimensional, the existing 
methods for comparing and ranking one-dimensional statistical estimates for them are 
unacceptable, as the neglect preconditions of these methods conducts to essential growth of risk 
of the erroneous decision. The proposed new methods based on the fiducial approach, imitating 
modeling and the theory of statistical hypothesis testing. The cumbersomeness and 
laboriousness of manual calculation of operational reliability parameters, the science intensity 
of calculation methods is compensated by the transition to automated systems that provide 
information and methodological support with information about the technical condition of 
overhead lines. The recommended methods are included in the group of risk-focused 
approaches of increase the efficiency of the electric power systems. 
 

Keywords. Operational reliability, overhead lines, estimation, comparison, ranking, classification, fiducial 
approach, risk of the erroneous decision. 
 
 

 

I. Introduction 
 

Increase of the efficiency of the electric network enterprises (further – ENE) is one of the 
most important problems of electric power systems. Formed and intensively developing in the 
energy economy a new scientific direction "Development of the asset management system for 
electric network companies." In our opinion, this direction is the most fully reflected in the concept 
[1], where it is noted: “the organization of the activities of the electric network companies in a 
competitive environment brings to the fore the economic criteria with unconditional assurance of 
reliability”. 
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In [2], at the same time, it is rightly noted: “the activity on the transmission of the electric 
power has monopoly character. Because of this, there is practically no motivation to increase the 
efficiency of work.". 

And, at last, it is well known, that today the service life of more than 50% of ENE objects 
exceeds the normative value and there is no hope of decrease this value, or at least not exceeding it 
[3]. The relevance of the problem of reliability of objects, the service life of which exceeds the 
normative value is clearly confirmed by the materials of international conferences [4, 5]. It is 
necessary to consider: 
- in opinion of leading experts, the efficiency of work today is determined not only by 
efficiency, but also reliability and safety [6]; 
- the consequences of failures in EPS are increasingly unacceptable and violate energy security; 
- the social importance of increase in electricity tariffs determines the systematic support by the 
state of the electric power companies, with an increase in their operating costs; 
- there is no opportunity, and necessity of mass replacement and modernization of objects, 
which service life, exceeds normative value. 

And if all this is taken into account, today the major problem EPS is increase of reliability and 
safety of objects, which service life exceeds normative value. The methodical approach of authors to the 
decision of this problem based on some assumptions, allowing using the approaches accepted in 
others, completely, different systems. First of all, it is offered to agree with a known postulate 
according to which «the person creates objects similar to himself». This opinion allows using the 
approaches used for increase of vital functions of the specialist of a pension age. The main thing 
here is the increase in intensity of the control of a state of health. For electric power objects this 
sounds as « increase in intensity of the control of a technical condition» (further - the TC). And this 
is well known to us on the recommendation of transition from scheduled precautionary repair to 
repair on the TC [7], detailed explanations of expediency of the account of the TC [8, 9, 10] and 
increases of intensity of the control. An analogue of the operational control of the TC is the 
monthly preparation of the form of 3-tech (energy) [11], which characterizes the TC of power units 
of thermal power stations.  

However, the opportunity does not always exist. An illustrative example of such an object is 
overhead transmission lines (further - OHL) with a rated voltage of 110 kV and above. By 
development of methods and algorithms of an estimation of parameters of operative reliability and 
safety in the illustrative purposes these will be used OHL. 
 

II. Methodical Features Of An Estimation Of Parameters  
Of Operative Reliability OHL 

 
Formulas of an estimation of parameters of reliability OHL well known and are used for the 

analysis of the reasons of occurrence of emergency switching-off. Increase of a faultlessness of 
recommendations is reached by using of statistical data for a number of years of supervision. 
Reference books and technical literature provide estimates of specific damageability, average 
downtime in emergency and planned (capital) repairs. Estimations are average, as a rule, on a class 
of a voltage, occasionally - for the reasons of refusal or a material of support. Specific 
damageability is led OHL in the extent of 100 km.  

In other words, classification of statistical data is spent traditionally on one, a maximum 
three attributes. The algorithm of use of these estimations, on the recommendation of M.N. 
Rozanov (1984) consists in the following: «it is necessary to calculate failure of refusals for of some 
years of operation, to construct a graph and extrapolate frequency of refusals approximately for 
five years forward. The resulting failure refusals should be used in estimation the reliability of 
newly constructed objects". In table 1 according to Guk Y.V. (1974) intervals of change of 
estimations of specific number of damages OHL. 
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Table 1. Intervals of change of estimations of specific number of damage OHL. 
Voltage, kV Specific number of damages, on 100 km/years 

Stable Unstable 
100; 154 0,5-1,7 5-7 

220 0,25-1,5 1-2 
330 0,15-1,6 0,5-1,5 
500 0,2-1,1 0,15-2,5 

 
These data are interesting in that the intervals of change in the specific number of damages 

crossed. This testifies to the inexpediency of their classification on the basis of "voltage class". The 
above-stated allows to conclude, that existing methods of an estimation of parameters of reliability 
OHL are unacceptable for an estimation of parameters of operative reliability.  

In table 2 recommended main parameters of the operative reliability OHL and formulas for 
their calculation. 

 
Table 2. Recommended parameters of operative reliability OHL. 

Name of a parameter Symbol Unit of measure Formula of an 
estimation 

Parameter of a stream of refusals  open/km.month  

Parameter of a stream of stable 
refusals  

open/km.month  

Average monthly probability of 
stable refusal 

 relative unit  

Average monthly duration 
downtime in emergency repair 

 hour/month 
 

Average monthly coefficient 
downtime in emergency repair 

 relative unit  

 
The note: Ni ---number of working OHL in i-th month; nΣ,i,j - number of refusals of j-th OHL in i-th 
month; Lj - length of j-th OHL; nst,i,j - number of stable refusals of j-th OHL in i-th month; τe,i,j - 
duration of downtime in emergency repair of j-th OHL in i-th month; bL - coefficient characterizing 
the length of a conditional line (Lу). It is calculated as bL=1/Lу. 
 

III. Methodical features of comparison of estimations of parameters of  
operative reliability OHL. 

 
As noted above, “mechanical” comparison of estimates of parameters of operative reliability 

is associated with a high risk of erroneous decisions and caused by casual character of compared 
estimations. The relevance of the following operational problem is doubtless: estimation of a degree of 
influence on reliability OHL EPS of performance of preliminary made decision concerning reorganization of 
operation, change of system of maintenance service and repair (further - STMR). This estimation is spent 
by comparing the parameters of operative reliability before and after these changes. 
 Is no less actual the task: the control of a infallibility of observed regularity of change of parameters 
of operative reliability over time with the purpose of use of this law for forecasting reliability. The 
accounting of casual character of statistical indicators can be spent on the basis of the verification 
theory of statistical hypotheses. But, since the main task of the risk-focused approaches is decrease 
the risk of an erroneous decision, it is unacceptable to neglect the requirements, in accordance with 
which: 
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- the law of distribution of random variables must be known; 
- application of criteria for testing statistical hypotheses calculated for one-dimensional random 
variables to multidimensional, ones sharply increases the risk of erroneous decisions. 

Considered at the analysis of reliability OHL random variables far do not always correspond 
to the normal law, and estimations of parameters of operative reliability are multidimensional. 

Overcoming of these difficulties is reached by application a fiducial approach, imitating 
modeling and the principles of the theory of testing statistical hypotheses [12]. With a high degree 
of accuracy, modeling algorithms for of some parameters of operative reliability can be replaced 
developed express method based on the approximation of fiducial distributions of some nonlinear 
function [13]. 

Unlike formulas for an estimation of parameters of operative reliability OHL, algorithms of 
comparison of the average monthly estimations of parameters of operative reliability are identical. 
Let's designate an estimation (*) the generalized parameter (P) operative reliability as P*. The 
algorithm of comparison of the average monthly estimation P* in i-th month  with the average 

monthly estimation in preceded (i-1) month  as follows: 

If ≤ ,   otherwise 

and   otherwise  and  otherwise 

and > ,       that НÞН2   and ≥ , that НÞН2   (1) 

otherwise                      НÞН0   otherwise                НÞН0 

and < ,       that НÞН1   and > , that НÞН2  

otherwise НÞН0    otherwise НÞН0 

For illustrative purposes, formulas for calculating the boundary values of the fiducial 

interval of estimations  and  given in table 3. 

Table 3. Formulas for estimating the boundary values of the fiducial interval: conditional 

downtime coefficients in emergency repair of OHL of EPS for (i-1) and i- th months of the year 

Indicator Evaluation formulas Note 
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IV. Methodical Features Of Ranging Of Estimations Of Parameters Of Operative 
Reliability OHL ENE ESP. 

 
The analysis of change of operative reliability OHL ESP is of course important, at least from 

the point of view of an estimation of influence on reliability of work carried out to improve the 
operation, STMR OHL. Clearly, that all these actions are spent in certain ENE and on certain OHL. 
Recognition of this OHL ENE carried out based on operating experience, intuitively, and often 
subjectively. This approach is not accidental. Simply there is no "help", allowing to reveal these 
«weak parts» and to lower risk of the erroneous decision. Below is a method and algorithm for 
solving this problem.  

In the section discusses the varieties of the attribute by which it is expedient to spend 
ranging for revealing ENE, TC OHL, which demands intervention. To range them, i.e. to place in 
order of decreasing operational reliability, also does not represent special work. Difficulty consists 
that all these estimations of parameters of operative reliability OHL ENE have random character. 
This take place because of random character of their refusals. In other words, the observed 
difference of estimations, as well as their difference from parameters of operative reliability OHL 
EPS, can be casual, and classification itself is useless. We have met this fact at the analysis of 
specific number OHL of various voltage classes (see table 1). 

But before to consider an opportunity of overcoming noted above difficulty, it is necessary to 
have in view of, that: 
- the recommended method and algorithm do not depend on type of a parameter of operative 

reliability. Therefore we shall keep sense of estimations , , , , , . We 

take into account, that j - a ordinal number of month, j=1,12, i - a ordinal number of the varieties ν-
th of the attribute, i=1,mν; ν - a serial number of an attribute, ν=1,ma; ma - number of consideration 
attributes; 
- boundary values of the fiducial interval randomly differ from each other with a significance 
level of 2α. In other words, random character of a divergence of parameters of operative reliability 
OHL EPS and of some ENE yet does not mean random character of a divergence of all parameters 
of operative reliability OHL of these ENE.  
 The recommended method and algorithm of ranging of estimations of parameters of 
operative reliability OHL ENE EPS reduced to following sequence of calculations. 
- the estimations  located in ascending order are compared with . Are allocated in the 

first group of an estimation  not exceeding , as estimations not casually differing from the 

estimation ; 

- the remained estimations  are compared with . The estimations , not exceeding 

 are allocated the second group and characterized as an estimation casually differing from the 

estimation ; 

- the part of estimations  which exceeds  belongs to the third group. A rating of the 

first group (г1) ENE is agreed to estimate as "good", the second groups (г2) ENE - as "satisfactory", 
and the third group (г3) ENE - as "unsatisfactory".  

Objective ranging of operative reliability OHL ENE involves overcoming another difficulty 
- presence of many parameters. This difficulty overcomes by transition to an integrated parameter. 
The recommended methodology for calculating the integral parameter was uses at the analysis of 
operative reliability of power units of thermal power stations [14]. 

The essence of recommendations is reduced: 
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- to the transition from the estimation of a parameter of operative reliability to the estimation of 

its probability on statistical function of distribution . The value  characterizes 

size of "wear" and is defined under the formula , where i - a ordinal number 

of ν -th parameter ENE in ranging data series for j-th month; ν=1,min, min - number of indicators of 
operative reliability; 
- to calculation of an integrated parameter of operative reliability under the formula 

      (2) 

Not less significant it is necessary to consider a problem of an estimation of a degree of 
increase of operative reliability as a result of prospective change in STMR OHL ENE.  

Let's consider methodology of the decision of this problem using the example of average 
duration of downtime in emergency repair . Suppose, that according on statistical data 
for j-th month of work it established, that: 

- a monthly average estimation , where nΣ - frequency of downtime in 

emergency repair; 
- as a result of classification of statistical data OHL on ENE, their rangings in order of 

decreasing in operative reliability and an estimation of character of a divergence with , 

it is established, that monthly average estimations  of each of three groups ESP are 

accordingly equal: 

; 

; 

 

where nг1, nг2, nг3 - accordingly number of realizations of duration of emergency downtime in first, 
second and third groups ESP 

Since in the third group are placed ENE, monthly average duration of downtime time in 
emergency repair in which nonrandom exceeds , that, naturally, it is necessary to 

provide, first of all, restoration of wear OHL ENE of the third group. Obviously, as a result of 

restoration of wear, monthly average value  will randomly differ from the OHL ENE 

of the first group. At the same time, thus decrease in duration of downtime in emergency repair 
ENE of the third group will be equal: 

      (3) 

And the relative size of this decrease is equal: 

    (4) 

By analogy, formulas can be received of an estimation of relative value of change of 
operative reliability OHL EPS and for other parameters. Results of these transformations are 
shown in table 4. 
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Table 4. Formulas of an estimation of possible change of operative reliability OHL EPS as a result 
of restoration of wear 
 

Parameter Formulas for calculating a possible increase in 
operational reliability 

   

  

   

  

  

 
V. Methodical Features Of Benchmarking Of Operative Reliability ENE EPS. 

 
 Benchmarking of ENE EPS belongs to the category internal ones. Remind, that internal 
benchmarking [15]: 
 
- it is a kind of the comparative analysis; 
- its essence consists in revealing most and the least effective same type objects; 
- it is least costly a kind of research; 
- its main task - to reveal objects, which increase in the efficiency of which to the greatest extent 
increases the efficiency of the system as a whole; 
- owing to the simplicity, is the best way of decrease in risk of the erroneous decision; 
- the greatest effect takes place only at the regular comparative analysis. A single use only leads 
to temporary success. 

 
The comparative analysis of operative reliability of set OHL ENE EPS allows to correctly 

solve many operational problems at level EPS. But it is absolutely insufficient for ENE themselves. 
And indeed. Certainly, it is important to management ENE to know, how they govern ENE differs 
from others ENE EPS; as reliability of work OHL in billing month has changed; how effective were 
the new approaches to the recognition of hazardous defects. But, first of all, ENE leader must know 
exactly, where to direct efforts for increase of rating ENE.  

As noted above, "mechanical" classification OHL ENE is connected with high risk of the 
erroneous decision. For revealing of "weak parts», that reduce the ENE rating, it is necessary: 

 
- For each ENE, whose TC rating is assessed as unsatisfactory: 

* to classify OHL and statistical data about their idle time in emergency repair on each of np-
1 the signs attributes (except for an attribute name ENE) and to its varieties. Preliminary 
with the continuous character of change of varieties of attributes, they are transformed in 
discrete; 

* for each varieties of an attribute the estimation of a parameter of operative reliability  

is calculated; 
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* the maximal value of estimations  is defined, with ν=1,mi, where mi - number of 

varieties i-th an attribute . Obvious, that is the most 

significant varieties of the i-th attribute; 
* the most significant attribute is defined; 

 
- Attributes are defined, estimations of parameters operative reliability of which exceed the 
estimation ; 

- On these attributes classification OHL and statistical data about their downtime in emergency 
repair is carried out, according to which the estimation  is spent calculated; 

- Further calculations are carried out similarly to the above. Calculations completed by 
consideration of all possible and expedient classifications and all ENE with a unsatisfactory rating. 

 
As a result of the calculations, for each ENE with a unsatisfactory rating are determined set 

of OHL, that determine this rating. This list recommended for restoration TC OHL. 
 

Vi. Formation Of Information And Methodical Support For Management ENE 
And EPS. 

 
By increase of reliability the risk-focused of the approach naturally is increase science 

intensity, cumbersomeness and laboriousness of manual calculation. Check of reliability is carried 
out by a method of the decision of "a return problem» when recommendations are trivial. Efforts 
are required only for preparation in the tabulated in form of monthly data on automatic emergency 
switching-off OHL. In day of input of the information Chief engineers EPS and ENE receive the 
specialized forms containing information on operative reliability, accordingly, OHL EPS and ENE 
and the recommendation on increase of an work efficiency [16]. 

 
For illustrative purposes, fig. 1 shows the form of information about the monthly average 

operative reliability OHL EPS. It is necessary to note, that the content of this form depends as on 
time of use of opportunities of the automated monitoring system of operative reliability OHL, and 
on the "interest" of the ENE and EPS managers. 
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Date of the analysis                                                                                                         Chief engineer EPS 
05 may 2021 год                                                                                                    ______________________ 

Data 
about operative reliability OHL in April 2021 

 
1. Monthly average value of a parameter of operative reliability is estimated as satisfactory; 
2. In comparison with March operative reliability has decreased on 15,3%; 
3. In the table And are resulted located by way of decreasing of operative reliability ENE EPS. 
Table A. ENE EPS operational reliability details 

Name ENE Integrated parameter 
of wear, r.u. 

Relative change over 
time, % Rating ENE 

ENE 5 0,053 5,7 good  

ENE 7 0,12 10,2 satisfactory 

ENE 2 0,23 25,6 satisfactory 

    
 
4. Recommendations on increase of operative reliability. 
4.1. In ENE, the rating of operative reliability OHL which is unsatisfactory, to lead selective survey OHL 
(see Table B) 
Table B. List of OHLs subject to examination 

Name 
ENE Overhead transmission lines 

ENE 2 
B 26 
B 8 

ENE 9 
B 36 
B 49 

 
4.2. On specified in table B OHL to lead diagnostics of a technical condition using modern methods of the 
analysis. 
4.3. To organize for personnel ENE with unsatisfactory technical condition OHL short-term courses of 
improvement of qualification. 

 
Fig. 1. The form of data on operative reliability OHL EPS. 
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Conclusion 
 

1. Set of parameters of operative reliability and the formula of their estimation is proposed; 
2. The new algorithm of an estimation of expediency of classification of multivariate data 

about refusals and duration of downtime OHL is developed. At each stage of classification total 
OHL is represented by three groups. The first group includes OHL, an estimation of a indicator of 
which operative reliability is not casual less estimations of a similar indicator for total OHL. The 
second group includes OHL, the estimation of a indicator of which operative reliability casually 
differs from a similar indicator for total OHL. The third group includes OHL, an estimation of a 
indicator of which operative reliability is not casual more estimations of a similar indicator for total 
OHL;  

3. Methods and algorithms for comparing of two multivariate estimations of parameters of 
operative reliability OHL are developed, allowing to estimate character of change of reliability of 
these OHL in time; 

4. Methods and algorithms of ranging of parameters of operative reliability OHL the 
electric network enterprises are developed, allowing to identify OHL, that demanding operational 
inspection; 

5. Methods and algorithms of calculation of an estimation of an integrated parameter of 
operative reliability are developed; 

6. Monthly information and methodical support of a technical management of the electric 
network enterprises and an electric power system is provided. Methodical support includes 
recommendations on increase of reliability OHL. 
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Abstract

For the last decade, inspired by the increasing demand for probability distributions in numerous fields,
many generalized distributions have been studied. Most of these distributions are developed by adding
one or more parameter(s) to the standard probability distributions to make them flexible in capturing
the sensitive parts of a dataset. The Topp-Leone distribution (TL) is one of the continuous probability
distributions used in modelling lifetime datasets and sometimes is called J-shaped distribution. In this
paper, we proposed a new lifetime distribution named transmuted Exponential- Topp Leon distribution
in short (TE-TLD) which possessed different density shapes. Some properties of the distribution were
presented in an explicit form and the parameters of the distribution are estimated by the method of
maximum likelihood. The hazard function of the TE-TLD can be monotonic or non-monotonic failure
rate which makes it more robust in terms of studying failure rates. The TE-TLD outperformed other
distributions with the same underlying baseline distribution when applied to real datasets in the study.
Furthermore, the likelihood ratio test (LRT) shows that the additional parameter(s) are significant which
further proves the robustness of the TE-TLD over the nested distributions in the study.

Keywords: Topp Leon distribution, failure rate, Maximum Likelihood, generalized distributions

1. Introduction

In reliability and survival analysis, lifetime distributions such as Exponential, Weibull among
others, play an important role in modelling lifetime data. Most of these distributions have
infinite support in theory, as the lifetime of a system or item can be infinite. On the other hand,
distributions with finite support will be appropriate in modelling data sets that are generated as
a result of limited power supply, the design life of the system, among others [1]. For the past few
years, inspired by the increasing demand for probability distributions in numerous fields, many
generalized distributions have been studied. Most of these distributions are developed by adding
one or more parameter(s) to the standard probability distributions to make them robust in captur-
ing the sensitive parts of a dataset. For example, [2] proposed Beta Exponential distribution which
has three parameters and was found to be more flexible than the classical Exponential distribution.

The Topp-Leone distribution (TL) is one of the continuous probability distributions used in
modelling lifetime datasets and sometimes is called J-shaped distribution. This distribution has
a closed-form and was proposed by [3]. However, the J-shaped distribution had not received
much attention due to some of its complexity until [4] studied some properties of the distribution
which include moments, central moments, and characteristic function. This work led to increasing
interest in studying TL distribution. For instance, [1] studied and explored some reliability
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measures and their stochastic orderings, a comprehensive study on flat-toppedness of the TL
distribution was studied by [5], study on record values by [6], the moments of the order statistics
of the TL distribution was studied by [7], the goodness-of-fit tests for the TL distribution are
evaluated by [8] and [9] proposed Topp-Leone-Exponential distribution which has two parameters
and is skewed to the right.

Current kinds of literature pay more attention to propose more flexible distributions but
give less concern to the hazard function of the distributions. In reliability analysis, hazard rate
plays an important role to characterize life phenomena and as well guides in model selection
[10]. Furthermore, many systems exhibit failure rates that are non-monotonic. For instance,
the failure rate pattern of numerous electronic components comprises of three phases: initial
phase (or burn-in) where failure is high at the start of the product life cycle due to design and
manufacturing problems and decreases to a constant level, the middle phase (flat region) with
an approximately constant hazard rate, and the final phase (or wear-out stage), from where
the hazard rate starts to increase: This failure (hazard) rates are "U" or bathtub shaped. The
Exponential, Weibull, Gamma among other distributions, and some of their extensions allow only
monotone failure rates and are unable to produce bathtub shape and thus cannot appropriately
describe the datasets with this feature. These have opened room for more research that can
account for monotone and non-monotone hazard rate function.

In this research, we developed an extension of Topp Leon distribution named transmuted
Exponential-Topp Leon distribution (TE-TLD) which possessed both monotonic and non-monotonic
failure rate shapes and its density function can be left-skewed, right-skewed, Bathtub, or J-shape.
The cumulative distribution and probability density function of Topp Leon distribution are
respectively given as;

G(x, α) = xα(2 − x)α (1)

and

g(x, α) = 2αxα−1(1 − x)(2 − x)α−1 (2)

where, 0 < x < 1 and α > 0.
Based on the work of [11], the cdf and pdf of Transmuted Exponential-G family of distributions

are respectively given by;

F(x; λ, θ, ξ) =
(

1 − (1 − G(x, ξ))λ
) (

1 + θ (1 − G(x, ξ))λ
)

(3)

and

f (x; λ, θ, ξ) =
g(x, ξ)

1 − G(x, ξ)
λ (1 − G(x, ξ))λ

(
1 − θ + 2θ (1 − G(x, ξ))λ

)
(4)

Where, G(x, ξ) and g(x, ξ) are the baseline cdf and pdf respectively depending on a vector
parameter ξ whereas, λ > 0 , −1 ≤ θ ≤ 1 are two additional parameters i.e scale and transmuted
(shape) parameter respectively.

2. Transmuted Exponential-Topp Leon Distribution

Substituting equations (1) and (2) into (3) yields cumulative distribution function (cdf) of the
transmuted Exponential-Topp Leon distribution (TE-TLD).

F(x) =
[
1 − (1 − xα(2 − x)α)λ

] [
1 + θ (1 − xα(2 − x)α)λ

]
(5)

and the associated probability density function (pdf) is given by;

f (x) = 2αλxα−1(1 − x)(2 − x)α−1 (1 − xα(2 − x)α)λ−1
[
1 − θ + 2θ (1 − xα(2 − x)α)λ

]
(6)
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where, 0 < x < 1, α λ > 0 and − 1 ≤ θ ≤ 1.

A useful linear representation for the pdf of TE-TLD is given as;

f (x) = 2
n

∑
j=0

Ajxα(1+j)−1(1 − x)(2 − x)α(1+j)−1 (7)

where Aj = (−1)jαλ

{
(1 − θ)

(
λ − 1

j

)
+ 2θ

(
2λ − 1

j

)}

2.1. Distribution validity check

Fact 1: The TE-TLD is a valid density function.

1∫
0

f (x; α λ θ)dx = 1

Proof:

1∫
0

(
2αλxα−1(1 − x)(2 − x)α−1 (1 − xα(2 − x)α)λ−1

[
1 − θ + 2θ (1 − xα(2 − x)α)λ

])
dx

let u = 1 − xα(2 − x)α, as x → 0, u → 1 and x → 1, u → 0

du
dx = −

(
xαα(2 − x)α−1(−1) + (2 − x)ααxα−1) = −

(
xαα(2 − x)α

(
−1

(2−x) +
1
x

))
du
dx = −xαα(2 − x)α

(
−x+2−x
(2−x)x

)
= −2αxα(2−x)α(1−x)

(2−x)x

dx = −du
2αxα−1(2−x)α−1(1−x)

1∫
0

(
2αλxα−1(1 − x)(2 − x)α−1uλ−1 [1 − θ + 2θuλ

]) du
2αxα−1(2−x)α−1(1−x)

1∫
0

λuλ−1(1 − θ + 2θuλ)du

let v = uλ, dv
du = λuλ−1, du = dv

λuλ−1

1∫
0

λuλ−1(1 − θ + 2θv) dv
λuλ−1

Finally,

1∫
0
(1 − θ + 2θv)dv =

(
v − θv + θv2)1

0 = 1
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2.2. Graphical illustration of the pdf and cdf of TE-TLD

Figure 1: The pdf plot of TE-TLD

Figure 2: The cdf plot of TE-TLD
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The shape of the density function corresponding to the TE-TLD may be characterized as
follows;

∙ 1. For α = 1.5, λ = .5, θ = 0.8 and α = 2, λ = .5, θ = 1 , f(x) has a positive skewed shape.

∙ For α = 3, λ = .4, θ = 1 and α = 5, λ = .5, θ = .91 , f(x) has a negative skewed shape.

∙ For α = .4, λ = .2, θ = .6, f(x) has a bathtub shape.

∙ For α = .4, λ = .2, θ = −1, f(x) has a J-shaped.

3. Statistical properties of TE-TLD

In this section, some basic properties of TE-TLD are provided in an explicit form.

3.1. Moments and Moment generating function

The rth Moments of TE-TLD is given by;

µ
′
r = 2r

∞

∑
j=0

Aj4α(1+j)Be
(

r + α(1 + j), α(1 + j);
1
2

)
− 2r+1

∞

∑
j=0

Aj4α(1+j)Be
(

r + α(1 + j) + 1, α(1 + j);
1
2

)
(8)

where Aj = (−1)jαλ

{
(1 − θ)

(
λ − 1

j

)
+ 2θ

(
2λ − 1

j

)}
The rth Moment about the Mean is given by;

E(x − µ)r = αλ
∞
∑

j=0

r
∑

k=0
ψj,k2r+1+2α(1+j)−k−1Be

(
r + α(1 + j)− k, α(1 + j); 1

2

)

− αλ
∞

∑
j=0

r

∑
k=0

ψj,k2r+1+2α(1+j)−kBe
(

r + α(1 + j)− k + 1, α(1 + j);
1
2

)
(9)

where,

ψj,k = (−1)j+k
(

r
k

)
µk
{
(1 − θ)

(
λ − 1

j

)
+ 2θ

(
2λ − 1

j

)}
and, The moment generating function of TE-TLD is given by;

Mx(t) =
∞

∑
r, j=0

2rtr

r!
Aj4α(1+j)Be

(
r + α(1 + j), α(1 + j);

1
2

)
−

∞

∑
r, j=0

2rtr

r!
Aj22α(1+j)+1Be

(
r + α(1 + j) + 1, α(1 + j);

1
2

)
(10)

where Aj = (−1)jαλ

{
(1 − θ)

(
λ − 1

j

)
+ 2θ

(
2λ − 1

j

)}
andBe(., ., u) is an incomplete Beta

function .

3.2. Survival and Hazard function of TE-TLD

The survival and hazard function are respectively given as;

S(x) = 1 −
[
1 − (1 − xα(2 − x)α)λ

] [
1 + θ (1 − xα(2 − x)α)λ

]
(11)

and,
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h(x) =
2αλxα−1(1 − x)(2 − x)α−1 (1 − xα(2 − x)α)λ−1

[
1 − θ + 2θ (1 − xα(2 − x)α)λ

]
1 −

[
1 − (1 − xα(2 − x)α)λ

] [
1 + θ (1 − xα(2 − x)α)λ

] (12)

The plots of the survival and hazard function for some selected values of parameters are
respectively displayed in Figures 3 and 4 as shown below;

Figure 3: Survival plot of TE-TLD

Figure 4: Hazard plot of TE-TLD
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Figure 4 reveals that the hazard function of the TE-TLD possesses not only monotonic and
non-monotonic failure rate shapes but also includes modified increasing failure rates. The
monotonicity of the TE-TLD implies that the distribution may be a better choice when modelling
age-dependent events where the risk increases with age. The resulting bathtub curve describes
not only the behaviour of engineering components but also the lifetimes of human populations.
Furthermore, the non-monotonicity of the TE-TLD implies that early failure or "infant mortality"
is called the first stage of the bathtub curve and it is characterized by a decreasing component of
the hazard rate. The weak members of the population are failing during this period. This section
of the curve is based on the widely used testing practice of obviously defective components as
well as weak ones with high failure potential. Products must survive some sort of initial stress
during screening processes (e.g., burn-in at high temperature, application of electrical overstress,
temperature cycling). Furthermore, the second stage is a roughly flat part called the intrinsic
failure period. The hazard rate here is approximately constant and the failures occur at random
in this area and most of the useful life of a component or system is spent here. The last stage on
the curve is called the wear-out failure period and the hazard rate increase in this phase.

3.3. Quantile function of TE-TLD

For a non-negative continuous random variable X, that follows the TE-TLD, the quantile function
is given by;

Q(u) = 1 −

√√√√√√√√√1 −

1 −

 θ − 1 +
√
(θ − 1)2 + 4θ(1 − u)

2θ


1/λ


1/α

(13)

3.3.1 Simulation Study

Numerical results are obtained by generating N=1000 random samples of size n=200 from
TE − TL(α, 0.4, 0.8), TE − TL(0.5, λ, 0.8)& TE − TL(0.5, 0.4, θ) , where α = 0.5, 1, 1.5, 2, 3 & 10;
λ = 0.2, 0.5, 1, 1.5, 2& 2.5; θ = −1,−0.5,−0.2, 0.2, 0.5 & 1. From the numerical results in Table 1, it
was observed that the mean increases while variance, skewness and kurtosis decrease when α
increases. While from Table 2, it was observed that for a constant value of α and θ, the mean and
variance decrease both skewness and kurtosis increase as λ increases. Additionally, from Table
3, it was observed that as θ increases, both mean and variance decrease while at some certain
point the variance increases and the skewness changes direction from negative to positive and the
kurtosis decreases as well as increases at some point.
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Table 1: Mean, variance, skewness and kurtosis of TE-TLD for λ = 0.4, θ = 0.8 and different values of α

Parameter (α)
0.5 1 1.5 2 3 10

Mean
0.3039

(0.0198)
0.4192
(0.019)

0.4910
(0.0178)

0.5414
(0.0167)

0.6091
(0.0149)

0.7710
(0.0094)

Variance
0.0805

(0.0069)
0.0755

(0.0053)
0.0668

(0.0046)
0.0590

(0.0041)
0.0472

(0.0035)
0.019

(0.0017)

Skewness
0.8090

(0.1226)
0.3622

(0.1042)
0.1389

(0.1005)
0.0011

(0.1008)
-0.1623
(0.1050)

0.4556
(0.1282)

Kurtosis
2.4942

(0.2688)
2.0439

(0.1382)
2.0151

(0.1067)
2.0665

(0.1063)
2.2004

(0.1331)
2.6575

(0.2797)

Table 2: Mean, variance, skewness and kurtosis of TE-TLD for α = 0.5, θ = 0.8 and different values of λ

Parameter (λ)
0.2 0.5 1 1.5 2 2.5

Mean
0.4899

(0.0231)
0.2506

(0.0179)
0.1214

(0.0114)
0.0729

(0.0079)
0.0490

(0.0059)
0.0353

(0.0046)

Variance
0.1128

(0.0060)
0.0660

(0.0068)
0.0265

(0.0047)
0.0128

(0.0031)
0.0070

(0.0021)
0.0042

(0.0015)

Skewness
0.0556

(0.0060)
1.0672

(0.1363)
1.9809

(0.2547)
2.6254

(0.4628)
3.1268

(0.7152)
3.5226

(0.9585)

Kurtosis
1.6151

(0.0674)
3.1405

(0.3954)
7.0270

(1.5151)
11.4423
(3.9941)

15.8680
(7.5188)

19.9265
(11.2741)

Table 3: Mean, variance, skewness and kurtosis of TE-TLD for α = 0.5, λ = 0.4 and different values of θ

Parameter (θ)
-1 -0.5 -0.2 0.2 0.5 1

Mean
0.6416

(0.0.0187)
0.5469

(0.0216)
0.4901

(0.0223)
0.4151

(0.0223)
0.3594

(0.0215)
0.2667

(0.0063)

Variance
0.0757

(0.0055)
0.0994

(0.0058)
0.1054

(0.0058)
0.1040

(0.0063)
0.0955

(0.0068)
0.0666

(0.0063)

Skewness
-0.5251
(0.1064)

-0.2082
(0.1028)

0.0232
(0.1042)

0.3386
(0.1095)

0.5780
(0.1151)

0.9236
(0.3261)

Kurtosis
2.1826

(0.1715)
1.7621

(0.3954)
1.6593

(0.0691)
1.7660

(0.1167)
2.0456

(0.1837)
2.7921

(0.3261)

4. Maximum likelihood estimation

Let x1, x2 , ..., xn be a sample of size (n) from TE − TL(α, λ, θ) distribution. Then, the log-
likelihood function (LL) for the parameter vector Ω = (α, λ, θ)T is given as;
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LL(Ω) = n log 2 + n log α + n log λ + (α − 1)
n
∑

i=1
log xi +

n
∑

i=1
log(1 − xi) + (α − 1)

n
∑

i=1
log(2 −

xi)

+ (λ − 1)
n

∑
i=1

log(1 − xα
i (2 − xi)

α) +
n

∑
i=1

log
[
1 − θ + 2θ (1 − xα

i (2 − xi)
α)λ
]

(14)

To get the MLE of the unknown parameters, find the first partial derivative with respect to
each of the parameter of the distribution.

δLL(Ω)
δα = n

α +
n
∑

i=1
log xi +

n
∑

i=1
log(2 − xi) + (λ − 1)

n
∑

i=1

xα
i (2−xi)

α ln(xi(2−xi))

(1−xα
i (2−xi)α)

−2λθ
n
∑

i=1

(1−xα
i (2−xi)

α)
λ−1

xα
i (2−xi)

α ln(xi(2−xi))[
1−θ+2θ(1−xα

i (2−xi)α)
λ
]

δLL(Ω)
δλ = n

λ +
n
∑

i=1
log(1 − xα

i (2 − xi)
α) + 2θ

n
∑

i=1

(1−xα
i (2−xi)

α)
λ

ln(1−xα
i (2−xi)

α)[
1−θ+2θ(1−xα

i (2−xi)α)
λ
]

δLL(Ω)
δθ =

n
∑

i=1

2(1−xα
i (2−xi)

α)
λ−1[

1−θ+2θ(1−xα
i (2−xi)α)

λ
]

Finally, setting this system of non-linear equations to zero and solving them simultaneously

gives the MLE
_

Ω = (
_
α,

_

λ,
_

θ )T . Furthermore, these non-linear equations cannot be solved
analytically and as such a numerical method of optimization should be employed.

5. APPLICATIONS

In this section, we demonstrate empirically the flexibility of the TE-TLD using an application to
both real and simulated datasets and provide a comparison with other competing distributions
based on some goodness-of-fit statistics.

5.1. Real-Life Datasets

The first data is about the total milk production in the first birth of 107 cows from the SINDI
race. These cows are property of the Carnauba farm which belongs to the Agropecuaria Manoel
Dantas Ltda (AMDA), located in Taperoa City, Paraiba (Brazil) [12]. The second data set was used
by [13] and more recently by [14] which consist of n=50 observations on burr (in millimeter), with
hole diameter and sheet thickness 12 mm and 3.15 mm respectively. The competing distributions
are transmuted Topp Leon (TTL), Topp Leon Exponential (TLE), and Topp Leon (TL) distribution.

Table 4: Goodness-of-fit statistics for dataset I

Distribution -LL AIC CAIC HQIC W* A* KS

TE-TL -25.9741 -45.9481 -45.7151 -42.6975 0.1371 0.9035 0.0701

TTL -22.3121 -40.6241 -40.5087 -38.4570 0.1542 1.0103 0.1086

TLE -5.0388 -6.0775 -5.9621 -3.9104 0.7291 4.4011 0.1477

TL -21.5262 -41.0524 -41.0143 -39.9689 0.2333 1.4792 0.0972
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Table 5: Likelihood ratio test statistic for Dataset I

Distribution Hypotheses LRT P-value
TE-TL vs TTL H0 : λ = 1 vs H1 : H0 is f alse 7.324 0.0068
TE-TL vs TLE H0 : θ = 0 vs H1 : H0 is f alse 41.871 0.00001
TE-TL vs TL H0 : λ = 1 and θ = 0 vs H1 : H0 is f alse 8.896 0.011

Figure 5: The plot of the estimated densities for dataset I

Figure 6: The plot of the ecdf for dataset I

The estimated densities and the ecdf for dataset I are respectively displayed in Figures 5 and
6 and the important aspect of these figures is to provide illustration and explanation on the
flexibility of the competing distributions in the study in terms of capturing the sensitive parts of
the dataset and draw a possible conclusion regarding the performance of the distributions. From
Figures 5 and 6, we can observe that the TE-TLD shows a greater performance in capturing the
sensitive part of the dataset as compared to other distributions in the study.
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Table 6: Goodness-of-fit statistics for dataset II

Distribution -LL AIC CAIC HQIC W* A* KS

TE-TL -55.9914 -105.9827 -105.4610 -103.7984 0.1015 0.6246 0.1068

TTL -28.3701 -52.7403 -52.4850 -51.2841 0.1653 0.9917 0.3676

TLE -52.2863 -100.5725 -100.3172 -99.1163 0.2121 1.2634 0.1653

TL -28.4078 -54.8156 -54.7323 -54.0875 0.1654 0.9919 0.3623

Table 7: Likelihood ratio test statistic for Dataset II

Distribution Hypotheses LRT P-value
TE-TL vs TTL H0 : λ = 1 vs H1 : H0 is f alse 55.243 0.00001
TE-TL vs TLE H0 : θ = 0 vs H1 : H0 is f alse 7.410 0.0065
TE-TL vs TL H0 : λ = 1 and θ = 0 vs H1 : H0 is f alse 55.167 0.00001

Figure 7: The plot of the estimated densities for dataset II
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Figure 8: The plot of the ecdf for dataset II

The estimated densities and the ecdf for dataset II are respectively displayed in Figures 7
and 8 and the important aspect of these figures is to provide illustration and explanation on the
flexibility of the competing distributions in the study in terms of capturing the sensitive parts of
the dataset and draw a possible conclusion regarding the performance of the distributions. From
Figures 7 and 8, we can observe that the TE-TLD shows a greater performance in capturing the
sensitive part of the dataset as compared to other distributions in the study.

Some adequacy measures for the distributions are presented in Tables 4 and 6 for data sets I,
II respectively. Hence, it is observed that the proposed distribution has the lowest values of the
goodness-of-fit statistics and therefore, outperformed the other competing distributions in the
study. Figures 5 and 6 are respectively displayed the estimated densities and the ecdf for datasets
I, Figures 7 and 8 are respectively displayed the estimated densities and the ecdf for datasets II.

Likelihood ratio test is carried out to assess the significance of the additional parameter(s)
of the TE-G family of distributions. For datasets I and II, since all the P-values are less than
α = 0.05 , we therefore reject H0 and conclude that the additional parameter(s) are significant
which further prove the robustness of the TE-TLD over the nested distributions in the study.

6. Conclusion

In this paper, we proposed a new probability distribution by inducing Topp Leon distribution into
transmuted Exponential-G family of distributions. The proposed distribution named transmuted
Exponential- Topp Leon distribution in short (TE-TLD) which possessed different density shapes.
Some properties of the distribution were presented in an explicit form and the parameters of the
distribution are estimated by the method of maximum likelihood. The hazard function of the
TE-TLD can be monotonic or non-monotonic failure rate which makes it more robust in terms of
studying failure rates. The proposed distribution was found to be more robust as compared to
other competing distributions with the same underlying baseline distribution when applied to
real datasets in the study.
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I. Introduction

A Mn (Riemannian manifold) is symmetrical locally if ∇.R = 0 and symmetric if R(X, Y).R = 0
where R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z appears as a derivation. If R(X, Y).R = 0, then
Mn is turns to be the pseudo symmetric space that is defined with the criteria R.R = L(g, R).
A manifold Mn is conformally symmetric if ∇.C = 0 and if R.C = 0, it is said to be Weyl semi
symmetric which are characterised by the condition R.C = LCQ(g, C).

Schouten & Friedman proposed the concept of semi-symmetric linear connection on a differ-
entiable manifold. Some of the semi-symmetric curvature criteria in Riemannian manifolds are
given by Yano [12].

Semi symmetric metric connection plays a very significant part in the geometry of Riemannian
manifolds. For instance, a semi-symmetric metric is the displacement of the earth’s surface after
a fixed point. A quarter-symmetric connection is a linear connection ∇̃ on an n-dimensional
Riemannian manifold (Mn, g) if T̃ is T̃(X, Y) = η(Y)ϕX − η(X)ϕY.

Sato [8] proposed concepts of almost para contact Riemannian manifold. In 1977, Matsumoto
and Adati [1] characterized special para-Sasakian as well as para-Sasakian manifolds as a par-
ticular type of almost contact Riemannian manifolds. Before Sato, Kenmotsu [6] characterized
a type of this manifold. In 1995, Sinha and Sai Prasad [9] characterized a type of almost para
contact metric manifolds mainly para-Kenmotsu and special para-Kenmotsu manifolds. For the
literature, on Para-Kenmotsu manifolds one can refer to Balga [2], Srivastava and Srivastava [10],
Olszak [7] .

On the other hand, various geometers of Riemannian manifolds and specifically, SP-Sasakian
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manifolds were widely explored for the quarter-symmetric metric connections [3, 4, 5]. Inspired
by these studies, in this work, we explore a class of special para-Kenmotsu manifolds that allow-
ing the quarter-symmetric metric connection.

The current study is arranged as follows: Section 2 has certain prerequisites. In relation to
the quarter symmetric metric connection in an SP-Kenmotsu manifold, we derive the equations
for the Ricci tensor S̃ & Riemannian curvature tensor R̃ in Section 3. The equations in relation to
quarter symmetric metric connection are also derived in an SP-Kenmotsu manifold Mn for con-
circular curvature tensor Z̃ in Section 4. It is illustrated that the manifold Mn is η-Einstein given
the concircular curvature tensor Z̃ meets either of these conditions R̃(ξ, U).Z̃ = 0, Z̃(ξ, U).R̃ = 0,
Z̃(ξ, U).Z̃ = 0, Z̃(X, Y).S̃ = 0. Section 5 is intended to define and analyse the curvature prop-
erties in the quarter-symmetric metric connection of the Weyl-conformal curvature tensor C̃, of
form (0, 4), of SP-Kenmotsu manifold Mn. Finally, an illustration of a 3d SP-Kenmotsu manifold
is considered in Section 6.

II. Preliminaries

Suppose Mn be an n-dimensional differentiable manifold provided with structure tensors (Φ, ξ, η)
such that

(a) η(ξ) = 1

(b) Φ2(X) = X − η(X)ξ; X = ΦX.
(1)

Mn is called an almost para contact manifold.

Suppose that g be a Riemannian metric such that, for all vector fields X and Y on Mn

(a) g(X, ξ) = η(X)

(b) Φξ = 0, η(ΦX) = 0, rank Φ = n − 1

(c) g(ΦX, ΦY) = g(X, Y)− η(X)η(Y).

(2)

Then it is stated that the manifold [8] Mn accepts an almost para contact structure of Riemannian
(Φ, ξ, η, g).

Furthermore, if (Φ, ξ, η, g) fulfils the equations

(a) (∇Xη)Y − (∇Yη)X = 0;

(b) (∇X∇Yη)Z = [−g(X, Z) + η(X)η(Z)]η(Y) + [−g(X, Y) + η(X)η(Y)]η(Z);

(c) ∇Xξ = Φ2X = X − η(X)ξ;

(d) (∇XΦ)Y = −g(X, ΦY)ξ − η(Y)ΦX;

(3)

then Mn is termed a para-Kenmotsu manifold or simply a P-Kenmotsu manifold [9].

A P-Kenmotsu manifold Mn permitting a 1-form η fulfilling

(a) (∇Xη)Y = g(X, Y)− η(X)η(Y);

(b) (∇Xη)Y = φ(X, Y);
(4)

here φ signifies Φ associate, is termed a special para-Kenmotsu manifold or shortly SP-Kenmotsu
manifold [9].

Suppose (Mn, g) be an n-dimensional, n ≥ 3, differentiable manifold of class C∞ and let ∇
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be its connection Levi-Civita. Then curvature tensor R of class (1, 3) of the the Riemannian
Christoffel is provided by:

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z. (5)

The (0,2)-tensor S2 and the Ricci operator S are described as follows

g(SX, Y) = S(X, Y), (6)

and S2(X, Y) = S(SX, Y). (7)

It is known [9] that the following relationship exist in the P-Kenmotsu manifold:

(a) S(X, ξ) = −(n − 1)η(X),

(b) g[R(X, Y)Z, ξ] = η[R(X, Y, Z)] = g(X, Z)η(Y)− g(Y, Z)η(X),

(c) R(ξ, X)Y = g(X, Y)ξ − η(Y)X,

(d) R(X, Y)ξ = η(Y)X − η(X)Y; when X is orthogonal to ξ.

(8)

Almost para-contact Riemannian manifold Mn is termed to be η-Einstein and form of its Ricci
tensor

S(X, Y) = a g(X, Y) + b η(X) η(Y) (9)

Fields X and Y for any vector; a and b are a few scalars on Mn. In specific, if b = 0 thus Mn is
considered to be an Einstein manifold.

III. Curvature tensor

A linear connection ∇̃ in a Riemannian manifold Mn is called a quarter-symmetric metric con-
nection [4] if their torsion tensor T(X, Y) meets

T(X, Y) = η(Y) ΦX − η(X) ΦY, (10)

and
(∇̃X g)(Y, Z) = 0; (11)

where Φ iindicates a tensor field of the form (1, 1) and η is a 1-form.

A quarter-symmetric metric connection ∇̃ with torsion tensor (10) is given by

∇̃XY = ∇XY + η(Y) ΦX − φ(X, Y)ξ (12)

here, ∇ indicates Riemannian connection.

Suppose manifold Mn to be an SP-Kenmotsu manifold and Φ(X) as ΦX = X. Therefore the
(10) and (11) may be represented as:

T(X, Y) = η(Y)X − η(X)Y (13)

(∇̃X g)(Y, Z) = 0. (14)

Let us choose the linear and Riemannian connection as ∇̃ and ∇, respectively

∇̃XY = ∇XY + U(X, Y), U is a tensor o f type (1, 2) (15)

We have [12], for ∇̃ to be a quarter symmetric metric connection in Mn,

U(X, Y) = 1/2[T(X, Y) + T′(X, Y) + T′(Y, X)], (16)
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where
g(T′(X, Y), Z) = g(T(Z, X), Y)]. (17)

Using (13) and (17), we get
T′(X, Y) = η(X)Y − ′F(X, Y)ξ; (18)

here ′F(X, Y) = g(X, Y), η signifies a 1-form and ξ indicates the associated vector field.

From (13) and (16), in (18), we have

U(X, Y) = η(Y)X − ′F(X, Y)ξ, (19)

and then (15) becomes
∇̃XY = ∇XY + η(Y)X − ′F(X, Y)ξ; (20)

which indicates ∇̃ in an SP-Kenmotsu manifold.

Suppose R̃ and R be the curvature tensors of the connections ∇̃ and ∇ correspondingly, we
get

R̃(X, Y)Z = ∇̃X∇̃YZ − ∇̃Y∇̃XZ − ∇̃[X, Y]Z (21)

Using (20) and (5) in (21), we have

R̃(X, Y)Z = R(X, Y)Z + g(Y, Z)X − g(X, Z)Y. (22)

If we describe R̃(X, Y, Z, U) as g(R̃(X, Y)Z, U) and R(X, Y, Z, U) as g(R(X, Y)Z, U); then (22)
becomes

R̃(X, Y, Z, U) = R(X, Y, Z, U) + g(Y, Z)g(X, U)− g(X, Z)g(Y, U). (23)

The above expression (23) denotes the relation between R̃(X, Y)Z of Mn w.r.t. ∇̃ and R(X, Y)Z
w..r.t. ∇.

Put X = U = ei in (23), where ei be an orthonormal basis of the tangent space at any point
of the manifold and taking summation over i (1 ≤ i ≤n), we get

S̃(Y, Z) = S(Y, Z) + n g(Y, Z)− η(Y)η(Z); (24)

here S̃ and S signifies the Ricci tensors of ∇̃ and ∇.

From (24), by using Y = Z = ei, we obtain

r̃ = r + n2 − 1; (25)

here r̃ and r indicates the scalar curvatures of ∇̃ and ∇ correspondingly.

Theorem 3.1: Suppose that S̃ be the Ricci tensor & R̃ be the curvature tensor in an SP-Kenmotsu
manifold Mn w.r.t. ∇̃, then

(a) R̃(X, Y)Z + R̃(Y, Z)X + R̃(Z, X)Y = 0,

(b) R̃(X, Y, Z, U) + R̃(X, Y, U, Z) = 0,

(c) R̃(X, Y, Z, U)− R̃(Z, U, X, Y) = 0,

(d) R̃(X, Y, Z, ξ) = 2R(X, Y, Z, ξ),

(e) S̃(X, ξ) = 2S(X, ξ).
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Proof: Using first Bianchi identity and eq.(22) w.r.t. the Riemannian connection, we obtain (a).

From eq. (23), we obtain (b) & (c). By putting U = ξ in (23) and by using (8) we have (d).

By using Y = Z = ei in equation (d) as well as summation with i, we obtain (e).

Theorem 3.2: The Ricci tensor S̃ in an SP-Kenmotsu manifold Mn w.r.t. the connection for
the quarter-symmetric metric is symmetrical.

Proof: The theorem-proof is based on the eq. provided in (24).

IV. Concircular curvature tensor

The n-dimensional Riemannian manifold Mn is provided by the concircular curvature tensor
Z(X, Y) [11, 13]:

Z(X, Y)U = R(X, Y)U − r
n(n − 1)

[g(Y, U)X − g(X, U)Y] (26)

for all X, Y, U ∈ TM.

The concircular curvature tensor w.r.t. ∇̃ in an SP-Kenmotsu manifold is Z̃.

Therefore, using the equations (22) and (26), we get

Z̃(X, Y)U = Z(X, Y)U − 1
n
[g(Y, U)X − g(X, U)Y], (27)

which denotes the relation between the concircular curvature tensors w.r.t. ∇̃ and ∇.

Theorem 4.1: If Z̃ w.r.t. ∇̃ in an SP-Kenmotsu manifold satisfies R̃(ξ, U).Z̃ = 0, the mani-
fold is η-Einstein.

Proof: Suppose R̃(ξ, U).Z̃(X, Y)ξ = 0, in an SP-Kenmotsu manifold.

Then

(R̃(ξ, U).Z̃(X, Y)ξ)− Z̃(R̃(ξ, U)X, Y)ξ − Z̃(X, R̃(ξ, U)Y)ξ − Z̃(X, Y).R̃(ξ, U)ξ = 0. (28)

Also, from (8) and (22), we get

R̃(X, Y)ξ = 2[η(Y)X − η(X)Y] and (29)

R̃(ξ, X)U = 2[g(X, U)ξ − η(U)X]. (30)

Then, by using (28), (29) and (30), we get

Z̃(X, Y)U = 0. (31)

Now, using the equations (26) and (27), the equation (31) reduces to

R(X, Y, U) =
r + n − 1
n(n − 1)

[g(Y, U)X − g(X, U)Y]. (32)

We obtain with the above equation w.r.t. X,

S(Y, U) =
r + n − 1
n(n − 1)

[ng(Y, U)X − η(Y)η(U)], (33)
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which on further contracting, we get
r = 1 − n2. (34)

Using (34), the expression (33) becomes

S(Y, U) = η(Y)η(U)− ng(Y, U); (35)

which proves η-Einstein manifold.

Theorem 4.2: If Z̃ with respect to ∇̃ in an SP-Kenmotsu manifold satisfies Z̃(ξ, U).R̃ = 0, the
manifold is an η-Einstein.

Proof: Suppose that Z̃(ξ, U).R̃(X, Y)ξ = 0, in an SP-Kenmotsu manifold.

Then

(Z̃(ξ, U).R̃(X, Y)ξ)− R̃(Z̃(ξ, U)X, Y)ξ − R̃(X, Z̃(ξ, U)Y)ξ − R̃(X, Y).Z̃(ξ, U)ξ = 0 (36)

Also, from (8), (26) and (27), we have

Z̃(ξ, U)Y =
[ r

n(n − 1)
+

1
n
− 1
][

g(U, Y)ξ − η(Y)U
]

(37)

and
Z̃(X, Y)ξ =

[ r
n(n − 1)

+
1
n
− 1
][

η(X)Y − η(Y)X
]
. (38)

By substituting the values from (29), (30), (37) and (38) in the expression (36), we obtain

R̃(X, Y)U = g(U, Y)X − g(U, X)Y + η(U)[1 − η(X)]Y. (39)

Using (22), the above eq. becomes

R(X, Y)U = η(U)[1 − η(X)]Y; (40)

and it proves.

Theorem 4.3: If the Z̃ w.r.t. ∇̃ in an SP-Kenmotsu manifold meets Z̃(ξ, U).Z̃ = 0, the mani-
fold is η-Einstein.

Proof: The theorem-proof is trivial by the use of the the fact that Z̃(ξ, U).Z̃ indicates Z̃(ξ, U)
was acting on Z̃ as a derivation.

Theorem 4.4: If Z̃ (concircular curvature tensor) with respect to ∇̃(quarter symmetric metric
connection) in an SP-Kenmotsu manifold fulfills Z̃(X, Y).S̃ = 0, the manifold signifies η-Einstein.

Proof: Let Z̃(X, Y).S̃(U, V) = 0 in an SP-Kenmotsu manifold.

Then it means
S̃(Z̃(X, Y)U, V) + S̃(U, Z̃(X, Y)V) = 0. (41)

By choosing X = ξ in (41) and on using the equations (37) and (24), we obtain[ r
n(n − 1)

+
1
n
− 1
][

− η(U)S(Y, V)− nη(U)g(Y, V) + 2η(U)η(V)η(Y)

− η(V)S(U, Y)− nη(V)g(U, Y)
]
= 0.

(42)

Again by using U = ξ in the eq. (42), we get

S(Y, V) = η(Y)η(V)− ng(Y, V); (43)

which provides the required result.
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V. Conformal curvature tensor

The Weyl conformal curvature tensor C of the type (0, 4) of a manifold Mn w.r.t. a Riemannian
connection provided by [12, 13]:

C(X, Y, Z, U) = R(X, Y, Z, U)− 1
n − 2

[S(Y, Z)g(X, U)− S(X, Z)g(Y, U)

+ g(Y, Z)S(X, U)− g(X, Z)S(Y, U)]

+
r

(n − 1)(n − 2)
[g(Y, Z)g(X, U)− g(X, Z)g(Y, U)].

(44)

Analogous to this, we define C̃ i.e.Weyl conformal curvature tensor of the type (0, 4), of an
SP-Kenmotsu manifold w.r.t. the quarter-symmetric metric connection as:

C̃(X, Y, Z, U) =R̃(X, Y, Z, U)− 1
n − 2

[S̃(Y, Z)g(X, U)− S̃(X, Z)g(Y, U)

+ g(Y, Z)S̃(X, U)− g(X, Z)S̃(Y, U)]

+
r̃

(n − 1)(n − 2)
[g(Y, Z)g(X, U)− g(X, Z)g(Y, U)].

(45)

Then, using the equations (23), (24), (25), (44) and (45), we get

C̃(X, Y, Z, U) = C(X, Y, Z, U), (46)

which implies the following statement:

Theorem 5.1: The conformal curvature tensors of ∇̃ and ∇ are equal in an SP-Kenmotsu mani-
fold.

Suppose that R̃ = 0. Then S̃ = 0 and r̃ = 0.

From (45) we get that C̃ = 0 and hence using (46), we get C = 0.

Therefore, we provide the following theorem.

Theorem 5.2: The manifold is conformally flat in an SP-Kenmotsu manifold if the conformal
curvature tensor C̃ of ∇̃ vanishes.

Let S̃ = 0. Then r̃ = 0. Hence from (24) and (25), we get

S(Y, Z) = η(Y)η(Z)− n g(Y, Z) (47)

and
r = 1 − n2. (48)

Then by using (23), (44), (47) and (48), we obtain

R̃(X, Y, Z, U) = C(X, Y, Z, U). (49)

From (49), we state that

Theorem 5.3: Conformal curvature tensor C of the manifold is identical in an SP-Kenmotsu
manifold if S̃ (Ricci tensor) of ∇̃ i.e quarter-symmetric metric connection vanishes, then R̃ i.e.
curvature tensor of ∇̃ .

Using theorem (5.2) and (5.3), we state that

Theorem 5.4: If S̃ of ∇̃ in an SP-Kenmotsu manifold disappears, then the manifold is con-
formally flat if R̃ of ∇̃ vanishes.
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VI. Example of a 3d SP-Kenmotsu manifold admitting the

quarter-symmetric metric connection

Example 6.1: Suppose that 3d manifold M = {(x, y, u) ∈ R3}, where (x, y, u) indicates "standard
coordinates" in R3. Considering e1, e2 & e3 be fields of vector in M as

e1 = e−u ∂

∂x
, e2 = e−u ∂

∂y
, e3 =

∂

∂u
. (50)

for each point of M are linearly independent vectors and constitute a basis of χ(M).

Riemannian metric g(X, Y) is

g(ei, ej) =


1, i f i = j

0, i f i ̸= j; i, j = 1, 2, 3, 4, 5.

Letη(Z) = g(Z, e3), f or any Z ∈ χ(M)

Let η be a 1-form & (1, 1)-tensor field on M expressed by Φ defined as

Φ2(e1) = e1, Φ2(e2) = e2, Φ2(e3) = 0.

The g(X, Y) and linearity of Φ yields that

η(e3) = 1, Φ2(X) = X − η(X)e3 ; and

g(ΦX, ΦY) = g(X, Y)− η(X)η(Y)

for all vector fields X, Y ∈ χ(M).

Thus for e3 = ξ, (Φ, ξ, η, g) describes an almost para-contact structure in M.

Let ∇ be a Riemannian connection in regard to the Riemannian metric g.[
e1, e2

]
= 0, [e1, e3] = e1, [e2, e3] = e2.

The formula of Koszul’s is

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)

− g(X, [Y, Z])− g(Y, [X, Z]) + g(Z, [X, Y]).
(51)

By taking e3 = ξ in (51), one can get

∇e1 e1 = −e3,∇e1 e2 = 0,∇e1 e3 = e1;

∇e2 e1 = 0,∇e2 e2 = −e3,∇e2 e3 = e2;

∇e3 e1 = 0,∇e3 e2 = 0,∇e3 e3 = 0.

Therefore manifold under consideration satisfies ∇Xξ = Φ2X = X − η(X)ξ, η(ξ) = 1 and the
expression (3)d.

The above expressions satisfy all the properties of SP-Kenmotsu manifold with (Φ, ξ, η, g) . Thus
M(Φ, ξ, η, g) is a 3-dimensional manifold.

Further from (20), we get

∇̃e1 e1 = −2e3, ∇̃e1 e2 = 0, ∇̃e1 e3 = 2e1;

∇̃e2 e1 = 0, ∇̃e2 e2 = −2e3, ∇̃e2 e3 = 2e2;

∇̃e3 e1 = 0, ∇̃e3 e2 = 0, ∇̃e3 e3 = 0;
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Therefore T(X, Y) of ∇̃ can be expressed as:

T(ei, ei) = 0, f or i = 1, 2, 3; and

T(e1, e2) = 0, T(e1, e3) = e1, T(e2, e3) = e2.

Also, we get
(∇̃e1 g)(e2, e3) = 0, (∇̃e2 g)(e3, e1) = 0, (∇̃e3 g)(e1, e2) = 0,

which proves that the manifold M under consideration admits ∇̃.

Thus it proves that M under consideration is an SP-Kenmotsu manifold and allows ∇̃.
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          Abstract 
 
Pressure measurement plays significant role in development of various instruments and in industry. 
Pressure measurement, its control and accuracy are always attraction of scientist. There are many devices 
for the pressure measurement like U-tube manometer, Bourdon tube/Dial gauge, Dead weight tester. The 
present study focused on the precise generation of differential pressures with static pressure range in 0 
MPa to 50 MPa using twin pressure balance in hydraulic mode. The metrological characteristics of a 
differential pressure digital transducer were evaluated. 
 
Keywords: Metrology, Uncertainty, Dead Weight Tester (DWT), Digital transducer, 
Twin pressure balance   
 

I. Introduction 
 
Pressure and its measurement are quite complex. A reliable instrument is required to measure pressure 
precisely and accurately [1, 2]. Depending on mode of measurement, there are different kind of 
pressure. Pressure which exists in air free space is known as absolute pressure or actual pressure at a 
point. When pressure exerted by fluid on the wall of the container with respect to the pressure of 
surrounding medium is gauge pressure. Example: Air plans, cars, weather instrumentation. Pressure 
which is measured related to atmospheric pressure known as differential pressure, Reference pressure 
may have any value except zero. When gauge, absolute and differential pressure are measured then 
they are said to be in gauge, absolute and differential mode respectively. For the calibration of devices 
and maintain the primary standard directly or from the basic fundamental units, pressure is derived 
from length mass and time. Now a days,  there are many devices to measure pressure such as 
barometer, manometer, gauge, dead weight tester [3, 4]. Dead weight tester (DWT) has brought a 
revolutionary change in the calibration of devices. DWT is piston cylinder type primary standard 
measuring device. It is used to measure pressure generated by gas or liquid and for calibration of 
pressure gauge over a wide range of pressure.  
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The pressure measurement is in terms of fundamental unit, force and area. A piston is fitted within a 
cylinder. A force is applied in terms of mass in a gravitational field on piston and fluid under the piston 
get pressurized in equilibrium. It is generally used to calibrate pressure gauges, sensors, transmitters 
and transducers. On the basis of their applications, DWT is divided as hydraulic and pneumatic mode 
for the calibration of pressure instruments. In hydraulic mode, oil is used as fluid while in pneumatic 
mode air is used. It measures pressure nearly equal to 10,000 bars with accuracy of 250 ppm.  DWT has 
many advantages such as simple in construction, easy to use, widely used for the calibration, testing 
and adjustment of huge range of pressure measurement instrument.  
 
In the present study the combination of two dead weight tester (Twin pressure balance) is used for the 
measurement of differential pressure. Twin Pressure balance increases the pressure measurement and 
calibration range of instrument. Pressure with larger diameter create low pressure while with smaller 
diameter generate higher pressure. Thus, it provides two different cross-sectional area in single piston 
cylinder arrangement and hence it provide the flexibility to generate pressure in wide range (low to 
high) with single mass load. The calibration of DWT is accredited to international system of units 
through National metrology institutes (NMI) [5,6]. The NMI plays an important role for sustainability 
of existing devices and also for the development of new devices. 
 

II. Working principle 
 
Dead weight tester is based on the principle of Pascal’s law.  In an experiment, twin pressure balance 
(Model 55614, Desgranges & Huot, France) available at NPL, Delhi, India is used for calibration of 
test pressure gauge shown in figure 2. The whole arrangement consists of Oil reservoir, pipeline 
(through which oil flows), pressurization chamber and the gauge under test is fix on the top of 
pressurization Chamber. Sebacate oil is used as fluid in dead weight tester. The oil flows from the 
reservoir to the pressurization chamber and air is removed with the help of vacuum pump. The 
presence of air will create non-uniform pressure which results in inaccurate results. When the system 
is consisting of oil and is air free then the pressure gradually increases in pressurization chamber. The 
pressure in piston cylinder arrangement is balanced with an equal amount of force is exerted by the 
weights which is mounted on the cylinder. The sum of the pressure values mention on the weights is 
operated on the gauge which is under test and the corrections can be done by using small weights. The 
schematic diagram of experimental setup is shown in figure 1 [7–10]. 
The pressure (in Pa) generated by Dead weight tester is obtained by equation (1) [11,12]. 

 
                                         Simi .g (1- ra/ri) + gC 
															𝑃 = 																																																																																																																		±∆𝑝                                                     
(1) 
                                    A0 (1+b1pn+b2pn

2) [ (ac+ ap) (T -Tr)]  
 
mi=Mass of the weight, ρa = Density of air at laboratory condition, ρi = ith weight Density, γ = Surface 
tension of fluid, C = Circumference of the piston emerging out from the fluid ,A0= Piston – cylinder’s 
effective area at Zero pressure, αc& αp = Thermal expansion coefficients of cylinder’s and piston’s 
material ,T = Assembly temperature, Tr = Temperature at which A0 is referred b= Effective area‘s 
pressure Coefficient , ∆p = It is head correction in term of pressure (where ∆p = [(ρf–ρa) .g. H],In this 
equation, H depicts height difference between two dead weight tester’s reference level and (ρf) is 
transmitted fluid density. 
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Figure 1: Experimental setup for the calibration of DWT 
                                             
In the experiment the combination of two dead weight testers (Twin-Pressure balance) to calibrate the 
digital transducer. After connecting the digital gauge to the electric network, warm up time of 30 
minutes is provided to it. Leakage testing is done by applying the maximum pressure (50 MPa) for 10 
minutes before the experiment starts. The reading of differential pressure by the gauge is taken in 
increasing and decreasing order at different pressure points [13-16]. 
                 

 
                         

Figure 2: Pictorial view of experimental setup for the calibration of digital transducer 
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III. Calculation 
 
Data is recorded for differential pressure against different values of static pressure and constant line 
pressure (10 MPa). The nominal differential pressure by twin pressure balance is nearly same as shown 
by digital transducer. The differential pressure output of twin pressure balance is given by equation  
 
                                              ∆𝑃!=Preference 1 - P reference 2                                                                                                                                                     (2) 
 
During the calibration of gauge by twin - pressure balance, the measurement uncertainty is established 
in accordance to “JCGM 100: 2008 - GUM 1995 with some small corrections - Guide to the expression 
of uncertainty in measurement –measured data evaluation - First edition September 2008”. 
The digital gauge error is evaluated by subtracting the differential pressure recorded by twin pressure 
balance and differential pressure shown by transducer. For digital gauge calibration, the error is given 
by the expression  
 
                                                  E(P) = ∆𝑃" -∆𝑃!																																																						                                                  (3) 

 
E (P) = Digital gauge error. 
ΔPg = magnitude value depicted by gauge., Δ Pr = magnitude value measured by twin pressure 
balance. 
The error values obtained with the help of equation 3 are depicted in table 1 at different static 
pressure of 1, 30 and 49 MPa.in increasing and decreasing cycle. 
                                                                                   

Table.1: Instrument errors 

ΔP 
(MPa) 

                                               Error (in MPa) 

For Static Pr. 1 MPa For Static Pr. 30 MPa For Static Pr. 49 MPa 

Increasing Cycle 

0 0.000108 0.001368 2.60E-05 

0.5 0.000861 0.001742 7.34E-05 

1 0.00021 0.003318 0.001719141 

2 0.000829 0.004774 0.003363619 

Decreasing Cycle 

2 0.000932 0.002379 0.003632561 

1 0.000737 0.003219 0.001299314 

0.5 0.000228 0.001984 0.000983811 

0 0.000508 0.001241 5.46E-05 

IV. Results and Discussion 
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The figure 3 shows the error as the function of pressure. From the figure concluded that the errors are 
contained within the interval 0.000025959 MPa-0.004774 MPa. This value shows the resolution of the 
digital gauge. 
 

 
 

Figure 3: Plot for digital gauge error 
 
The above graph between error and pressure plays an important role for the evaluation of calibration 
quality. The calibration is called as control calibration if the error lies within the minimum acceptable 
limit. 

 
 

Figure 4: Plot for the hysteresis of the transducer 
Hysteresis in the measurement is defined as the difference between corresponding values of pressure in 
increasing and decreasing orders in the pressure cycle. The hysteresis is plotted for the three static pressure 
points operating up to full range of 49 MPa (shown in Figure 4). For more precise measurements, the 
transducer may be used either in increasing or decreasing order of pressures. The maximum hysteresis error 
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is 0.02395 MPa at static pressure 30 MPa i.e.  0.079 % of the full scale which is very minimal in this pressure 
range. 
 
Reproducibility defines as the closeness of results which is obtained by following the same procedures but 
under different experimental conditions. 
 
Table 2 shows metrological characteristics of   twin- pressure balance: maximum percentage error, 
hysteresis and reproducibility. The values in the table 2 are in the relation with the amplitude of the 
measuring range of digital gauge. 

Table.2: Maximum % error, hysteresis and reproducibility 

Maximum % error 0.019 

Hysteresis % 0.079 

Reproducibility % 0.0667 
 
Table 3 shows the expanded uncertainty (U) of the transducer with the respective coverage factors 2 
for the 95% confidence level. The value of uncertainty comes out to be the same for the different values 
of static pressure at the same value of pressure. 

Table.3: Expanded uncertainty 
 
 
 
 
 
 

 
V. Conclusion 

 
• A new methodology to be applied for differential pressure measurement using twin pressure balances 

is proposed. Error values obtained by transducer are lies within the range 0.000025959 MPa - 0.004774 
MPa. Which is quite small and shows the best results. The calibration uncertainty varied from 
9.67304E-06 MPa to 1.42707E-05 MPa. 

• During performance evaluation and calibration process, it is found that the hysteresis loss is very low 
i.e., 0.079 % of the full scale and reproducibility is also minimal 0.0667% of the full scale. Therefore, 
the transducer works well within reasonably good accuracy for high pressure range which is less than 
1% of the full scale. 

• This study concludes that the Twin -Pressure balance can be used as a Primary standard for 
differential pressure measurement. 

 
                                                  
  

Pressure  
(in MPa) Coverage factor (k) 

Uncertainty 
 (in MPa) 

0 2 9.67304E-06 
0.5 2 1.10346E-05 
1 2 1.22581E-05 
2 2 1.42707E-05 
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Abstract 
 

The aim of this paper is to investigate the performance of a single server batch queueing model 
with second optional service under transient and steady state domain. It is assumed that the 
customers arrive in groups as per compound Poisson process and the server gives two types of 
services, First Essential Service (FES), which is mandatory for all arriving customers and Second 
Optional Service (SOS), which is given to some customers those who request it. Both FES and 
SOS are provided in batches of maximum 𝑏 capacity. The transient and steady state probabilities 
of the model are obtained by using probability generating function and Laplace transform 
techniques. Finally, some numerical examples are presented to study the effect of the parameters 
on the system performance measures. 

 
Keywords: Batch Queueing Model, First Essential Service, Second Optional Service, 

Transient State, Steady State 
 
 

I. Introduction 
 

In real-life situations, one encounter numerous examples of queueing models wherein a 
server gives FES to all arriving customers, and a few of them may only demand the auxiliary 
service after the completion of the essential service. For instance, all arriving ships at a harbor may 
need unloading service on arrival but only a few of them may demand re-loading service 
immediately after the unloading. The concept of SOS was first introduced by [8] where numerous 
practical applications of SOS were given. [8] presented an 𝑀/𝐺/1 queue with SOS, whereby the 
service time distribution of the FES is general and the SOS is exponentially distributed. Later on, 
[9] generalized the concept of [8] in which the service time for both FES and SOS are independent 
having a general distribution. [16] studied the SOS in correlated reneging with working vacations. 
They use matric geometric method to obtain the steady state probabilities distribution of the 
queueing system size. 

Queueing models with bulk input have broad applications in manufacturing, computer 
networks, communication systems, etc., where the arrivals at a service point (e.g., a switch) may 
occur in bunches of distinctive sizes. The notation of batch arrival appeared in the queueing theory 
in the work of [10] who considered the single server queue with fixed size batch Poisson arrivals in 
transient domain. Similar work of batch arrival has been carried out in [19]. They presented a bulk 
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input queueing model with single working vacation and they obtained the stationary queue length 
distribution using the matrix analysis method and probability generating function. [14] and [15] 
analyzed a bulk arrival queueing model with variant working vacations. The probability 
generating functions are derived in the stationary state and achieved the expressions of the model 
when the server is operating in various states. Related studies on the analysis of queueing model of 
bulk arrival are found in [3], [7], [12], [17], etc., 

Batch service queues have a motivation on numerous applications such as in group testing of 
blood samples for detecting corona/HIV viruses, in mobile crowd-sourcing app for smart cities, 
eliminate defective items in manufacturing system, etc. The batch service queueing models has 
been analyzed by many authors. [11] investigated the batch service queueing model with servers’ 
variant vacations and obtained the steady state solutions using shifting operator and recursive 
technique. [6] discussed a single server queue with additional optional service in batches and 
server vacation. They have applied probability generating function method to obtain the queue 
length in stationary state. The analysis of bulk service queueing system with two heterogeneous 
servers in a discrete time has been presented in [5] with the help of displacement operator method 
and obtained closed form expressions for the limiting probabilities at arbitrary epoch. 

In this model, we consider the transient state due to its importance especially in 
manufacturing system with regular beginning up periods and transportation frameworks with 
time fluctuating interest; for instance, airport terminal runway activities in major airports [4]. The 
analytical solutions of the transient behavior of queueing systems are very rare due to the 
complexity of getting analytical solutions. However, there are few works carried out in transient 
states such as [10], [2], [1], etc. 

At the moment, most of the studies including [3], [7], [12], [13], [18] and many other are 
devoted to a single server batch queueing model with SOS in steady state, whereby customers 
arrive in groups as per Poisson process and served with general service distribution for both FES 
and SOS. However, in this paper, we consider a batch queueing model by involving the concept of 
SOS and investigated in both transient and steady state domains. We computed the probabilities 
and expected queue lengths when the server is busy in FES or SOS using probability generating 
function with the help of Laplace transform techniques. The advantage of expressions in Laplace 
transform is that it can be easily used for numerically transforming into time domain. 

The remainder of this paper is structured as follows. In section 2, we present the model 
description and mathematical formulation. In section 3, we discuss the transient state equations 
and solving using probability generating function on the Laplace transforms equations. The steady 
state analysis is obtained by applying the Tauberian property in section 4. Measures of 
performance are discussed in section 5. Numerical analysis and discussions are presented in 
section 6 and in section 7, we conclude the paper. 

 
II. Model Description and Mathematical Formula 

 
We consider an 𝑀!/𝑀[#]/1 queueing model with FES and SOS. Customers arrive in batches with 
rate  𝜆 > 0 conforming to a compound Poisson process. Let 𝑋 be a batch size random variable and 
𝑋%, 𝑋&, . . ., are corresponding batch sizes of arriving customers which are independently and 
identically distributed (i.i.d.) random variables, with probability mass function 𝑃{𝑋' = 𝑘} = 𝐶( , 𝑘 =
1, 2, 3, … . The service time distribution of both FES and SOS are exponential with rate	µ% and µ&, 
respectively and the services are given in batches of size not more than 𝑏 such that if the server 
finds the customers less or equal to 𝑏 in the waiting queue, the server takes all of them in the batch 
for service, but if the server finds the customers more than 𝑏 waiting in the queue, then she or he 
takes a batch of size 𝑏 while others remain waiting in the queue. The FES is required by all arriving 
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customers and after completing FES, they may opt SOS with probability	𝑟 or may depart from the 
system with probability 1 − 𝑟. Figure	1 below shows the transition rate diagram of various 
transition states of the model. 

 
Figure 1: Transition rate diagram for 𝑛 = 6, 𝑏	 = 	3, 𝑘	 = 	2. 

 
I. Formulation of Mathematical Model 

 
Suppose 𝐿(𝑡) be the length of the queue at time	𝑡, and 𝐽(𝑡) is the server state with 

𝐽(𝑡) = B
1, 		𝑖𝑓	𝑡ℎ𝑒	𝑠𝑒𝑟𝑣𝑒𝑟	𝑖𝑠	𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔	𝐹𝐸𝑆
2, 	𝑖𝑓	𝑡ℎ𝑒	𝑠𝑒𝑟𝑣𝑒𝑟	𝑖𝑠	𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔	𝑆𝑂𝑆. 

The stochastic process {(𝐿(𝑡), 𝐽(𝑡)); 	𝑡	 ≥ 	0}	is a two-dimensional Markov Chain with the state 
space: 

Ω = {(𝑛, 𝑖); 		𝑛 ≥ 0; 		𝑖 = 1, 2}. 
Further, let the transient probabilities are defined as 

𝑃),'(𝑡) = 𝑃𝑟{𝐿(𝑡) = 𝑛, 𝐽(𝑡) = 𝑖}; 	𝑛 ≥ 0; 	𝑖 = 1, 2. 
Here, 	𝑃),'(𝑡) is the transient probability that there are 𝑛 units in the queue at time 𝑡 and the server 
is providing FES and SOS service, and 𝑄(𝑡) is the probability when the queue is empty and the 
server is idle at time 𝑡. Using Markov theory, the differential-difference equations of the model are 
as follows: 

 
III. Transient Solution of the Model 

 
In this section, the transient system size probability of the expected queue length when the server 
is idle and busy are presented by using Laplace transform (L.T) and probability generating 
functions. Let us assume that time is figured from the moment the server has taken a batch for 

 𝑄+(𝑡) = −𝜆𝑄(𝑡) + (1 − 𝑟)µ%𝑃,,%(𝑡) + µ&𝑃,,&(𝑡), (1) 

 
𝑃+,,%(𝑡) = −(𝜆 + µ%)𝑃,,%(𝑡) + 𝜆𝑄(𝑡) + (1 − 𝑟)µ%W𝑃',%

#

'-%

(𝑡) + µ&W𝑃',&

#

'-%

(𝑡), (2) 

 
𝑃!",$(𝑡) = −(𝜆 + µ$)𝑃",$(𝑡) + 𝜆3𝑃"%&,$(𝑡)

"

'($

𝐶& + (1 − 𝑟)µ$𝑃")*,$(𝑡) + µ+𝑃")*,+(𝑡), 𝑛 ≥ 1, (3) 

 𝑃+,,&(𝑡) = −(𝜆 + µ&)𝑃,,&(𝑡) + 𝑟µ%𝑃,,%(𝑡), (4) 

 
𝑃+),&(𝑡) = −(𝜆 + µ&)𝑃),&(𝑡) + 𝜆W𝑃).(,&(𝑡)

)

'-%

𝐶( + 𝑟µ%𝑃),%(𝑡), 𝑛 ≥ 1. (5) 
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service, leaving none in the queue. i.e., 𝑃,,%(0) 	= 	1. Let 𝑄∗(𝑠), 𝑃),'∗ (s) denote the L.T of 𝑄(𝑡), 𝑃),'(𝑡),
𝑖	 = 	1, 2, respectively. Taking L.T of equations from equation (1) to (5), we get 
 
 (𝑠 + 𝜆)𝑄∗(𝑠) = (1 − 𝑟)µ%𝑃,,%∗ (s) + µ&𝑃,,&∗ (𝑠),  (6) 

 
(𝑠 + 𝜆 + µ%)𝑃,,%∗ (s) = 1 + 𝜆𝑄∗(𝑠) + (1 − 𝑟)µ%W𝑃',%∗ (s)	

#

'-%

+ µ&W𝑃',&∗ (s),
#

'-%

 (7) 

 
(𝑠 + 𝜆 + µ%)𝑃),%∗ (s) 	= 𝜆W𝑃).(,%∗ (𝑠)𝐶(

)

'-%

+ (1 − 𝑟)µ%𝑃)0#,%∗ (s) 	+ µ&𝑃)0#,&∗ (s)	,			𝑛 ≥ 1, (8) 

 (𝑠 + 𝜆 + µ&)𝑃,,&∗ (s) = 	𝑟µ%𝑃,,%∗ (𝑠),  (9) 

 
(𝑠 + 𝜆 + µ&)𝑃),&∗ (s) 	= 𝜆W𝑃).(,&∗ (𝑠)𝐶(

)

'-%

+ 𝑟µ%𝑃),%∗ (s)	,			𝑛 ≥ 1. (10) 

Let us define the probability generating functions as: 
 
 

𝑃%(𝑠, 𝑧) = W𝑃),%∗ (𝑠)𝑧)
1

)-,

, 𝑃&(𝑠, 𝑧) = W𝑃),&∗ (𝑠)𝑧)
1

)-,

	  

 
The probability generating function of arrival batch size 𝑋 is defined as: 
 
 

𝐶(𝑧) = W𝐶(𝑧(
)

(-%

	 ; 	 |𝑧| ≤ 1; 		𝑘 = 1,2,3… (11) 

 
Multiplying equations (7) and (8) by 𝑧)	 and taking summation from 𝑛	 = 	0 to 𝑛	 = 	∞ then, 
adding to (6) and after simplification, we have 
 
 

𝑃%(s, z) =
𝑧#(𝑠𝑄∗(𝑠) − 1) + (1 − 𝑧#)𝐴(𝑠, 𝑧) − µ&𝑃&(𝑠, 𝑧)

𝜆𝐶(𝑧)𝑧# − (𝑠 + 𝜆 + µ%)𝑧# + (1 − 𝑟)µ%
, (12) 

where 

𝐴(𝑠, 𝑧) = `(1 − 𝑟)µ%W𝑃),%∗ (𝑠)𝑧) + µ&W𝑃),&∗ (𝑠)𝑧)
#.%

)-,

#.%

)-,

a. 

Similarly, from equation (9)	and (10), we get 
 
 

𝑃&(s, z) =
−𝑟µ%𝑃%(𝑠, 𝑧)

𝜆𝐶(𝑧) − (𝑠 + 𝜆 + µ&)
. (13) 

 
Substituting equation (13) in (12), we obtain 
 
 

𝑃%(s, z) =
(𝜆𝐶(𝑧) − (𝑠 + 𝜆 + µ&))[𝑧#(𝑠𝑄∗(𝑠) − 1) + (1 − 𝑧#)𝐴(𝑠, 𝑧)]

(𝜆𝐶(𝑧))&𝑧# − 𝜆𝐶(𝑧)(2𝑠 + 2𝜆 + µ% + µ&)𝑧# + 𝐵
, (14) 

where 
𝐵 = (𝑠 + 𝜆 + µ%)(𝑠 + 𝜆 + µ&)𝑧# + 𝜆𝐶(𝑧)(1 − 𝑟)µ%𝑧 − (𝑠 + 𝜆 + µ&)(1 − 𝑟)µ% − 𝑟µ%µ&. 

 
We assume that arrival batch size 𝑋 follows a geometric distribution with parameter 𝑞 as given by. 
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 𝑃(𝑋 = 𝑘) = 𝐶( = (1 − 𝑞)(.%𝑞; 		0 ≤ 𝑞 ≤ 1; 			𝑘 = 1,2,3… (15) 

 
Using (11) and (15), we obtain 
 
 𝐶(z) =

𝑞𝑧
1 − 𝑧 + 𝑞𝑧. (16) 

 
Substitute (16) into (14), we obtain 
 
 

𝑃%(s, z) =
𝐵%(1 − 𝑧 + 𝑞𝑧)[𝑧#(𝑠𝑄∗(𝑠) − 1) + (1 − 𝑧#)𝐴(𝑠, 𝑧)]

(𝜆𝑞)&𝑧#0& − 𝜆𝑞(1 − 𝑧 + 𝑞𝑧)(2𝑠 + 2𝜆 + µ% + µ&)𝑧#0% + 𝐵&
, (17) 

 
where 

𝐵% = (𝜆𝑞𝑧 − (𝑠 + 𝜆 + µ&)(1 − 𝑧 + 𝑞𝑧), 
𝐵& = (1 − 𝑧 + 𝑞𝑧)&(𝑠 + 𝜆 + µ%)	(𝑠 + 𝜆 + µ&)𝑧# + 𝜆𝑞𝑧(1 − 𝑧 + 𝑞𝑧)(1 − 𝑟)µ% 

                        −(1 − 𝑧 + 𝑞𝑧)&	(𝑠 + 𝜆 + µ&)(1 − 𝑟)µ% − (1 − 𝑧 + 𝑞𝑧)&	𝑟µ%µ&. 
 
We notice that the denominator of 𝑃%(𝑠, 𝑧) has 𝑏	 + 2 zeros. Using Rouche’s theorem to the 
denominator, it follows that 𝑏 of these roots lie on or inside the unit circle. One zero of the 
denominator is 𝑧	 = 	1 and other 𝑏	 − 1 zeros lie within and should harmonize with those of 
numerator for 𝑃%(𝑠, 𝑧) to converge, so that when a zero shows up in the denominator, it is dropped 
by one in the numerator. The remaining two zeros of the denominator lie outside the unit circle. 
Let the roots be 𝑧, and 𝑧%, we have 
 
 

𝑃%(s, z) =
(1 − 𝑧 + 𝑞𝑧)[𝜆𝑞𝑧 − (𝑠 + 𝜆 + µ&)(1 − 𝑧 + 𝑞𝑧)](1 − 𝑧#)𝐷(𝑠)

(𝑧 − 1)(𝑧 − 𝑧,)(𝑧 − 𝑧%)
, (18) 

where 𝐷(𝑠) is a function independent of 𝑧.  
For 𝑧	 = 	1 in (13) and using L’Hospital rule at 𝑧	 = 	1 in (18), we get 
 
 

𝑃%(s, 1) =
𝑞&(𝑠 + µ&)𝑏𝐷(𝑠)
(1 − 𝑧,)(1 − 𝑧%)

, (19) 

 
𝑃&(s, 1) =

𝑟µ%𝑃%(𝑠, 1)
(𝑠 + µ&)

. (20) 

 
Using the normalization condition 𝑃%(𝑠, 1) + 𝑃&(𝑠, 1) + 𝑄∗(𝑠) 	= 	

%
2
	, we have 

 
𝑃%(s, 1) =

h1 − 𝑠𝑄∗(𝑠)i(𝑠 + µ&)
𝑠(𝑠 + 𝑟µ% + µ&)

. (21) 

 
Using (19) and (21)	one can determine the function of 𝐷(𝑠) as 
 
 

𝑃%(s, 1) =
h1 − 𝑠𝑄∗(𝑠)i(1 − 𝑧,)(1 − 𝑧%)

𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏
. (22) 

 
Substitute (22) into (18), we get 
 
 

𝑃%(s, z) =
(1 − 𝑧 + 𝑞𝑧)𝐵%(1 − 𝑧#)h1 − 𝑠𝑄∗(𝑠)i(1 − 𝑧,)(1 − 𝑧%)

𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏(𝑧 − 1)(𝑧 − 𝑧,)(𝑧 − 𝑧%)
. (23) 
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When 𝑧	 = 	0, equation (23) and (13), respectively becomes 
 
 

𝑃,,%∗ (s) =
h1 − 𝑠𝑄∗(𝑠)i(𝑠 + 𝜆 + µ&)(𝑟, − 1)(𝑟% − 1)

𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏
, (24) 

 
𝑃,,&∗ (s) =

𝑟µ%h1 − 𝑠𝑄∗(𝑠)i(𝑟, − 1)(𝑟% − 1)
𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏

, (25) 

 
where 𝑧, = 1 𝑟,⁄ , 𝑧% 	= 	 1 𝑟%⁄ .  
From equation (6), we can determine the value of 𝑄∗(𝑠) by using (24) and (25), we have 
 
 

𝑄∗(s) =
𝐵3	(𝑠)

𝑠[(𝑠 + 𝜆)(𝑠 + 𝑟µ% + µ&)𝑞&𝑏 + 𝐵3	(𝑠)]
, (26) 

 
where 

𝐵3(𝑠) = [(1 − 𝑟)µ%(𝑠 + 𝜆 + µ&) + 𝑟µ%µ&](𝑟, − 1)(𝑟% − 1). 
 
Equation (26) represents the L.T of the state probability that the queue is empty and the server is 
idle. It is obtained from the equation (6) by using the equations (24) and (25).		In the following 
section, we obtain the stationary probabilities by using the Tauberian property. 
 

IV. Steady State Solution of the Model 
 

In this part, we obtain the closed form solutions of the limiting state probabilities for the length of 
the queue size when the server is idle or busy in FES and SOS by using the Tauberian property as 
defined below: 
 
 𝑄 = lim

4→1
𝑄(𝑡) = lim

2→,
𝑠𝑄∗(𝑠), (27) 

 𝑃),% = lim
4→1

𝑃),%(𝑡) = lim
2→,

𝑠𝑃),%∗ (𝑠), (28) 

 𝑃),& = lim
4→1

𝑃),&(𝑡) = lim
2→,

𝑠𝑃),&∗ (𝑠). (29) 

 
If the limit exists, the steady state probabilities of (24), (25) and (26) are: 
 
 

𝑃,,% =
(1 − 𝑄)(𝜆 + µ&)(𝑟, − 1)(𝑟% − 1)

(𝑟µ% + µ&)𝑞&𝑏
. (30) 

 
𝑃,,& =

𝑟µ%(1 − 𝑄)(𝑟, − 1)(𝑟% − 1)
(𝑟µ% + µ&)𝑞&𝑏

, (31) 

 
𝑄 =

𝐵3	
𝜆(𝑟µ% + µ&)𝑞&𝑏 + 𝐵3

, (32) 

where 
𝐵3 = [(1 − 𝑟)µ%(𝜆 + µ&) + 𝑟µ%µ&](𝑟, − 1)(𝑟% − 1). 

 
 

V. Performance Measures 
 
Practical applicability of any mathematical model can be accessed in terms of its measures of 
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performance. In this paper different execution measures of the queue are calculated such as 
probability that the server is active and the expected queue size when the server is active in FES or 
SOS. The performance measures are carried out in both transient and steady state as follows: 
 
I. Performance Measures in Transient State 

 
The busy probability in FES is given by: 

𝑃[𝐹𝐸𝑆](𝑠) = W𝑃),%∗ (𝑠).
1

)-,

 

The busy probability of the server in FES is obtained by setting 𝑧	 = 	1 in equation (23) and 
applying L’Hospital rule, we get 
 
 

𝑃[𝐹𝐸𝑆](𝑠) = W𝑃),%∗ (𝑠)
1

)-,

=
h1 − 𝑠𝑄∗(𝑠)i(𝑠 + µ&)
𝑠(𝑠 + 𝑟µ% + µ&)

. (33) 

 
The busy probability in SOS is given by 
 

𝑃[𝑆𝑂𝑆](𝑠) = W𝑃),&∗ (𝑠).
1

)-,

 

The busy probability in SOS is obtained by setting 𝑧	 = 	1 in equation (13) and using (33), we get 
 
 

𝑃[𝑆𝑂𝑆](𝑠) =W𝑃),&∗ (𝑠)
1

)-,

=
𝑟µ%h1 − 𝑠𝑄∗(𝑠)i
𝑠(𝑠 + 𝑟µ% + µ&)

. (34) 

 
The anticipated length of the queue size when the server is busy in FES 

𝐿[𝐹𝐸𝑆](𝑠) = W𝑛𝑃),%∗ (𝑠).
1

)-,

 

This is obtained by taking derivative of equation (23)	 with respect to 𝑧, setting 𝑧	 = 	1 and using 
L’Hospital rule. Thus we get 
 
 

W𝑛𝑃),%∗ (𝑠)
1

)-,

=
h1 − 𝑠𝑄∗(𝑠)in(𝑟, − 1)(𝑟% − 1)𝐵6(𝑠) − [𝑞(𝑠 + µ&)(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑠(𝑠 + 𝑟µ% + µ&)(𝑟, − 1)(𝑟% − 1))
, (35) 

where  𝐵6(𝑠) = n𝑞(𝑠 + µ&)(𝑏 − 1) − 2[𝜆 + (𝑠 + µ&)(2 − 2𝑞)]o. 
 
The anticipated length of the queue size when the server is busy in SOS 

𝐿[𝑆𝑂𝑆](𝑠) = W𝑛𝑃),&∗ (𝑠).
1

)-,

 

 
This is obtained by taking derivative of equation (13) with respect to 𝑧	and using (35) by setting 
𝑧	 = 	1, we get 
 
 

W𝑛𝑃),&∗ (𝑠)
1

)-,

=
𝑟µ%h1 − 𝑠𝑄∗(𝑠)in(𝑟, − 1)(𝑟% − 1)𝐵6(𝑠) − [𝑞(𝑠 + µ&)(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑠(𝑠 + 𝑟µ% + µ&)(𝑠 + µ&)(𝑟, − 1)(𝑟% − 1))

+
𝜆𝑟µ%h1 − 𝑠𝑄∗(𝑠)i

𝑞𝑠(𝑠 + µ&)(𝑠 + 𝑟µ% + µ&)
. 

(36) 
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The overall queue length is 
 
 

𝐿7(𝑠) = W𝑛𝑃),%∗ (𝑠) +W𝑛𝑃),&∗ (𝑠).
1

)-,

1

)-,

 (37) 

 
The anticipated waiting time in the queue is 
 
 

𝑊7(𝑠) =
𝑞 × 𝐿7(𝑠)

𝜆 . (38) 

 
 
II. Performance Measures in Steady State 
 
Assuming that the limit of the equations (27), (28) and (29) exist, the steady state equations 
corresponding to the equations (33) to (38), respectively are given by 
 

𝑃[𝐹𝐸𝑆] = W𝑃),%

1

)-,

=
(1 − 𝑄)µ&
𝑟µ% + µ&

, 

𝑃[𝑆𝑂𝑆] = W𝑃),&

1

)-,

=
𝑟µ%(1 − 𝑄)
(𝑟µ% + µ&)

, 

 

W𝑛𝑃),%

1

)-,

=
(1 − 𝑄)n(𝑟, − 1)(𝑟% − 1)𝐵6 − [𝑞µ&(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑟µ% + µ&)(𝑟, − 1)(𝑟% − 1)
, 

W𝑛𝑃),&

1

)-,

=
𝑟µ%(1 − 𝑄)n(𝑟, − 1)(𝑟% − 1)𝐵6 − [𝑞µ&(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑟µ% + µ&)µ&(𝑟, − 1)(𝑟% − 1)
+

𝜆𝑟µ%(1 − 𝑄)
𝑞µ&(𝑟µ% + µ&)

, 

𝐿7 =W𝑛𝑃),% +W𝑛𝑃),&

1

)-,

1

)-,

 

and 

									𝑊7 =
𝑞 × 𝐿7
𝜆 , 

where  𝐵6 = n𝑞µ&(𝑏 − 1) − 2[𝜆 + µ&(2 − 2𝑞)]o. 
 

 
 

VI. Numerical Investigation 
 
In this part, we perform the transient and steady state numerical analysis of the model. In transient 
state, the Laplace transform expressions given in section 5.1 are inverted into time domain using a 
software package of Mathematica. Furthermore, we study the parameters impact on the model 
performance and discussion on numerical results by taking the model parameters as: 𝑏	 = 	5, 𝜆	 =
	3, µ% 	= 	3.5, µ& = 	3, 𝑟	 = 	0.45, 𝑞	 = 	0.4, 𝑟, = 	0.9039, and 𝑟% 	= 	0.7686,	unless their values are 
mentioned in the respective places. 
 
Figures 2 and 3 show the time dependent probability of FES and SOS with variation of time points. 
We observe that the probability values in FES (Figure 2) decrease rapidly in the beginning from 
point one up to a certain value where it reaches the steady state with increasing of time while the 
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probability values in SOS (Figure 3) increase progressively from zero initially up to a certain value 
and it attains the steady state with increasing of time. In addition, it is noticed that the probabilities 
of both FES and SOS increase as the arrival rate 𝜆 increases. Figure 4 plots the transient state 
probability of empty queue and idle server versus time for different values of arrival rate. In this 
graph, we observe that the idleness probability decreases as the rate of arrivals increases. 
 
Figure 5 demonstrates the variation of arrival rate 𝜆 on the expected queue size 𝐿7 with respect to 
time. It is noticed that expected queue size increases when arrival rate increases. This is due to the 
fact that when arrival rate increases, more customers join the queue and leads to an increase in the 
length of the queue. Figure 6 shows the impact of r on the expected waiting time in queue 
(𝑊7)	and it is observed that as r increases, both 𝑊[𝐹𝐸𝑆] and 𝑊[𝑆𝑂𝑆] increase. In addition, it 
reaches a point where the waiting time in SOS is more compared to FES as 𝑟 increases. This is 
coherent with the fact that the service rate in FES is greater than that in SOS 𝑖. 𝑒., µ% >	µ&. 
 
Figures 7 and 8 show the effect of arrival rate 𝜆 on the expected queue size	𝐿7 for different batch 
size parameter 𝑞 (Figure 7) and different batch service size 𝑏 (Figure 8). It is obvious that the 
anticipated queue length increases with the increase in arrival rate 𝜆 (Figure	7). For a particular 𝜆 
𝐿7 increases as 𝑞 decreases, this is on the grounds that the mean batch size (1/𝑞) positively 
influences the number of customers in the queue. Hence, the mean queue size increases. While in 
Figure 8 we observe that the expected queue size decreases with increase of batch service size	𝑏 
and increases with increasing of arrival rate 𝜆. 
 

 
Figure 2: The probability that the server is busy in FES versus time 
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 Figure 3: The probability that the server is busy in SOS versus time 

 
Figure 4: The transient state probability of empty queue and idle server versus time 

Figure 5: Effect of variation of 𝜆 on 𝐿, with respect to time 
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Figure 6: Effect of  𝑟 on the expected waiting time in queue (𝑊,) 

 
Figure 7: Effect of variation of 𝜆 and 𝑞	on the expected queue length (𝐿,) 

 
Figure 8: Effect of variation in 𝜆 and 𝑏 on the expected queue length (𝐿,) 
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VII. Conclusion  

 
In this article, we studied a single server batch queueing model with SOS under transient and 
steady state domain. We derived the transient and steady state probabilities when the server is 
busy in FES or SOS. Furthermore, we have studied the impact of various parameters on the 
performance measures of the model and discussed the results in the form of graphs. In addition, 
the analysis of the model will motivate a useful performance evaluation tool in practical 
applications such as telecommunication network through packet switching, in group testing of 
blood samples for detecting Corona / HIV viruses, package delivery, etc. Finally, the present work 
might be extended to multi-server multi-arrival system with reneging and vacations. 
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Abstract 
 

Nowadays, large volumes of data generate by numerous business organizations due to digital 
communications, web applications, social media, internet of things, cloud and mobile computing. 
Such has turned the nature of classical data into big data. Loan risk analysis is one of the most 
importance financial tasks, where financial organizations predict loan risk through customer 
financial history and behavioral data. Financial institutions face loan risk related issues when 
they make a loan to a bad customer. As a result, financial institutions divide loan applications 
into loan risk and non-risk clusters before making a loan for avoiding the loan risk challenges. 
Clustering approach is a data mining technique that uses data behavior and nature to discover the 
unexpected loan without any external information. Clustering algorithms face efficiency and 
effectiveness challenges as a result of the primary characteristics of big data. Sampling is of the 
data reduction technique that reduces computation time and improves cluster quality, scalability 
and speed of clustering algorithm. This study suggests a Stratified Remainder linear Systematic 
Sampling Extension (SRSE) approach for loan risk analysis in big data clustering using a single 
machine execution. The SRSE sampling plan enhances the effectiveness and efficiency of the 
clustering algorithm by employing maximum variance stratum formulation, remainder linear 
systematic sampling and extending sampling results into final result through centroid distance 
metric. The performance of the SRSE-based clustering algorithm has been compared to existing 
K-means and K-means++ algorithms using Davies Bouldin score, Silhouette coefficient, SD 
Validity, Ray-Turi index and CPU time validation metric on risk datasets.  

 
Keywords: Loan Risk Clustering, Big Data Clustering, Stratified Sampling, Remainder linear 
Systematic Sampling, Sample Extension, K-means, SRSE-K-means, SRSE- K-means++. 

 
I. Introduction 

 
The volume of data has increased rapidly as a result of the development of the internet of things, 
cloud computing, web applications, communication technologies and social networks. Big data 
mining is analysis and process dealing the massive amounts of data for an organization's decision-
making system [1]. The major characteristics of big data are volume (large scale of data), variety 
(various categories of data), and velocity (speed of data, stay motion). These three Vs are referred 
to as core features of big data, whereas the remaining Vs are referred to as supportable 
characteristics. Veracity (quality of processed data), variability (inconsistency of data), value 
(importance of data) and visualization (imagining the data) are other characteristics. Volume is a 
key attribute of big data and is represented in the scale of Terabytes and Petabytes. Variety handles 
a wide range of heterogeneous data sources, formats and their types.  Velocity represents the rate 
of data creation, generation, delivery and updates in batch time, real-time and streaming across the 
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heterogeneous sources [2–4]. Veracity determines the quality, trustworthiness and accuracy of the 
data during the mining process because some heterogeneous sources generate inconsistent, 
incomplete, imprecise and ambiguous data [3, 4] . Value related to attributes (importance) of data 
for decision-making during the analysis process. It is described as valuable information on a 
massive volume and heterogeneous data that does not impair business decisions [2, 5] . Variability 
indicates the nature of data across the time and is fragments used in big data sentiment analysis. It 
refers to data whose structure, meaning, and behavior constantly change over time due to rapid 
data growth [5, 6]. Visualization pictures the raw and analyzed data as per user expectation and 
understandable in the form of figure or graphical presentation such as a table, graph, picture, chart 
and so on [7]. 

Big data mining is the discovery of knowledge, unknown correlations, actionable 
information and hidden patterns in big data sources useful for decision-making [2]. The objective 
of data mining is to predict the unknown insight and provide a description of predicate values that 
users easily can interpret. A data relation approach is another way of big data mining that 
identifies the relationship between attributes of a dataset. Big data mining research necessitates 
transparency because the large volume of data provides valuable knowledge, relationships and 
hidden patterns. The variety of data types and data sources leads to a diversification of mining 
results, and data velocity defines real-time mining [8]. Big data mining utilizes stability, high-
efficiency, low computational cost and better risk management capability [9]. The combination of 
statistics and data mining techniques is known as intelligent big data mining and addresses the 
process and management challenges in mining framework [2]. Big data mining under risk 
reduction is classified as association rule learning, clustering, classification, and regression 
prediction.  

Clustering is a technique used risk reduction for unsupervised predictive data mining that 
predicts class label based on homogeneity, similarity, or characteristics. Each risk cluster has a high 
degree of resemblance and a significant separation degree among them. The distance between data 
points with the shortest distance within-cluster is defined as having a high similarity within-
cluster. A high separation results in the maximum distance between clusters. [10].  The application 
of clustering is in the fields of pattern recognition, image segmentation, artificial intelligence, 
wireless sensor networks, text analysis, bioinformatics, financial analysis, vector quantization and 
so on [11, 12].  

Clustering is used in risk analysis applications such as supplier risk assessment [13], 
probabilistic risk assessment [14], project interdependent risk [15], financial risk analysis [16],  
insurance risk analysis, dynamic rockfall risk analysis [17], fall risk assessment [18] etc.  Credit and 
debit risk concentrations are managed by banks and financial departments. The clustering 
technique allows customers to spend less time processing loan applications, and financial 
organizations predict loan risk in terms of good and bad customer for loan repayment. Borrowers' 
loan repayment capacity and loan risk are determined by their liabilities, reliance on family 
members, loans from other sources, individual age, increase in future income, etc. The 
identification of loan risk factors improves organizational safety and performance [14].  

Kara et al. [13] assessed the 17 qualitative and quantitative supplier risks using the K-
means clustering algorithm. The data points within the cluster indicate the specific risk, and their 
interpretation facilitates risk management and reduces supplier risk. It used the supplier risk-
related dataset to identify the most reliable supplier by minimizing risk. Mandelli et al. [14] used 
principal component analysis and mean-shift methodology to identify similar behavioral risk 
events using the clustering algorithm for probabilistic risk assessment. Marle et al. [15] used 
interaction-based clustering to categorize the risks. The proposed methodology used the clustering 
objective for prioritization and resource allocation during risk grouping. Kou et al. [16] used real-
life credit and bankruptcy risk datasets to evaluate a clustering algorithm based on multiple 
criteria decision making (MCDM) problems for financial risk analysis. 

Fahad et al. [19] outlined the volume, variety, and velocity evolution criteria of the 
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conventional risk clustering approach for big data. The volume of the conventional clustering 
technique is recognized as the dataset size, high dimensionality and outlier detection. The variety 
is recognized as a dataset type and the clustering shape of the conventional clustering algorithm. 
The velocity is considered in the complexity and execution time of the conventional clustering 
algorithm. The existing risk clustering algorithms are unsuitable for big data mining due to these  
characteristics in terms of scalability, performance, quality and speedup. Volume is a dominant 
attribute of big data that reason data mining algorithms to pose storage and processing challenges. 
Data Volume necessitates a large amount of hardware and takes a long time to execute algorithms.  
The most common big data clustering methods are incremental, divide and conquer, data 
summarization, sampling, efficient nearest neighbor, dimension reduction, parallel computing, 
condensation, granular computing and so on [11, 20–22]. 

Nowadays, sampling and distributed/parallelization systems are two major strategies to 
solve big data mining-related issues. Sampling is a widely scientific method in the context of big 
data because it accurately reduces the data amount to a manageable size, increases scalability and 
speeds up algorithm execution with data processing [23, 24]. The execution of risk clustering is 
divided into single and multiple machines categories under big data mining, where single machine 
clustering use single machine resources and multiple machines used distributed execution. 
Parallel/distributed computation and data reduction are two common approaches to large-scale 
data clustering [22]. 

Sampling is a data reduction strategy that is useful for improving efficiency and 
performance when dealing with various types of problems related to data mining and database 
systems [25–27]. Sampling process minimizes data size and saves computation time and memory, 
while establishing a balance between the computational cost of high volume data and 
approximation results [24, 28]. The sampling-based data mining technique reduces the amount of 
data for mining and is known as an approximation approach [22]. It achieves approximate results 
within a specific time with query optimization for the decision support system. It is used in high-
volume data applications such as risk analysis, database sampling, online aggregation, correlation 
discovery, stream-sampling, and so on [29, 30]. 

The analysis of big data necessitates the use of highly scalable clustering techniques. The 
computational complexity of the classical clustering algorithms is high on large scale data set that 
reason it cannot be straight applied to large-scale. The computational efficiency and cluster quality 
are the major challenges in the large scale data clustering. The objective of this study is to improve 
computational efficiency in terms of scalability, resources utilization, computational cost, and 
speed-up of big data clustering utilizing stratified remainder linear systematic sampling extension 
(SRSE) approach in the application of loan risk analysis on single machine execution. This study is 
organized into five sections. The second section examines sampling-based clustering algorithms 
and their applications in data mining. The third section introduces the stratified remainder linear 
systematic sampling extension approach and provides a sampling strategy for big data clustering. 
Section four contains the proposed work implementation using the K-means and K-means++ 
algorithms and provides as well as their validation on loan risk datasets using internal measures. 
The final section of the work wraps up the work and explores new possibilities. The final section of 
the work concludes the work and explores additional possibilities. 
 

II. Literature review 
 
This section presents sampling-based works on data mining based on existing research 
perspectives and investigates the advantages of stratified and systematic sampling over other 
sampling methods. Most of the data mining algorithms use uniform random sampling, systematic 
sampling, progressive sampling, stratified sampling and reservoir sampling. Uniform random 
sampling selects data from large data sets using a random number generator [31]. In systematic 
sampling, the first data point of the sample is selected in random order and the remaining sample 
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data points are selected at fixed intervals from the dataset [32]. Progressive sampling starts with a 
small sample size and gradually increases the sample size until a satisfactory performance measure 
is obtained [25]. Stratified sampling splits the dataset into homogeneous sample data, which is 
known as strata,  then uses random sampling to collect samples from the strata for processing [22]. 
Reservoir sampling is used for data stream mining for both homogeneous and heterogeneous data 
sources [33].  

Buddhakulsomsiri et al. [34] used a stratified random sampling approach in the 
application of health care systems to bill processing accuracy. The sampling plan used the 
rectangular method for strata construction to utilize sample resources, and measured the accuracy 
by percent and dollar accuracy. Silva et al. [35] proposed the CLUSMASTER (CLUStering on 
MASTER) algorithm through sampling for data streams in the application of sensor networks. The 
sampling procedure shortens the execution time and allocates fewer resources to the MASTER 
algorithm.  The CLUSMASTER selects the best samples from each sensor in a network while 
minimizing the sum of square errors of the cluster. Rajasekaran et al. [36] proposed the DSC 
(Deterministic Sampling-based Clustering) algorithm for hierarchical and partitional clustering. 
The DSC algorithm improved the speed and accuracy as compared to the random sampling. 

Jaiswal et al. [37] proposed a PTAS method based on D2-Sampling and K-means 
clustering. The PTAS shortened the time required for exhaustive search and optimized the 
objective function of clustering. Parker et al. [36] introduced geometric progressive fuzzy c-means 
(GOFCM) and minimum sample estimate random fuzzy c-means (MSERFCM) accelerated 
algorithms. Both clustering methods used novel stopping criteria and sampling for subsample size 
identification to speed up the initialization process. The GOFCM algorithm combines single-pass 
fuzzy c-means (SPFCM) and progressive sampling, whereas the MSERFCM algorithm combines 
random sampling and fuzzy c-means extension. 

Xu et al. [38] proposed the Summation-bAsed Incremental Learning (SAIL) algorithm to 
avoid effectiveness and efficiency issues associated with text clustering on a large scale of text 
documents. The SAIL algorithm employs random sampling to address data scalability issues using 
an approximate approach. The use of random sampling significantly reduces computation costs 
and controls sampling error. Luchi et al. [39] use K-means to cluster a large data set using random 
sampling and a genetic approach. This approach guides better sample selection through genetic 
operations and reasonable computing time. 

Jing et al. [40] combined a stratified sampling method and an ensemble clustering 
algorithm on a high dimensional dataset. The stratified sampling is used to generate the subspace 
component of the dataset. The proposed method achieves a better clustering structure and more 
accurate results than random sampling and random projection methods without sacrificing cluster 
diversity. Li et al. [41] proposed a Distributed Stratified Sampling approach for big data. The 
stratified sampling extracts the subsample size from each partition of the data distribution in 
parallel order. The DSS algorithm achieved higher sample representativeness, accuracy, scalability, 
and efficiency with low data-transmission costs than state-of-the-art methods. 

Zhan et al. [42] solved eigenfunction problems for spectral clustering algorithms in image 
segmentation applications using the Nyström sampling method. The Nyström technique is used to 
reduce the time and space complexity. The proposed method is effective for solving high-
resolution image-related problems such as high dimensionality, small sample sizes, feasibility, and 
overall clustering solution. Aloise et al. [43] used an iterative sampling algorithm to solve the 
strongly NP-hard minimax diameter clustering problem (MMDCP). The proposed algorithm used 
the heuristic procedure to select the optimal solution across the sample. 

Reddy et al. [44] proposed an optimal stratification design for data mining algorithms 
using Weibull-distributed auxiliary information in the context of a health population. The auxiliary 
information is used for strata construction in the absence of study variables. This study states that 
the combination of data mining and a well-designed sampling plan enhances the accuracy of 
mining results. Sainil et al. [45] compared the performance of stratified random sampling and 
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stratified ranked set sampling in terms of bias and mean square error. These evaluations show that 
stratified ranked set sampling is more efficient than stratified random sampling. 

Li et al. [46] dveloped the clustering ensemble algorithm through sample stability, which 
divided the dataset into cluster core and cluster halo for the underlying cluster structure of the 
data set. The cluster core discovers the cluster structure through samples, and the cluster halo 
assigns the sample data into cluster construction. Zhao et al. [22] proposed the Stratified Sampling 
plus Extension FCM (abbr. SSEFCM) algorithm for large-scale datasets by combining stratified 
sampling and fuzzy c-means clustering. The SSEFCM improves computational efficiency and 
cluster quality while diminishing computational complexity. 

Goshu et al. [47] proposed the Systematic Sampling Evolutionary (SSE) method, which is a 
derivative-free meta-heuristic type algorithm that combines a systematic sampling procedure and 
nature-inspired particle swarm optimization algorithm. Systematic sampling is used to determine 
the leader decision of the evolutionary algorithm, which searches for the action decision at each 
iteration. Prasad et al. [48] address the solution of the bigVAT algorithm through sampling and 
crisp partitions. The bigVAT is used for cluster tendency detection of big data clusters using the K-
means algorithm on synthetic and real-life datasets. The sampling process selects a sample from 
inter-cluster data objects, and the crisp partitions technique predicts the cluster labels of sample 
objects. 

Nguyen et al. [49] proposed the S-VOILA (Streaming Variance OptImaL Allocation) 
algorithm for streaming and non-streaming data using stratified random sampling and mini-batch 
processing. The S-VOILA algorithm reduces the variance of sample data through locally variance-
optimal allocation and maintains the stratum via weighted sampling. 

Larson et al. [50] investigated systematic and random sample designs and discovered that 
systematic sampling outperforms random sampling in terms of variance estimator, sample size, 
and data range. Stratified sampling outperforms simple random sampling in terms of statistical 
precision and sampling error. To achieve better accuracy, performance, and computing resource 
utilization, stratified sampling used a smaller sample size than random sampling [24]. According 
to the literature [41], stratified sampling can achieve higher statistical precision and improve 
representativeness by reducing sampling error than simple random sampling, because variability 
within subgroups with similar properties is lower than that of the entire population. Stratified 
sampling also extracts better samples from the dataset in terms of size and representativeness, 
which saves time and costs associated with the data processing algorithm. 

The literature [32] states that sampled data from systematic sampling is more accurate and 
has spatial autocorrelation than random sampling. The results of the experiments [32] show that 
systematic sampling has variance-related issues that can be resolved by combining systematic and 
stratified sampling because each stratum has an optimal variance sample. The results of a 
comparison of uniform random sampling, progressive sampling, biased sampling, and stratified 
sampling show that stratified sampling achieves higher computational efficiency and quality for 
the clustering process [22]. 
 

III. Proposed Work 
 
The practical approach of the sample plan for clustering across several domains is determined by 
existing research [22, 51, 52] and literature.  The stratification technique reduces sample variance, 
whereas clustering reduces variance within a cluster. As a result, combining stratification and 
clustering improves the effectiveness and efficiency of clustering algorithm. Uniform random 
sampling is entirely dependent on sampling design, data structure, and sampling strategy. The 
random sampling does not cover the entire dataset; therefore the sample representativeness 
quality is reduced. To avoid this issue, systematic sampling is preferable because it sample data 
covers the entire dataset. This section describes the clustering objective, sampling contents, and 
presents the stratified remainder linear systematic sampling extension approach (SRSE) for loan 
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risk clustering on big data mining using single machine execution. The proposed method reduces 
computation costs and improves computational efficiency while maintaining cluster quality during 
risk clustering. 
 
I. Objective function for loan risk clustering  
 
Let the X loan risk based dataset 𝑁 =	 {𝑥!, 𝑥", …… . . 𝑥#}		to be clustered C into 𝐾 =	 {𝐶!, 𝐶", …… . . 𝐶$} 
on the basis of predefined similarity function in d dimension space of loan risk attribute set. The 
considered clustering approach minimizes the within-cluster Sum of Squared Error (WSSE) and 
maximizes the between-cluster Sum of Squared Error (BSSE). The objective criterion defined 
described in Eq. 1 [20]. 
 

𝑊𝑆𝑆𝐸	(𝑋, 𝐶) = ∑ ∑ 	‖𝑥% − 𝜇&‖"'!∈	*"
$
&+!                         (1) 

 
where 𝑥% is the data point and  𝜇$ is the centroid of 𝐶$ cluster. The content of 𝐶$ to the minimum 
SSE problem is defined by as under [53].   
 

                                           𝐶& = 6𝑥% ∈ 𝑋|𝑘 = arg	min	
,∈{!,",….$}

@𝑥% − 𝜇,@
"	A                  (2) 

 

                                                           𝜇& =
∑ '!#!∈	&"

|*!|
                      (3) 

 
II. Sampling content  
 
The presented clustering approach uses the stratification, remainder linear systematic sampling 
and sample extension process for loan risk group detection.  
 
A. Stratification  
 

The sampling-frame is divided into non-overlapping strata in stratified sampling 
according to data behaviors, types, location, attributes, variance, correction, regression, 
characteristics, format and so on. The strata are internally homogeneous with respect to the study 
variable that maximizes the precision of sampling results. Stratified sampling divides the N 
heterogeneous data points of loan risk dataset into 𝐿 = {𝑆!, 𝑆", …… . . 𝑆4} homogeneous strata, where 
each stratum h consists of 𝑁5 data units and used the {𝑆! 	∪ 	𝑆" ∪ …… . 	∪ 𝑆5} = 𝑁 and {𝑆! 	∩ 	𝑆" ∩
…… . 	∩ 	𝑆5} = 	𝜃 conditions, where ℎ = 1,2,3, … . . 𝐿 and  ∑ 𝑁5		 = 𝑁 =	{𝑥!, 𝑥", …… . . 𝑥#}4

5+!  [54, 55]. 
The stratum is derived from the loan risk data set by the stratification process. The maximum 
variance attribute and ascending sorting heuristics have used in this study to employ novel 
stratification methods. Algorithm 1 and Figure 1 illustrate the conceptual stratification 
representation.  

This study used a remainder linear systematic sampling approach; therefore the 
stratification process formed the dataset into two strata. The stratification process first extracts the 
study variable based on maximum variance and then arranges the entire loan risk dataset based on 
the selected variable. The remainder linear systematic sampling method is used to determine the 
number of data points in strata. 

 
B. Remainder Linear Systematic Sampling  
 
Chang et al. proposed the Remainder Linear Systematic Sampling (RLSS) method to overcome the 
limitations of linear systematic sampling [56] in terms of N≠nl and linear sample size. Where N is 
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the size of the dataset, n is the sample size and l is the sample interval. The RLSS resolved the 
systematic sampling issue through a combination of stratification and linear systematic sampling. 
The number of data points in the loan risk dataset is represented in the RLSS approach by N=nl+r, 
0≤r≤n. The RLSS approach is more efficient when the sample size is not a multiple of the dataset 
size and in N≠nl situations. The n, l and r are the integer numbers, and r is the reminder data points 
of the sampling process [56][57] .  
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Figure 1. Conceptual Representation of proposed Stratification and Sampling Plan (SRSE)  
 
The number of data points in strata is determined by the integer constraints n, l, and r. This study 
has adopted the Cochran formula for sample size identification, which is shown in Eq. 4 and Eq. 5. 
[58]. 

𝑛6 =
7'(9:)
<'

            (4) 
 
where z denotes the standard error, p indicates the variability of the dataset, q signifies the (p-1), 
and e represents the acceptable sample error. In this study, the standard error is set at 99% for the 
confidence interval, so the z value is set at 2.576, the variability value p was set at 0.5, and the 
acceptable sample error e is set at 1% for the 99 confidence interval. To obtain the total sample size, 
the sample size is normalized by the total number of data points in the loan risk dataset [58]. 
 

𝑛 = =(
!>	=( #⁄

       (5) 

 
The sampling interval is determines every nth data point of stratum is chosen for clustering. Eq. 6 is 
determined the sampling interval. 
 

        𝑙 = 𝑁/𝑛            (6) 
 
The reminder data points r refer to the un-sample data points after the sampling procedure. Eq. 7 
describes the identification of the number of reminder data points r. 
 
               𝑟 = 𝑁 − 𝑛𝑙             (7) 
 
The number of data points in the strata is determined by the values of n, l, and r. The first stratum 
is made up of the first (n-r)l data points from the sorted loan risk dataset. The second strata is 
represented by the remaining r(l+1) data points of the sorted loan risk dataset. These scenarios are 
described in Eq. 8. 

𝑁 = 𝑛𝑙 + 𝑟 = (𝑛 − 𝑟)𝑙+	𝑟(𝑙 + 1)                     (8) 
 
After stratification, the RLSS is used to define the sample size and sample selection interval for 
each stratum.  The (n - r) data points of the first strata are selected for a sample pool/clustering 
with a l linear systematic sampling interval, while r data points of the second strata are selected for 
a sample pool/clustering with a (l +1) linear systematic sampling interval. As a result, Eq. 9 
determines the total number of sample sizes n. 
 

𝑛 = (𝑛 − 𝑟) + 𝑟                (9) 
 
C. Sample extension 
 
The Sample extension approach uses centroid-based distance to convert sample-based clustering 
results into final clustering results. The centroid-based distance used the Euclidean distance 
approach, which assigns un-sample data to its closed cluster using a centroid of the sample based 
cluster. Eq. 10 describes the sample extension function, where 𝐴% 	is the data point of the un-sample 
data pool and 𝐵%	is the mean of the cluster centroid [22]. 
 
                                                      𝑑𝑖𝑠@ABCDE@FG(𝐴, 𝐵) = V∑ |𝐴% − 𝐵%|"=

%+!                                        (10) 
 
III. Algorithm Description  
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This section describes the stratified remainder linear systematic sampling extension (SRSE) 
approach for loan risk analysis through stratification, remainder linear systematic sampling, and 
sample extension. The standard sampling plan first selects the dimension with the highest variance 
of the risk-based dataset and then sorts the entire dataset based on the selected dimension. The 
data points are then assigned to both strata using remainder linear systematic sampling 
rules.  After the stratification process, it collects the required number of sample data points into a 
sample pool for clustering. The strata sample size and sample interval determined the sample data. 
The sample based clustering results are merged into the final results with the help of the sample 
extension method. The sample unit is used for clustering, and the resulting value is merged with 
an un-sample unit via sample extension. The proposed SRSE sampling plan is detailed in 
Algorithm 1 and the sampling flowchart is shown in Figure 1.  
 

Algorithm 1 Stratified Remainder linear Systematic sampling Extension (SRSE) Big Data 
Clustering Approach  
Input:  

1. 𝑁 =	 {𝑥!, 𝑥", …… . . 𝑥#}	is the data points of the loan risk based D dataset. 
2. K = Required number of clusters. 

Output: 
1. 𝐶$ = {	𝐶!, 𝐶"……	𝐶&	} of the clustering results.  

Methods: 
Stratification 

1. Identify the maximum variance dimension of the dataset.      
• 𝑣H = 𝑚𝑎𝑥(σ!E", σ"E", …………… , σIE", ) 

2. Sort the entire data of the dataset according to the 𝑣H dimension in ascending order. 
3. Determine the total sample size n for the clustering process through Eq. 5. 
4. Extracts sample interval l from the entire dataset by Eq. 6. 
5. Define the number of remainder sample data points n through Eq. 7. 
6. Determine the number of data points for each stratum with the help of n, l and r. 

• 𝑆1 = (𝑛 − 𝑟)𝑙 
• 𝑆2 = 𝑟(𝑙 + 1) 

7.  Extract two strata from the entire dataset based on the sorted dataset .  
• S1=N[0:	(𝑛 − 𝑟)] 
• S1=N[(𝑛 − 𝑟): 𝑙𝑒𝑛(𝑁)] 

Sample size identification 
8. Determine the number of data point of sample size for both strata according to Eq. 

9.  
• 𝑛! = (𝑛 − 𝑟) 
• 𝑛" = 𝑟 

Sample allocation 
9. Extract every lth data points for S1 and every (l+1)th data point for S2 strata through 

linear systematic sampling.   
10. Combine all n1 and n2 sample data points into the 𝑛J		 sample pool and all un-

sample data points into the 𝑢J		 un-sample pool.  
Clustering algorithm  

11. Apply necessary clustering algorithms in 𝑛J		and achieved approximate clustering 
results such as K-means (𝑛J		, K), K-means++ (𝑛J		, K), etc.  

Sample extension  
12. According to Eq. 10, assign 𝑢J		un-sampled pool data to approximate clustering 

results based on nearest Euclidean distance. 
13. Achieved final clustering results in the loan risk and non-loan risk clusters and 

Exit. 
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IV. Experimental Analysis over Loan Risk Data  

 
The experimental study evaluates the research effort based on the computing environment, 
datasets, existing algorithms, evaluation criteria, and outcomes. This section discusses the 
experimental environment, loan risk dataset characteristics, and validation criteria. The 
effectiveness and efficiency-related assessment criteria are used to evaluate the performance of the 
SRSE-based clustering approach. 

 
I. Experiment Environments and Loan Risk Dataset  
 
The computing environment of the SRSE-based clustering approach used in the Jupyter Notebook 
computing environment. The experimental environment is configured with an Intel I3 processor, 
CPU M350@2.27 GHz, 320 GB hard disk, 4(+64) GB DDR3 RAM, Windows 7 operating system, and 
Python tools. The experimental analysis was performed on four loan risk datasets within a single 
machine execution environment. Table 1 illustrates the characteristics and sources of the 
experimental loan risk datasets. 
 

Table 1 Description of the Loan Risk Datasets. 
 

ID Datasets (DB) Objects Attributes  Class Data Source 
LRDB1 Bondora Peer to Peer 

Lending Loan Data  
1,79,235 112 2 https://www.kaggle.com/ 

LRDB2 Vehicle Loan Default 
Prediction 

3,45,546 41 2 https://www.kaggle.com/ 

LRDB3 XYZ_Corp Lending 
Data 

8,55,969 70 2 https://www.kaggle.com/  

LRDB4 Loan Data for 
Dummy Bank  

8,87,379 30 2 https://www.kaggle.com/ 

 
The clustering of the LRDB1 loan risk-related dataset is divided into two classes: default risk and 
non-default risk. Default risk is a significant risk factor used to evaluate borrowers' behavior in 
peer-to-peer (P2P) lending. Lenders want to minimize the default risk on each lending decision in 
order to make rational decisions and to realize a return that compensates for the risk. 
 
The loan risk-related dataset LRDB2 is clustered in order to estimate the determinants of vehicle 
loan default risk and non-default risk. The clustering process predicts the likelihood of a 
loanee/borrower defaulting on a vehicle loan during the first EMI (Equated Monthly Instalments) 
due date. This ensures that clients who are capable of repayment are not turned down. The 
important determinants are identified, which are used to reduce default rates.  
 
The LRDB3 loan risk dataset clustering manages credit risk by using historical data to determine 
who to lend to in the future based on default, payment information, credit history, and other 
factors. The clustering process categorizes the data as capable of loan repayment or incapable of 
determining loan eligibility.   
 
The LRDB4 clustering divides the data into loan default risk and non-loan risk. Data grouping 
provides funds for potential borrowers, and banks earn a profit based on the risk they take (the 
borrower’s credit score). 
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II. Selected Algorithms for Comparison  
 
The proposed SRSE-based clustering approach is compared to partitional K-means (KM) [20], K-
means++ (KM++) [59, 60] clustering algorithms. The goal of both clustering algorithms is to 
recognize loan risk in terms of default risk by minimizing within-cluster Sum of Squared Error 
(WSSE) and maximizing between-cluster (BSSE) distance. Except for the initial centroid selection 
approach, the cluster formulation process of both methods is similar. The KM method chooses the 
initial centroid at random, whereas the KM++ method chooses the initial centroid based on 
distance and probability.  
 
III. Evaluation Criteria  
 
Cluster validation is achieved through the application of both internal and external measures. The 
internal measure is used to compare the cluster's objective to its internal structures. The external 
measure is used to validate the cluster using outside knowledge. This study employs the Davies 
Bouldin score (DB), Silhouette coefficient (SC), SD Validity (SD), and Ray-Turi index (RT) as 
internal validation tools for effectiveness [61–63], with CPU time (CT) serving as an efficiency 
validation metric [64–66]. The strongest clustering method always maximizes intra-class similarity 
while decreasing inter-class similarity. As a result, the clustering method maximizes the SC metric 
value while reducing the DB, SD, RT, and CT metric values. 
 

• Davies Bouldin score (DB): The Davies Bouldin validates within-cluster dispersion and 
between cluster similarity independently number of cluster. In the DB formulation, _𝐶,_ 
defines the total number of data point 𝑥% inside of  𝐶, cluster and 𝐶% is another cluster.  

 
                                                        𝐷𝐵 = !

$
∑ 𝑚𝑎𝑥%K,

L%M5%=!>	L%M5%=)
N<ML<<=!)

$
%+!                                             (11) 

 

                                                            𝑤𝑖𝑡ℎ𝑖𝑛, =	
!
O*)O
	∑ ||	𝑥% −	𝐶, 	||"	

OP)O
%+!                                                       (12) 

 
                                                                    𝑏𝑒𝑡𝑤𝑒𝑒𝑛%, =	 ||	𝐶% −	𝐶, 	||"                                                        (13) 
 

• Silhouette coefficient (SC): The Silhouette coefficient validates cluster similarity by 
accepting the pairwise difference of cluster distances within (compactness) and between 
(separation) the clusters. In SC formulation a(x) is the average distance of x to all other data 
points in the same cluster C, b(x) is the average distance of x to all other data points in the 
all Ci cluster. 

 

                                                     𝑆 = d∑ N(')QR(')
SFT[N('),		R(')]'∈*% e                                                                          (14) 

 

• SD Validity (SD):  The SD Validity metric assesses the effectiveness of clustering by 
averaging dispersion and total separation between clusters with variance. In SD Validity 
formulation, ∝ is constant value equal to 1, 𝑆R is average scattering in term of variance and 
𝑆M is the total separation of cluster, 𝜎(𝐶%) is defines variance of 𝐶% cluster, 𝜎(𝑋) is represents 
variance of dataset. 

 
SD	 =	∝ 𝑆R − 𝑆M                                                                                   (15) 
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                                                       	𝑆R =	
!
&
∑ ‖X(*!)‖

‖X(Y)‖
&
%+!                                                                                 (16) 

 
                                          	𝑆M =

Z*+#
Z*!,

∑ j∑ @	𝐶% −	𝐶, 	@&
,+! kQ!&

%+!                                                                (17) 

 
𝐷[R' = 𝑚𝑎𝑥!\%,,\&	@	𝐶% −	𝐶, 	@	              (18) 

 
 𝐷[%= = 𝑚𝑖𝑛!\%,,\&	@	𝐶% −	𝐶, 	@                    (19) 

 
• Ray-Turi index (RT) :  The Ray-Turi index measures the mean of the squared distances of 

the all data points respect to k cluster centroid and minimum squared distance ∆&&-
"  

between all cluster centroid. In the RT formulation, N is total length of dataset, 𝑀%
& is the 

data points of particular cluster k and 𝐺& is the centroid of that cluster. 𝐺&-is the centroid 
of remainder cluster. 
 

!
#
∑ ∑ @𝑀%

& −	𝐺&@"%∈]"
$
&+! =	 !

#
	∑ 𝑊𝐺𝑆𝑆&$

&+! =	 !
#
	𝑊𝐺𝑆𝑆          (20) 

 
min
&^&-

∆&&-
" = min

&^&-
𝑑(𝐺& , 𝐺&-)" =	min

&^&-
@𝐺& − 𝐺&-@

"
        (21) 

 
 

𝑅𝑇 =	 !
#
	 _`JJ
SDG
"."-

	∆""-
' 	

           (22) 

• CPU time (CT): CPU time computes the total execution times of any algorithm inside the 
CPU between the entry ENT and exit EXT times of the clustering algorithm. 

                                         𝐶𝑇	 = 	𝐸𝑋b − 𝐸𝑁b                                                                              (23)            

 
IV. Experimental Results and Discussion   
 
On the basis of effectiveness and efficiency indices, the performance of SRSE-based clustering 
algorithms such as SRSE-KM and SRSE-KM++ has been compared to that of the classical KM and 
KM++ algorithms. Tables 2-3 show the average comparative efficiency and effectiveness results 
from four loan risk data sets using ten trials. This study used pre-defined Python library functions 
for DB, SC and SD, as well as technical code for RT, WSSE, BSSE and CT for cluster evaluation. 
Tables 2-3 highlight the optimal value of each reported result in bold face, where the optimal value 
of SC is required for maximization and the optimal values of DB, SD, RT, and CT are required for 
minimization.  

Table 2 shows that the proposed SRSE clustering strategy outperformed the KM and KM++ 
algorithms in terms of WSSE, compaction, separation, similarity, dissimilarity, variance, and 
density. Table 3 demonstrates that the proposed SRSE strategy is faster than the KM and KM++ 
algorithms and uses the least amount of CPU time. 

The experimental results of the LRDB1, LRDB2, LRDB3, and LRDB4 loan risk datasets 
illustrate that SRSE-KM and SRSE-KM++ clustering strategies outperform KM and KM++ 
algorithms in DB, SC, SD, and RT. In terms of clustering quality, the observed DB, SC, SD, and RT 
values show that the SRSE-KM and SRSE-KM++ algorithms outperform the KM and KM++ 
algorithms. Inside the LRDB1 risk dataset, the SRSE-KM diminishes the CT to 73.82% as compared 
to KM, and the SRSE-KM++ decreases the CT to 84.71% than KM++. Over the LRDB2 risk dataset, 
the SRSE-KM reduces the CT by up to 79.33% compared to the KM, whereas the SRSE-KM++ 
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minimizes the CT to 90.48% than the KM++. For the LRDB3 risk dataset, the SRSE-KM alleviates 
the CT by 88.06% then KM while the SRSE-KM++ depletes the CT up to 93.79% in the context of the 
KM++. In LRDB4 risk dataset efficiency observations, the SRSE-KM minimizes the CT to 78.63% 
with reference to KM, and the SRSE-KM++ reduces the CT to 95.44% than KM++. 
 

Table 2– Comparative average analysis of effectiveness measures (𝒎𝒆𝒂𝒏𝒔 ± 𝒔𝒕𝒅) over 10 trials 
 

DB Criteria KM SRSE-KM KM++ SRSE-KM++ 
LRDB1 DB 1.93012 ± 0.06722 1.91441 ± 0.069 1.95983 ± 0.04012 1.93705 ± 0.06083 

SC 0.20382 ± 0.01777 0.20817 ± 0.01887 0.1938 ± 0.00344 0.2002 ± 0.01529 
SD 1.64826 ± 0.0283 1.64815 ± 0.02832 1.66252 ± 0.03457 1.6553 ± 0.0324 
RT 0.94748 ± 0.09631 0.92626 ± 0.10121 0.99837 ± 0.03155 0.96234 ± 0.08407 

LRDB2 DB 1.52436 ± 0.42002 1.47528 ± 0.37001 1.68744 ± 0.41411 1.63843 ± 0.38459 
SC 0.33395 ± 0.10959 0.34382 ± 0.10014 0.28805 ± 0.1093 0.29857 ± 0.1039 
SD 2.84239 ± 0.63412 2.76349 ± 0.55905 3.09039 ± 0.6263 3.01145 ± 0.58457 
RT 0.69375 ± 0.47179 0.62644 ± 0.41411 0.86921 ± 0.46626 0.80205 ± 0.43891 

LRDB3 DB 2.94263 ± 0.12489 2.93696 ± 0.12788 3.0114 ± 0.22726 2.97292 ± 0.17355 
SC 0.10263 ± 0.00735 0.10265 ± 0.00686 0.10017 ± 0.01064 0.10042 ± 0.00948 
SD 2.32874 ± 0.07231 2.32833 ± 0.07218 2.30435 ± 0.15084 2.30381 ± 0.09601 
RT 2.20612 ± 0.20542 2.19989 ± 0.20849 2.31537 ± 0.38257 2.25861 ± 0.28156 

LRDB4 DB 1.94253 ± 0.24398 1.89247 ± 0.18771 1.99679 ± 0.22767 1.89885 ± 0.27487 
SC 0.21184 ± 0.03164 0.21962 ± 0.02426 0.2048 ± 0.02778 0.2205 ± 0.02898 
SD 2.02541 ± 0.18196 2.01309 ± 0.158 2.1079 ± 0.18926 1.94093 ± 0.13944 
RT 1.00316 ± 0.2711 0.93779 ± 0.20157 1.05623 ± 0.25264   0.94993 ± 0.31184 

 
 

Table 3– Comparative average analysis of efficiency CT measure (𝒎𝒆𝒂𝒏𝒔 ± 𝒔𝒕𝒅) over 10 trials 
 

DS KM SRSE-KM KM++ SRSE-KM++ 
LRDB1 8.83084 ± 2.35755 2.31235 ± 0.24165 12.60682 ± 1.69874 1.92721 ± 0.57942 
LRDB2 7.7521 ± 2.25847 1.60213 ± 0.09076 16.63186 ± 3.9364 1.58328 ± 0.64967 
LRDB3 11.26206 ± 2.51383 1.34438 ± 0.03677 24.22219 ± 4.92122 1.50246 ± 0.05333 
LRDB4 6.29301 ± 3.01334 3.34744 ± 5.10325 43.21801 ± 6.65378 1.96903 ± 0.42415 

 
Figure 2-5 depicts a comparative analysis of clustering objective and efficiency-related 

measures, with the resulting values ordered ascending to identify minimum to maximum values. 
The WSSE clustering objective for the KM and SRSE-KM algorithms is depicted in Figure 2, 
whereas the WSSE clustering objective for the KM++ and SRSE-KM++ algorithms is depicted in 
Figure 3. The minimum WSSE result shows that the proposed sampling plan consistently achieves 
the excellence WSSE in each trial on the experimental loan risk data sets.  The observation of 
Figures 2-3 indicates that the SRSE based clustering algorithm achieves better compaction and 
separation of the cluster with the clustering objective. 

Figure 4 demonstrates the computing time efficiency measurements for the KM and SRSE-
KM algorithms, while Figure 5 reveals the computing time efficiency measurements for the KM++ 
and SRSE-KM++ algorithms. The proposed sampling plan minimizes the computation cost, 
iterations, number of distances, and data comparisons in each trial on the experimental risk data 
sets, implying that the proposed sampling plan minimizes the computation cost, iterations, 
number of distances, and data comparisons in each trial on the experimental risk data sets. Figures 
4-5 illustrate that the SRSE-based clustering algorithm outperforms the KM and KM++ algorithms 
in terms of speed and resilience. 
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Figure 2 Analysis of total-WSSE between KM and SRSE-KM on each trial 

 
 
 

 
Figure 3 Analysis of total-WSSE between KM++ and SRSE-KM++ on each trial 
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Figure 4 Analysis of computing time between KM and SRSE-KM on each trial 

 
 

 
Figure 5 Analysis of computing time between KM++ and SRSE-KM++ on each trial 

 
The proposed sampling-based clustering algorithm improves cluster quality and 

clustering objective while reducing data and distance comparisons with execution times, as shown 
in Table 2-3 and Figure 2-5. The presented sampling-based clustering algorithm also outperforms 
previous KM and KM++ algorithms in terms of speed and scalability on loan risk-based big data. 
On loan risk-based big data, the SRSE-based clustering algorithm eliminates the worst-case 
scenario of the KM and KM++ algorithms. The analysis shows that the proposed SRSE-KM and 
SRSE-KM++ algorithms are more robust for big data clustering than the KM and KM++ algorithms. 

253



Kamlesh Kumar Pandey and Diwakar Shukla 
STRATIFIED REMAINDER LINEAR SYSTEMATIC SAMPLING 
EXTENSION BASED BIG DATA CLUSTERING  

RT&A, No 4 (65) 
Volume 16, December 2021 

V. Conclusion

This study presents, a stratified remainder linear systematic sampling extension (SRSE) based 
clustering approach for loan risk analysis on big data using the KM and KM++ clustering 
algorithms. The proposed clustering SRSE-KM and SRSE-KM++ algorithms employ five stages to 
reduce computing time while improving cluster quality. The first step is to sort the entire dataset 
in order to create a stratification using the maximum variance attribute approach. The second stage 
determines the total sample size, sample interval, and reminder sample values in order to calculate 
the total number of data items and sample size in stratum. The third stage divides the data points 
into strata and uses a liner systematic sampling procedure to extract sample data from each 
stratum. The fourth stage clusters the sample data according to the selected clustering algorithm. 
The final stage uses a centroid-based sample extension approach to merge the sample data results 
to an un-sample data unit. The final results demonstrate that the unknown loan uncertainty of risk 
belongs to one cluster and non-risky data belongs to another cluster. Experiment results show that 
the SRSE-based clustering algorithm never degrades cluster performance and achieves better 
cluster compaction, separation, variance, density, computing cost, and execution time than 
classical clustering algorithms. The proposed SRSE-KM algorithm reduces average computing time 
by up to 75.25% when compared to KM, and the SRSE-KM++ algorithm reduces average 
computing time by up to 92.78% when compared to KM++. Despite the fact that the SRSE-based 
clustering algorithm significantly reduces clustering time, but it suffers local optima issues due to 
randomization. The study's further scope is to open up to resolve local optima concerns on 
multiple machine-based technologies such as Hadoop and Spark via other internal and external 
validation indexes using various loan risk-related data sets. 
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Abstract 
 

Wind energy is one of the abundant and renewable energy sources that can be harvested 
using wind turbines. Many factors affect the energy-yielding ability of wind turbines. The 
goal of this paper is to investigate the effects of uncertain weather conditions on the power 
generation ability of wind turbines. Uniquely, it presented the influence of the uncertain 
weather conditions and uncertain aerodynamic parameters of wind turbine on wind 
energy harvesting. The mathematical model of these factors and statistical analysis of their 
effects on the performance of wind turbines are presented using real-time data. It is found 
that the impact of uncertain weather conditions on annual average air density, and hence 
on the performance of wind turbines, is 1.33%. Whereas, the impact of variations of yearly 
average wind speed on the performance of wind turbines is found to be substantial. In 
particular, the annual uncertainty output power of wind turbines is found to be 32%. This 
investigation helps to find the mitigation mechanism and improve power generation 
efficiency from wind. 
 

Keywords: wind turbine aerodynamics, uncertain weather conditions, wind energy 
conversion system, wind turbine energy conversion factor. 

 
 

I. Introduction 
 
Wind turbines convert wind energy to electric energy using generators. In 2019, 651 GW has been 
harvested globally [1]. The power harvesting ability of wind turbines is one of the key performance 
measures. Wind turbines must produce desired output power under stated conditions. Technically, 
variable-speed and variable-pitch regulated wind turbines have good power harvesting ability. 
However, it is easily affected by the unpredictability of weather conditions.  
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Most of the related researches consider only the reliability of facilities and physical components of 
wind turbines, variation in weather conditions are not considered as in [2], [3], and [4]. However, 
weather parameters variation reduce the reliability of wind turbines [5] by causing failure to 
components of wind turbines [6] or unable to drive the turbines, because weather is inconsistent.   

Weather conditions are stochastic due to the unequal hotness of air on the surface of the earth. 
The Equator is hotter than polar areas. This varying surface temperature causes variations in 
atmospheric pressure. As temperature varies, pressure varies proportionally. Hence, around tropical 
regions, there is higher pressure than the polar. This initiates air blows from equatorial regions 
towards the poles. That means wind speed is higher around the equator than the polar region on the 
earth's surface. This indicates more wind energy is available around the equator than in the polar 
areas. Additionally, variations in temperature cause air humidity variations. This phenomenon gave 
rise to variations in air density. These fluctuations are called uncertain weather conditions. The 
variation in wind speed leads into variation aerodynamic parameters of wind turbine tip speed ratio, 
rotor speed, and power conversion coefficient. Fluctuations in wind speed, air density and 
aerodynamic parameters of wind turbine create fluctuations in output power of wind turbine.   

The flow of atmospheric wind, and hence wind resource assessment, is affected by variations 
in the dispersion of solar energy, spatial inequalities in heat transfer on the earth's surface, and the 
earth’s rotation [7]. The uncertain characteristic of wind speed is a vital factor in wind power 
harvesting [8]. Interesting facts like historic climate data accuracy of 1.5% to 4%, future variability 
accuracy of 1% to 3%, spatial variability accuracy of 1% to 4%, and energy loss accuracy of 1% to 3% 
are presented in [9]. Interfaces within wind turbines or wake effects create wind speed uncertainties 
[10], [11], and [12]. The amount of these uncertainties and their causes are presented in [13] and [14]. 
Every 10-meter vertical extrapolation of wind speed data results in a 1% uncertainty [15].  

Wind speed is a stochastic variable that supplies energy and, at the same time, acts as a 
disturbance in wind energy harvesting systems. Wind speed models have four components; namely 
base, gust, ramp, and noise that characterize the variation in wind speed [16]. Another factor that 
affects the power harvesting ability of wind turbines is air thickness. The effect of temperature, 
pressure and humidity on air density is presented in [17]. These parameters also affect the power 
conversion coefficient of wind turbines. Varieties of uncertainties present in annual energy 
production from wind are presented in [18] and [19]. These studies indicated that wind speed 
uncertainty highly affects energy production from wind. For a 2.6% deviation in a 5 m/s annual 
average wind speed, there is 9.9% total uncertainty in annual energy production [20].  

Power curve variability between the cut-in and the rated values of wind speed is another source 
of uncertainty in wind energy production [21]. Total wind power production can be varied 
seasonally or timely. For example, Simon Watson quantified hourly maximum change in wind 
power production using data derived from 1500 turbines in Germany. Accordingly, there is ± 50% 
variability in wind power production only within a four-hour duration [22]. Warren K. et.al 
concluded that there is 75–85% fluctuation in day-to-day maximum power produced by a wind plant 
in the USA in Texas [23]. The annual production of energy from the wind is varied by ± 40% in the 
USA at Lake Benton [24]. IEC 614400-12-1 stated there could be a 15.67% error in wind speed due to 
an error in site calibration [25]. 

Wind speed uncertainty reduces the output power of wind turbines. For instance, the 
uncertainty in tip speed ratio has a considerable effect on wind energy harvesting. For 5% 
uncertainty in the tip speed ratio of blades, there is a 1–3% energy loss while wind turbines run in a 
region below the rated wind speed [26], [27], and [28]. That means, a single-unit wind turbine of a 
1.5 MW rating operates at a 32% capacity factor and produces 4.208 GWh energy annually. Suppose, 
the cheapest cost of energy is $0.09/kWh, a 1–3% loss of energy is equivalent to a $3787–$11361 loss 
annually.  
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This indicates how much money could be lost due to uncertainty alone due to the tip speed 
ratio of wind turbines. As a result, the power harvesting ability of wind turbines is degraded. Electric 
loads do not uniform throughout the day. Wind turbine-connected electric loads are another source 
of uncertainty in power generation [29].     

Gaps and contributions: In the aforementioned literature, the influence of the uncertainty of 
air density and wind turbine aerodynamic on wind energy harvesting is not considered. Moreover, 
there is no comprehensive mathematical model relating these uncertainty parameters with wind 
turbine power harvesting capacity. Therefore, the major contributions of this study are  

• Comprehensive and concise mathematical models that relate uncertain weather parameters 
and wind turbine power harvesting ability are formulated.   

• The effects of these uncertain parameters on wind turbine performance are investigated.  
• The impact of combined uncertainty is investigated by introducing a scaling factor.  

This study, therefore, aims to extensively address these points using real-time data of a specific wind 
farm site. The next parts of this paper include; the research method, analytical model of uncertainty 
in wind power harvesting, results and discussion, and conclusions. 

 
II. Methods 

 
Real-time annual wind speed data and related weather parameters (temperature, air pressure, and 
air humidity) from June 2019 to May 2020 were collected at 10 meters above the surface of the earth 
in a Tropical Zone at the Adama II wind farm site of Adama, Ethiopia using the 10-channel logger, 
METRO-32. The data is logged every 10 minutes. Daily, socket 3 of the METRO-32 data logger stores 
144 samples of wind speed. The METRO-32 data logger 4th socket recorded weather parameters.  

Uncertainty models of wind power harvesting are formulated considering a 1.5 MW wind 
turbine, whose technical specification is given in Table 1. The wind speed data is extrapolated to the 
70 m hub height of the same model. Variations in the recorded daily average values of the weather 
parameters for the duration of June 2019 to May 2020 are depicted in Figure 1. The daily average 
temperature, pressure, relative humidity, wind speed, and wind turbine rotor speed variations are 
found to be 11–26 0c, around 1020 mb, 23% to 85%, 3 to 16 m/s, and 10 to19 rpm, respectively. 

Analysis of the power conversion coefficient of the 1.5 MW wind turbine, the numerical 
computation of the uncertainties in the aforementioned parameters, and their effects on the wind 
power harvesting ability of the turbine are carried out. 

 

Table 1: Technical Parameters of the 1.5 MW Wind Turbine Rotor 

Parameter/Description Value 
Rated power 1500 kW 
wind speed Cut-in 3.5 m/s, Rated 12 m/s , Cut-out 25 m/s 

Height of wheel hub center 77 m 
Rotor radius 37.8 m 

Rated rotating speed 19 rpm 
Number of blades 3 blades with independent variable pitch controls 
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(a) 

 

                  

                                                                                      (b) 

 
(c) 

 
(d) 

Figure 1: Adama-II Windfarm annual measured data of (a) air temperature, (b) air pressure, and (c) air relative 
humidity (d) wind speed  

 

III. Analytical Model of Uncertainty in Wind Power Harvesting 
 
The components of uncertainty affecting the performance of electric power-producing wind turbines 
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are categorized as Type-A and Type-B uncertainties [28]. These categories of uncertainties are 
computed employing statistical methods. As stated in ISO/IEC Guide 98-3: 2008(E), estimation of the 
combined standard uncertainty of type-A and type-B errors is possible for each can be expressed in 
terms of standard deviation [30]. The basic mathematical model [7] for the conversion of wind power 
to mechanical power by a horizontal axis wind turbine is modified with a scale factor (|δ| ≤ 1) of 
the uncertainty in output power which is introduced and expressed in equation (1) for a wind 
turbine whose specifications are given in Table 1.   
 

                P'𝑣(𝑡), ρ, 𝐶!. =

⎩
⎪
⎨

⎪
⎧ 0; for	𝑣(t) < 3	𝑚/𝑠	
0.5Aρ𝐶!(λ, β)𝑣" ± Δp'𝑣, ρ, 𝐶!.|δ|; 	for	3	𝑣(t) ≤ 12	m/s	

P#$%&'	; for	12	 ≤ 𝑣(t) < 25m/s
0; for	𝑣(t) > 25	𝑚/𝑠

                            (1)  

 
 Where A is the swept area of the rotor. A functional model between the turbine output power and 
measured variables such as wind speed-𝑣(𝑡), air density-ρ and power conversion coefficient 
(𝐶!(λ, β) = 𝐶!) is given in equation (2)  
 

P'𝑣(𝑡), ρ, 𝐶!. = 𝑔(𝑣, 𝜌, 𝐶!)                                                                          (2) 

 

Recognizing variations in the measured or computed variables (𝑣, 𝜌, 𝐶!), it is important to formulate 
a model of uncertainties in the functional relationship. For N samples of measured variables 
(𝑣(, 𝑣),…, 𝑣,;	𝜌(, 𝜌),…, 𝜌,;	𝐶!(, 𝐶!),…, 𝐶!,	), the averages of each measured variable is as in equation (3) 

 
𝑣	N = (

,
∑ 𝑣/,
/0( ;	𝜌	N = (

,
∑ 𝜌/,
/0( ; 𝐶!	PPPP = (

,
∑ 𝐶!/
,
/0(                                                 (3) 

 

Wind turbine mechanical output power (Pi) can be computed at any wind speed (vi), air density (𝜌i), 
and power conversion coefficient (𝐶!/) which is	𝑔'𝑣	N , 𝜌	N , 𝐶!	PPPP. at average values of the measured 
variables. Using the Taylor series, Pi can be expanded by centering the average values as in equation 
(4).  
 
                                 𝑃/ = 𝑔'𝑣	N , 𝜌	N , 𝐶!	PPPP. + (𝑣/ − 𝑣	N)

12
13
T
4	5
+ (𝜌/ − 𝜌	N)

12
16
T
6	5

 

        +U𝐶!/ − 𝐶!	
PPPPV 12

17!
W
7!	8888
+ 	higher − order	terms	                                                       (4)     

                                                                                                
Averaging the measured values, the higher-order terms can be dropped as expressed in equation 
(5). 

 

                       𝑃/ − P'𝑣(𝑡), ρ, 𝐶!. = (𝑣/ − 𝑣	N)
12
13
T
4	5
+ (𝜌/ − 𝜌	N)

12
16
T
6	5

 +U𝐶!/ − 𝐶!	
PPPPV 12

17!
W
7!	8888

                  (5)  

                                      

Now, we can define the uncertainty (variation or standard deviation) in the output power of wind 
turbines as 
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          [Δp'𝑣, ρ, 𝐶!.]) = [∆9]) 	= 	
(
,
∑ [𝑃/ − P'𝑣(𝑡), ρ, 𝐶!.]),
/0(	  

                                   = (
,
∑ `(𝑣/ − 𝑣	N)

12
13
T
4,6	5 ,7!	8888

+ U𝐶!/ − 𝐶!	
PPPPV 12

7!
W
4,56	5 ,7!	8888

+ (𝜌/ − 𝜌	N)
12
16
T
4,56	5 ,7!	8888

a
)

,
/0(	                     

                                   =	 (
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Equation (6) combines the effects of individual uncertainties of wind speed, air density, and wind 
energy conversion coefficient. The variances (standard deviations) of wind speed, air density, and 
power conversion coefficient are expressed as in equation (7a).   
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                                                                (7a)          

                     
For correlated measured variables, co-variances among the wind speed, air density, and power 
conversion coefficient are expressed as in equation (7b). 
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                                                          (7b)      

                      
In the case of uncorrelated variables, equation (7b) shows the modifications. In this study, real-time 
data of wind speed and air density are independently recorded. The power conversion coefficient is 
a function of wind turbine blade tip speed ratio and pitch angle. According to IEC 61400-12-1 [23], 
no air density normalization to its actual average value is required as the average of the recorded 
data is in the range of 1.225 ± 0.05 kg/m3. That is confirmed in section IV. Thus, the combined 
uncertainty in the wind power conversion system expressed in equation (6) can be rewritten as in 
equation (8).  
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It is shown that to compute the uncertainty in the output power of wind turbines, computation of 
partial derivatives (sensitivities) of the turbine output power concerning wind speed, air density, 
and power conversion coefficient is a must. These sensitivities are expressed in equation (9).   
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The major causes of uncertainty in the output power of wind turbines are uncertainties of weather 
parameters (temperature, pressure, and humidity that affect air density and wind velocity) and 
uncertainties of wind turbine aerodynamic parameters (wind turbine blade tip speed ratio and pitch 
angle that affect blade lift and drag coefficients and power conversion coefficient). Therefore, to 
compute the uncertainty in the wind turbine output power, first, computation of individual 
uncertainties in weather and aerodynamic parameters is essential as described below.  
I.  Computation of Uncertainties in Weather Parameters Related to Wind Energy 

Harvesting 
 

Real-time annual temperature, air pressure, air humidity, and wind speed collected during the 
aforementioned duration are used to compute the effect of uncertainties in air density and wind 
speed on energy harvesting from the wind.  

i. Computation of Uncertainty in Wind Speed 

 As discussed earlier in this paper at least three categories of uncertainties exist in this data. These 
are measurement uncertainty, inter-annual wind speed uncertainty, and wind shear model 
uncertainty. Whatever the type of uncertainty (Δ4(%)) it’s computed using the statistical model of 
equation (10) on the real-time data shown in Figure 1 (c). Where 𝑣̅ is the yearly average wind speed 
of i = 1, 2… N (N = 365) and daily wind speed measurement (𝑣/(𝑡). 
 

[Δ4(%)]) =
(
,
∑ (𝑣,	
/ F

(𝑡) − 𝑣̅)	);	for 𝑣̅ = (
,
∑ 𝑣,/ F

(𝑡)                              (10) 

 

 

 

ii. Computation of Uncertainty in Air Density 

Air density is another main parameter that affects power harvesting from the wind. Air is composed 
of dry air and water steam. As the atmospheric temperature of the considered location varies, water 
vapor in the air, i.e. air humidity, varies too. This affects air density. According to the IEC-Wind 
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Turbines part-12-2 documents [13], [31], and [32] considering the effect of air humidity variations, 
air density is expressed as 
 

𝜌(𝑇GH, 𝑃I, 𝐻) =
(
J'(

[9)
ℛ
− 𝜑L U

(
ℛ
− (

M*
V𝐻]                                                         (11) 

 
Where Tem is absolute temp (K) = 0C+273.15, Pa is barometric pressure (Pascal), H is relative 
humidity between 0 and 1, ℛ is the gas constant of dry air which equals 287.01 J/kg.K, and Rw is the 
gas constant of water vapor which equals to 461.5 J/kg.K, the vapor pressure in Pascal (𝜑L) which 
equals to 0.0000205exp (0.0631846T). Substituting these constants and equation (11), we get  

 

𝜌 = 𝜌(𝑇GH, 𝑃I, 𝐻)     =
(
J'(

[ 9)
)NO.Q(

− 2.6995 ∗ 10RN𝐻. exp	(0.0632𝑇GH)]         (12)   

                                           

Due to variations in temperature, air pressure, and air humidity air density varies. There is some 
contribution of the measuring instruments (thermometer, barometer, and hygrometer) error in 
calibration or resolution. In a similar fashion in equation (6), the variation in air density can be 
computed as       
      

 [Δ?]) 	= d 16
1J'(

T
(J8'(,9)8888,S5)

ΔJ'(e
)

+ d 16
19)
T
(J8'(,9)8888,S5)

Δ9)e
)

  +	o16
1T
T
(J8'(,9)8888,S5)

ΔTp
)
+ 2 16

1J'(

16
19)
T
(J8'(,9)8888,S5)

ΔJ'(9) 

 
              +2 16

1J'(

16
1T
T
(J8'(,9)8888,S5)

ΔJ'(T + 2
16
19)

16
1T
T
(J8'(,9)8888,S5)

	Δ9)T                                                                    (13)  

 

In equation (12), putting 2.6995 ∗ 10RN =	γ1 and 0.0632 =	γ2, the sensitivities of air density 
concerning temperature, pressure, and humidity is presented as in equation (14). 
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The uncertainties in temperature, pressure and humidity in (13) are found from their measured 

data employing the statistical relations in (15).  
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	                               (15) 

 
WhereTNGH, PaPPP and 	HN  are averages of N measurements 𝑇GH/ , Pa/ and 	H/ which are temperature, 
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pressure, and humidity, respectively. Naturally, the meteorological parameters are correlated with 
each other. Hence the effects of one parameter on others (co-variances) are found from their 
measured data employing the statistical models of equation (16).  
 

              

⎩
⎪
⎨

⎪
⎧ΔV,-2. =

(
,
∑ (𝑇GH/
,	
/ − TNGH)	(PaF − PaPPP)
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,	
/ − TNGH)	(HF −HN)

Δ2.S =
(
,
∑ (𝐻/,	
/ −HN)	(P$F − PN$)

                                                   (16)      

                        
Where ΔV,-2. , ΔV,-S	 and Δ2.S are co-variances between temperature and pressure, temperature 
and humidity, and pressure and humidity, respectively.  
II. Computation of Uncertainties in Aerodynamic Parameters of Wind Turbine 

Related to Wind Energy Harvesting  
  

The ratio of wind turbine mechanical output power to its input wind power is the power conversion 
coefficient. The empirical models of this coefficient (𝐶9(𝜆, 𝛽)) are deliberated in [33], [34], [35], and 
[36] in terms of turbine tip-speed ratio (λ) and rotor blade pitch angle (β). One of such models is 
 

                                    (17a) 

 
                                                           (17b) 

 
The variation of 𝐶9(𝜆, 𝛽) with 𝜆 and 𝛽 is depicted [37]. As indicated in equation (8), uncertainty 
(Δ:#(B,C)) in power conversion coefficient results in uncertainty of wind turbines’ output power. It 
combines uncertainties in turbine blade tip speed ratio and pitch angle. This is shown in (17a). The 
uncertainty in Cp (λ, β) is expressed in (18) where λP, and βP are the averages of N measurements of λF 
and 	βF of turbine blade tip speed ratio and pitch angle, correspondingly. ΔB is uncertainty in	λ,	ΔC is 
uncertainty in	β, and ΔBC is the covariance between λ and	β.   
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While wind speed is lower than its rated value, the blade pitch angle is set to zero degrees to harvest 
more power from wind. In this case ΔC and ΔBC are zero. Thus, (17a) was replaced by (19).  
 

C;(λ, 0) 	= 	0.73((151/λF) 	− 13.2). exp(−18.4/λF)    
                            = 0.73((X(R(O.O"B

B
)exp	(R(N.E

B
+ 0.552)                                              (19) 

 
As a result, (18) is replaced by (20).  

           [Δ:;(B,Q)]) 	= o1:#(B,Q)
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T
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)
                                                            (20) 

 

The sensitivity of Cp (λ, β) of the blade tip speed ratio is 

2.14
p

i i

151 18.4C ( , ) = 0.73(( ) - 0.58  -0.002 ) exp (- )l b b b
l l

3
i

1 1 0.03 = -
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To compute (20), the computation of uncertainty in tip speed ratio is expressed as in (22).   
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(Z5 ,45)
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+ 2 1B

1Z
1B
14
T
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Where ωN, and 𝑣̅ are the averages of N measurements of ωF and 	𝑣F of wind turbine rotor speed (ω(t)) 
and wind speed (v(t)), respectively. ΔZ and 	Δ4 are the variances of	ω(t) and 𝑣(t), respectively, and 
ΔZ4 is co-variance of ω(t) and	𝑣(𝑡). 

The mathematical model discussed in [38] that relates blade tip speed ratio to wind speed and 
turbine rotor speed is depicted in equation (23). The sensitivities of the tip speed ratio of wind speed 
and turbine rotor speed are derived as in equation (24). 

 
      λ	 = 	ω(t)R/𝑣(t)						                                                                       (23) 
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Variations in wind speed and turbine rotor speed are evaluated employing statistical tools on real-
time measured data. These are 
 

�
[ΔZ]) =

(
,
∑ (ω,	
/ F

−ωN)	); 	for	ωN = (
,
∑ ω,/ F

	

ΔZ4 =
(
,
∑ (ω/
,	
/ −ωN)	(𝑣F − 𝑣̅)

                                   (25) 

 
The co-variances among wind speed, air density, and power conversion coefficient in the model 
shown in equation (8) are evaluated using real-time data and computed data employing the 
statistical relations of equation (7a), which are rewritten as in equation (26) as		C2PPP(λ, 0) =
		(
\
∑ 𝐶2(λ, 0)F\
F . 

 

�
Δ4(%):;(B,Q) =

(
\
∑ (𝑣F(t)\
F − 𝑣̅)	(𝐶2(λ, 0) − C2PPP(λ, 0))

Δ?:;(B,Q)	0	
(
,
∑ (𝜌/ − 𝜌	N)(𝐶2(λ, 0) − C2PPP(λ, 0));,
/0(

                                        (26) 

 
IV.    Results 

 
To compute uncertainties in the output power of wind turbines, sensitivities and individual 
uncertainties in wind energy associated with weather conditions and wind turbine aerodynamic 
variables are investigated and presented. Using the real-time data shown in Figure 1, first, air density 
was computed employing equation (12). The variation in air density because of variations in air 
temperature, pressure, and humidity is depicted in Figure 2. Accordingly, air density at the Adama-
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II wind farm site varies between 1.18 and 1.24 kg/m3. To compute the uncertainty in it and its 
sensitivities to the correlated parameters, the variance, and covariance of the measured data in 
Figure 1 of the weather condition parameters are required. These are computed by employing 
equation (15) and tabulated in Table 2. From Table 2, variation in temperature is more influential.  

 

Table 2: Variations in the air temperature, pressure, and humidity 
ΔV,- Δ2$ ΔS ΔV,-2. ΔV,-S Δ2.S 
3.815 2.147 0.129 -0.340 -0.0116 0.119 

 

Where temperature (Tem), pressure (Pa), and humidity (H) are in 0C, mb, and % (a fraction), 
respectively. Using equation (14), the sensitivities of air density concerning temperature, pressure, 
and humidity are evaluated at average values	(𝑇PGH,𝑃PI	, HN) = (18.1778 0C, 1016.333 mb, 0.4849) of the 
real-time data which are tabulated in Table 3. From Table 3, air density is more sensitivities to 
temperature. Inserting the values of Table 2 and Table 3 into equation (13), the uncertainty in air 
density (∆6) is equal to 0.0161. 
 

Table 3: Air density sensitivities to temperature, pressure, and humidity at(𝑇#!",𝑃##	, ℎ#) 
∂𝜌
∂𝑇GH

 
∂𝜌
∂𝑃I

 
∂𝜌
∂H 

∂𝜌
∂𝑇GH

∂𝜌
∂𝑃I

 
∂𝜌
∂𝑇GH

∂𝜌
∂H 

∂𝜌
∂𝑃I

∂𝜌
∂H 

4.44E-3 1.2E-5 -0.0092 -5.32E-8 -3.59E-5 -1.1E-07 
 

The uncertainty in Cp(λ,0) is the second factor that affects energy harvesting from the wind. 
Cp(λ,0) of the 1.5 MW wind turbine is analytically computed using its tip speed ratio and equation 
(19). The result is presented in Figure 2. This figure shows the computed Cp(λ,0) varies in the range 
of 0.0265 – 0.4412. The uncertainty in Cp(λ,0) is computed employing equation (20). It depends on 
variations of tip speed ratio. The tip speed ratio is attuned with wind speed status to maintain rotor 
speed within the limits. To compute the uncertainty in tip speed ratio, first, the uncertainties in wind 
speed and rotor speed, and the required sensitivities were computed using real-time data as 
depicted in Figure 1 (c) and (d). The average values and uncertainties in wind speed, turbine rotor 
speed, and the covariance between these two variables are tabulated in Table 4.  

 

 
Figure 2: Annual air density at Adama II Windfarm and power conversion coefficient of the 1.5 MW wind turbine. 

 
Table 4: The average value and uncertainty in wind speed and rotor speed. 

𝒗N 𝛚N  𝚫𝒗(𝐭) 𝚫𝛚 𝚫𝛚𝒗 
9.7335 1.5792 2.3895 0.3473 0.8122 
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Next, employing equation (22), the  uncertainty and the sensitivities of tip speed ratio concerning 
wind speed and rotor speed are carried at average values of (𝑣̅, ωN) is equal to (9.7335 m/s, 1.57922 
rad/s) based on the wind speed data and the 1.5 MW wind turbine rotor speed characteristics shown 
in Figure 1 (c) and (d). The results are tabulated in Table 5. The results in Table 5 indicates tip speed 
ratio is more sensitive to turbine rotor speed.   

 
Table 5: Blade tip speed ratio sensitivities to rotor speed and wind speed at (𝑣̅, 𝜔+). 

∂λ
∂ω 

∂λ
∂𝑣(t) 

∂λ
∂v(t)

∂λ
∂ω 

3.8853 -0.63068 -2.45044 

 
From the results in Tables 4 and 5 and applying equation (22), the uncertainty in turbine rotor blade 
tip speed ratio(	ΔB) is equal to 0.330804. Via equation (21a), the sensitivity of Cp(λ,0) concerning blade 
tip speed ratio at its average values is	∂C;(λ, 0) ∂λ⁄ �

(X.Q`",Q/)
 which equals 0.0938. Therefore, inserting 

these two values in equation (20), the uncertainty in Cp(λ,0) becomes 

Δ:#(B,Q) = ((0.330804 ∗ 0.0938)))(/) = 0.0325. 
The co-variances between wind speed and power conversion coefficient, and between air 

density and power conversion coefficient are evaluated using data in Figure 1 and Figure 2 and the 
models in equation (26). The summary of the investigated uncertainties is depicted in Table 6.  

 
Table 6: Summary of uncertainties in wind speed, air density, power conversion coefficient, and covariance. 

Δ4(%) Δ:;(B,Q) Δ? Δ4(=):;(B,Q) Δ?:;(B,Q) 
2.3882 0.0325 0.0161 0.1199 9.51E-05 

 

The sensitivities in equation (8) of wind turbines output power concerning wind speed, air 
density, and power conversion coefficient are evaluated at average values of (𝑣̅,	𝜌	PPP, CP!) = (9.7335 m/s, 
1.2111 kg/m3, 0.4156) of the real-time data where the result is tabulated in Table 7. These are 
indicators of changes in output power of wind turbines at the average values of the associated 
parameters.  

 

Table 7: The sensitivities of power concerning wind speed, air density, and power conversion coefficient at (𝑣̅,	𝜌	###, 𝑐$̅). 

∂P'𝑣(𝑡).
∂𝑣(𝑡)  

∂P'𝑣(𝑡).
∂C;(λ, β)

 
∂P'𝑣(𝑡).

∂ρ  
∂P'𝑣(𝑡).
∂𝑣(𝑡)

∂P'𝑣(𝑡).
∂C;(λ, β)

 
∂P'𝑣(𝑡).

∂ρ
∂P'𝑣(𝑡).
∂C;(λ, β)

 

253907 1073675 937212 6.94191E+11 8.42E+11 

 
From Table 7, output power of wind turbines is more sensitivities to power conversion coefficient. 
Finally, inserting the results of Tables 6 and 7 into equation (8), the uncertain components 
(𝛥P(v(t),ρ,Cp)) and (P(v(t),ρ, Cp)) of the output power of the 1.5 MW wind turbine are evaluated at 
(𝑣̅,	𝜌	PPP, CP!) using equation (1). The results are presented in Table 8.  
 

Table 8: Uncertain and certain output powers of the 1.5 MW wind turbine rotor at (𝑣̅,	𝜌	###, 𝑐$̅). 
P(v(t),ρ,Cp) 1097007 W 
𝛥P = 𝛥P(v(t),ρ,Cp)  351042.24 W  
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At any values of wind speed (v(t)), air density (𝜌), and wind power to mechanical power conversion 
coefficient (Cp), the uncertainty in output power of wind turbine can be expressed in percentage 
which is maximum at scale factor |δ| = 1. For instance, at the average values of wind speed, air 
density, and power conversion coefficient (𝑣̅,	𝜌	PPP, CP!), it is   

 

%	uncertainty	in	power 	= 	
ΔP(𝑣(t), ρ, Cp)
P(𝑣(t), ρ, Cp) �(48,	6	8888,:5!)

∗ 100	% 

                                                     	= "X(QE).)E
(QbOQQO	

∗ 100	% =	32 %	.   

 
This can be rewritten as 1097007*(1 ± 0.32|δ|) watt. For 𝛿 = 0.1, the uncertainty could be 32%*0.1 
which is 3.2 % above or below the	P(𝑣̅,	𝜌	PPP, CP!) value. In the case of 𝛿 =1, the value 32 % will be 
included in the annual output power and hence the output power fluctuation interval is defined as  

745965 ≤ P(𝑣̅, 	𝜌	PPP, CP!)	≤ 1448049 Watt. 

Similarly, the uncertainties in wind speed, air density, and power conversion coefficient represented 
in Table 6 are in percentage and/or relatively at the annual average values of (𝑣̅,	𝜌	PPP, CP!) as 24.55% or 
7.3440 ≤ 	𝑣(𝑡) ≤ 12.1230 m/s, 1.33% or 1.1950 ≤ 𝜌 ≤ 1.2272 kg/m3 and 7.82% or 0.3831 ≤ Cp(λ,0) ≤ 0.4471, 
respectively. 
 

V. Discussion 
 
The results obtained in this study can be compared to the IEC61400-12-1 standard [20]. Accordingly, 
air density uncertainty is ± 0.05 kg/m3 around 1.225kg/m3. That is 1.175 ≤ 𝜌 ≤ 1.275 kg/m3. The air 
density variation result of this study is within the international standard range. Moreover, the wind 
turbine power conversion coefficient was indicated by the aforementioned standard as 0.03 ≤ Cp ≤ 
0.45 when the air density is 1.225kg/m3. This shows the investigated variation of the power 
conversion coefficient is within the standard range. The same standard describes that a 1 MW rated 
wind turbine produces 396.5 kW with an uncertainty of 224.8 kW at a wind speed of 21.5 m/s, air 
density of 1.225 kg/m3, and Cp of 0.03. This is equivalent to a maximum of 56.69% uncertainty in 
power production. Also, according to a study presented in references [21] – [23], the variability of 
annual total energy production from the wind is more than +/- 40%. These indicated the maximum 
investigated uncertainty of the power produced from the wind at the Adama wind farm site is 
acceptable.  

The real-time wind speed data shown in Figure 1(c) is arranged in ascending order with 
corresponding air density and power conversion coefficients shown in Figure 2. Using these data 
and for 𝛿 equal to 0.1 and 1, the certain and uncertain output powers of the 1.5 MW wind turbine 
are computed and presented in Figure 3 and Figure 4. Figure 3 describes 3.2% uncertainty in the 
power captured by the 1.5 MW wind turbine at 𝛿 is 0.1. The rated output power of the wind turbine 
is 1.5 MW at nominal input variables (wind speed and air density). Whereas, in the case of uncertain 
input variables, the output power is also uncertain. For instance, at 3.2% uncertainty in the output 
power, it is 48 kW above or below the rated value at nominal inputs. This causes the wind energy 
conversion system to be overloaded or stressed. That is for a negative value of 𝛥P(𝑣(t), ρ, Cp)|δ|, the 
output power of the wind turbine is smaller than the rated power of the turbine. Thus, the turbine 
output power cannot cover the demand overloading the wind turbine. This forces it to operate only 
under partial load or even it may shut down. This indicates the degraded output power of the wind 
turbine and resulting in a low return of the system. At higher wind speeds where 𝛥P(𝑣(t), ρ, Cp)|δ| 
is positive, it causes more power generation stressing the wind turbine. In this case, the pitch control 
system of the wind turbine can regulate the power to the rated value safeguarding the turbine from 
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damage. The worst-case uncertainty is depicted in Figure 4. That is at 𝛿 = 1, the annual output power 
of the wind turbine is 32% uncertain. At rated inputs, it varies between 1.02 and 1.98 Mega Watts. 
The effect of the positive value of the uncertain component is regulated by the turbine blade pitch 
mechanism, but the negative value of the uncertain component results in the same effect as discussed 
before.  

 

 
 

Figure 3: Uncertainty in the 1.5 MW Wind Turbine Rotor Output Power for 𝛿 is equal to 0.1. 

 
 

Figure 4: Uncertainty in the 1.5 MW Wind Turbine Rotor Output Power for 𝛿 is equal to 1. 
 

In conclusion, mathematical modelling of wind turbine rotor output power uncertainties is done. 
The effect of uncertain weather parameters at Adama-II wind farm, found at Adam, Ethiopia on the 
wind turbine is examined. Real-time data of weather parameters of the mentioned site and the 
turbine rotor output power are recorded. Uncertainties in weather parameters and output power are 
computed according to the formulated models. The annual variation in air temperature and pressure 
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causes 24.55% uncertainty in the annual wind speed, 1.33% uncertainty in air density, and 7.82% 
uncertainty in power conversion coefficient of the wind turbine. The output power of wind turbine 
is more sensitive to varying power conversion coefficient. The annual uncertainty in the turbine 
rotor output power is 32%. The computed uncertain power is compared to the expected output 
power of the turbine. This uncertainty percentage in power is either added or subtracted from the 
expected output power. The additive case is regulated by the wind turbine blade pitch system. Due 
to the uncertainty effects, the turbine output power becomes unreliable and economically impacts 
the system's return. The effects of air density and wind speed uncertainties are natural, and hence 
technical regulation of fluctuation in air density may not be possible. The fluctuation in wind speed 
and power conversion coefficient of wind turbines can be reduced by advancing the wind turbine 
blade pitch system and its control techniques.  This study results helps as base and guide for wind 
energy assessing and forecasting, wind turbine control designers and operation professionals to 
maintain performances of wind turbines well consistent.       
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Abstract

Hazard rate, and ageing intensity (AI) are measures or functions required for qualitative and quantitative

analysis of ageing phenomena of a system with a well defined statistical distribution respectively. In this

paper, we reiterate upon the fact that in a few cases hazard rate and ageing intensity do not depict the

same pattern as far as monotonicity is concerned. So, a question naturally arises which among hazard

rate, and ageing intensity is a preferable measure for characterizing ageing phenomena of a system. As

a consequence, an example involving two design systems are analyzed and is illustrated to answer the

aforementioned question.

Keywords: Ageing phenomenon, hazard rate, ageing intensity function.

AMS 2020 Subject Classification: Primary 60E15, Secondary 62N05, 60E05

1. Introduction

The notion of ageing phenomena and its mathematical counterpart are established by Barlow

and Proschan (1975), Shaked and Shanthikumar (2007), Deshpande and Purohit (2005), Nanda

et al. (2010) to name a few. The measures (or functions) usually used in this context are many,

namely, survival function, hazard rate function, reversed hazard rate function, mean residual

function, reversed mean residual function (cf. Block et al. (1998), Nanda et al. (2003,2005)).

Jiang et al. (2003) came forward with ageing intensity function relevant in reliability analysis.

He established that the quantitative analysis of ageing phenomena for a system can be done using

ageing intensity (AI) function, whereas hazard rate does the qualitative analysis.

The ageing intensity function (AI), denoted by LX(t) of a random variable X at time

t > 0, with probability density function fX(t), survival function F̄X(t) and failure rate λX(t) =

*The work was jointly done with the first author when he was in Ravenshaw University, Cuttack-753003, Odisha, India
†Corresponding author : E-mail: subarna.bhatt@gmail.com
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fX(t)/F̄X(t) is given by (cf. Jiang et al. (2003)),

LX(t) =
−t fX(t)

F̄X(t) ln F̄X(t)
, where defined,

=
tλX(t)∫ t

0 λX(u)du
. (1.1)

Nanda et al. (2007) and Bhattacharjee et al. (2013), Giri et al. (2021) derive the AI function

of a few distributions. Sunoj and Rasin (2017) introduce quantile-based ageing intensity function

and study its various ageing properties. To learn more on ageing intensity function, one can refer

to Misra and Bhattacharjee (2018), Szymkowiak (2018a,b) to name a few.

Stochastic orders play an important role in the theory of reliability as it helps in comparison

of systems based on the functions, discussed in this section, namely survival function F̄(t),

hazard rate function λ(t), reversed hazard rate function µ(t), mean residual function m(t), ageing

intensity function L(t) etc. giving rise to usual stochastic order (ST order), hazard rate order (HR

order ), reversed hazard rate order (RHR order), mean residual order (MRL order) and ageing

intensity order(AI order) respectively. The stochastic orders are mathematically represented as

given in the next definition.

Definition 1.1. A random variable X is said to be smaller than another random variable Y in

(i) usual stochastic order (denoted by X ≤ST Y) if F̄X(t) ≤ F̄Y(t), for all t ≥ 0.

(ii) hazard rate order (denoted by X ≤HR Y) if λX(t) ≥ λY(t), for all t ≥ 0.

(iii) reversed hazard rate order (denoted by X ≤RHR Y) if µX(t) ≤ µY(t), for all t ≥ 0.

(iv) mean residual life order (denoted by X ≤MRL Y) if mX(t) ≤ mY(t), for all t ≥ 0.

(v) AI order (denoted by X ≤AI Y) if LX(t) ≥ LY(t), for all t > 0.

Based on the hazard rate function, an ageing class has been defined in the literature as

follows.

Definition 1.2. A random variable X is said to have increasing (decreasing) hazard rate function, denoted

by IFR(DFR), if λX(t) is increasing (decreasing) in t ≥ 0.

The words ‘failure rate’ and ‘hazard rate’ have been synonymously used in this article.

Throughout the article, the words increasing (decreasing) and non-decreasing (non-increasing)

are used interchangeably.

Section 2 discuss the monotonic properties of failure rate and ageing intensity functions in

a few statistical distributions. Section 3 simply highlights the estimator of functions appearing

in this paper. Section 4 cites an example to illustrate the study of ageing phenomena through

reliability function, hazard rate, reversed hazard rate and ageing intensity functions. Section 5

demonstrates the concluding remarks of the work.

2. Monotonicity of failure rate and ageing intensity functions

On the basis of the monotonicity of the AI function, Nanda et al. (2007) define ageing

classes, namely increasing ageing intensity class (IAI) (decreasing ageing intensity class (DAI)) if
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the corresponding AI function L(t) is increasing(decreasing) in t ≥ 0. It was pointed out that the

monotonic behavior of the failure rate function is not, in general, transmitted to the monotonicity

of the AI function, which is established by the following examples.

Example 2.1. (cf. Nanda et al. (2007)) Let X has Erlang distribution, with density function with

fX(t) = λ2te−λt, t ≥ 0. Clearly,its failure rate function is rX(t) = λ2t/(1+λt) which increases for t ≥ 0,

i.e., X has increasing failure rate (IFR). On the other hand, LX(t) = λ2t2/(1 + λt)(λt − ln(1 + λt)),

decreases for t > 0, i.e., X is DAI. So, X is IFR but DAI.

Example 2.2. (cf. Nanda et al. (2007)) Let X be a random variable having uniform distribution over

[a, b], 0 ≤ a < b < ∞, i.e., Then, its failure rate rX(t) = 1/(b − t), a < t < b is increasing in t ∈ (a, b),

i.e., X is IFR. However, LX(t) = t/(b − t)/ ln
(
b/b − t

)
, for a < t < b, is increasing in t, a < t < b.

So, X is IFR and IAI.

In the next example, we find that a random variable is DFR and DAI.

Example 2.3. Let X be a random variable having Pareto distribution with density function or fX(t) =

aka/ta+1, for t ≥ k > 0, so that its failure rate rX(t) = a/t, is decreasing in t ∈ (k, ∞). i.e., X is DFR.

However, LX(t) = 1/(ln t − ln k), is increasing in t ∈ (k, ∞). Thus, X is DFR and IAI.

Through these aforementioned examples, one concludes that an IFR random variable could be

IAI or DAI. So, does a DFR random variable. The non-monotonic nature are also observed for

some statistical distributions (cf. Nanda et al. (2007, 2013)).

Reliability analysts can obviously strive for a question, if a system (or a random variable)

depicts different characteristics in terms of failure rate and ageing intensity function then which

function should be used in the final conclusion of knowing the behavior of the system in terms of

ageing phenomena. In this paper, we try to answer this question by giving a case study mentioned

in Section 4 and analyzing it.

3. Estimator of functions

Nanda et al. (2013) gives the logical estimates of survival function F̄X(t), probability density

function f̄X(t), hazard rate function λX(t), reversed hazard rate µX(t) and ageing intensity

function LX(t). Let n units be put to test at t = 0. Further, let the number of units having survived

at ordered times tj be ns(tj). Then logical estimates of F̄X(t), fX(t), λX(t), µX(t) and LX(t) for

tj < t < tj + ∆tj, are respectively given by

ˆ̄FX(t) =
ns(tj)

n
,

f̂X(t) =
ns(tj)− ns(tj + ∆tj)

n∆tj
,

λ̂X(t) =

{
ns(tj)− ns(tj + ∆tj)

}
ns(tj)∆tj

,

µ̂X(t) =

{
ns(tj)− ns(tj + ∆tj)

}
(n − ns(tj))∆tj

.
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Thus, logical estimate of LX(t) is

L̂X(t) =
−t

{
ns(tj)− ns(tj + ∆tj)

}
ns(tj)∆tj ln

ns(tj)
n

,

for tj < t < tj + ∆tj.

4. An Example to illustrate the study of ageing phenomena through

reliability function, hazard rate, reversed hazard rate and ageing

intensity functions

A good number of life testing data can be found for analysis in Shooman (1968), Ebeling

(1997) and others.

Example 4.1. (cf. Ebeling (1997)) Fifteen units each of two different deadbolt locking mechanisms were

tested under accelerated conditions until 10 failures of each were observed. The following failure times in

thousands of cycles were recorded as in Table 1. Which design appears to provide the best function?

Note that, estimator of probability density function for ti ≤ t ≤ ti+1 is

f̂ (t) = − R̂(ti+1)− R̂(ti)

(ti+1 − ti)

=
1

(ti+1 − ti)(n + 1)
(4.2)

that of failure rate function is

λ̂(t) =
f̂ (t)
R̂(t)

=
1

(ti+1 − ti)(n + 1 − i))
. (4.3)

The estimator of reversed hazard rate is given by,

µ̂(t) = ( f̂ (t))/(F̂(t))

=
1/(ti+1 − ti)(n + 1)

i/(n + 1)

=
1

i(ti+1 − ti)
(4.4)

Now, for the ageing intensity, it is given by,

L̂(t) =
−t f̂ (t)

ˆ̄F(t) ln ˆ̄F(t)

=
−t/(ti+1 − ti)(n + 1)

{(n + 1 − i)/(n + 1)} ln{(n + 1 − i)/(n + 1)}

=
−t

(ti+1 − ti)(n + 1 − i) ln(n + 1 − i)/(n + 1)
(4.5)

The detailed analysis of the example considered in this Section are given in Table 2, Table 3, Table

4, Table 5 and Table 6. The Plots are also displayed in Figure 1, Figure 2, Figure 3 and Figure 4.
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5. Conclusion

According to the literature on stochastic orders, we know that any system, say, here, Design-

A is said to be better than design-B, if design-A has less ageing intensity, less hazard rate and

higher reliability than that of design-B. The concluding remarks as noted in Table 6 at a certain

interval of time are summarized as follows:

(i) Design A is better than design B in terms of the function being doubly underlined in a time

interval.

(ii) Design B is better than design A on the basis of the function being singly underlined during

a certain time interval.

(iii) However, the function being starred in a time interval denotes the fact that we cannot

specify which among A or B is of the better design.

(iv) For example, in the interval (56.8,77], design B is better in terms of ageing intensity, whereas

according to hazard rate, design A is better during (56.8,63] and design B is better in the

interval (63,77]. Also, the analyzing the systems in terms of reliability reveal that, both the

designs A and B have equal reliabilities during (56.8,63] but design-A is better on (63,77].

(v) It is evident that Table 6 contains more singly underlined cells than than that of doubly

underlined cells.

(vi) In a nutshell, design B is more efficient than that of design A.

(vii) We attempt to identify the function which should be preferred in determining the ageing

behaviour of a system.

In Table 6, one can observe that if at some interval of time the ageing intensity, hazard

rate and the reliability have the same nature (either single underlined or doubly underlined)

or (doubly underlined with starred) or ( singly underlined with starred),then all the three

measures give the same conclusion in choosing the best system design. But if one function

is doubly underlined and another is singly underlined, then it gives different conclusion

with regard to the performance of the systems.

(viii) For example, on the interval (56.8,63], the ageing intensity and the hazard rate show

different behaviour, whereas on the interval (63,77] hazard rate and reliability show different

behaviour. And on (897.8,1043.6], all the three measures show same behaviour.

(ix) Clearly, from Table 6 we can see that, hazard rate doesn’t have opposite behaviour with

the other two measures simultaneously. For example, on the interval (56.8,63], hazard rate

shows opposite behaviour to ageing intensity function only, but not to reliability. Also, it

shows opposite behaviour to reliability on (63,77], but not to the ageing intensity function

in that interval. We note that, hazard rate doesn’t have any doubtful situations (λ1 = λ2),

which are in the case of ageing intensity or reliability at some intervals. (as, the equality

sign doesn’t say anything about which design is better, so these are the doubtful situations.)

Therefore, we conclude that, hazard rate should be preferred as a measure of ageing phenomena,

while comparing the two systems in the problem concerned.
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Table 1: Failure Times

Design A 44 77 218 251 317 380 438 739 758 1115

Design B 32 63 211 248 327 404 476 877 903 1416

Table 2: Analysis of Design A

i ti R1(t) λ1(t) µ1(t) L1(t)

0 0 1 0.002066

1 44 0.909 0.00303 0.022727 0.3179t

2 77 0.8182 0.000788 0.015152 0.00393t

3 218 0.7273 0.003788 0.002364 0.01189t

4 251 0.6364 0.002165 0.007576 0.00479t

5 317 0.5455 0.002646 0.00303 0.00436t

6 380 0.4546 0.003448 0.002646 0.00437t

7 438 0.3636 0.000831 0.002463 0.00082t

8 739 0.2727 0.017544 0.000415 0.0135t

9 758 0.1818 0.001401 0.005848 0.00082t

10 1115 0.0909 0.00028

Table 3: Analysis of Design B

i ti R2(t) λ2(t) µ2(t) L2(t)

0 0 1 0.002841

1 32 0.909 0.002933 0.03125 0.0339t

2 63 0.8182 0.000614 0.016129 0.00374t

3 211 0.7273 0.002457 0.002252 0.0106t

4 248 0.6364 0.001151 0.006757 0.004t

5 327 0.5455 0.001181 0.002532 0.00357t

6 404 0.4546 0.001263 0.002165 0.00352t

7 476 0.3636 0.000227 0.001984 0.00062t

8 877 0.2727 0.003497 0.000312 0.00987t

9 903 0.1818 0.000177 0.004274 0.00057t

10 1416 0.0909 0.000195

Table 4: Comparison of R(t), λ(t), µ(t)

Time R1(t) R2(t) Order R(t) λ1(t) λ2(t) Order λ(t) µ1(t) µ2(t) Order µ(t)

(0, 32] 1 1 R1 = R2 0.002066 0.002841 λ1 < λ2 0.022727 0.03125 µ1 < µ2

(32, 44] 1 0.909 R1 > R2 0.002066 0.003226 λ1 < λ2 0.022727 0.016129 µ1 > µ2

(44, 63] 0.909 0.909 R1 = R2 0.00303 0.003226 λ1 < λ2 0.015152 0.016129 µ1 > µ2

(63, 77] 0.909 0.8182 R1 > R2 0.00303 0.000751 λ1 < λ2 0.015152 0.002252 µ1 > µ2

(77, 211] 0.8182 0.8182 R1 = R2 0.000788 0.000751 λ1 < λ2 0.002364 0.002252 µ1 > µ2

(211, 218] 0.8182 0.7273 R1 > R2 0.000788 0.003378 λ1 < λ2 0.002364 0.006757 µ1 > µ2

(218, 248] 0.7273 0.7273 R1 = R2 0.003788 0.003378 λ1 < λ2 0.007576 0.006757 µ1 > µ2

(248, 251] 0.7273 0.6364 R1 > R2 0.003788 0.001808 λ1 < λ2 0.007576 0.002532 µ1 > µ2

(251, 317] 0.6364 0.6364 R1 = R2 0.002165 0.001808 λ1 < λ2 0.00303 0.002532 µ1 > µ2

(317, 327] 0.5455 0.6364 R1 < R2 0.002646 0.001808 λ1 < λ2 0.002646 0.002532 µ1 > µ2

(327, 380] 0.5455 0.5455 R1 = R2 0.002646 0.002165 λ1 < λ2 0.002646 0.002165 µ1 > µ2

(380, 404] 0.4546 0.5455 R1 < R2 0.003448 0.002165 λ1 < λ2 0.002463 0.002165 µ1 > µ2

(404, 438] 0.4546 0.4546 R1 = R2 0.003448 0.002778 λ1 < λ2 0.002463 0.001984 µ1 > µ2

(438, 476] 0.3636 0.4546 R1 < R2 0.000831 0.002778 λ1 < λ2 0.000415 0.001984 µ1 > µ2

(476, 739] 0.3636 0.3636 R1 = R2 0.000831 0.000623 λ1 < λ2 0.000415 0.000312 µ1 > µ2

(739, 758] 0.2727 0.3636 R1 < R2 0.017544 0.000623 λ1 < λ2 0.005848 0.000312 µ1 > µ2

(758, 877] 0.1818 0.3636 R1 < R2 0.001401 0.000623 λ1 < λ2 0.00028 0.000312 µ1 > µ2

(877, 903] 0.1818 0.2727 R1 < R2 0.001401 0.012821 λ1 < λ2 0.00028 0.004274 µ1 > µ2

(903, 1115] 0.1818 0.1818 R1 = R2 0.001401 0.000975 λ1 < λ2 0.00028 0.000195 µ1 > µ2

(1115, 1416] 0.0909 0.1818 R1 < R2 0.000975
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Figure 1: Plot of R1 and R2 versus time t.

Figure 2: Plot of HR1 and HR2 versus time t
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Table 5: L1(t) and L2(t)

Design A Design B

t L1(t) t L2(t)

32 1.0848 44 1.39876

38.2 1.29498 50.6 1.608574

44.4 1.50516 57.2 1.818388

50.6 1.71534 63.8 2.028202

56.8 1.92552 70.4 2.238016

63 0.23562 77 0.30261

92.6 0.346324 105.2 0.413436

122.2 0.457028 133.4 0.524262

151.8 0.567732 161.6 0.635088

181.4 0.678436 189.8 0.745914

211 2.2366 218 2.59202

218.4 2.31504 224.6 2.670494

225.8 2.39348 231.2 2.748968

233.2 2.47192 237.8 2.827442

240.6 2.55036 244.4 2.905916

248 0.992 251 1.20229

263.8 1.0552 264.2 1.265518

279.6 1.1184 277.4 1.328746

295.4 1.1816 290.6 1.391974

311.2 1.2448 303.8 1.455202

327 1.16739 317 1.38212

342.4 1.222368 329.6 1.437056

357.8 1.277346 342.2 1.491992

373.2 1.332324 354.8 1.546928

388.6 1.387302 367.4 1.601864

404 1.42208 380 1.6606

418.4 1.472768 391.6 1.711292

432.8 1.523456 403.2 1.761984

447.2 1.574144 414.8 1.812676

461.6 1.624832 426.4 1.863368

476 0.29512 438 0.35916

556.2 0.344844 498.2 0.408524

636.4 0.394568 558.4 0.457888

716.6 0.444292 618.6 0.507252

796.8 0.494016 678.8 0.556616

877 8.65599 739 9.9765

882.2 8.707314 742.8 10.0278

887.4 8.758638 746.6 10.0791

892.6 8.809962 750.4 10.1304

897.8 8.861286 754.2 10.1817

903 0.51471 758 0.62156

1005.6 0.573192 829.4 0.680108

1108.2 0.631674 900.8 0.738656

1210.8 0.690156 972.2 0.797204

1313.4 0.748638 1043.6 0.855752

1416 1115

Table 6: Interval-wise Study

Interval Compare Interval Compare Interval Compare

L(t) λ(t) R(t)

(56.8, 77] L1 > L2 (56.8, 63] λ1 < λ2 (56.8, 63] R1 = R∗2

(63, 77] λ1 > λ2 (63, 77] R1 > R2

(77, 211] L1 = L∗2 (77, 211] λ1 > λ2 (77, 211] R1 = R∗2

(211, 240.6] L1 > L2 (211, 218] λ1 < λ2 (211, 218] R1 > R2

(218, 240.6] λ1 > λ2 (218, 240.6] R1 = R∗2

(240.6, 248] L1 = L∗2 (240.6, 248] λ1 > λ2 (240.6, 248] R1 = R∗2

(248, 418.4] L1 > L2 (248, 418.4] λ1 > λ2 (248, 251] R1 > R2

(251, 317] R1 = R∗2

(317, 327] R1 < R2

(327, 380] R1 = R∗2

(380, 404] R1 < R2

(404, 418.4] R1 = R∗2

(418.4, 476] L1 < L2 (418.4, 438] λ1 > λ2 (418.4, 438] R1 = R∗2

(438, 476] λ1 < λ2 (438, 476] R1 = R∗2

(476, 636.4] L1 = L∗2 (476, 636.4] λ1 > λ2 (476, 636.4] R1 = R∗2

(636.4, 796.8] L1 > L2 (636.4, 796.8] λ1 > λ2 (636.4, 739] R1 = R∗2

(739, 758] R1 < R2

(758, 796.8] R1 < R2

(796.8, 897.8] L1 < L2 (796.8, 877] λ1 > λ2 (796.8, 877] R1 < R2

(877, 897.8] λ1 < λ2 (877,897.8] R1 < R2

(897.8, 1043.6] L1 > L2 (897.8, 1043.6] λ1 > λ2 (897.8, 903] R1 < R2

(903, 1043.6] R1 = R∗2
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Figure 3: Plot of RHR1 and RHR2 versus time t

Figure 4: Plot of AI1 and AI2
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Abstract 
 

The use of importance and joint importance measures to identify the weak areas of a system and 
signify the roles of components in either causing or contributing to proper functioning of the 
system, is explained by several researchers in system engineering. But a few research outputs are 
available in literature for finding joint importance measures for two or more components. This 
paper introduces, new Joint Reliability Achievement Worth (JRAW), Joint Reliability Reduction 
Worth (JRRW) and Joint Reliability Fussell-Vesely measure (JRFV) for two components, of a 
multistate system. This is a new approach to find out the joint effect of group of components in 
improving system reliability. A steady state performance level distribution with restriction to the 
component’s states is used to evaluate the proposed measures. Universal generating function 
(UGF) technique is applied for the evaluation of proposed joint importance measures. An 
illustrative example is provided 

 
Keywords: Multistate system, reliability, joint importance measure, universal generating 

function. 
 
 

I. Introduction 
 
Importance and joint importance measures provides useful information to understand the system 
and apply reliability improvement activities. There are several importance measures available in 
literature, [1], [2], [3]. Interaction importance of groups of components, with respect to output 
performance measure(OPM)s, reliability and expected output performance is more helpful to the 
designers, engineers and managers to arrive at a decision, [4].  

The joint importance measures of components for MSS with respect to various OPMs like 
reliability and expected output performance with reference to the existing measures of importance 
are discussed in literature in the Birnbaum sense, [5]. Research on joint importance measures for 
multistate systems is very useful for the researchers, [9]. But, measuring the role of interaction of 
components in a group consisting two components, in performance measure achievement, 
reduction and fractional contribution sense, is an unexplored one. In this paper, for two components 
of binary and MSS, Joint Reliability Achievement Worth (JRAW), Joint Reliability Reduction Worth 
(JRRW), and Joint Reliability Fussel-Vesely (JRFV) importance measures are introduced by 
considering groups with two components. JRAW measures the reliability achievement when 
interaction effect of two components changes from lower level to higher level, JRRW measures the 
reliability reduction of system when interaction effect of two components changes from higher level 
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to lower level and JRFV measures the fractional contribution of interaction effect of two components 
in improving reliability of system. These measures are generalized to the expected output 
performance. 

A steady state performance level distribution for the system is considered for obtaining the 
proposed measures, [6]. The information derived by these joint importance measures allows the 
analyst to judge, based on their interaction effect of two components for system OPM improvement: 
how to give reliability operations?. 

Let the components  and j are restricted with respect to performance thresholds ,  and 

respectively. Let , ,   and 𝑂𝑃𝑀!,#
$%,$& are state space restricted 

OPMs. If the performance measure of series system is sum performance measure of components, 
UGF method is found to be useful to evaluate system performance. Power generation, oil 
transportation systems etc are such systems. 

The paper is arranged as follows. The performance measures of the MSS and new joint 
importance measures of two components of the binary and MSS are introduced in section II. 
Discussion is given in section III. Illustrative example is given in section IV. Conclusion is given in 
section V. 

 
II. New Joint Importance Measures 

 
The performance measures used for the present study are discussed below. Using the performance 
measure Reliability and expected output performance measure, the new joint importance measures 
are introduced.  
 

I. Performance Measures of a Multistate system 
 

A multistate system with multistate components is considered. Let the structure function of a MSS 

at time t be denoted by 𝜑%𝑋(𝑡)* = 𝑖, 𝑖 ∈ {0,1,2, . . . , 𝑀}, where 𝑋(𝑡) = (𝑋'(𝑡), 𝑋((𝑡), . . . , 𝑋)(𝑡)), 𝑋!(𝑡) ∈

{0,1,2, . . . , 𝑀!}, and	𝑀 = 𝑚𝑎𝑥
'*!*)

{𝑀!}.  Let the output performance of the MSS at time t, 𝑊(𝑡),	 where 

𝑊(𝑡) ∈ {𝑤! , 𝑖 = 0,1, . . . , 𝑀}  corresponds to the system state 𝜑(𝑋(𝑡)) = 𝑖.  Let  

              𝑝! = lim
+→-

Pr {𝑊( 𝑡) = 𝑤!} = lim
+→-

 Pr {𝜑(𝑋(𝑡)) = 𝑖},  0≤ 𝑖 ≤ 𝑀.                                    

Then the steady state performance distribution of the output performance of system, w={wi, 0≤ 𝑖 ≤

𝑀} is represented by p={pi, 0≤ 𝑖 ≤ 𝑀}. Steady state expected performance is 

                                             𝐸(𝑊) = ∑ 𝑝!𝑤!.
!/0 .                                                                (1) 

and expected system state is 

                                            𝐸1(𝜑(𝑋)) = ∑ 𝑖𝑝! ..
!/0                                                                   (2) 

For constant demand 𝐷2, to state k of the multistate system, reliability is 

i a
b ba ££ ,

, jiOPM ba £> ,
, jiOPM ba >£ ,

, jiOPM
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                         𝑅(𝑡) = 𝑃𝑟{𝑊(𝑡) ≥ 𝐷2} = 𝑃𝑟{𝜑(𝑡) ≥ 𝑘}.                                                (3)   

The stationary reliability is   

                                     𝑅(𝐷2) = ∑ 𝑝!1(𝑤! −𝐷2).
!/0 .                                                          (4)        

These performance measures are commonly used for reliability importance analysis, [6]. 
 

II. New Joint Importance Measures for two components in the MSS 
 
Suppose now the components are statistically independent and reliabilities are known.  In order to 
understand the interaction effect of two components in reliability achievement, reliability reduction 
and fractional contribution to reliability improvement, three joint importance measures are 
proposed. 
 
Joint Reliability Achievement Worth (JRAW)  
 
Reliability achievement worth is a measure to understand the improvement in system reliability.   
Consider a group of two components, with reference to the interaction, the groups having highest 
reliability achievement worth will be most important to improve the existing level of reliability. In 
order to assess the change in reliability by the presence or functioning or switching to functioning 
states of a group, the Joint Reliability Achievement Worth (JRAW) has to be measured.  
The role of interaction of components in a group consisting 2 components, in increasing reliability 
of system, define the following:  
𝑐𝑖#3	, indicate 𝑖#th component is in functioning states or up states  
𝑐𝑖#4:	indicate 𝑖#th component is in unreliable states or down states 
 𝐼'( = (𝑐13 − 𝑐14)(𝑐23 − 𝑐24) = (𝑐13 − 𝑐14)𝑐23 − (𝑐13 − 𝑐14)𝑐24 = 𝐼'(3 − 𝐼'(4 ,	the contrast of 
interaction of the component 1 and 2, while they switch from reliable states to down states, where  
𝐼'(3 = (𝑐13 − 𝑐14)𝑐23	is	the	high	level	interaction	contrast	of	component	1	and	2	and 𝐼'(4 = (𝑐13 −
𝑐14)𝑐24 is	the	low	level	interaction	contrast	of	component	1	and	2.  
Let  𝜕𝑅5(𝑖) = 𝑃%𝜑%𝑋(𝑡)* = 1, 𝐼!3* − 𝑃%𝜑%𝑋(𝑡)* = 1, 𝐼!4* = 𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 1* −
𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 0* i=1,2,…,n, the Birnbaum importance of component i, and 
𝜕𝑅5(𝑖, 𝑗) = 𝜕𝑅%𝜑%𝑋(𝑡)* = 1, 𝐼!#3* − 𝜕𝑅%𝜑%𝑋(𝑡)* = 1, 𝐼!#4* = ]𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 1, 𝑋#(𝑡) = 1* −
𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 0, 𝑋#(𝑡) = 1*^ − [𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 1, 𝑋#(𝑡) = 0* − 𝑃%𝜑%𝑋(𝑡)* =
1, 𝑋!(𝑡) = 0, 𝑋#(𝑡) = 0*], joint Birnbaum joint importance of components i and j.  

Now define JRAW of two components.  
Let 
 𝑅{!3,#3} = 𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 1, 𝑋#(𝑡) = 1*, 
 𝑅{!4,#3} = 𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 0, 𝑋#(𝑡) = 1*, 
	𝑅{!3,#4} = 𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 1, 𝑋#(𝑡) = 0*, 𝑎𝑛𝑑	  
𝑅{!4,#4} = 𝑃%𝜑%𝑋(𝑡)* = 1, 𝑋!(𝑡) = 0, 𝑋#(𝑡) = 0*. 
 

𝐽𝑅𝐴𝑊 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑑𝑢𝑒	𝑡𝑜	ℎ𝑖𝑔ℎ	𝑙𝑒𝑣𝑒𝑙	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑒𝑐𝑡	𝑜𝑓	𝑡𝑤𝑜	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠		

𝑇ℎ𝑒	𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙.  

𝐽𝑅𝐴𝑊!,# =
]𝑅{!3,#3} − 𝑅{!4,#3}^

𝑅  

The 𝐽𝑅𝐴𝑊!,# measure quantifies the maximum possible achievement of reliability due to interaction 
effect of component i and, j which switches from lower level to higher level.  For ith multistate 
component with performance threshold a, let 𝑘!% be the state in the ordered set of states of 
component i such that 𝑥!2!" ≤ 𝛼 < 𝑥!2!"3',, [6]. For a constant demand 𝐷2, to define Multistate Joint 
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Reliability Achievement Worth (MJRAW) of components i  and j,  let, 
 𝑅8!#",##$9 = 𝑃 t𝜑%𝑋(𝑡)* ≥ 𝑘, 𝑋!(𝑡) ≥ 𝑥!2!" , 𝑋#(𝑡) ≥ 𝑥#2%$u,  

𝑅8!&",##$9 = 𝑃 t𝜑%𝑋(𝑡)* ≥ 𝑘, 𝑋!(𝑡) < 𝑥!2!" , 𝑋#(𝑡) ≥ 𝑥#2%$u,				 	 

𝑅8!#",#&$9 = 𝑃 t𝜑%𝑋(𝑡)* ≥ 𝑘, 𝑋!(𝑡) ≥ 𝑥!2!" , 𝑋#(𝑡) < 𝑥#2%$u, 
and  
𝑅8!&",#&$9 = 𝑃 t𝜑%𝑋(𝑡)* ≥ 𝑘, 𝑋!(𝑡) < 𝑥!2!" , 𝑋#(𝑡) < 𝑥#2%$u 
 
where 𝛼	is the performance threshold and 𝑥!2!" performance of component i in state 𝑘!%, 𝛽 is the 
performance threshold and 𝑥#2%$is the performance of component j in the state 𝑘#&,,  i, j, =1,2,…,n. 
Thus, MJRAW of two components i and j can be defined as, 

𝑀𝐽𝑅𝐴𝑊!,# =
:;{!#,%#}4;{!&,%#}<

;
			                                                                                                          

MJRAW measures the reliability achievement worth of interaction effect of two components. 
 
Joint Reliability Reduction Worth (JRRW)   
 
To measure the role of interaction effect of two components in reducing the present reliability, Joint 
Reliability Reduction Worth (JRRW) is introduced in this section. To examine how the decrease in 
reliability happens by the decreased level or low level of interaction effect of two components, JRRW 
can be defined as follows. 
Let  

𝑅=4 = 𝑇ℎ𝑒	𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙	𝑏𝑦	𝑡ℎ𝑒	𝑙𝑜𝑤	𝑙𝑒𝑣𝑒𝑙		𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	 
𝑡𝑤𝑜	𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠	 

and 𝑅0 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑙𝑒𝑣𝑒𝑙.  The JRRW of a module is defined as: 

𝐽𝑅𝑅𝑊 =
𝑅0
𝑅=4

 

JRRW of two binary components i and j  is 

𝐽𝑅𝑅𝑊 =
𝑃𝑟𝑒𝑠𝑒𝑛𝑡	𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝐿𝑒𝑣𝑒𝑙

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑤ℎ𝑒𝑛	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡𝑤𝑜	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠	𝑖𝑠	𝑎𝑡	𝑙𝑜𝑤	𝑙𝑒𝑣𝑒𝑙	 

𝐽𝑅𝑅𝑊!,# =
𝑅

]𝑅{!3,#4} − 𝑅{!4,#4}^
 

The 𝐽𝑅𝑅𝑊!,# measure of two components i and j, quantifies the maximum possible reduction of 
reliability due to low level of interaction effect of component i and j. For a constant demand 𝐷2, 
Multistate Joint Reliability Reduction Worth (MJRRW) of a module consisting of two components i	 
and j is defined as, 

𝑀𝐽𝑅𝑅𝑊!,# =
𝑅

[𝑅8!#",#&$9 − 𝑅8!&",#&$9	]
 

MJRRW measures the reliability reduction worth of interaction effect of two components i and j.  
 
Joint Reliability Fussel-Vesely (JRFV) Measure  
 
To measure the fractional contribution of interaction effect of components to the increase of 
reliability, Joint Reliability Fussel-Vesly (JRFV) measure can be defined. JRFV measure can be 
expressed as, 𝐽𝑅𝐹𝑉 = >*4>+

,

>*
.  

𝐽𝑅𝐹𝑉

=
𝑃𝑟𝑒𝑠𝑒𝑛𝑡	𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝐿𝑒𝑣𝑒𝑙 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑤ℎ𝑒𝑛	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡𝑤𝑜	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠	𝑖𝑠	𝑖𝑛	𝑙𝑜𝑤	𝑙𝑒𝑣𝑒𝑙

𝑃𝑟𝑒𝑠𝑒𝑛𝑡	𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝐿𝑒𝑣𝑒𝑙		  

𝐽𝑅𝐹𝑉!,# =
𝑅 − ]𝑅{!3,#4} − 𝑅{!4,#4}^

𝑅  

The 𝐽𝑅𝐹𝑉!,# measure of two components i and j, quantifies the maximum fractional contribution of 
reliability due to high level of interaction effect of component i and j. For a constant demand 𝐷2, 
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Multistate Joint Fussel-Vesly (MJRFV) of two components i	 and j is defined as, 

𝑀𝐽𝑅𝐹𝑉!,# =
𝑅 − [𝑅8!#",#&$9 − 𝑅8!&",#&$9	]

𝑅 . 

MJRFV measures the reliability FV of a module consisting of two components.   
For the expected output performance measure, define Multistate Joint Output Performance 

Measure Achievement Worth (MJOPMAW), Multistate Joint Output Performance Measure 
Reduction Worth (MJOPMRW) and Multistate Joint Output Performance Measure Fussel-Vesely 
(MJOPFV) measures as below. For two components i and j,  

𝑀𝐽𝑂𝑃𝑀𝐴𝑊!,# =
]𝑂𝑃𝑀{!?,#?} − 𝑂𝑃𝑀{!@,#?}^

𝑂𝑃𝑀  

𝑀𝐽𝑂𝑃𝑀𝑅𝑊!,# =
𝑂𝑃𝑀

[𝑂𝑃𝑀8!#",#&$9 − 𝑂𝑃𝑀8!&",#&$9	]
 

𝑀𝐽𝑂𝑃𝑀𝐹𝑉!,# =
𝑂𝑃𝑀 − z𝑂𝑃𝑀8!#",#&$9 − 𝑂𝑃𝑀8!&",#&$9{

𝑂𝑃𝑀  

A component’s performance restriction approach can be adopted for the computation of the joint 
importance measures and UGF method can be adopted for the evaluation procedure, [6], [7].  The 
coefficients of UGFs are used for the evaluation of joint importance measures, [8]. 

 
III. Discussion 

 
 

 

In binary and multistate context, the proposed measures quantify the RAW, RRW and FV measures 
of interaction effect of two components. Many of the complex systems are made up of two or more 
components. MJRAW measures the reliability achievement when interaction effect of two 
components changes from lower level to higher level, MJRRW measures the reliability reduction of 
system when interaction effect of two components changes from higher level to lower level and 
MJRFV measures the fractional contribution of interaction effect of two components. Using the 
information of MJRAW, it is easy to understand and identify the pair of components with highest 
contribution to system reliability improvement. MJRRW provides the information regarding the 
group which induce lowest reduction in system reliability with lower level of group performance. 
The fractional contribution in reliability improvement of a pair of components can be measured 
using MJRFV. MJOPMAW, MJOPMRW and MJOMPFV measures are useful when a researcher uses 
output performance measure, expected output performance measure.  
 

IV. Illustrative Example 
 
Consider a system made up of n = 3 multi-state components in series logic. Component states are 0, 
1, 2, 3 and 4, with corresponding values of performance xj0=0, xj1=25, xj2=50, xj3=75, xj4=100, j=1, 2, 3,4 
(see Figure 1). 

 
Figure 1: Series system 
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The probability distribution of component j in state k, pjk, is given in Table 1. Let  0, 1 and 2 are un-
reliable states for < 𝛼 or < 𝛽 and 3 and 4 ate reliable states for ≥ 𝛼 or  ≥ β . 
                           

Table 1. Probability distributions of components 1, 2 and 3. 

Probability Distribution  
1     

 
2 

 
3 

P(Xi0=0) p10 =0.1 p20 =0.15 p30 =0.4 
P(Xi1=25) p11 =0.1 p21 =0.2 p31 =0.1 
P(Xi2=50) p12 =0.5 p22 =0.3 p32 =0 
P(Xi3=75) p13 =0.2 p23 =0.2 p33 =0.1 
P(Xi4=100) p14 =0.1 p24 =0.15 p34 =0.4 

                               
Table 2. Multistate joint importance measures 

For components 1, 2  
MJOPMAW= 1.244444444 

For components 2, 3  
MJOPMAW=28.52525253 

MJOPMRW= 1.45483871 MJOPMRW= 52.8 
MJOPMFV =0.312638581 MJOPMFV =0.981060606 

 
Multistate joint importance measures are given in Table 2 and plotted in Figure 2. The sign and size 
of the value of joint importance measure with regard to their impact on expected system output 
performance are found to be different. So, a numerical comparison can be made. 

Consider two groups, Group 1 with components 1  and 2 and Group 2 with components 2, 
and 3. Highest values for MJOPMAW, MJOPMRW and MJOPMFV are attained for pair of 
components 2 &3.  Highest values of joint importance measures are due to highest influence of those 
groups in change of system reliability. 
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Figure 2: Multistate joint importance measures of Group 1 and Group 2 

 
This information can be used to provide more reliability operations for different pair of components.  
Highest values in various importance measures indicates the need of highest care in reliability 
operations.  To understand the dynamics of system reliability change, one can use the proposed 
importance measures. 

V. Conclusion 
 
This paper introduced three module joint importance measures for MSSs with reference to the OPMs 
reliability and expected system output performance. The joint importance measures   MJRAW, 
MJRRW, and MJRFV for two components are introduced and generalized to expected output 
performance measure. The new joint importance measures are useful for giving priority for 
reliability improvement activities. The UGF method is used to evaluate the joint importance 
measures, in which the system performance is measured in terms of productivity or capacity. Joint 
importance measure values provide useful information for reliability improvement activities. The 
value and size of the importance measure can be used to make a comparison between different 
groups. 
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Abstract

In this article, we introduced a new quantile function which is the sum of quantile functions of Power
and Exponential geometric distributions. Different distributional charactaristics and reliability properties
are discussed and also simulation study is conducted by using R software. Finally the new model is
applied to a real data set.

Keywords: Exponential geometric distribution; Hazard quantile function; L - moments; Mean
residual quantile function; Percentile residual quantile function; Power distribution; Reversed
hazard quantile function; Reversed mean residual quantile function.

1. Introduction

Reliability analysis can be done by using distribution functions or by using quantile functions,
although both convey the same information about the distribution with different interpretations.
In reliability analysis, quantile based methods are particularly useful. For a nonnegative random
variable X with distribution function F(x), the quantile function Q(u) is defined by (see Nair and
Sankaran(2009))

Q(u) = F−1(u) = inf{x : F(x) ≥ u}, 0 ≤ u ≤ 1 (1)

If f(x) is the probability density function of X, then f(Q(u)) is called the density quantile function.
If F(x) is right continuous and strictly increasing, we have,

F(Q(u)) = u

The derivative of Q(u) is known as the quantile density function of X and is denoted by q(u).i.e.,

q(u) = Q′(u) (2)

When f(x) is the probability density function (pdf) of X, then by taking the derivative of F(Q(u))=u
we get,

q(u) f (Q(u)) = 1

Quantile functions have several properties that are not shared by distribution functions. For
example, the sum of two quantile functions is again a quantile function. Further, the product of
two positive quantile functions is again a quantile function in the nonnegative setup. There are
explicit general distribution forms for the quantile function of order statistics. It is easier to gener-
ate random numbers from the quantile function. A major development in portraying quantile
functions to model statistical data is given by Hastings et al. (1947), who introduced a family of
distributions by a quantile function. This was refined later by Tukey (1962) to form a symmetric
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distribution, called the Tukey lambda distribution. This model was generalized in different ways,
referred as lambda distributions which include various forms of quantile functions discussed
by Ramberg and Schmeiser (1972), Ramberg (1975), Ramberg et al. (1979) and Freimer et al. (1988).

Govindarajulu (1977) introduced a new quantile function by taking the weighted sum of
quantile functions of two power distributions. Hankin and Lee (2006) presented a new Power -
Pareto distribution by taking the product of power and Pareto quantile functions. Van Staden and
Loots (2009) developed a four - parameter distribution, using a weighted sum of the generalized
Pareto and its reflection quantile functions. Sankaran et al. (2016) developed a new quantile
function based on the sum of quantile functions of generalized Pareto and Weibull quantile
functions. Sankaran and Dileep (2016) introduced a new class of quantile functions by taking
the sum of quantile functions of half logistic and exponential geometric distributions which is
useful in reliability analysis. Also in (2018), they introduced another class of quantile function by
taking the product of quantile functions of Pareto and Weibull distributions. The density and
distribution functions for these models are not available in closed forms except for certain special
cases. The great advantage of these models is that the simple forms of the quantile functions make
it extremely straightforward to simulate random values, which is useful in inference problems.

The power exponential geometric quantile function is derived by taking the sum of quantile
functions of power and exponential geometric distributions. The survival function and quantile
function of power distribution are respectively given by,

S(x) = 1−
( x

α

)β
, 0 < x < α and α > 0, β > 0 (3)

and
Q1(u) = αu

1
β , 0 < u < α and α > 0, β > 0 (4)

Adamidis and Loukas (1998) introduced the exponential geometric (EG) distribution with applica-
tions to reliability modelling in the context of decreasing failure rate data. The survival function
and quantile function of the EG distribution are given by,

S(x) = 1− F(x) = (1− P)e−
x
α

(
1− Pe−

x
α

)−1
, 0 < P < 1 and α, λ > 0 (5)

and

Q2(u) =
1
λ

log
(

1− Pu
1− u

)
, 0 < P < 1 and α > 0 λ > 0 (6)

The rest of the paper is designed as follows. In section 2, we define the Power Exponential
geometric (PEG) Quantile function and the members of this family are discussed in section
3. Distributional characteristics are studied in section 4, L - moments in section 5 and density
function of rth order statistic in section 6. In section 7, reliability properties like hazard quantile
function, mean residual quantile function, percentile residual quantile function, etc. are studied.
A simulation study is conducted in section 8 and concluded in section 9.

2. Power – Exponential Geometric (PEG) Quantile Function

We introduce a new quantile function, which is the sum of quantile functions of power and
exponential geometric distributions.

let X and Y be two nonnegative random variables with distribution functions F(x) and G(x)
with quantile functions Q1(u) and Q2(u), respectively . Then

Q(u) = Q1(u) + Q2(u) (7)

is also a quantile function (see Nair et al. (2013)). We now introduce a new quantile function,

Q(u) = αu
1
β +

1
λ

log
(

1− Pu
1− u

)
, α, β, λ > 0 and 0 < P < 1. (8)
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is the sum of (4) and (6). The support of the new model is (0, ∞). The quantile density function is
obtained as,

q(u) =
β(1− P) + λ(1− u− Pu + Pu2)αu

1
β−1

βλ(1− u− Pu− Pu2)
, α, β, λ > 0 and 0 < P < 1. (9)

For the PEG quantile function, the density function f(x) can be written in terms of the distribtion
as,

f (x) =
βλ(1− F(x)− PF(x) + P(F(x))2)

β− βP + λαF(x)
1
β−1

(1− F(x)− PF(x) + P(F(x))2)
, α > 0, β > 0, λ > 0 , 0 < P < 1.

(10)
The quantile function (8) represents a family of distributions which have various shapes for
different values of parameters. The shapes of density function for different values of parameters
are given below.

Figure 1: Plot of density function for different values of α with β= 2, λ=2 and P=0.4.
.

3. Members of The Family

The PEG quantile function includes several well - known quantile functions for various values of
the parameters. We can derive some well - known quantile functions from the proposed model
by making use of various transformations.

Case 1 : α = 0, λ > 0 and P = 0
The quantile function of the PEG model reduces to the form

Q(u) =
1
λ

(−log (1− u)) (11)
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Figure 2: Plot of density function for different values of β with α= 2, λ=2 and P=0.4.
.

Figure 3: Plot of density function for different values of λ with α= 2, β=2 and P=0.4.
.
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which is the quantile function of exponential distribution with mean 1
λ .

Case 2 : α = 0, λ > 0 and 0 < P < 1.
Then the corresponding quantile function is,

Q(u) =
1
λ

log
(

1− Pu
1− u

)
(12)

which belongs to the class of distributions with linear hazard quantile functions defined by Midhu
et al. (2014), with quantile function

Q(u) =
1

a(1 + θ)
log
(

1 + θu
1− u

)
(13)

where θ = - P, −1 < θ < 0 and λ = a(1 - P)

Case 3 : α > 0, β = 1, 0 < P < 1 and λ tends to ∞
The quantile function of the PEG model is reduced to,

Q(u) = αu (14)

which is the quantile function of uniform U(0, 1
α )

Case 4 : We can apply the power transformation on (11) with α = 0, λ > 0 and P = 0 to form
the quantile function of Weibull distribution with parameters 1

λ and K.

Q(u) =
1
λ

(−log (1− u))K (15)

where K is the power.
There are some theorems that are applicable in PEG quantile function.

Theorem 1. If X follows Power distribution with distribution function FX(x) =
( x

α

)β ; 0 ≤ X

≤α, β > 0, then the random variable Z = X + 1
λ log

(
αβ−PZβ

αβ−Zβ

)
will follow PEG(α,β,λ,P) distribution.

Proof: Let T and V be the two random variables with QT(u) and QV(u) be the corresponding
quantile functions and FT(x) and FV(x) be the corresponding distribution functions respectively.
Now suppose Q*(u) is defined by QT(u) + QV(u).
Then the random variable that corresponds to the quantile function Q*(u) is T + QV(FT(T)) or
V + QT(FV(V)) (Sankaran et al. 2016). Now let Y follow exponential geometric distribution with
distribution function FY(x) = (1− e−λx)(1− Pe−λx)−1 and X follows power distribution with
distribution function FX(x) =

( x
α

)β then X + QY(FX(X)) has PEG(α, β, λ, P) distribution. Since

QY(u)= 1
λ log

(
1−Pu
1−u

)
and FX(x) =

( x
α

)β, we get,

X + QY(FX(X)) = X +
1
λ

log
(

αβ − PZβ

αβ − Zβ

)
Hence the proof.

Theorem 2. Let Z follows EG ( 1
λ , P), then a random variable X = Z + α(1− e−λx)

1
β (1− Pe−λx)

−1
β

will follow PEG(α, β, λ, P) distribution.
The proof is similar to that of Theorem 1.
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4. Distributional Characteristics

The quantile based measures of the distributional characteristics of location, dispersion, skewness
and kurtosis are popular in statistical analysis. These measures are also useful for estimating
parameters of the model by matching population characteristics with corresponding sample
characteristics.
Median (M) of the PEG model is,

M = Q(0.5)

= α(0.5)
1
β

(16)

Interquartile range (IQR) of the PEG model is,

IQR = Q3 −Q1

= α

(
(0.75)

1
β − (0.25)

1
β

)
+

1
λ

log
(

4− 3P
1.33− 0.33P

) (17)

Galton’s coefficient of skewness (S) of the PEG model is,

S =
Q1 + Q3 − 2M

Q3 −Q1

=

α

(
(0.25)

1
β + (0.75)

1
β − 2(0.5)

1
P

)
+
(

log(1.33− 0.33P) + log
(

4−3P
2−P

))
α

(
(0.75)

1
β − (0.25)

1
β

)
+ 1

λ log
(

4−3P
1.33−0.33P

) (18)

Moor’s coefficient of kurtosis (T) of the PEG model is,

T =
Q(0.875)−Q(0.625) + Q(0.375)−Q(0.125)

IQR

=

α

(
0.875

1
β − 0.625

1
β + 0.375

1
β − 0.125

1
β

)
+ 1

λ log
(

0.107P2−0.41P+0.328
0.006P2−0.039P+0.078

)
α

(
0.75

1
β − 0.25

1
β

)
+ 1

λ log
(

4−3P
1.33−0.33P

) (19)

5. L - Moments

L- moments are the expected values of linear function of order statistics. The L- moments are
often found to be more desirable than the conventional moments in describing the characteristics
of the distributions as well as for inference. L-moments can be used as summary measures
(statistics) of probability distributions (samples) to identify distributions and to fit models to data.
A unified theory and a systematic study on L - moments have been presented by Hosking (1990).

The rth L-moment is given by,

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r− 1 + k

k

)
ukQ(u)du (20)

The first L moment is the mean of the distribution. For the PEG model, L1 is obtained as,

L1 =
∫ 1

0
Q(u)du

=
αβ

1 + β
+

(P− 1) log(1− P)
λP

(21)
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The second L moment is obtained as,

L2 =
∫ 1

0
(2u− 1)Q(u)du

=
αβ

1 + 2β2 + 3β
+

(P− 1) (P + log(1− P))
λP2

(22)

The third L moment is,

L3 =
∫ 1

0
(6u2 − 6u + 1)Q(u)du

=
αβ

β + 1
− 6αβ2

1 + 5β + 6β2 +
2(P− 1)

λP2 − (P− 1)(P− 2)log(1− P)
λP3

(23)

Fourth L moment is obtained as,

L4 =
∫ 1

0
(20u3 − 30u2 + 12u− 1)Q(u)du

=
20αβ

1 + 4β
− 30αβ

1 + 3β
+

11αβ + 10αβ2

1 + 3β + 2β2 +
α(P− 1)(P3 − 15P2 + 30P + 6 ((P− 5)P + 5) log(1− P))

6P4

(24)

The L - coefficient of variation, analogous to the coefficient of variation based on ordinary
moments for model (8) is given by,

τ2 =
L2

L1
=

αβ
1+β + (P−1)(P+log(1−P))

λP2

αβ
1+β +

(P−1) log(1−P)
λP

(25)

L - coefficient of skewness is obtained as,

τ3 =
L3

L2
=

αβ
β+1 −

6αβ2

1+5β+6β2 +
2(P−1)

λP2 −
(P−1)(P−2)log(1−P)

λP3

αβ
1+2β2+3β

+ (P−1)(P+log(1−P))
λP2

(26)

L - coefficient of kurtosis of PEG function is,

τ4 =
L4

L2
=

20αβ
1+4β −

30αβ
1+3β + 11αβ+10αβ2

1+3β+2β2 + α(P−1)(P3−15P2+30P+6((P−5)P+5)log(1−P))
6P4

αβ
1+2β2+3β

+ (P−1)(P+log(1−P))
λP2

(27)

6. Order Statistics

There are several topics in reliability of analysis in which order statistics appear quite naturally. If
Xr:n is the rth order statistic in a random sample of size n, then the density function of Xr:n can
be written as,

fr(x) =
1

B(r, n− r + 1)
f (x)(F(x))r−1(1− F(x))n−r (28)

From (10) the equation will be,

fr(x) =
1

B(r, n− r + 1)
βλ(1− F(x)− PF(x) + PF(x)2)(F(x))r−1(1− F(x))n−r

β− βP + λαF(x)
1
β−1

(1− F(x)− PF(x) + PF(x)2)

Hence,

E(Xr:n) =
1

B(r, n− r + 1)

∫ ∞

0
x

βλ(1− F(x)− PF(x) + PF(x)2)(F(x))r−1(1− F(x))n−r

β− βP + λαF(x)
1
β−1

(1− F(x)− PF(x) + PF(x)2)
dx
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In quantile terms, it can be written as,

E(Xr:n) =
1

B(r, n− r + 1)

∫ 1

0
Q(u)

βλ(1− u− Pu + Pu2)ur−1(1− u)n−r

β− βP + λαu
1
β−1

(1− u− Pu + Pu2)
dx

For the class of distributions (8), the first - order statistic X1:n has the quantile function

Q(1)(u) = Q(1− (1− u)
1
n )

= α
(

1− (1− u)
1
n

) 1
β
+

1
λ

log
(

P + (1− P)(1− u)
−1
n

) (29)

and the nth order statistic Xn:n has the quantile function

Q(n)(u) = Q(u
1
n )

= αu
1

βn +
1
λ

log

(
1− Pu

1
n

1− u
1
n

)
(30)

Order statistics have more applications in quantile based reliability analysis as compared to
distribution function based reliability analysis.

7. Reliability Properties

Reliabilty properties have an important role in real life situations. Some most relevent quantile
based functions used in reliabilty analysis are hazard quantile function, mean residual quantile
function, etc.

7.1. Hazard Quantile Function

One of the basic concepts employed for modeling and analysis of lifetime data is the hazard rate.
In a quantile setup, Nair and Sankaran (2009) defined the hazard quantile function, which is
equivalent to the hazard rate. The hazard quantile function H(u) is defined as

H(u) = h(Q(u)) = [(1− u)q(u)]−1 (31)

Thus, H(u) can be interpreted as the conditional probability of failure of a unit in the next small
interval of time given the survival of the unit until 100(1-α)% point of the distribution. Note that
H(u) uniquely determines the distribution using the identity,

Q(u) =
∫ u

0

dp
(1− p)H(p)

(32)

Since the PEG model is the sum of quantile functions of power and exponential geometric quantile
functions, (4) and (32) give

1
H(u)

=
1

H1(u)
+

1
H2(u)

(33)

where H(u) is the hazard quantile function of the PEG model, H1(u) is the hazard quantile
function of Power distribution and H2(u) is the hazard quantile function of exponential geometric
distribution. From (33), the PEG model has hazard quantile function proportional to the harmonic
average of the hazard quantile functions of Power and exponential geometric quantile functions.
For the class of distributions (8), we have

H(u) =
βλ(1− Pu)

αλ(1− u)(1− Pu)u
1
β−1

+ β(1− P)
(34)

RT&A, No 4 (65)
Volume 16, December 2021

301



Jeena Joseph, Asisha A.P.
PEG Quantile Function

7.1.1 Behavior of Hazard Quantile Function

The shape of the hazard quantile function can explain the behavior of hazard quantile function. It
express increasing hazard rate (IHR), decreasing hazard rate (DHR), bathtub shape (BT), upside
down bathtub shape (UBT) and constant rate at different values of parameters.

The different shapes of hazard quantile function for various values of parameters are sum-
marized in Table 1 and plots given in Figure (4).

Table 1: Behavior of hazard quantile function for different regions of parameters.

No. Parameter region Shape of hazard quantile function
1 α > 1, β > 1, P = 0, λ > 0 IHR
2 α = 1, 0 < β < 1, 0 < P < 1, λ > 0 DHR
3 α = 1, β = 1, 0 < P < 1, λ > 0 UBT
4 α > 1, 0 < β < 1, P = 1, λ > 0 BT
5 α = 0, β > 1, P = 0, λ > 0 Constant
6 α > 1, β > 1, 0 < P < 1, λ > 0 UBT
7 α = 1, β > 1, P = 0, λ > 0 IHR
8 0 < α < 1, 0 < β < 1, 0 < P < 1, λ > 0 DHR
9 α > 1, β > 1, P = 1, λ > 0 IHR

7.2. Mean Residual Quantile function

Mean residual function is a well - known measure that has been widely used for modeling lifetime
data in reliability and survival analysis. For a nonnegative random variable X, the mean residual
life function is defined as,

m(x) =
1

1− F(x)

∫ ∞

x
(1− F(t))dt (35)

In quantile based reliability analysis, the mean residual life function is known as mean residual
quantile function, which is the quantile version of the mean residual function (35), defined by
Nair and Sankaran (2009), has the expression,

M(u) =
1

1− u

∫ 1

u
(Q(p)−Q(u))dp (36)

For the PEG model, M(u) has the form,

M(u) =
1

1− u
αβ(1− u

1
β +1

)

1 + β
+

1− P
P(1− u)

(1− log(1− P))− 1− Pu
P(1− u)

(1− log(1− Pu))

− (1− log(1− u))−
(

αu
1
β +

1
λ

log(
1− Pu
1− u

)

) (37)

It is well known that increasing (decreasing) failure rate implies decreasing (increasing) mean
residual life (see Lai and Xie 2006). The aging behavior of PEG model based on mean residual
quantile function can be defined from Table (2)
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plot.png

Figure 4: Behavior of Hazard quantile function.

7.3. Percentile Residual Quantile Function

Lillo (2005) found that Q(u) can be uniquely determined from the knowledge of Pk(u), where
Pk(u) is the kth percentile residual quantile function. We have,

Pk(u) = Q(1− (1− k)(1− u))−Q(u)

= α(1− (1− k)(1− u))
1
β +

1
λ

log
(

1− P(1− (1− k)(1− u))
1− (1− (1− k)(1− u))

)
− αu

1
β +

1
λ

log
(

1− Pu
1− u

)
(38)
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7.4. Reversed Hazard Quantile Function

Reversed hazard quantile function is,

Λ = (uq(u))−1

=
βλ(1− u− Pu− Pu2)

uβ(1− P) + λαu
1
β (1− u− Pu− Pu2)

(39)

7.5. Reversed Mean Residual Quantile Function

Reversed mean residual quantile function is represented as R(u). kth reversed mean residual
quantile function can be obtained by using the given formula.

R(u) =
1
u

∫ u

0
(Q(u)−Q(k))dk

= αu
1
β +

1
λ

log
(

1− Pu
1− u

)
− αβu

1
β

1 + β
− 1

λu

(
1− Pu

P
(1− log(1− Pu))− (1− u)(1− log(1− u))

)
(40)

7.6. Total Time on Test Transform (TTT)

Total time on test transform is represented as T(u), and it is calculated by using

T(u) =
∫ u

0
(1− k)q(k)dk

Also there is a relationship between total time on test transform and reversed mean residual
quantile function (sankaran (2009)) and it is given by

T(u) = Q(u)− uR(u)

Using this relation, we can obtain the TTT of PEG model(8) and is given by

T(u) = (1− u)
(

αu
1
β +

1
λ

log
(

1− Pu
1− u

))
+

αu
1
β +1

1 + β

+
1
λ
((1− Pu)(1− log(1− Pu))− (1− u)(1− log(1− u)))

(41)

8. Simulation Study

A simulation study is conducted to examine the performance of PEG quantile function for different
sizes n=25, 50, 100, 500 using R package. Here simulate 1000 samples for the parameter values
α=5, β=2, λ=3, P=0.87 and for α=0.8, β=0.05, λ=2, P=0.91, the maximum likelihood estimates for
α, β, λ and P were determined for each sample, allowing the calculus of mean estimates.
We also evaluate the absolute bias and mean square erro (MSE) defined by,

AbsoluteBias =
1
N
|

N

∑
i=1

(ε̂− ε)|

and

MSE =
1
N

N

∑
i=1

(ε̂− ε)2

From the table. we can see that, as the sample size increases, the mean square error decreases for
all selected parameter values. Also the bias caused by the estimates decreases as the sample size
increases. Thus the estimates tends to the true parameter values with increasing sample size.
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Table 2: Simulation study

Sample Size Parameter Mean Bias MSE Mean Bias MES
α 0.68112 4.31887 22.05722 16.77764 15.97764 6904.116

25 β 0.00028 1.99971 3.99884 0.00779 0.04220 0.00278
λ 0.24744 2.75255 8.23978 -0.97483 2.97483 40.40615
P 0.11449 0.75550 0.67065 -2.04215 2.95215 61.96811
α 0.85121 4.14879 21.05278 2.03723 1.23723 192.11053

50 β 0.20056 1.79943 3.59774 -1.01769 0.06769 0.02431
λ 0.46151 2.53848 7.57733 -0.29682 2.29682 14.10438
P 0.13915 0.73084 0.63639 -0.01065 0.9206 1.45400
α 1.05596 3.94404 20.04939 0.01600 0.78399 0.62799

100 β 0.24022 1.75977 3.51908 0.00054 0.04972 0.00241
λ 0.57022 2.42977 7.29000 0.03955 1.96003 3.92267
P 0.18156 0.68874 0.60625 0.01768 0.89245 0.81158
α 5.00104 0.00104 0.00055 0.28842 0.51200 0.40922

500 β 1.99600 0.00399 0.00797 0.01826 0.03211 0.00165
λ 3.00001 3.77e−6 7.12e−9 0.72364 1.28413 2.56012
P 0.87020 0.00020 2.16e−5 0.32690 0.58245 0.52998

9. Data Analysis

This section explains the application of newly proposed quantile function in a real data set. There
are many methods to estimate the unknown parameters of the quantile function. Method of
maximum likelihood, method of L moments, method of minimum absolute deviation are some
of the main mathods to estimate the parameters. In this work, method of maximum likelihood
estimation procedure is used to estimate the parameters. Here the PEG function is applied to
real data set reported in Zimmer et al. (1998). The data set consist of first failure times of small
20 electric carts used for internal transportation and delivery in a manufacturing company.The
estimates so obtained are given by,

α̂ = 11.2417, β̂ = 0.0056, λ̂ = 2.5998, P̂ = 0.7101 (42)

The model adequacy is checked by using chi-squared goodness of fit test. The test result gives
the p-value 0.2358. The significance level is 0.05, hence the test result indicates the adequacy of
the PEG model to the data.

10. Summary and Conclusion

In this project work, a new quantile function is introduced, that is the sum of quantile functions
of the power and exponential geometric (PEG) quantile functions. And also discovered that some
well-known distributions are members of the PEG quantile function. Then plot different shapes
of the density model for different values of parameters, also find the distributional characteristics
of the model such as median, inter quartile range, skewness and kurtosis. Then derived first four
L-moments and order statistics of the PEG quantile function. Important reliability properties
are studied such as hazard quantile function, mean residual quantile function, etc. The different
shapes of hazard quantile function for different parameter regions are plotted. Simulation study
is conducted and it results that the bias and MSE are decreases as sample size increases. Finally
the PEG model is applied to a real data set, and parameters are estimated by using maximum
likelihood estimation procedure and model adequacy is checked by chi-square goodness of fit
test. All these are done by using R software.

Several properties and extensions are possible in this PEG quantile function they are not
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considerd in this work, such as stochastic ordering, parameter estimation by L- moment, etc.
since the parameters estimated by L moment method will be more efficient.

References

[1] Adamidis, K. and S. Loukas. 1998. A lifetime distribution with decreasing failure rate.
Statistics and Probability Letters 39 (1):35–42. doi:10.1016/S0167-7152(98)00012-1.

[2] Freimer, M.G., Kollia, G. S. Mudholkar, and C. T. Lin. 1988. A study of the generalized
Tukey lambda family. Communications in Statistics—Theory and Methods 17 (10):3547–67.
doi:10.1080/ 03610928808829820.

[3] Govindarajulu, Z. 1977. A class of distributions useful in life testing and reliability. IEEE
Transactions on Reliability 26 (1):67–69. doi:10.1109/TR.1977.5215079.

[4] Hankin, R. K. and A. Lee. 2006. A new family of non-negative distributions. Australian and
New Zealand Journal of Statistics 48 (1):67–78. doi:10.1111/j.1467-842X.2006.00426.x.

[5] Hastings, C., F. Mosteller, J. W. Tukey, and C. P. Winsor. 1947. Low moments for small
samples: A comparative study of order statistics. Annals of Mathematical Statistics 18:413–26.
doi:10.1214/ aoms/1177730388.

[6] Hosking, J. R. M. 1990. L-moments: Analysis and estimation of distributions using linear
combinations of order statistics. Journal of the Royal Statistical Society Series B 52 105–24.

[7] Lai, C. D. and Xie, M. 2006. Stochastic ageing and dependence for reliability. Springer Science
and Business Media.

[8] Lillo, R.E.: On the median residual lifetime and its aging properties: A charectarization
theorem and application. Nav. Res. Logist. 52, 370-380(2005)

[9] Midhu, N. N., P. G. Sankaran, and N. U. Nair. 2014. A class of distributions with linear
hazard quantile function. Communications in Statistics—Theory and Methods 43 (17):3674–89.
doi:10.1080/03610926.2012.705211.

[10] Nair, N. U. and P. G. Sankaran. 2009. Quantile-based reliability analysis. Communications in
Statistics—Theory and Methods 38 (2):222–32. doi:10.1080/03610920802187430.

[11] Nair, N. U., P. G. Sankaran, and N. Balakrishnan. 2013. Quantile-based reliability analysis.
New York, NY: Springer, Birkhauser. doi:10.1007/978-0-8176-8361-0.

[12] Nair, N. Unnikrishnan, Sankaran, P.G., Midhu, N (2016) A New Quantile Function with Ap-
plications to Reliability analysis, Communications in statistics - Simulation and Computation,
45:2,566-582

[13] Nair, N. Unnikrishnan, Vineeshkumar, B (2012) Reliability Concepts in Quantile Based
Analysis of Life Time Data.

[14] Ramberg, J. S. (1975). A probability distribution with applications to Monte Carlo simulation
studies. In Statistical distributions in scientific work: Model building and model selection,
eds. G.P. Patil, S. Kotz, J. K. Ord, vol. 2. Dordrecht: D. Reidel.

[15] Ramberg, J. S., E. J. Dudewicz, P. R. Tadikamalla, and E. F. Mykytka. 1979. A proba-
bility distribution and its uses in fitting data. Technometrics 21 (2):201–14. doi:10.1080/
00401706.1979.10489750.

[16] Ramberg, J. S. and B. W. Schmeiser. (1972). An approximate method for generating symmetric
random variables. Communications of the ACM 15 (11):987–90. doi:10.1145/355606.361888.

[17] Sankaran P. G and Dileep Kumar M (2018). Journal of Applied Probability and Statistics, vol.
13, N0. 1.pp. 81-95, ISOSS Publications.

[18] Sankaran P. G and Dileep Kumar M (2016) A New Class of Quantile Functions Usefull in
Reliability Analysis, Journal of statistical Theory and Practice, 12:3, 615-634

[19] Tukey, J. W. 1962. The future of data analysis. Annals of Mathematical Statistics 33 (1):1–67.
doi:10.1214/aoms/1177704711.

[20] Van Staden, P. J. and M. T. Loots. 2009. Method of L-moment estimation for the generalized
lambda distribution. Proceedings of the Third Annual ASEARC Conference, New Castle,
Australia, December 7–8.

RT&A, No 4 (65)
Volume 16, December 2021

306



Jeena Joseph, Asisha A.P.
PEG Quantile Function

[21] Zimmer, W. J., J. B. Keats, and F. K. Wang. 1998. The Burr XII distribution in reliability
analysis. Journal of Quality Technology 30 (4):386–94. doi:10.1080/00224065.1998.11979874.

RT&A, No 4 (65)
Volume 16, December 2021

307



Vijayaraghavan R, Saranya C R & Sathya Narayana Sharma K  
RELIABILITY SINGLE SAMPLING PLAN FOR BURR DISTRIBUTION 

RT&A, No 4 (65) 
Volume 16, December 2021 

 

 

 

RELIABILITY SINGLE SAMPLING PLANS UNDER THE 
ASSUMPTION OF BURR TYPE XII DISTRIBUTION 

Vijayaraghavan R 
• 

Professor & Head Department of Statistics 
 Bharathiar University Coimbatore 641 046, INDIA 

rvijayrn@yahoo.com 
 

Saranya C R* 
• 

Lecturer Department of Statistics KSMDB College 
Sasthamcotta 690 521, Kerala, INDIA 

saranyasreekumar17@gmail.com 
 

Sathya Narayana Sharma K 
• 

Assistant Professor Department of Mathematics 
School of Advanced Sciences Vellore Institute of Technology 

Vellore 632 014, Tamil Nadu, INDIA 

sharma14081992@gmail.com  

*Corresponding Author 

Abstract 

 Acceptance sampling or sampling inspection is an essential quality control technique which 
describes the rules and procedures for making decisions about the acceptance or rejection of a batch 
of commodities by the inspection of one or more samples. When quality of an item is evaluated based 
on the life time of the item, which can be adequately described by a continuous-type probability 
distribution, the plan is known as life test sampling plan. The application of Burr (XII) distribution 
in reliability sampling plans is considered in this article. A procedure for selection of the plan 
parameters to protect the both producer as well as the consumer indexed by the acceptable mean life 
and operating ratio is evolved. Application of proposed plan is discussed with the help of numerical 
illustrations. Evaluation of such plans is explained utilising a set of simulated observations from 
Burr (XII) distribution.  

Keywords: Acceptable Mean Life, Operating Ratio, Burr Distribution, Reliability Sampling, Type I 
Censoring. 

I. Introduction 

Sampling inspection plans are used to determine the acceptability of a lot consisting of the finished 
products based on the inspection of sampled items. Lifetime of the items which are put under test is 
considered as an important characteristic in reliability sampling plans. While making the decision 
on the disposition of the lot based on life testing, the length or duration of the total time spent on the 
inspection of items would be a major constraint and hence, it would be desirable if a life test is 
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terminated by specifying a time and observing the number of failures that occur before the pre-
assigned time. 

The utilization of several continuous probability distributions in the researches pertained to 
the construction and evaluation of life test sampling plans has been significantly outlined in the 
literature of product control. While important contributions have been made during the past five 
decades in the evolution of life test sampling plans employing exponential, Weibull, lognormal, 
gamma and other lifetime distributions, the literature also provides application of varied 
distributions for modelling lifetime data. Epstein [1, 2], Handbook H-108 [3], and Goode and Kao 
[4-6] proposed the construction of life test sampling plans using exponential and Weibull 
distributions.  

The latest advancements in life tests sampling plans includes the works of Gupta [7],  
Schilling and Neubauer [8], Balakrishnan et al., [9], Kalaiselvi and Vijayaraghavan [10], Kalaiselvi et 
al., [11], Loganathan et al., [12], Vijayaraghavan et al., [13],  Vijayaraghavan and Uma [14, 15] and 
Vijayaraghavan et al., [16, 17]. 

Burr [18] introduced a system of twelve continuous distributions and one among them is 
termed as the Burr type XII distribution or simply Burr distribution. It is also considered as a 
generalized log-logistic distribution. Literature in reliability theory advocates the adoptability of the 
family of Burr-type distributions for modeling lifetime data and for modeling the concept with 
monotone and unimodal failure rates. The Burr type XII is often considered as a suitable model for 
failure data. Similar to the log-normal distribution, it has a non-monotone hazard function which 
can accommodate many shapes of hazard.  

Zimmer and Burr [19] considered a wide range of values for the degrees of skewness and 
kurtosis using a class of Burr distributions and developed the method of deriving variables sampling 
plans for non-normal populations based on the measures of skewness and kurtosis. Rodriguez [20, 
21] has used measures of skewness and kurtosis of Burr distribution to derive the area in the plane 
based on the Burr type II distribution. Tadikamalla [22] has summarized the relationship between 
the Burr type II distribution and other distributions such as Lomax, compound Weibull, Weibull-
Exponential, logistic, log logistic, Weibull and Kappa family of distributions. Zimmer et al., [23] 
discussed the statistical and probabilistic properties of the Burr type XII distribution and its 
relationship to other distributions used in reliability analyses.  

Lio et al., [24] developed single sampling plans based on the percentiles of the Burr type XII 
distribution percentiles when the life test is truncated at a pre-specified time. Following this, Aslam 
et al., [25] discussed a two-stage group sampling procedure for the Burr type XII distribution 
percentiles to save sample resource with a truncated censoring scheme. Rao et al., [26] attempted to 
estimate multi-component stress-strength reliability assuming the Burr type XII distribution. 
Application of Burr distribution in reliability sampling is now considered with a particular reference 
to single sampling plans. 

II. Burr Distribution 

Let T be the lifetime of the component, which is considered as a random variable. Assume that T 
follows the Burr distribution. The probability density function and cumulative distribution function 
of T are, respectively, given by 

                     (1) 

and 

                                  (2) 
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where  and are the shape parameters, and  is the scale parameter. 
The mean life time of Burr distribution is given by  

                                       (3) 

The failure proportion,  of product before time t, is expressed by 

                (4) 

III. Procedure to Determine the Operating Characteristics 

The acceptance probabilities of lot of items under a single sampling plan is explained as a function 
of the failure probability p and is expressed by  

                                                        (5) 

The probability of acceptance under the specified conditions of binomial or Poisson distributions 
can be obtained utilising the corresponding expressions in (5).  

It can be noted that the failure probability, p, is a function of t, and , as expressed in (4). 
Corresponding to a specific value of p, a unique value of  would exist and can be derived as a 
function of p,  and using (2) and (4) as  

                                     (6) 

Using (3) and (6), the expression for is obtained as 

                        (7) 

Every single value of p is connected with distinct value  thus the OC function of RSSP 
is regarded as a function of  Plot the acceptance probabilities against the values of  The 
resulting figure would be the required OC curve. 

IV. Empirical Analysis of Operating Characteristic Curves 

It can be noted that the RSSP based on Burr (XII) distribution is specified by the parameters 
,η and  As the failure probability p is associated with the distribution function, which is a function 
of  the acceptance probabilities in turn can be computed for given sets of values of n, c, η and  
The acceptance probabilities of the submitted lot under the RSSP are computed against the ratio 

 for different combinations of parameters and . Here,  and represent the 
expected mean life and assumed mean life, respectively. It is to be noted that changes in the values 
of these parameters will influence the shape of the OC function. In order to explore the impact of the 
parameters an empirical analysis of the OC curves drawn for various sets of parameters is carried 
out. 

Figure 1 displays the curves for varying values of and fixed values of n, c and Figure 2 
exhibit the curves for different values of and the fixed values of and  Similarly, Figures 3 
and 4 display the sets of curves for varying values of n and c, respectively, fixing the values of shape 
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parameters. The curves exhibit the probabilities of acceptance of the lot against the values of

. From these figures, the following properties are observed: For any specified value of 

increases as  increases;   increases as increases,  decreases as n increases; and 

 increases as c increases.   

 
Figure 1: OC Curves of Single Sampling Plans for Life Tests Based on the Burr    

      Distribution for Varying with Fixed and  

 
Figure 2: OC Curves of Single Sampling Plans for Life Tests Based on the Burr    

      Distribution for Varying with Fixed and  

 
Figure 3: OC Curves of Single Sampling Plans for Life Tests Based on the Burr    

      Distribution for Varying n with Fixed and  
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Hence, for any given value of  for smaller values of  the acceptance probabilities 

are lesser; for smaller values of the acceptance probabilities are lesser; protection to the producer 
is greater with larger acceptance probabilities for smaller sample sizes as the expected mean life 
moves towards the assumed mean life; the consumer gets more protection with smaller acceptance 
probabilities for larger sample sizes when the expected mean life is much smaller than the assumed 
mean life; smaller the acceptance number, greater is the protection to the consumer; and larger the 
acceptance number, greater is the protection to the producer. 

 
Figure 4: OC Curves of Single Sampling Plans for Life Tests Based on the Burr    

             Distribution for Varying c with Fixed and  

V. Procedure for the Construction of Reliability Single Sampling Plan 

Vijayaraghavan and Uma (2016), discussed the procedures for obtaining the values of and  in 
association with 𝑡/𝜇!  and 𝑡/𝜇", respectively. In reliability sampling, a specific sampling plan for life 
tests can be obtained so that the OC curve must pass through two locations, namely, (𝜇!, 𝛼) and 
(𝜇", 𝛽), which are associated with the risks and   

The two conditions specified below must be satisfied, for obtaining the optimum plan 
parameters with fixed value of and , respectively: 

                               (8) 

and   

.                           (9) 

Based on the search procedure, the optimum single sampling plans under Burr (XII) 
distribution for a range of values of    and  are determined and tabulated in Table 

1 associated  and . 

VI. Numerical Illustrations 
I. Illustration 1 

A life test sampling plan is to be instituted under the condition that the life time follows the Burr 
distribution when the acceptable mean life and unacceptable mean life are prescribed as 6000 hours 
and 3000 hours, respectively, with the producer’s and consumer’s risks fixed as  and 

 The past history from an industrial process yields the estimates of the shape parameters 

as and The experimenter wishes to terminate the life test at t = 240 hours. For the 
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given requirements, the values of  and are obtained as 0.04 and 0.08, respectively and the 
operating ratio is R = 2.0. From Table 1, the optimum single sampling plan is determined as n = 319 
and c = 8.  

II. Illustration 2  

An industrial practitioner is interested to find out a single sampling plan for its 
implementation to make a decision about the disposition of a submitted lot of manufactured 
products whose lifetime follows the Burr distribution. The test termination time for the items to be 
inspected has been fixed as t = 325 hours. In order to obtain the required sampling plan, experimental 
results are observed to estimate the shape parameters. The estimates of δ and η from the 
experimental results are obtained as 2.0 and 1.5, respectively.  

With these values, the acceptable and unacceptable proportions of the lot failing before time, 
t, are determined as  and , respectively, which correspond to the producer’s 

and consumer’s risks fixed at the levels  and Associated with  and 

 are the values of and , which are obtained as  and , respectively. 
Thus, the value of the operating ratio is obtained as R = 3.5.  

When entered Table 1 with these values, the parameters of the optimum single sampling 
plan are obtained as n = 139 and c = 3. For the specified requirements under the optimum plan, the 
acceptable mean life and unacceptable mean life are, respectively, obtained as 

 
hours and

 
hours.  

 
Figure 5: OC Curve of an Optimum Single Sampling Plan for Life Tests Based on the Burr 

                               Distribution Having Parameters and  
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Figure 6: OC Curve of an Optimum Single Sampling Plan for Life Tests Based on the Burr 

                              Distribution Having Parameters and  

In order to exhibit the practical performance of the optimum sampling plane determined in 
the above two illustrations, their operating characteristic curves are drawn, which are displayed in 
Figures 5 and 6. It can be observed from these figures that the operating characteristic curves pass 
through the desired points and . 

III. Illustration Based on Simulated Data 

A life test sampling plan is to be instituted under the condition that the life time follows the Burr 
distribution when the acceptable mean life and unacceptable mean life are prescribed as 6000 hours 
and 3000 hours, respectively, with the producer’s and consumer’s risks fixed as  and 

  
A set of 100 observations is simulated from Burr distribution with shape parameters 
and The life test is decided to terminate at t = 240 hours. For the given requirements, 

the values of  and are obtained as 0.04 and 0.2, respectively and the operating ratio is R 
= 5.0. From Table 1, the optimum single sampling plan is determined as n = 35 and c = 2.  

Simulated observations are: 2398, 1149, 621, 1979, 202, 4859, 133, 99, 655, 1386, 1963, 2132, 
13078, 2311, 197, 1734, 13466, 3457, 1077, 4912, 145, 4719, 1833, 1858, 996, 1277, 2450, 18659, 595, 2821, 
605, 389, 866, 1366, 1835, 5822, , 33200, 214, 1089, 875, 4660, 660, 466, 1511, 1655, 2126, 1475, 733, 3218, 
3439, 1609, 4342, 542, 2709, 4924, 559, 2657, 1373, 2271, 4159, 4829, 636, 437, 668, 2472, 1218, 2278, 258, 
2695, 2581, 5282, 2391, 1931, 2293, 1000, 1337, 371, 2201, 896, 115, 6033, 4690, 175, 2602, 2866, 719, 
1214, 1629, 3202, 1617, 687, 289, 1357, 56, 4183, 962, 641, 630, 2326 and 3555. 
Random sample of 35 observations from the simulated data were 99, 145, 289, 437, 559, 595, 668, 687, 
719, 875, 996, 1000, 1157, 1218, 1337, 1511, 1609, 1655, 1734, 1835, 1979, 2132, 2201, 2278, 2311, 2391, 
2472, 3202, 4183, 4342, 4719, 4829, 4912, 6033 and 33200 

Since the random sample contains two failures before time t=240, the lot is considered as 
accepted.  

VII. Conclusion 

Reliability single sampling plans are proposed based on Burr (XII) distribution. The 
procedures for choosing single sampling plans are developed. Tables are presented for choosing 
parameters of reliability sampling plans indexed by acceptable mean life and operating ratio for the 
preassigned time t with few specified values of shape parameters.  
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Table 1: Optimum Parameters of RSSP Based on Burr (XII) Distribution for Certain Sets of Shape Parameters  
(Key: n, c) 

 
 

  
        

10.00 21, 2 34, 1 69, 1 155, 0 29, 2 44, 1 87, 1 188, 0 
9.50 22, 2 36, 1 74, 1 171, 0 31, 2 47, 1 94, 1 208, 0 
9.00 23, 2 38, 1 80, 1 191, 0 32, 2 50, 1 101, 1 231, 0 
8.50 24, 2 41, 1 87, 1 214, 0 34, 2 54, 1 110, 1 259, 0 
8.00 25, 2 44, 1 95, 1 241, 0 36, 2 58, 1 121, 1 293, 0 
7.50 27, 2 47, 1 105, 1 274, 0 38, 2 62, 1 133, 1 333, 0 
7.00 36, 3 51, 1 116, 1 315, 0 41, 2 68, 1 147, 1 382, 0 
6.50 38, 3 77, 2 129, 1 616, 1 55, 3 101, 2 164, 1 748, 1 
6.00 41, 3 84, 2 145, 1 723, 1 59, 3 112, 2 185, 1 878, 1 
5.50 45, 3 94, 2 165, 1 860, 1 64, 3 124, 2 210, 1 1044, 1 
5.00 58, 4 105, 2 190, 1 1040, 1 70, 3 140, 2 242, 1 1263, 1 
4.75 61, 4 112, 2 281, 2 1152, 1 89, 4 149, 2 358, 2 1399, 1 
4.50 64, 4 150, 3 305, 2 1283, 1 93, 4 200, 3 388, 2 1559, 1 
4.25 68, 4 161, 3 332, 2 1438, 1 99, 4 214, 3 422, 2 1748, 1 
4.00 83, 5 173, 3 363, 2 1623, 1 121, 5 231, 3 462, 2 1973, 1 
3.75 89, 5 187, 3 400, 2 1846, 1 129, 5 250, 3 509, 2 2244, 1 
3.50 107, 6 244, 4 443, 2 2119, 1 157, 6 326, 4 564, 2 2576, 1 
3.25 129, 7 267, 4 621, 3 3363, 2 168, 6 357, 4 791, 3 4087, 2 
3.00 153, 8 342, 5 699, 3 3946, 2 203, 7 457, 5 892, 3 4796, 2 
2.75 182, 9 432, 6 953, 4 4695, 2 267, 9 578, 6 1215, 4 5707, 2 
2.50 233, 11 543, 7 1275, 5 7130, 3 342, 11 727, 7 1626, 5 8668, 3 
2.25 312, 14 747, 9 1694, 6 8802, 3 460, 14 1000, 9 2162, 6 10700, 3 
2.00 450, 19 1081, 12 2493, 8 15464, 5 664, 19 1448, 12 3182, 8 18800, 5 
1.90 536, 22 1304, 14 3191, 10 17134, 5 790, 22 1747, 14 4073, 10 20830, 5 
1.80 651, 26 1556, 16 3728, 11 21678, 6 962, 26 2085, 16 4758, 11 26355, 6 
1.70 825, 32 2012, 20 4924, 14 29985, 8 1186, 31 2696, 20 6286, 14 36455, 8 
1.60 1090, 41 2623, 25 6632, 18 40132, 10 1576, 40 3516, 25 8466, 18 48791, 10 
1.50 1487, 54 3715, 34 9319, 24 56185, 13 2200, 54 4981, 34 11897, 24 68308, 13 

 
 

  
        

10.00 12, 2 15, 1 26, 1 40, 0 16, 2 20, 1 32, 1 48, 0 
9.50 13, 2 16, 1 28, 1 44, 0 17, 2 21, 1 34, 1 53, 0 
9.00 13, 2 17, 1 30, 1 49, 0 18, 2 22, 1 37, 1 59, 0 
8.50 14, 2 18, 1 32, 1 54, 0 18, 2 24, 1 40, 1 66, 0 
8.00 14, 2 20, 1 35, 1 61, 0 19, 2 25, 1 44, 1 74, 0 
7.50 19, 3 21, 1 38, 1 69, 0 21, 2 27, 1 48, 1 84, 0 
7.00 20, 3 31, 2 42, 1 80, 0 28, 3 41, 2 53, 1 96, 0 
6.50 21, 3 34, 2 47, 1 156, 1 29, 3 44, 2 59, 1 189, 1 
6.00 23, 3 37, 2 53, 1 182, 1 32, 3 49, 2 67, 1 221, 1 
5.50 24, 3 41, 2 60, 1 217, 1 34, 3 54, 2 76, 1 263, 1 
5.00 32, 4 46, 2 94, 2 262, 1 44, 4 60, 2 87, 1 317, 1 
4.75 33, 4 49, 2 102, 2 290, 1 47, 4 64, 2 128, 2 351, 1 
4.50 35, 4 66, 3 110, 2 322, 1 49, 4 86, 3 139, 2 391, 1 
4.25 42, 5 70, 3 119, 2 361, 1 60, 5 92, 3 151, 2 438, 1 
4.00 45, 5 75, 3 130, 2 407, 1 63, 5 99, 3 165, 2 495, 1 
3.75 54, 6 81, 3 143, 2 463, 1 67, 5 107, 3 182, 2 562, 1 
3.50 57, 6 106, 4 199, 3 532, 1 81, 6 139, 4 253, 3 645, 1 
3.25 68, 7 115, 4 222, 3 843, 2 98, 7 153, 4 282, 3 1024, 2 
3.00 81, 8 147, 5 250, 3 989, 2 116, 8 195, 5 318, 3 1201, 2 
2.75 96, 9 186, 6 340, 4 1176, 2 138, 9 247, 6 433, 4 1429, 2 
2.50 122, 11 233, 7 455, 5 1786, 3 176, 11 310, 7 578, 5 2170, 3 
2.25 163, 14 320, 9 604, 6 2204, 3 236, 14 425, 9 768, 6 2678, 3 
2.00 245, 20 462, 12 887, 8 3871, 5 340, 19 615, 12 1130, 8 4704, 5 
1.90 289, 23 557, 14 1135, 10 4288, 5 405, 22 742, 14 1446, 10 5212, 5 

10 /µµ=R
01.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h
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02.0/ 0 =µt

5.1=d 0.2=d
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Table 1 (Continued)  

 
 

  
        

1.80 349, 27 698, 17 1325, 11 5425, 6 492, 26 885, 16 1689, 11 6593, 6 
1.70 439, 33 857, 20 1750, 14 7503, 8 623, 32 1144, 20 2230, 14 9119, 8 
1.60 576, 42 1155, 26 2356, 18 10041, 10 823, 41 1542, 26 3003, 18 12205, 10 
1.50 794, 56 1622, 35 3310, 24 14056, 13 1122, 54 2111, 34 4219, 24 17086, 13 

 
 

  
        

10.00 9, 2 10, 1 15, 1 18, 0 12, 2 13, 1 18, 1 22, 0 
9.50 9, 2 11, 1 16, 1 20, 0 12, 2 13, 1 20, 1 24, 0 
9.00 10, 2 11, 1 17, 1 22, 0 13, 2 14, 1 21, 1 27, 0 
8.50 10, 2 12, 1 19, 1 25, 0 13, 2 15, 1 23, 1 30, 0 
8.00 13, 3 13, 1 20, 1 28, 0 14, 2 16, 1 25, 1 33, 0 
7.50 14, 3 19, 2 22, 1 32, 0 19, 3 17, 1 27, 1 38, 0 
7.00 15, 3 20, 2 24, 1 36, 0 20, 3 26, 2 30, 1 43, 0 
6.50 16, 3 22, 2 27, 1 70, 1 21, 3 28, 2 33, 1 85, 1 
6.00 17, 3 24, 2 30, 1 82, 1 22, 3 30, 2 37, 1 99, 1 
5.50 21, 4 26, 2 34, 1 98, 1 24, 3 34, 2 42, 1 118, 1 
5.00 23, 4 29, 2 53, 2 118, 1 31, 4 38, 2 66, 2 142, 1 
4.75 24, 4 39, 3 57, 2 130, 1 33, 4 40, 2 71, 2 157, 1 
4.50 29, 5 41, 3 61, 2 145, 1 34, 4 53, 3 77, 2 175, 1 
4.25 30, 5 44, 3 66, 2 162, 1 42, 5 57, 3 84, 2 196, 1 
4.00 32, 5 47, 3 72, 2 182, 1 44, 5 61, 3 91, 2 221, 1 
3.75 38, 6 51, 3 80, 2 207, 1 53, 6 66, 3 100, 2 251, 1 
3.50 40, 6 66, 4 110, 3 238, 1 56, 6 86, 4 139, 3 288, 1 
3.25 48, 7 72, 4 123, 3 377, 2 67, 7 94, 4 155, 3 457, 2 
3.00 57, 8 91, 5 138, 3 441, 2 80, 8 120, 5 175, 3 535, 2 
2.75 73, 10 115, 6 188, 4 525, 2 95, 9 151, 6 238, 4 637, 2 
2.50 92, 12 144, 7 250, 5 796, 3 121, 11 189, 7 317, 5 966, 3 
2.25 120, 15 196, 9 332, 6 982, 3 162, 14 260, 9 421, 6 1192, 3 
2.00 170, 20 283, 12 487, 8 1724, 5 232, 19 375, 12 619, 8 2094, 5 
1.90 200, 23 341, 14 623, 10 1909, 5 276, 22 452, 14 791, 10 2319, 5 
1.80 249, 28 427, 17 727, 11 2415, 6 335, 26 566, 17 924, 11 2934, 6 
1.70 311, 34 524, 20 959, 14 3340, 8 424, 32 696, 20 1220, 14 4057, 8 
1.60 406, 43 706, 26 1291, 18 4469, 10 560, 41 938, 26 1642, 18 5430, 10 
1.50 555, 57 990, 35 1812, 24 6255, 13 776, 55 1283, 34 2306, 24 7600, 13 

 
 

  
        

10.00 8, 2 8, 1 11, 1 11, 0 10, 2 9, 1 13, 1 13, 0 
9.50 8, 2 8, 1 11, 1 12, 0 10, 2 10, 1 13, 1 14, 0 
9.00 8, 2 9, 1 12, 1 13, 0 10, 2 10, 1 14, 1 15, 0 
8.50 8, 2 9, 1 13, 1 15, 0 11, 2 11, 1 16, 1 17, 0 
8.00 11, 3 13, 2 14, 1 16, 0 11, 2 12, 1 17, 1 19, 0 
7.50 12, 3 14, 2 15, 1 18, 0 15, 3 17, 2 18, 1 22, 0 
7.00 12, 3 15, 2 16, 1 21, 0 16, 3 19, 2 20, 1 25, 0 
6.50 13, 3 16, 2 18, 1 41, 1 17, 3 20, 2 22, 1 49, 1 
6.00 13, 3 18, 2 20, 1 47, 1 18, 3 22, 2 25, 1 57, 1 
5.50 17, 4 19, 2 23, 1 56, 1 23, 4 24, 2 28, 1 67, 1 
5.00 18, 4 21, 2 35, 2 67, 1 25, 4 27, 2 44, 2 81, 1 
4.75 19, 4 28, 3 38, 2 74, 1 26, 4 29, 2 47, 2 89, 1 
4.50 23, 5 30, 3 41, 2 82, 1 27, 4 38, 3 51, 2 99, 1 
4.25 24, 5 32, 3 44, 2 92, 1 33, 5 41, 3 55, 2 111, 1 
4.00 25, 5 34, 3 48, 2 104, 1 34, 5 44, 3 60, 2 125, 1 
3.75 30, 6 44, 4 53, 2 118, 1 41, 6 47, 3 66, 2 142, 1 
3.50 36, 7 47, 4 73, 3 135, 1 44, 6 61, 4 92, 3 163, 1 
3.25 38, 7 51, 4 81, 3 213, 2 52, 7 67, 4 102, 3 258, 2 

10 /µµ=R
02.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
03.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
04.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h
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3.00 49, 9 65, 5 91, 3 250, 2 62, 8 85, 5 115, 3 302, 2 
2.75 57, 10 82, 6 124, 4 297, 2 73, 9 107, 6 156, 4 359, 2 
2.50 72, 12 103, 7 165, 5 450, 3 93, 11 134, 7 208, 5 545, 3 
2.25 94, 15 140, 9 218, 6 554, 3 124, 14 184, 9 276, 6 672, 3 
2.00 132, 20 201, 12 319, 8 972, 5 186, 20 265, 12 404, 8 1180, 5 
1.90 162, 24 242, 14 408, 10 1077, 5 220, 23 319, 14 517, 10 1307, 5 
1.80 194, 28 303, 17 510, 12 1361, 6 266, 27 400, 17 604, 11 1653, 6 
1.70 248, 35 387, 21 628, 14 1882, 8 334, 33 491, 20 797, 14 2286, 8 
1.60 321, 44 500, 26 845, 18 2518, 10 438, 42 661, 26 1072, 18 3058, 10 
1.50 436, 58 701, 35 1185, 24 3524, 13 603, 56 927, 35 1505, 24 4280, 13 

 
 

  
        

10.00 9, 3 6, 1 8, 1 7, 0 8, 2 8, 1 10, 1 9, 0 
9.50 9, 3 7, 1 9, 1 8, 0 8, 2 8, 1 10, 1 9, 0 
9.00 9, 3 7, 1 9, 1 9, 0 9, 2 8, 1 11, 1 10, 0 
8.50 9, 3 7, 1 10, 1 10, 0 9, 2 9, 1 12, 1 11, 0 
8.00 10, 3 11, 2 11, 1 11, 0 12, 3 9, 1 13, 1 13, 0 
7.50 10, 3 11, 2 11, 1 12, 0 13, 3 14, 2 14, 1 14, 0 
7.00 11, 3 12, 2 12, 1 23, 1 13, 3 15, 2 15, 1 16, 0 
6.50 11, 3 13, 2 14, 1 27, 1 14, 3 16, 2 16, 1 32, 1 
6.00 14, 4 14, 2 15, 1 31, 1 15, 3 17, 2 18, 1 37, 1 
5.50 15, 4 15, 2 17, 1 37, 1 19, 4 19, 2 21, 1 44, 1 
5.00 18, 5 21, 3 26, 2 44, 1 21, 4 21, 2 32, 2 52, 1 
4.75 19, 5 22, 3 28, 2 48, 1 21, 4 22, 2 35, 2 58, 1 
4.50 20, 5 24, 3 30, 2 54, 1 22, 4 30, 3 37, 2 64, 1 
4.25 24, 6 25, 3 33, 2 60, 1 27, 5 32, 3 40, 2 72, 1 
4.00 25, 6 27, 3 35, 2 67, 1 29, 5 34, 3 44, 2 81, 1 
3.75 26, 6 34, 4 39, 2 76, 1 34, 6 44, 4 48, 2 92, 1 
3.50 30, 7 37, 4 54, 3 87, 1 36, 6 47, 4 67, 3 105, 1 
3.25 36, 8 40, 4 59, 3 138, 2 43, 7 52, 4 74, 3 166, 2 
3.00 41, 9 51, 5 66, 3 161, 2 51, 8 66, 5 83, 3 195, 2 
2.75 48, 10 64, 6 90, 4 191, 2 60, 9 83, 6 113, 4 231, 2 
2.50 64, 13 80, 7 120, 5 289, 3 82, 12 103, 7 150, 5 350, 3 
2.25 83, 16 108, 9 158, 6 356, 3 108, 15 141, 9 199, 6 432, 3 
2.00 114, 21 155, 12 231, 8 624, 5 153, 20 203, 12 292, 8 757, 5 
1.90 139, 25 198, 15 295, 10 691, 5 180, 23 245, 14 373, 10 838, 5 
1.80 165, 29 233, 17 369, 12 874, 6 217, 27 306, 17 435, 11 1060, 6 
1.70 210, 36 298, 21 453, 14 1208, 8 273, 33 391, 21 574, 14 1466, 8 
1.60 270, 45 397, 27 609, 18 1615, 10 357, 42 506, 26 772, 18 1961, 10 
1.50 365, 59 552, 36 854, 24 2260, 13 491, 56 709, 35 1083, 24 2744, 13 

 
 

  
        

10.00 8, 3 6, 1 7, 1 5, 0 7, 2 6, 1 8, 1 6, 0 
9.50 8, 3 6, 1 7, 1 6, 0 8, 2 7, 1 8, 1 7, 0 
9.00 8, 3 6, 1 8, 1 6, 0 8, 2 7, 1 9, 1 7, 0 
8.50 9, 3 6, 1 8, 1 7, 0 8, 2 7, 1 9, 1 8, 0 
8.00 9, 3 9, 2 9, 1 8, 0 8, 2 11, 2 10, 1 9, 0 
7.50 9, 3 10, 2 9, 1 9, 0 11, 3 12, 2 11, 1 10, 0 
7.00 12, 4 10, 2 10, 1 17, 1 12, 3 12, 2 12, 1 20, 1 
6.50 12, 4 11, 2 11, 1 19, 1 12, 3 13, 2 13, 1 23, 1 
6.00 13, 4 12, 2 12, 1 22, 1 13, 3 14, 2 14, 1 26, 1 
5.50 13, 4 13, 2 13, 1 26, 1 17, 4 16, 2 16, 1 31, 1 
5.00 16, 5 18, 3 21, 2 31, 1 18, 4 17, 2 25, 2 37, 1 
4.75 17, 5 19, 3 22, 2 34, 1 22, 5 23, 3 27, 2 41, 1 

10 /µµ=R
04.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
05.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
06.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h
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4.50 18, 5 20, 3 24, 2 38, 1 23, 5 25, 3 29, 2 45, 1 
4.25 18, 5 21, 3 26, 2 42, 1 24, 5 26, 3 31, 2 50, 1 
4.00 22, 6 22, 3 28, 2 47, 1 25, 5 28, 3 34, 2 57, 1 
3.75 25, 7 28, 4 30, 2 54, 1 30, 6 36, 4 37, 2 64, 1 
3.50 27, 7 31, 4 42, 3 61, 1 31, 6 39, 4 52, 3 73, 1 
3.25 31, 8 38, 5 46, 3 97, 2 37, 7 42, 4 57, 3 116, 2 
3.00 36, 9 42, 5 52, 3 113, 2 44, 8 53, 5 64, 3 136, 2 
2.75 45, 11 52, 6 70, 4 134, 2 56, 10 67, 6 87, 4 161, 2 
2.50 56, 13 65, 7 92, 5 202, 3 70, 12 84, 7 116, 5 244, 3 
2.25 72, 16 88, 9 122, 6 249, 3 92, 15 114, 9 153, 6 301, 3 
2.00 103, 22 135, 13 178, 8 435, 5 130, 20 164, 12 224, 8 527, 5 
1.90 120, 25 160, 15 227, 10 482, 5 153, 23 197, 14 286, 10 584, 5 
1.80 142, 29 189, 17 283, 12 609, 6 191, 28 247, 17 357, 12 738, 6 
1.70 185, 37 242, 21 348, 14 842, 8 238, 34 315, 21 439, 14 1020, 8 
1.60 237, 46 322, 27 468, 18 1125, 10 303, 42 407, 26 591, 18 1364, 10 
1.50 323, 61 446, 36 656, 24 1574, 13 424, 57 570, 35 829, 24 1909, 13 

 
 

  
        

10.00 7, 3 5, 1 6, 1 4, 0 7, 2 6, 1 7, 1 5, 0 
9.50 8, 3 5, 1 6, 1 5, 0 7, 2 6, 1 7, 1 5, 0 
9.00 8, 3 5, 1 6, 1 5, 0 7, 2 6, 1 7, 1 6, 0 
8.50 8, 3 8, 2 7, 1 6, 0 7, 2 6, 1 8, 1 6, 0 
8.00 8, 3 8, 2 7, 1 6, 0 10, 3 10, 2 8, 1 7, 0 
7.50 8, 3 9, 2 8, 1 12, 1 10, 3 10, 2 9, 1 8, 0 
7.00 11, 4 9, 2 8, 1 13, 1 11, 3 11, 2 10, 1 15, 1 
6.50 11, 4 10, 2 9, 1 15, 1 11, 3 12, 2 11, 1 17, 1 
6.00 12, 4 10, 2 10, 1 17, 1 14, 4 12, 2 12, 1 20, 1 
5.50 12, 4 11, 2 11, 1 20, 1 15, 4 14, 2 13, 1 23, 1 
5.00 15, 5 15, 3 17, 2 23, 1 16, 4 15, 2 21, 2 28, 1 
4.75 15, 5 16, 3 18, 2 26, 1 19, 5 20, 3 22, 2 30, 1 
4.50 18, 6 17, 3 20, 2 28, 1 20, 5 21, 3 24, 2 34, 1 
4.25 19, 6 18, 3 21, 2 32, 1 21, 5 22, 3 25, 2 38, 1 
4.00 22, 7 19, 3 23, 2 35, 1 25, 6 24, 3 28, 2 42, 1 
3.75 23, 7 24, 4 25, 2 40, 1 26, 6 30, 4 30, 2 48, 1 
3.50 27, 8 26, 4 34, 3 45, 1 31, 7 33, 4 42, 3 54, 1 
3.25 28, 8 33, 5 38, 3 72, 2 33, 7 35, 4 46, 3 86, 2 
3.00 32, 9 36, 5 50, 4 84, 2 43, 9 45, 5 52, 3 101, 2 
2.75 40, 11 44, 6 56, 4 99, 2 50, 10 56, 6 70, 4 119, 2 
2.50 53, 14 61, 8 75, 5 150, 3 62, 12 70, 7 93, 5 180, 3 
2.25 67, 17 81, 10 98, 6 184, 3 81, 15 96, 9 123, 6 222, 3 
2.00 91, 22 113, 13 156, 9 322, 5 114, 20 137, 12 179, 8 389, 5 
1.90 110, 26 135, 15 182, 10 356, 5 134, 23 165, 14 229, 10 430, 5 
1.80 134, 31 167, 18 227, 12 449, 6 167, 28 206, 17 286, 12 544, 6 
1.70 164, 37 211, 22 279, 14 621, 8 208, 34 263, 21 351, 14 752, 8 
1.60 213, 47 270, 27 375, 18 829, 10 271, 43 351, 27 472, 18 1005, 10 
1.50 289, 62 383, 37 525, 24 1160, 13 376, 58 475, 35 662, 24 1406, 13 

 
 

  
        

10.00 7, 3 6, 2 5, 1 4, 0 6, 2 5, 1 6, 1 4, 0 
9.50 7, 3 7, 2 5, 1 4, 0 6, 2 5, 1 6, 1 4, 0 
9.00 7, 3 7, 2 6, 1 4, 0 8, 3 8, 2 6, 1 5, 0 
8.50 7, 3 7, 2 6, 1 5, 0 9, 3 8, 2 7, 1 5, 0 

10 /µµ=R
06.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
07.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
08.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

318



Vijayaraghavan R, Saranya C R & Sathya Narayana Sharma K  
RELIABILITY SINGLE SAMPLING PLAN FOR BURR DISTRIBUTION 

RT&A, No 4 (65) 
Volume 16, December 2021 

 

 

Table 1 (Continued) 

 
 

  
        

8.00 9, 4 7, 2 6, 1 5, 0 9, 3 9, 2 7, 1 6, 0 
7.50 10, 4 8, 2 7, 1 5, 0 9, 3 9, 2 8, 1 6, 0 
7.00 10, 4 8, 2 7, 1 11, 1 10, 3 10, 2 8, 1 12, 1 
6.50 10, 4 9, 2 8, 1 12, 1 10, 3 10, 2 9, 1 14, 1 
6.00 13, 5 9, 2 9, 1 14, 1 13, 4 11, 2 10, 1 16, 1 
5.50 13, 5 10, 2 9, 1 16, 1 14, 4 12, 2 11, 1 18, 1 
5.00 14, 5 14, 3 15, 2 18, 1 17, 5 16, 3 17, 2 22, 1 
4.75 14, 5 14, 3 16, 2 20, 1 18, 5 17, 3 19, 2 24, 1 
4.50 17, 6 15, 3 17, 2 22, 1 18, 5 18, 3 20, 2 26, 1 
4.25 17, 6 16, 3 18, 2 25, 1 19, 5 19, 3 21, 2 29, 1 
4.00 20, 7 20, 4 19, 2 28, 1 23, 6 21, 3 23, 2 33, 1 
3.75 21, 7 21, 4 26, 3 31, 1 24, 6 26, 4 25, 2 37, 1 
3.50 24, 8 23, 4 29, 3 35, 1 28, 7 28, 4 35, 3 42, 1 
3.25 28, 9 29, 5 31, 3 56, 2 33, 8 36, 5 38, 3 67, 2 
3.00 32, 10 31, 5 42, 4 65, 2 38, 9 39, 5 43, 3 78, 2 
2.75 39, 12 39, 6 47, 4 77, 2 45, 10 49, 6 58, 4 92, 2 
2.50 48, 14 53, 8 62, 5 116, 3 56, 12 61, 7 77, 5 139, 3 
2.25 61, 17 70, 10 82, 6 142, 3 77, 16 82, 9 101, 6 171, 3 
2.00 86, 23 98, 13 130, 9 248, 5 106, 21 126, 13 148, 8 299, 5 
1.90 99, 26 117, 15 151, 10 274, 5 125, 24 150, 15 189, 10 331, 5 
1.80 124, 32 144, 18 188, 12 346, 6 149, 28 177, 17 236, 12 418, 6 
1.70 151, 38 182, 22 231, 14 477, 8 191, 35 226, 21 290, 14 577, 8 
1.60 196, 48 240, 28 310, 18 638, 10 247, 44 301, 27 389, 18 772, 10 
1.50 268, 64 330, 37 449, 25 946, 14 340, 59 417, 36 545, 24 1079, 13 

 
 

  
        

10.00 7, 3 6, 2 5, 1 3, 0 7, 3 5, 1 5, 1 3, 0 
9.50 7, 3 6, 2 5, 1 3, 0 8, 3 5, 1 5, 1 4, 0 
9.00 7, 3 6, 2 5, 1 4, 0 8, 3 5, 1 6, 1 4, 0 
8.50 7, 3 7, 2 5, 1 4, 0 8, 3 5, 1 6, 1 4, 0 
8.00 7, 3 7, 2 6, 1 4, 0 8, 3 8, 2 6, 1 5, 0 
7.50 7, 3 7, 2 6, 1 8, 1 9, 3 8, 2 7, 1 5, 0 
7.00 9, 4 8, 2 6, 1 9, 1 9, 3 9, 2 7, 1 10, 1 
6.50 10, 4 8, 2 7, 1 10, 1 9, 3 9, 2 8, 1 11, 1 
6.00 10, 4 8, 2 10, 2 11, 1 12, 4 10, 2 9, 1 13, 1 
5.50 12, 5 11, 3 12, 2 13, 1 13, 4 11, 2 13, 2 15, 1 
5.00 13, 5 12, 3 13, 2 15, 1 13, 4 15, 3 15, 2 18, 1 
4.75 13, 5 13, 3 14, 2 16, 1 16, 5 15, 3 16, 2 19, 1 
4.50 16, 6 14, 3 14, 2 18, 1 17, 5 16, 3 17, 2 21, 1 
4.25 16, 6 14, 3 15, 2 20, 1 20, 6 17, 3 18, 2 24, 1 
4.00 19, 7 18, 4 17, 2 22, 1 21, 6 18, 3 20, 2 26, 1 
3.75 22, 8 19, 4 23, 3 25, 1 22, 6 23, 4 22, 2 30, 1 
3.50 23, 8 20, 4 25, 3 28, 1 26, 7 25, 4 30, 3 34, 1 
3.25 26, 9 26, 5 27, 3 45, 2 30, 8 32, 5 33, 3 53, 2 
3.00 30, 10 31, 6 36, 4 52, 2 35, 9 34, 5 44, 4 62, 2 
2.75 37, 12 34, 6 40, 4 61, 2 41, 10 43, 6 49, 4 73, 2 
2.50 44, 14 47, 8 53, 5 92, 3 54, 13 53, 7 65, 5 111, 3 
2.25 59, 18 62, 10 78, 7 113, 3 66, 15 72, 9 86, 6 136, 3 
2.00 82, 24 86, 13 110, 9 197, 5 97, 21 110, 13 125, 8 237, 5 
1.90 94, 27 103, 15 128, 10 218, 5 113, 24 131, 15 160, 10 262, 5 
1.80 114, 32 127, 18 160, 12 307, 7 140, 29 155, 17 199, 12 331, 6 
1.70 142, 39 160, 22 208, 15 379, 8 173, 35 197, 21 245, 14 458, 8 
1.60 186, 50 211, 28 275, 19 506, 10 223, 44 263, 27 329, 18 612, 10 

10 /µµ=R
08.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
09.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h
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1.50 248, 65 289, 37 381, 25 750, 14 308, 59 364, 36 460, 24 855, 13 

 
 

  
        

10.00 6, 3 6, 2 4, 1 3, 0 7, 3 4, 1 5, 1 3, 0 
9.50 8, 4 6, 2 4, 1 3, 0 7, 3 4, 1 5, 1 3, 0 
9.00 8, 4 6, 2 5, 1 3, 0 7, 3 7, 2 5, 1 3, 0 
8.50 8, 4 6, 2 5, 1 3, 0 8, 3 7, 2 5, 1 4, 0 
8.00 8, 4 6, 2 5, 1 6, 1 8, 3 7, 2 6, 1 4, 0 
7.50 9, 4 7, 2 5, 1 7, 1 8, 3 7, 2 6, 1 4, 0 
7.00 9, 4 7, 2 6, 1 8, 1 10, 4 8, 2 7, 1 8, 1 
6.50 9, 4 7, 2 6, 1 8, 1 11, 4 8, 2 7, 1 9, 1 
6.00 11, 5 10, 3 9, 2 9, 1 11, 4 9, 2 8, 1 11, 1 
5.50 12, 5 11, 3 10, 2 11, 1 12, 4 10, 2 12, 2 12, 1 
5.00 12, 5 11, 3 11, 2 13, 1 15, 5 13, 3 13, 2 15, 1 
4.75 14, 6 12, 3 12, 2 14, 1 15, 5 14, 3 14, 2 16, 1 
4.50 15, 6 12, 3 13, 2 15, 1 16, 5 15, 3 15, 2 18, 1 
4.25 15, 6 13, 3 14, 2 17, 1 16, 5 16, 3 16, 2 19, 1 
4.00 18, 7 17, 4 15, 2 18, 1 19, 6 16, 3 17, 2 22, 1 
3.75 18, 7 17, 4 20, 3 21, 1 20, 6 21, 4 19, 2 24, 1 
3.50 21, 8 22, 5 22, 3 23, 1 24, 7 23, 4 26, 3 28, 1 
3.25 24, 9 23, 5 24, 3 37, 2 28, 8 28, 5 29, 3 44, 2 
3.00 30, 11 28, 6 31, 4 43, 2 32, 9 31, 5 38, 4 51, 2 
2.75 34, 12 35, 7 35, 4 50, 2 41, 11 38, 6 43, 4 60, 2 
2.50 41, 14 42, 8 46, 5 75, 3 50, 13 53, 8 57, 5 90, 3 
2.25 55, 18 56, 10 60, 6 92, 3 64, 16 64, 9 74, 6 111, 3 
2.00 76, 24 77, 13 96, 9 161, 5 89, 21 98, 13 118, 9 193, 5 
1.90 87, 27 97, 16 111, 10 177, 5 108, 25 117, 15 138, 10 214, 5 
1.80 108, 33 113, 18 138, 12 250, 7 128, 29 137, 17 172, 12 270, 6 
1.70 134, 40 148, 23 179, 15 309, 8 163, 36 175, 21 211, 14 372, 8 
1.60 172, 50 194, 29 238, 19 412, 10 209, 45 233, 27 283, 18 497, 10 
1.50 236, 67 264, 38 328, 25 611, 14 291, 61 323, 36 396, 24 738, 14 
 

The industrial practitioners can adopt this procedure to the life test and can develop the 
required plans for other choices of shape parameters. The application of proposed plan is discussed 
under two real life scenarios. Implementation of proposed plan is discussed with the help of 
numerical illustrations. Application of proposed plan is detailed with the help of simulated data 
from Burr distribution. The proposed plan is widely applicable in the manufacturing industries, 
testing of costly or destructive items, life testing for ball bearing, wind-speed data analysis, low-flow 
analysis, regional flood frequency, survival data, etc. 

10 /µµ=R
09.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h

10 /µµ=R
10.0/ 0 =µt

5.1=d 0.2=d
0.1=h 25.1=h 5.1=h 0.2=h 0.1=h 25.1=h 5.1=h 0.2=h
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Abstract 
 

In this article we propose a new transportation strategy to achieve an ideal answer for triangular 
intuitionistic fuzzy transportation problem of type – 2 i.e., limits and requests are considered as 
real numbers and the transportation cost from cause to objective is considered as triangular 
intuitionistic fuzzy numbers as product cost per unit. The proposed method is solving by using 
ranking function. The appropriate response system is delineated with a numerical model. 

 
Keywords: IFN, TIFN, IF Optimum solution, TIFTP of type-2. 
 

I. Introduction 
 
In genuine world, there are general complex circumstances in each field, in which specialists and 
chiefs battle with uncertainty and hesitation. In useful circumstances, assortment of fresh 
information of different boundaries is troublesome because of absence of precise interchanges, 
mistake in information, market information and consumer loyalties. The data accessible is some of 
the time ambiguous and inadequate. The real-life problems, when defined by the decision maker 
with uncertainty leads to the notion of fuzzy sets. Due to imprecise information, the exact evaluation 
of participation values is not possible. Moreover, the evaluation of non-participation esteems is 
consistently impossible. This prompts an in deterministic climate where dithering endures. 
Managing estimated data while deciding, idea of fuzziness was presented by Bellman and Zadeh 
[6]. K. T, Atanassov [4] presented idea of Intuitionistic fuzzy set hypothesis, which is more able to 
manage such issues. B. Chetia and P. K. Das [1] demonstrated a few outcomes on intuitionistic fuzzy 
delicate network. Intuitionistic fuzzy sets [5], [7], [8] discovered to be exceptionally powerful in 
managing ambiguity, among a few higher request fuzzy sets. S.K. Singh, S.P. Yadav [9] proposed 
their strategies to address case 2 sort of intuitionistic fuzzy transportation problem (IFTP) for 
example IFTP of type-2. G. Gupta and A. Kumara [3] a capable technique was introduced in which 
limit and request factors are taken as TIFN's utilized in this article to tackle mathematical model. 
This paper proposes another transportation strategy for tackling TIFTP of type – 2 by applying 
ranking function found in [2]. 
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The association of this article is as per the following: In Section 2, a review on essentials IFS and 
IFN's. Segment 3, presents the Ranking function and Comparison of TIFN's. Area 4, briefs the 
numerical detailing and proposed TP technique. Delineates the mathematical model in Section 5. At 
long last, Section 6 exposes the conclusion. 

 
II. Preliminaries 

In this part a couple of essential definitions and math tasks are examined. 

Intuitionistic Fuzzy Set (IFS):  An IFS 𝐴
~
"#$ in an IFS is described as an object of following design 

𝐴
~
"#$ = { 〈𝑥, 𝜇

%
~"#$(𝑥), 𝜈%~"#$(𝑥)〉 : 𝑥 ∈ 𝑋 } 

where, functions𝜇
%
~"#$  :  𝑋 → [0,  1] and 𝜈

%
~"#$:  𝑋 → [0,  1] defines degree of Enrollment work and non-

participation element𝑥 ∈ 𝑋, respectively and			0 ≤ 𝜇
%
~"#$(𝑥), 𝜈%~"#$(𝑥) ≤ 1, for every𝑥 ∈ 𝑋. 

Intuitionistic Fuzzy Numbers (IFN’s): A subset of IFS,𝐴
~
"#$ = { 〈𝑥, 𝜇

%
~"#$(𝑥), 𝜈%~"#$(𝑥)〉 : 𝑥 ∈ 𝑋 }, of real 

line ℜ is called an IFN if the following holds: 
(i) ∃𝑚 ∈ ℜ, 𝜇

%
~"#$(𝑚)  = 1 𝑎𝑛𝑑  𝜈

%
~"#$(𝑚)  = 0 

(ii) 𝜇
%
~"#$  :  ℜ → [0,  1] is continuous and for every  𝑥 ∈ ℜ, 0 ≤ 𝜇

%
~"#$(𝑥), 𝜈%~"#$(𝑥) ≤ 1 holds.  

Enrollment work and non-participation capacity of𝐴>"#$ is as follows, 

𝜇
%
~"#$(𝑥)  = ?

𝑓&(𝑥),   𝑥 ∈ [𝑚 − 𝛼&, 𝑚)
1,            𝑥 = 𝑚

ℎ&(𝑥),   𝑥 ∈ (𝑚,𝑚 + 𝛽&]
0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and 𝜈
%
~"#$(𝑥)  = ?

1,              𝑥 ∈ (−∞,𝑚 − 𝛼')
𝑓'(𝑥),    𝑥 ∈ [𝑚 − 𝛼', 𝑚)

0,             𝑥 = 𝑚, 𝑥 ∈ [𝑚 + 𝛽', ∞)
ℎ'(𝑥),    𝑥 ∈ (𝑚,𝑚 + 𝛽']

 

Where, 𝑓((𝑥)and ℎ((𝑥);  𝑖 = 1,2 are strictly increasing and decreasing functions in [𝑚 − 𝛼( , 𝑚)  and 
(𝑚,𝑚 − 𝛽(] respectively. and are left and right spreads of 𝜇

%
~"#$(𝑥)and 𝜈

%
~"#$(𝑥) respectively. 

Triangular Intuitionistic Fuzzy Number (TIFN): A TIFN 𝐴
~
"#)is an IFS in with the following 

Enrollment function 𝜇
%
~"#%and non-participation capacity 𝜈

%
~"#%defined by 

𝜇
%
~"#%(𝑥) = ?

*+,&
,'+,&

,       𝑎& ≤ 𝑥 ≤ 𝑎'
,&+*
,(+,'

,      𝑎' ≤ 𝑥 ≤ 𝑎-
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 and𝜈%
~"#%(𝑥) =

⎩
⎨

⎧
,)&+*
,'+,)&

,       𝑎.& ≤ 𝑥 ≤ 𝑎'
*+,'
,)(+,'

,      𝑎' ≤ 𝑥 ≤ 𝑎.-
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

  

Where𝑎.& ≤ 𝑎& ≤ 𝑎' ≤ 𝑎- ≤ 𝑎.-.  This TIFN is denoted by 𝐴
~
"#) = (𝑎&, 𝑎', 𝑎-; 𝑎.&, 𝑎', 𝑎.-) in Fig 1. 

 
Figure 1: Participation and non-enrollment elements of TIFN 

 
Arithmetic operations of TIFN:  
Forany two TIFN’s𝐴

~
"#) = (𝑎&, 𝑎', 𝑎-; 𝑎.&, 𝑎', 𝑎.-)and𝐵

~
"#) = (𝑏&, 𝑏', 𝑏-; 𝑏.&, 𝑏', 𝑏.-), arithmetic 

operations are as follows, 
(i) Addition: 

X

ia ib

Â
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𝐴
~
"#) ⊕𝐵

~
"#) = (𝑎& + 𝑏&, 𝑎' + 𝑏',, 𝑎- + 𝑏-; 𝑎.& + 𝑏.&, 𝑎' + 𝑏', 𝑎.- + 𝑏.-) 

 

(ii) Subtraction:  

𝐴
~
"#) − 𝐵

~
"#) = (𝑎& − 𝑏-, 𝑎' − 𝑏',, 𝑎- − 𝑏&; 𝑎.& − 𝑏.-, 𝑎' − 𝑏', 𝑎.- − 𝑏.&) 

(iii) Multiplication:  

𝐴
~
"#) ⊗𝐵

~
"#) = (𝑎&𝑏&, 𝑎'𝑏',, 𝑎-𝑏-; 𝑎.&𝑏.&, 𝑎'𝑏', 𝑎.-𝑏.-) 

(iv) Scalar multiplication:  

𝑘 × 𝐴
~
"#) = Z

(𝑘𝑎&, 𝑘𝑎', 𝑘𝑎-; 𝑘𝑎.&, 𝑘𝑎', 𝑘𝑎.-), 𝑘 ≥ 0
(𝑘𝑎-, 𝑘𝑎', 𝑘𝑎&; 𝑘𝑎.-, 𝑘𝑎', 𝑘𝑎.&), 𝑘 < 0 

 
III. Ranking Function 

Ranking function is taken from [2], i.e., the ranking function is defined for Trapezoidal and 
triangular Intuitionistic fuzzy number as 

 

 

Consider 𝑤& = 𝑤' = 1, we get ranking function is  
 

Comparison of TIFN’s: To contrast TIFN's and one another, we need to rank them. A function such 
as	𝑅:  𝐹(ℜ) → ℜ, which maps each TIFN's into real line, is called ranking function. Here, 
𝐹(ℜ)means the arrangement of all TIFN’s. 
By using ranking function , TIFN’s can be compared.  

Let  𝐴
~
"#) = (𝑎&, 𝑎', 𝑎-; 𝑎.&, 𝑎', 𝑎.-) and 𝐵

~
"#) = (𝑏&, 𝑏', 𝑏-; 𝑏.&, 𝑏', 𝑏.-)are two TIFN’s then 

R`𝐴
~
"#)a = ,&0&1,'0,(0,)&0,)(

-2
  and R`𝐵

~
"#)a = 3&0&13'03(03)&03)(

-2
 then the orders are defined as follows 

(i) 𝐴
~
"#) > 𝐵

~
"#)		if		R `𝐴

~
"#)a > 𝑅 `𝐵

~
"#)a	,		 

(ii) 𝐴
~
"#) < 𝐵

~
"#)		if		R `𝐴

~
"#)a < 𝑅 `𝐵

~
"#)a		 , and																														 

(iii) 𝐴
~
"#) = 𝐵

~
"#)		if		R `𝐴

~
"#)a = R `𝐵

~
"#)a 

Ranking function R also holds the following properties: 
(i)		R `𝐴

~
"#)a + R`𝐵

~
"#)a = 	R`𝐴

~
"#) + 𝐵

~
"#)a, (ii)		R `k𝐴

~
"#)a = k	R `𝐴

~
"#)a∀k ∈ 𝑹 

IV. Mathematical Formulation of Triangular Intuitionistic Fuzzy 
transportation problem (TIFTP) and proposed method 

I. TIFTP of type - 2:  
Consider a transportation with ‘m’ Intuitionistic Fuzzy (IF) origins and ‘n’ IF destination. 
Let 𝐶(4(𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛) be the cost of transporting one unit of the product form      𝑖56origin 
to 𝑗56destination. 

be IF extent at vendor. 

be IF abundant at insistent.  

be IF quantity transformed from𝑖56vendor to 𝑗56 insistent 

Then balanced triangular IFTP of type - 2 is given by 

( ) ( ) ( ) ( )1 1 2 3 3 2 4 4 1 22 5 4 5
18 18

IFN a b a b a b a +b w wR A
+ + + + + +æ ö +æ ö= ç ÷ç ÷

è øè ø
!

( ) ( ) ( )1 1 2 4 4 1 214 4 5
18 18

IFN a b a a +b w wR A
+ + +æ ö +æ ö= ç ÷ç ÷

è øè ø
!

( ) ( ) ( )1 1 2 4 414
36

IFN a b a a +b
R A

+ + +æ ö
= ç ÷
è ø

!

" "R

),,;,,(~
321321
iiiiiiIFS

i aaaaaaa ¢¢= thi

),,;,,(~
321321
iiiiiiIFS

j bbbbbbb ¢¢= thj

),,;,,(~
321321
jiijjiijijijIFS

ij xxxxxxx ¢¢¢¢=
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II. Proposed Transportation strategy  
Stage 1: Utilizing separation formula, considered in “Comparison of IFTN’s” segment, adopt least 
and greatest IFN from each archive and segmentof intuitionistic fuzzy price matrix of TIFTP of type 
- 2 and deduct it from each IFN’s of their relating line and segment.  
Stage 2: Find sum of row difference and column difference and denote row sum by R and column 
sum by C. Identify Maximum sum of row and column. Select maximum difference in row and 
column. 
Stage 3: Choose the cell having most minimal expense in row and column identified in stage 2. 
Stage 4: Make a feasible assignment to the cell picked in stage 5. Delete fulfilled row/column. 
Stage 5: Repeat the technique until all the designations has been made. 
Stage 6: The Optimum solution and triangular intuitionistic optimum value is attained in step 5, is 
optimum solution {𝑥(4} and triangular intuitionistic fuzzy optimum value is ∑ ∑ 𝑐(4⨂𝑥(4.8

49&
:
(9&  

 
V. Numerical Example 

In this part, an existing mathematical model ([2]) is solved to illustrate the proposed 
transportation strategy. 

Table 1: TIFTP of type – 2 

 
Example 1: An existing TIFTP of type - 2, with four suppliers i.e., 𝑆&, 𝑆', 𝑆-, 𝑆1 and four 
destinations i.e.,𝐷&	, 𝐷', 𝐷-, 𝐷1, respectively by Table 1, is solved using the proposed method.  
This problem is solved in the following steps. 

Select maximum and minimum TIFN in each row and column take the difference as given in table 2. 

1 1

1

1

. . , 1, 2,...,

, 1, 2,...,

0; 1,2,...., ; 1, 2,....,

m n
IFN IFN

ij ij
i j

n IFN IFN
ij ij

m IFN IFN
ij ji

IFN
ij

MinZ c x

s t x a i m

x b j n

x i m j n

= =

=

=

= ´

= =

= =

³ = =

åå

å
å

!

! !

!!

!!

     Suppl
y 

(𝒔𝒊) 
𝑺𝟏	 (2,4,5; 

1,4,6) 
 

(2,5,7; 
	1,5,8) 

(4,6,8;	 
3,6,9) 

(4,7,8;	 
3,7,9) 

11 

             𝑺𝟐 (4,6,8; 
	3,6,9) 

(3,7,12; 
	2,7,13) 

 

(10,15,20;	 
8,15,22) 

(11,12,13; 
	10,12,14) 

11	
 

	𝑺𝟑 (3,4,6; 
1,4,8) 
 

(8,10,13;	 
5,10,16) 

(2,3,5;	 
1,3,6) 

(6,10,14; 
	5,10,15) 

11 

𝑺𝟒 (2,4,6; 
1,4,7) 
 

(3,9,10;	 
2,9,12) 

(3,6,10;	 
2,6,12) 

(3,4,5;	 
2,4,8) 

12 

Dema
nd

 

16 10 8	 11	 45 

1D 2D 3D 4D

( )jd
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Table 2: Row and Column Difference Table 

 
The problem given in Table 2, transformed in Table 3 by using the Stage 2 and assign first 

allocation using stage 4 of proposed method. 
 

Table 3: First allocation Table 

 
Using Stage 4 of proposed method remove 𝐷- from Table 3. New reduced shown in Table 4 again 
apply the procedure. 
 
 
 
 

	 𝑫𝟏	 𝑫𝟐	 𝑫𝟑	 𝑫𝟒	 𝑺𝒖𝒑𝒑𝒍𝒚 
(𝒔𝒊)	

𝑹𝒐𝒘 
𝒅𝒊𝒇𝒇 

𝑺𝟏	 (2,4,5; 
1,4,6)	

	

(2,5,7; 
1,5,8)	

(4,6,8; 
3,6,9)	

(4,7,8; 
3,7,9)	

11	 1.4444	

𝑺𝟐	 (4,6,8; 
3,6,9)	

(3,7,12; 
2,7,13) 

	

(10,15,20; 
8,15,22)	

(11,12,13; 
10,12,14)	

11	
	

4.5	

𝑺𝟑	 (3,4,6; 
1,4,8)	

	

(8,10,13; 
5,10,16)	

(2,3,5; 
1,3,6)	

(6,10,14; 
5,10,15)	

11	 3.5	

𝑺𝟒	 (2,4,6; 
1,4,7)	

	

(3,9,10; 
2,9,12)	

(3,6,10; 
2,6,12)	

(3,4,5; 
2,4,8)	

12	 2.125	

𝑫𝒆𝒎𝒂𝒏𝒅 
	

16	 10	 8	 11	 45	 R=11.56	

𝑪𝒐𝒍𝒖𝒎𝒏 
𝒅𝒊𝒇𝒇	

1.0555	 2.6111	 5.9444	 3.9444	 C=13.55	 	

	 𝑫𝟏	 𝑫𝟐	 𝑫𝟑	 𝑫𝟒	 𝑺𝒖𝒑𝒑𝒍𝒚	 𝑹𝒐𝒘	 
𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆	

𝑺𝟏	 (2,4,5; 
	1,4,6)	

	

(2,5,7;	 
1,5,8)	

(4,6,8;	 
3,6,9)	

(4,7,8; 
	3,7,9)	

11	 1.4444	

𝑺𝟐 (4,6,8;	 
3,6,9)	

(3,7,12; 
	2,7,13)	

(10,15,20;	 
8,15,22)	

(11,12,13; 
	10,12,14) 

 

11	
	

4.5	

𝑺𝟑 (3,4,6; 
	1,4,8)	

	

(8,10,13; 
	5,10,16)	

(2,3,5; 
1,3,6)	
[𝟖]	

(6,10,14; 
	5,10,15)	

11	
𝟑	

3.5	

𝑺𝟒 (2,4,6;	 
1,4,7)	

	

(3,9,10; 
	2,9,12)	

(3,6,10; 
	2,6,12)	

(3,4,5;	 
2,4,8)	

12	 2.125	

𝑫𝒆𝒎𝒂𝒏𝒅 16	 10	 8	 11	 45	 R = 
11.
5
416	

𝑪𝒐𝒍𝒖𝒎𝒏	 
𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆	

1.0555	 2.6111	 5.9444	 3.9444	 C = 
13.5
554 

 

( )jd
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Table 4:  New Reduced Table 

 
 

Table 5: Second Allocation table 

 
 
Again, applying the Stage 5 of the proposed method, all the allocations are made as shown in  
Table 6. 
  

	 𝑫𝟏	 𝑫𝟐	 𝑫𝟒	 𝑺𝒖𝒑𝒑𝒍𝒚	 
(𝒔𝒊)	

𝑹𝒐𝒘	 
𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆	

   	
								𝑺𝟏	

(2,4,5; 
	1,4,6)	

	

(2,5,7;	 
1,5,8)	

(4,7,8; 
3,7,9)	

11	 1.4444	

𝑺𝟐 (4,6,8; 
	3,6,9)	

(3,7,12;	 
2,7,13) 

 

(11,12,13; 
10,12,14)	

11	
	

3	

𝑺𝟑 (3,4,6; 
	1,4,8)	

	

(8,10,13; 
	5,10,16)	

(6,10,14; 
5,10,15)	

3	 3	

𝑺𝟒 (2,4,6; 
	1,4,7)	

	

(3,9,10; 
	2,9,12)	

(3,4,5; 
	2,4,8)	

12	 2.125	

𝑫𝒆𝒎𝒂𝒏𝒅 

	

16	
	

10	 11	 45	 𝑅 = 	9.5694	

𝑪𝒐𝒍𝒖𝒎𝒏	 
𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆	

1.0555	 2.6111	 3.9444	 𝐶	
= 	7.6110	

	

	 𝑫𝟏	 𝑫𝟐	 𝑫𝟒	 𝑺𝒖𝒑𝒑𝒍𝒚 
	(𝒔𝒊)	

𝑹𝒐𝒘	𝒅𝒊𝒇𝒇	

𝑺𝟏	 (2,4,5; 
	1,4,6)	

	

(2,5,7;	 
1,5,8)	

(4,7,8;	 
3,7,9)	

11	 1.4444	

𝑺𝟐 (4,6,8; 
	3,6,9) 

	

(3,7,12;	 
2,7,13)	

(11,12,13; 
	10,12,14)	

11	
	

3	

𝑺𝟑 (3,4,6; 
	1,4,8)	
[𝟑] 

 

(8,10,13;
	5,10,16) 

(6,10,14; 
5,10,15)	

3	 3	

𝑺𝟒 (2,4,6; 
1,4,7)	

	

(3,9,10;	 
2,9,12)	

(3,4,5;	 
2,4,8)	

12	 2.125	

𝑫𝒆𝒎𝒂𝒏𝒅 

	

𝟏𝟔	
𝟏𝟑	

		10	 11	 45	 𝑹	
= 	𝟗. 𝟓𝟔𝟗𝟒	

𝑪𝒐𝒍𝒖𝒎𝒏	𝒅𝒊𝒇𝒇	 1.0555	 2.6111	 3.9444	 𝐶	 = 	7.6110	 	

( )jd

( )jd
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Table 6: Final allocation table 

 
Step 6: Optimum solution and IF optimum value 

The optimum solution, obtained in Step 5, is 

and . The IF optimum value of IFTP of type - 2, given in Table 1, is 

 

 
VI. Conclusion 

 
Numerical Formulation for IFTP of type – 2 and system for acquiring an IF ideal arrangement is 
examined with relevant numerical example. The proposed transportation strategy is utilized to get 
the ideal arrangement of TIFTP of type – 2. The proposed transportation technique gives same 
outcome, as found by G. Gupta, A. Kumara [3], in single emphasis. Consequently, this might be 
favored over the current strategies. 
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Abstract 
 

In this paper, Length biased Quasi Lindley (LBQL) distribution is proposed. The different 
properties of the proposed distribution are derived and discussed. The parameters of the proposed 
distribution are estimated by using method of maximum likelihood estimation and also the Fisher’s 
Information matrix is obtained. The performance of the proposed distribution is studied using real-
life data sets. 

 
Keywords: Length Biased Distribution, Quasi Lindley Distribution, Reliability Analysis, 

Maximum Likelihood Estimation, Likelihood Ratio test. 
 

 
I. Introduction 

 
The Quasi Lindley (QL) distribution was introduced by Shanker and Mishra (2013). The QL 
distribution has two parameters α and θ. The Quasi-Lindley distribution reduces to one parameter 
Lindley distribution if α =θ. If   α =0, it reduces to the gamma distribution with parameter (2, θ). The 
probability density function of QL distribution is a mixture of exponential (θ) and gamma (2, θ).  
The Probability density function of Quasi Lindley distribution (QLD) with parameters α and θ is 
given by  

              𝑓(𝑥; 𝛼, 𝜃) = !
"#$

(𝛼 + 𝜃𝑥)𝑒%!&         ;𝑥 > 0, 𝜃 > 0, 𝛼 > −1            (1) 

     

and the cumulative distribution function of the two parameter Quasi Lindley distribution is given 
by  

𝐹(𝑥; 𝛼, 𝜃) = 1 − 1"#$#!&
"#$

2 𝑒%!&    ; 𝑥 > 0, 𝜃 > 0, 𝛼 > −1                 (2) 

 
II. Length Biased Quasi Lindley Distribution 
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Length biased distribution is a particular case of weighted distributions that were first introduced 
by Fisher (1934) to model the ascertainment bias. These weighted distributions were later developed 
by C R Rao (1965) in a unifying manner. Weighted distributions arise when the observations 
generated from a stochastic process are not given equal chances of being recorded and moderately, 
they are recorded in accordance to some weight function. When the weight function depends only 
on the length of units of interest, the resulting distribution is called as length biased. Length biased 
concept was firstly given by Cox (1969) and Zelen (1974). The study of weighted distributions helps 
us to deal with model description and data interpretation problems. In the study of distribution 
theory, weighted distributions are useful because it provides a new understanding of existing 
standard probability distributions and also it provides methods for extending existing standard 
probability distributions for modelling lifetime data due to introduction of additional parameter in 
the model which creates flexibility in their nature. Much work has been done to characterize the 
relations between original distributions and their length biased versions. 
various researchers have reviewed and studied different weighted distribution and found its 
applications in different fields such as reliability, biomedicine, ecology, and branching processes 
[refer Lappi et al. (1987), Mir et al. (2013), Mudassir et al. (2015), Shenbagaraja et al. (2019)]. 
Definition: The non-negative random variable X is said to have weighted distribution, if the 
probability density function of weighted random variable 𝑋!  is given by 

𝑓'(𝑥) =
𝑤(𝑥)𝑓(𝑥)
𝐸(𝑤(𝑥)) 			,			𝑥 > 0 

Where 𝑤(𝑥) be a non - negative weight function and 

𝐸6𝑤(𝑥)7 = 8𝑤(𝑥)𝑓(𝑥)𝑑𝑥 < ∞ 

For different weighted models, different choices of the weight function can be done. When 𝑤(𝑥) =
𝑥" ,the resulting distribution is termed as weighted distribution. In this Paper, the Length biased 
version of Quasi Lindley distribution is studied, here choice of     c = 1 is done as a weight, in order 
to get the Length biased Quasi Lindley distribution and the probability density function of Length 
biased Quasi Lindley distribution (LBQLD) is given by 

                         𝑓((𝑥; 𝛼, 𝜃) =
&)(&,$,!)
-(&)

                           (3) 

Where  𝐸(𝑥) = ∫ 𝑥.
/ 𝑓(𝑥; 𝛼, 𝜃)𝑑𝑥 

       𝐸(𝑥) = ($#0)
!($#")

                                            (4) 

After substituting from equation (1) and (4) in equation (3), the probability density function of 
Length biased Quasi Lindley distribution is obtained as 

                𝑓((𝑥; 𝛼, 𝜃) =
&	!#

($#0)
(𝛼 + 𝜃𝑥)𝑒%!&         ; 𝑥 > 0, 𝜃 > 0, 𝛼 > −2              (5)                              
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and the cumulative distribution function (cdf) of LBQL distribution is obtained as 

     𝐹((𝑥) = ∫ 𝑓((𝑡; 𝛼, 𝜃)𝑑𝑡
&
/  

𝐹((𝑥) = ∫ 2	!#

($#0)
(𝛼 + 𝜃𝑡)𝑒%!2𝑑𝑡&

/   

𝐹((𝑥) =
!#

($#0)∫ 𝑡(𝛼 + 𝜃𝑡)𝑒%!2𝑑𝑡&
/   

after simplification, the cumulative distribution function of Length biased Quasi Lindley 
distribution is 

                     𝐹((𝑥) =
$3(0,!&)#3(4,!&)

($#0)
      ; 𝑥 > 0, 𝜃 > 0, 𝛼 > −2                        (6) 

The graph of the probability density function and cumulative distribution function of length 
biased quasi-Lindley distribution (LBQLD) for different values of parameters, are shown in Figure 
1 and 2. 

 
For  −2 < 𝛼 < 0 and 𝜃 = 1          For  𝛼 > 0 and 𝜃 = 1 

  

        
           For  −2 < 𝛼 < 0 and 𝜃 > 0        For  𝛼 > 0 and 𝜃 > 0 
 

Figure 1: Pdf plot of LBQLD for the different values of 𝛼 and 𝜃. 
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Figure 2: cdf plot of LBQLD for the different values of 𝛼 and 𝜃. 

 
 

 
III. Reliability Analysis 

 
In this section, the survival function, hazard rate, reverse hazard rate function and mill’s ratio are 
discussed for the Length biased Quasi Lindley distribution. 
 
The survival function is also known as reliability function and the Survival function of Length biased 
Quasi Lindley distribution is defined as 
 

𝑆(𝑥) = 1 − 𝐹$(𝑥) 

𝑆(𝑥) = 1 − 3
𝛼𝛾(2, 𝜃𝑥) + 𝛾(3, 𝜃𝑥)

(𝛼 + 2) 7 

The hazard function is also known as hazard rate or instantaneous failure rate or force of mortality 
and the hazard function of Length biased Quasi Lindley distribution is given by 

ℎ(𝑥) =
𝑓$(𝑥; 𝛼, 𝜃)
𝑆(𝑥)  

ℎ(𝑥) =
𝑥𝜃%(𝛼 + 𝜃𝑥)𝑒&'(

(𝛼 + 2) − ;𝛼𝛾(2, 𝜃𝑥) + 𝛾(3, 𝜃𝑥)<
 

 
where       (𝛼 + 2) − ;𝛼𝛾(2, 𝜃𝑥) + 𝛾(3, 𝜃𝑥)< > 0 
The reverse hazard function of Length biased Quasi Lindley distribution is given by 

	ℎ)(𝑥) =
𝑓$(𝑥; 𝛼, 𝜃)
𝐹$(𝑥)

 

	ℎ)(𝑥) =
𝑥𝜃%(𝛼 + 𝜃𝑥)𝑒&'(

;𝛼𝛾(2, 𝜃𝑥) + 𝛾(3, 𝜃𝑥)<
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The Mills ratio of Length biased Quasi Lindley distribution is given by, 

	𝑀𝑖𝑙𝑙𝑠	𝑟𝑎𝑡𝑖𝑜 =
1

ℎ)(𝑥)
 

𝑀𝑖𝑙𝑙𝑠	𝑟𝑎𝑡𝑖𝑜 =
;𝛼𝛾(2, 𝜃𝑥) + 𝛾(3, 𝜃𝑥)<
𝑥𝜃%(𝛼 + 𝜃𝑥)𝑒&'(  

 
Fig.3: Graph of survival function of LBQLD.   Fig.4: Graph of Hazard function of LBQLD. 

 
Figure (4) shows the behavior of hazard function. For different choices of 𝛼 and 𝜃 it shows decreasing 
failure rate. 
 

IV.  Statistical Properties 

In this section, the statistical properties of Length biased Quasi Lindley distribution are discussed. 
I. Moments 
Let X denotes the random variable of LBQL distribution with parameters θ and α, then the rth order 
moment of LBQL distribution is defined as 
 

𝐸(𝑋)) = 𝜇)* = H 𝑥)𝑓$(𝑥; 𝛼, 𝜃)𝑑𝑥
+

,
 

= H 𝑥)-.
𝜃%

(𝛼 + 2)
(𝛼 + 𝜃𝑥)𝑒&'(𝑑𝑥

+

,
 

=
𝜃%

(𝛼 + 2)H 𝑥)-.(𝛼 + 𝜃𝑥)𝑒&'(𝑑𝑥
+

,
		 

=
𝜃%

(𝛼 + 2) 3
𝛼H 𝑥)-%&.𝑒&'(𝑑𝑥	 + 𝜃H 𝑥)-/&.

+

,
𝑒&'(𝑑𝑥

+

,
	

	
7 

after simplification,  

𝐸(𝑋)) = 𝜇)* =
'!

(1-%)
J13()-%)-3()-/)

'"#!
K                      (7) 
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putting r = 1 in equation (7), the mean of LBQL distribution is given by 

µ.* = 𝐸(𝑋) =
2(𝛼 + 3)
𝜃(𝛼 + 2) 

After putting r = 2,3 and 4 in equation (7), the second, third and fourth raw moments of Length 
biased Quasi Lindley distribution are obtained as, 

µ%* = 𝐸(𝑋%) =
6(𝛼 + 4)
𝜃%(𝛼 + 2) 

µ/* = 𝐸(𝑋/) =
24(𝛼 + 5)
𝜃/(𝛼 + 2) 

µ4* = 𝐸(𝑋4) =
120(𝛼 + 6)
𝜃4(𝛼 + 2)  

Therefore, 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎% =
2(𝛼% + 6𝛼 + 6)
𝜃%(𝛼 + 2)%  

𝑆. 𝐷.= 𝜎 =
V2(𝛼% + 6𝛼 + 6)

𝜃(𝛼 + 2)  

𝐶. 𝑉 =
𝜎
𝜇 =

V2(𝛼% + 6𝛼 + 6)
2(𝛼 + 3)  

𝐶.𝐷. (𝛾) =
𝜎%

𝜇 =
(𝛼% + 6𝛼 + 6)
𝜃(𝛼 + 2)(𝛼 + 3) 

	
II.   Moment generating Function and Characteristic Function LBQLD 
Let X follows LBQL distribution, then the moment generating function (MGF) of X is, 

𝑀5(𝑡) = H 𝑒6(
+

,
𝑓$(𝑥; 𝛼, 𝜃)𝑑𝑥 

= H (1 + (𝑡𝑥) +
(𝑡𝑥)
2!

%+

,
+
(𝑡𝑥)/

3! +⋯)𝑓$(𝑥, 𝛼, 𝜃)𝑑𝑥 

= H Z
(𝑡𝑥))

𝑟!

+

)7,

+

,
𝑓$(𝑥, 𝛼, 𝜃)𝑑𝑥 

=Z
(𝑡))

𝑟!

+

)7,

H 𝑥)
+

,
𝑓$(𝑥, 𝛼, 𝜃)𝑑𝑥 

              𝑀5(𝑡) = ∑ (6)"

)!
+
)7, 𝐸(𝑥))          (8) 

Substituting value of  𝐸(𝑥)) from equation (7) in equation (8), 
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𝑀5(𝑡) =Z
(𝑡))

𝑟!

+

)7,

\
𝜃%

(𝛼 + 2)3
𝛼𝛤(𝑟 + 2) + 𝛤(𝑟 + 3)

𝜃)-% 7^ 

Similarly, the characteristic function of LBQL distribution can be obtained as,  

φ5(𝑡) = 𝑀5(𝑖𝑡)   

=Z
(𝑖𝑡))

𝑟!

+

)7,

\
𝜃%

(𝛼 + 2) 3
𝛼𝛤(𝑟 + 2) + 𝛤(𝑟 + 3)

𝜃)-% 7^ 

III. Harmonic Mean 
Let X follows LBQL distribution then, the harmonic mean is obtained as 

𝐻 = H
1
𝑥

+

,
𝑓$(𝑥, 𝛼, 𝜃)𝑑𝑥 

= H
𝜃%

(𝛼 + 2)

+

,
(𝛼 + 𝜃𝑥)𝑒&'(𝑑𝑥 

=
𝜃%

(𝛼 + 2) a𝛼H 𝑒&'(
+

,
𝑑𝑥 + 𝜃H 𝑥

+

,
𝑒&'(𝑑𝑥b 

after simplification,  

𝐻 =
𝜃(𝛼 + 1)
(𝛼 + 2)  

 

V. Order Statistics for LBQL Distribution 

Order statistics have central role in statistical theory. It deals with the ordered data that is 
necessary to take for quality control, reliability, hydrological and extreme values analysis. 
Suppose 𝑋(.), 𝑋(%), ………… ,𝑋(9) be the jth order statistic and it is denoted by  𝑋(:) .  
The probability density function of the 𝑗6; order statistics 𝑋(:) for  1 ≤ 𝑗 ≤ 𝑛 is  

𝑓5(%)(𝑥) =
9!

(:&.)!(9&:)!
[𝐹(𝑥)]:&.[1 − 𝐹(𝑥)]9&:𝑓.(𝑥)           (9) 

Substitute the value from equation (5) and (6) in equation (9), the probability density function of jth 
order statistics of LBQL distribution is given as 

       𝑓5(%)(𝑥) =
9!

(:&.)!(9&:)!
h1<(%,'()-<(/,'()(1-%)

i
:&.

 × h1 − 1<(%,'()-<(/,'()
(1-%)

i
9&: (	'!

(1-%)
(𝛼 + 𝜃𝑥)𝑒&'(            (10) 

For 𝑗 = 1 in equation (10), therefore the probability density function of first order statistics of LBQL 
distribution is obtained as 

                    𝑓5(')(𝑥) = 𝑛 h1 − 1<(%,'()-<(/,'()
(1-%)

i
9&.

  × (	'!

(1-%)
(𝛼 + 𝜃𝑥)𝑒&'(                        (11) 

Put  𝑗 = 𝑛 in equation (10), the probability density function of 𝑛6; order statistics of LBQL 
distribution is given by,  
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𝑓5(()(𝑥) = 𝑛 h1<(%,'()-<(/,'()(1-%)
i
9&.

 × (	'!

(1-%)
(𝛼 + 𝜃𝑥)𝑒&'(          (12) 

 

 

 

VI. Entropy  
The concept of Entropies points out the diversity, uncertainty, or randomness of a system and the 
entropies have large application in several fields such as probability & statistics, physics, 
communication theory and economics. Entropy of a random variable X is a measure of variation of 
the uncertainty.  

I.  Renyi Entropy 
 The entropy termed as Renyi entropy is important in ecology and statistics as index of diversity. 
Renyi entropy is an extension of Shannon’s entropy. Renyi (1961) give an expression of the entropy 
function is defined by 

𝑒(𝛿) =
1

1 − 𝛿 log 	3H 𝑓$
?

+

,
(𝑥; 𝛼, 𝜃)𝑑𝑥7 

where  𝛿 > 0 and  𝛿 ≠ 1 

𝑒(𝛿) =
1

1 − 𝛿 log pH 3
𝜃%

(𝛼 + 2) 𝑥
(𝛼	 + 𝜃𝑥)𝑒&'(7

?+

,
𝑑𝑥q	 

𝑒(𝛿) = .
.&?

log rJ '!

(1-%)
K
?
∫ 𝑥?+
, (𝛼 + 𝜃𝑥)?𝑒&'?(𝑑𝑥t	            (13) 

      
Using binomial expansion in equation (13),  
 

𝑒(𝛿) =
1

1 − 𝛿 log u3
𝜃%

(𝛼 + 2)7
?

Zr
𝛿
𝑘t

+

@7,

(𝛼)?&@𝜃@ 	H (𝑥)?-@
+

,
𝑒&'?(𝑑𝑥w	 

 

𝑒(𝛿) =
1

1 − 𝛿 logx
3

𝜃%

(𝛼 + 2)7
?

Zr
𝛿
𝑘t

+

@7,

(𝛼)?&@𝜃@ 	H (𝑥)?-@-.&.𝑒&'?(
+

,
𝑑𝑥

	
y 

𝑒(𝛿) =
1

1 − 𝛿 logx
3

𝜃%

(𝛼 + 2)7
?

Zr
𝛿
𝑘t

+

@7,

(𝛼)?&@𝜃@
𝛤(𝑘 + 𝛿 + 1)
(𝜃𝛿)(@-?-.)

		
y 

II.  Tsallis Entropy 
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Tsallis entropy was introduced by Tsallis (1988) as a basis for generalizing the standard statistical 
mechanics. For a continuous random variable X, Tsallis entropy is defined as follows.  

𝑆A =
1

1 − 𝜆 31 −H 𝑓$
A(𝑥; 𝛼, 𝜃)𝑑𝑥

+

,
7 

𝑆A =
1

1 − 𝜆p1 −H 3
𝜃%

(𝛼 + 2) 𝑥
(𝛼 + 𝜃𝑥)𝑒&'(7

A+

,
𝑑𝑥q 

𝑆A =
1

1 − 𝜆p1 − 3
𝜃%

(𝛼 + 2)7
A

H 𝑥A
+

,
J(𝛼 + 𝜃𝑥)𝑒&'(K

A
𝑑𝑥q 

	𝑆5 =
"

"%5
@1 − 1 !#

($#0)
2
5
∫ 𝑥5.
/ (𝛼 + 𝜃𝑥)5𝑒%5!&𝑑𝑥A           (14)             

Using binomial expansion in equation (14),  

𝑆A =
1

1 − 𝜆 u1 − 3
𝜃%

(𝛼 + 2)7
A

Zr
𝜆
𝑘t

+

@7,

(𝛼)A&@𝜃@H (𝑥)A-@
+

,
𝑒&A'(𝑑𝑥w	 

𝑆A =
1

1 − 𝜆 u1 − 3
𝜃%

(𝛼 + 2)7
A

Zr
𝜆
𝑘t

+

@7,

(𝛼)A&@𝜃@H (𝑥)A-@-.&.𝑒&A'(
+

,
𝑑𝑥w 

𝑆A =
1

1 − 𝜆 u1 − 3
𝜃%

(𝛼 + 2)7
A

Zr
𝜆
𝑘t

+

@7,

(𝛼)A&@𝜃@
𝛤(𝜆 + 𝑘 + 1)
(𝜃𝜆)(A-@-.)

w 

 

VII. Likelihood Ratio Test 

Let 𝑥., 𝑥%, 𝑥/, … . . , 𝑥9 be a random sample from the LBQL distribution. To test the hypothesis  

𝐻,: 𝑓(𝑥) = 𝑓(𝑥; 𝛼, 𝜃) Against 𝐻.: 𝑓(𝑥) = 𝑓$(𝑥; 𝛼, 𝜃) 

In order to test whether the random sample of length n has been drawn from length biased Quasi 
Lindley distribution or not the following test statistics is used 

∆=
𝐿.
𝐿,
=~

𝑓$(𝑥; 𝛼, 𝜃)
𝑓(𝑥; 𝛼, 𝜃)

9

B7.

 

∆= 3
𝜃(𝛼 + 1)
(𝛼 + 2) 7

9

~𝑥B

9

B7.

 

 Reject the null hypothesis, if 

∆= 3
𝜃(𝛼 + 1)
(𝛼 + 2) 7

9

~𝑥B

9

B7.

> 𝑘 

339



 
N.W. Andure (Yawale) and R.B. Ade 
THE NEW LENGTH BIASED QUASI LINDLEY 
DISTRIBUTION AND ITS APPLICATIONS 

RT&A, No 4 (65) 
Volume 16, December 2021  

 
 

 
 

∆=~𝑥B

9

B7.

> 𝑘 3
(𝛼 + 2)
𝜃(𝛼 + 1)7

9

 

∆∗= ∏ 𝑥B9
B7. > 𝑘∗   where 𝑘∗ = 𝑘 J (1-%)

'(1-.)
K
9
> 0 

For large sample size n, 2log∆ is distributed as chi-square distribution with 1 degree of freedom (df) 
and also 𝑝-value is obtained from the chi-square distribution. Thus, reject the null hypothesis, when 
the probability value is given by 

𝑃(∆∗> 𝛽∗) 

Where 𝛽∗ = ∏ 𝑥B9
B7.  is less than specified level of significance and ∏ 𝑥B9

B7.  is observed value of the 
statistics ∆*. 

 

VIII. Bonferroni and Lorenz curves 

The Bonferroni and Lorenz curves are given as 

𝐵(𝑝) =
1
𝑝𝜇H 𝑥

D

,
𝑓$(𝑥; 𝛼, 𝜃)𝑑𝑥 

𝐿(𝑝) = 𝑝𝐵(𝑝) =
1
𝜇H 𝑥

D

,
𝑓$(𝑥, 𝛼, 𝜃)𝑑𝑥 

Where    𝐸(𝑥) = 𝜇 = 0($#4)
!($#0)

     and 𝑞 = 𝐹%"(𝑝) 

 

𝐵(𝑝) =
𝜃(𝛼 + 2)
𝑝2(𝛼 + 3)H 𝑥%

D

,

𝜃%

(𝛼 + 2)
(𝛼 + 𝜃𝑥)𝑒&'(𝑑𝑥 

𝐵(𝑝) =
𝜃/

𝑝2(𝛼 + 3)H 𝑥%
D

,
(𝛼 + 𝜃𝑥)𝑒&'(𝑑𝑥 

𝐵(𝑝) =
𝜃/

𝑝2(𝛼 + 3)× 3𝛼H 𝑥/&.𝑒&'(
D

,
𝑑𝑥 + 𝜃H 𝑥4&.𝑒&'(	

D

,
𝑑𝑥7 

 

𝐵(𝑝) =
𝛼𝛾(3, 𝜃𝑞) + 𝛾(4, 𝜃𝑞)

2(𝛼 + 3)𝑝  

𝐿(𝑝) = 𝑝𝐵(𝑝) =
𝛼𝛾(3, 𝜃𝑞) + 𝛾(4, 𝜃𝑞)

2(𝛼 + 3)  

IX. Maximum Likelihood  Estimation 
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In this section, the maximum likelihood estimation of the parameters of Length biased Quasi Lindley 
(LBQL) distribution is discussed. Let 𝑥., 𝑥%, … , 𝑥9 be a random sample of size n from the LBQL 
distribution, then the corresponding likelihood function is given by 

𝐿(𝑥; 𝛼, 𝜃) =~3
𝑥B𝜃%(𝛼 + 𝜃𝑥B)𝑒&'()

(𝛼 + 2) 7
9

B7.

 

𝐿(𝑥; 𝛼, 𝜃) = 3
𝜃%

(𝛼 + 2)7
9

~𝑥B

9

B7.

(𝛼 + 𝜃𝑥B)𝑒&'∑ ()
(
)*'  

Takin log and solving likelihood function is obtained as follows 

FGHI $	
F1

= &9
(1-%)

+ ∑ .
(1-'())

9
B7. = 0                                                     (15) 

FGHI $	
F'

= %9
'
+∑ ()

1-'()
9
B7. −∑ 𝑥B9

B7. = 0                                            (16) 

The MLE of the parameters cannot be obtain in close form. The exact solution of above equation for 
unknown parameters is not possible manually. So, we can solve above equations with the help of R 
Software using (optim function, nlminb (), nlm ()). 

To obtain confidence interval we use the asymptotic normality tests. If as 𝜆� = (𝛼�, 𝜃�) denote the MLE 
of   𝜆 = (𝛼, 𝜃), state the results as follows: 

√𝑛(𝜆� − 𝜆) → 𝑁(0, 𝐼&.(𝜆)) 

Where 𝐼(𝜆)is Fisher’s Information Matrix is 
 
 

𝐼(𝜆) = −
1
𝑛
⎣
⎢
⎢
⎢
⎡𝐸 3

𝜕% log 𝑙	
𝜕%𝜃 7 	𝐸 3

𝜕% log 𝑙	
𝜕𝜃𝜕𝛼 7	

𝐸 3
𝜕% log 𝑙	
𝜕𝛼𝜕𝜃 7 	𝐸 3

𝜕% log 𝑙	
𝜕%𝛼 7	

⎦
⎥
⎥
⎥
⎤
 

Where 

𝜕% log 𝑙		
𝜕%𝛼 =

𝑛
(𝛼 + 2)% −Z

1
(𝛼 + 𝜃𝑥B)%

9

B7.

 

𝜕% log 𝑙		
𝜕%𝜃 =

−2𝑛
𝜃% −Z

𝑥B%

(𝛼 + 𝜃𝑥B)%

9

B7.

 

𝜕% log 𝑙	
𝜕𝜃𝜕𝛼 =

𝜕%𝑙𝑜𝑔	𝑙	
𝜕𝛼𝜕𝜃 = −Z

𝑥B
(𝛼 + 𝜃𝑥B)%

9

B7.

 

Since 𝜆 being unknown, 𝐼&.(𝜆) is estimated by 𝐼&.;𝜆�<and this can be used to obtain asymptotic 
confidence intervals for 𝛼  and  𝜃. 

X.  Application 
In this section, three real life data set are studied for the purpose of illustration to show the usefulness 
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and flexibility of the LBQL distribution.  
To compare the length biased Quasi Lindley (LBQL) distribution with QL, Power Lindley (PL), 
Exponential (Exp.) distributions, the criteria like Bayesian information criterion (BIC), Akaike 
Information Criterion (AIC), Corrected Akaike Information Criterion (AICC), HQIC are used and 
parameters are estimated using ML method of estimation. 
The real-life data sets are given as follows: 
Data set I: The first real life data set represents the breaking stress of carbon fibres (in Gba) observed 
and reported by Nichols and Padgett (2006) and is executed below in table 1. 
 

Table 1. Data consists of breaking stress of carbon fibres (in Gba) observed by Nichols and Padgett (2006). 

Data set I 
3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 
3.11 3.56 4.42 2.41 3.19 3.22 1.69 3.28 3.09 
1.87 3.15 4.90 1.57 2.67 2.93 3.22 3.39 2.81 
4.20 3.33 2.55 3.31 3.31 1.25 4.38 1.84 0.39 
3.68 2.48 0.85 1.61 2.79 4.70 2.03 1.89 2.88 
2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39 2.96 
2.35 2.55 2.59 2.03 1.61 2.12 3.15 1.08 2.56 
2.85 1.80 2.53       

Data set 2:  The second real life data set represent the fatigue life of some aluminum’s coupons cut 
in specific manner (see, Birnbaum and Saunders, 1969). The dataset (after subtracting 65) is given 
below in table 2. 
 

Table2. The fatigue life of some aluminum’s coupons cut in specific manner (Birnbaum and Saunders, 1969). 
Data set II 

5 25 31 32 34 35 38 39 39 
40 42 43 43 43 44 44 47 47 
48 49 49 49 51 54 55 55 55 
56 56 56 58 59 59 59 59 59 
63 63 64 64 65 65 65 66 66 
66 66 67 67 67 68 69 69 69 
69 71 71 72 73 73 73 74 74 
76 76 77 77 77 77 77 77 79 
79 80 81 83 83 84 86 86 87 
90 91 92 92 92 92 93 93 94 
97 98 98 99 101 101 103 105 109 
139 147        

 
Data set 3:   
This data set presented in Murthy et al. (2004) and used by some researchers. This data set present 
failure times for a particular windshield model including 85 observations that are classified as failure 
times of windshields.   
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Table3.failure times for a particular windshield model including 85 observations that are classified as failure times of 
windshields. 
Data set III 

0.040 1.866 2.385 3.443 0.301 1.876 2.481 
3.467 0.309 1.899 2.610 3.478 0.557 1.911 
2.625 3.578 0.943 1.912 2.632 3.595 1.070 
1.914 2.646 3.699 1.124 1.981 2.661 3.779 
1.248 2.010 2.688 3.924 1.281 2.038 2.822 
3.000 4.035 1.281 2.085 2.890 4.121 1.303 
2.089 2.902 4.167 1.432 2.097 2.934 4.240 
1.480 2.135 2.962 4.255 1.505 2.154 2.964 
4.278 1.506 2.190 3.000 4.305 1.568 2.194 
3.103 4.376 1.615 2.223 3.114 4.449 1.619 
2.224 3.117 4.485 1.652 2.229 3.166 4.570 
1.652 2.300 3.344 4.602 1.757 2.324 3.376 
4.663       
 
R software is used for determining the estimation of unknown parameters and is also used for 
estimating the model comparison criterion values (AIC, BIC, AICC, HQIC) and -2logL. To compare 
the Length biased Quasi Lindley distribution with Quasi Lindley and Power Lindley, Exponential 
distributions, the criterion like AIC (Akaike information criterion), AICC (corrected Akaike 
information criterion), BIC (Bayesian information criterion) and HQIC (Hannen-Quinn information 
criterion) are used for comparison. The better distribution corresponds to lesser values of AIC, AICC, 
BIC, HQIC and -2logL. 
 

Table 4.  Estimate and goodness of fit measures under considered distribution based on data set I. 

Distribution 
 

M.L. E - 2𝐥𝐨𝐠L AIC AICC BIC HQIC 
𝛼� 𝜃� 

LBQL 
Distributio
n 

-0.3883002 1.1745 199.7838 203.7838 203.9743 208.1631 205.5142 

QL 
Distribution 

-0.3401128 0.9116 204.4596 208.4596 208.6501 212.8389 210.1901 

Exponential 
Distribution 

0.3900 2.36944  
245.8762 

249.8762 249.9397 258.2555 255.6067 

PL 
Distribution 

0.5781 1.1286 490.4955 494.4955 494.5590 498.8748 496.2260 

 
Table 5. Estimate and goodness of fit measures under considered distribution based on data set II. 

Distributio
n 

M.L. E - 2𝐥𝐨𝐠L AIC AICC BIC HQIC 
𝛼� 𝜃� 

LBQL 
Distribution 

-0.16555 0.04489 899.4582 903.4582 903.499 908.6884 905.5756 

QL 
Distribution 

-0.14116 0.03144 982.2110 986.2110 986.251
8 

991.4412 988.3284 

Exponential 
Distribution 

5.000 63.83168 1041.562 1045.562 1045.60
3 

1050.792 1047.679 
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PL 
Distribution 

0.1447 1.09255 1688.346 1692.346 1692.38
7 

1697.577 1694.463 

 
Table 6. Estimate and goodness of fit measures under considered distribution based on data set III. 

Distributio
n 

M.L. E - 2𝐥𝐨𝐠L AIC AICC BIC HQIC 
𝛼� 𝜃� 

LBQL 
Distributio
n 

0.1458 1.14416 276.632 280.632 280.680
8 

285.5173 282.5970 

Exponential 
Distribution 

0.040 2.5626 276.7906 280.7906 280.839
4 

285.6759 282.7556 

QL 
Distribution 

0.00362     0.77904    289.5131 293.5131 293.561
9 

298.3984 295.4781 

PL 
Distribution 

0.58946     1.18093     594.0202 598.0202      598.069 602.9055 599.9852 

 
 
From table (4), (5) and (6) it can be seen that the value of the statistics   -2logL, AIC, BIC, AICC and 
HQIC of the Length biased Quasi Lindley distribution are comparatively smaller than the other 
distributions on a real-life data set. Therefore, the result shows that the Length biased Quasi Lindley 
distribution provides a significantly better fit than other models. So, it can be chosen to model the 
life testing data.  

XI. Conclusion 
 

In this paper, the Length biased Quasi Lindley distribution is proposed as a new extension of Quasi 
Lindley distribution. The newly introduced distribution is generated by using the Length biased 
techniques and taking the Quasi-Lindley distribution as the base distribution. The various statistical 
properties of the proposed distribution have been derived and discussed. Supremacy of the new 
distribution in real life is established with demonstration of real-life data sets and it is found from 
the results of data sets that the Length biased Quasi Lindley distribution performs better than the 
Quasi Lindley, Power Lindley and Exponential distributions. 
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Abstract 
 

The automatic recognition of mathematical expressions in digital content is a challenging task 
due to the complex spatial relationships between the symbols involved in the expression. The 
accuracy of the recognition is dependent on a variety of factors that includes nature of the input 
medium. The reliability of the performance of the system is dependent on the identification of the 
spatial relationships in an expression. Symbol recognition and structural analysis are the two 
important stages in the recognition process. In the present work these two stages are considered 
using the concepts of connected components and minimum spanning tree. For our analysis, we 
have created a database of 500 expression images drawn from standard databases and the 
experimental results are reported on them. 
 

 
Keywords: minimum spanning tree, connected, spatial, segmentation. 

 
I. Introduction 

 
Continuous research and development over the last few decades have enabled optical character 
recognition (OCR) systems to achieve a sufficient level of maturity in the recognition and retrieval 
of information from digital content. However, recognition and retrieval of images, tables, diagrams 
and mathematical expressions (ME) are yet to reach a comfortable level of applicability [1]. The 
amount of work in the literature that is directed towards the extraction and recognition of ME is a 
mature field of study and the research efforts in this area have been surveyed in the works 
[2,3].The recognition of ME is a challenging pattern recognition problem that includes 
segmentation ambiguities, symbol recognition challenges and ambiguity of meaning. The problem 
finds application in several areas of science and engineering that include document searching / 
editing , computer algebra systems, tutoring systems, and mathematical information retrieval to 
name a few[1]. The existing OCR systems have difficulty in converting the ME present in 
scientific/technical documents into a corresponding digital/electronic form for recognition. Instead 
of developing OCR systems specifically for scientific documents, the emphasis has been on 
including mathematical /math OCR module into the existing OCR systems. The digital document 
analysis in OCR systems typically consists of the pre-processing stage followed by the 
determination of the physical layout and logical structure of the document. The pre-processing is 
basically concerned with the removal/correction of noise, artifacts, unwanted variations introduced 
during the document generation stage and is an essential part of the OCR system. The physical 
layout of a document is basically its geometric structure and its analysis aims to decompose the 
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document into a hierarchy of homogenous/similar regions. The logical structure is the actual 
content of the document and its analysis is aimed at understating the logical/ functional entities in 
a document along with their interrelationships [4]. The document structure analysis that includes 
these tasks get complicated due to the variations in the source of the input documents that consists 
of vector graphics, historical documents, printed documents etc., each having distinct physical and 
layout structures. 

In the development of math- OCR module, the math zones are to be segmented from the input 
documents either manually or through semi or fully automated segmentation logic. Though 
research into the segmentation of math zones from documents have been carried out in the past 
few decades, challenges still remain as the developed methods have not been at a sufficient level to 
be adopted in realistic application scenarios [5]. It is to be noted that, no one technique for layout 
analysis completely dominates another and improving these methods in an active area of 
research[1]. The present work is concerned with the main module of a math OCR which is the 
math expression recognition module that consists of the two stages: Component character 
recognition and structural analysis [6]. The recognition of mathematical symbols is a difficult 
problem due to the presence of a large character set with a variety of font styles and a range of font 
sizes coupled with a set of symbols having an enormous range of  possible scales [7,2]. The 
symbols occurring in the ME are arranged around different operators that form different layouts, 
some of which are one dimensional, while others are two dimensional. The 2D structure induced 
by the operators appear in normal or nested modes increasing the complexity of the expression 
which is further increased by the number of horizontal lines on which the constituent symbols are 
arranged[8]. In the structural analysis part, the spatial relationships between symbols are analysed 
to capture the structure of the expression, together with the logical meaning to aid the recognition 
process. The complex structure of the ME makes structural analysis a challenging task even when 
all the symbols have been properly recognized [9].      

Document mathematical expression recognition is generally considered to be  printed 
mathematical expression recognition[10].Over the past few decades, many excellent methods have 
been proposed in the field of ME recognition, however the search for an optimum 
technique/method is far from being over. In recent years, the focus has shifted to handwritten 
mathematical expression recognition. Though the techniques for both printed and handwritten ME 
recognitions are almost similar, handwritten ME recognition is difficult and is more or less 
dependent on the strokes used by the individual person. In addition to segmentation and character 
classification, the spatial relation classification is one of the dominant problem associated with ME 
recognition[11]. 
The ME can be represented in many formats such as symbol layout tree, operated tree, label 
graphs, Tex and so on and the output of the ME recognition systems are to be put into these 
formats for reconstruction.  A network representation of the ME has helped researchers to utilize 
graph theory concepts in tasking symbol segmentation and recognition. The minimum spanning 
tree (MST) problem is one of the famous mathematical problems in computer science that has been 
adopted suitably by many workers for the development of mathematical OCR[12]. In 
unconstrained handwritten documents, separation of text lines is a challenge because of the 
skewed, curved and non-uniform structure of the text .[13] developed an approach for text line 
segmentation in unconstrained handwritten Chinese document using an approach based on the 
minimum spanning tree .A  variation of the MST problem was applied to mathematical OCR by 
[15] utilizing the notion of candidate selection and link-label selection. A structural analysis 
method for the recognition of online handwritten ME based on a MST construction and symbol 
dominance was presented in [14] 

The present work is concerned with the recognition of ME. Two approaches are utilized in the 
process. The first approach considers bounding box, labeling matrix and minimum spanning tree 
to group similar component and study the spatial relationship between them. The second 
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approach considers the separation of horizontal lines into five regions and allot the components of 
ME into these regions for the identification of base symbol subscript, superscript and sub 
expressions. The relationship between these components is then obtained utilizing a minimum 
spanning tree. 

 
II. Characteristics of Mathematical expressions 

 
Symbol recognition and structural analysis are the two involved activities that are crucial in 

understanding a mathematical expression. Pre-processing, segmentation, recognition, 
identification/recognition of spatial and logical relationships and construction of meaning of the 
symbol involved in the expressions are the processes involved in these two activities [16]. A 
mathematical expression that is printed/handwritten can be viewed as a collection of symbols with 
spatial relationships among them. The problem of searching for the most likely Interpretation for a 
given set of mathematical inputs reduces to the problem of searching for the most likely symbol 
identities with the likely spatial relationships [17]. 

Understanding the essential features of the ME aids the processes involved in recognition. The 
mathematical expression / formulae are represented with various kinds of entities such as  

i) Arabic digits, Greek, Latin, Roman, calligraphic letters etc., in addition to the English 
characters. 

ii) Mathematical symbols that include bracket symbols, arrow symbols, miscellaneous 
symbols etc.,  

iii) Mathematical operators – logical, set and relational etc., function names 
In a ME, the alphabetic characters occur with a variety of typefaces such as normal, bold, italic etc., 
and can be touching, broken, overlaid etc.,. In addition, the alphabetic letter can be of type 
ascender (b,d,h,k…..) or descender (g,j,p,y…) or normal (a,m,r,n....). In the case of operators, factors 
such as operator range, operator precedence, symbol identity, relative symbol size and case 
interact in a complex way and understanding these provide a clue for the structural analysis of 
ME[13]. Some of the features can be further extended as : 
1. Relative symbol placement is important in the identification of operators. For e.g.; the commonly 
used basic spatial relationships:  left (L), Right (R ), Below(B), Above (A), above right(AR) and 
above left(AL), below right (BR), below left (BL) and can be visualized as shown in Figure 1. 
Identification of these relationships is an important aspect of a recognition system.  
  

 

                                              

 

 

 

Figure 1: Relative placement of symbols in an expression 
 
 

2.The symbol/expression have geometric complexity which is determined by the horizontal width 
occupied by the expression. The component symbols in the expression are arranged in a number of 
horizontal lines that increased the complexity as seen from a typical example shown in Figure 2. 
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Figure 2: Illustration of geometry complexity in an expression 
 

 

3. Nested structure of the expression as seen in Figure 3a, in the figure, the argument of arc tan, 
that contains the square root operator and further involves fraction operator is a nested structure. 
Similarly a matrix image consists of element that may have fractions, square roots etc., as in Figure 
3b. 

Y=tan)')')*+, -
'.*+, -

   *
$-													0!"
!#$
!"	#$

								1	
+ 

     (a )                                                                (b) 

Figure3: Illustration of nested structure in an expression 
 

4.Links representing the structure of ME. Consider the expression 𝑥2- = 5𝑥2)3 + 𝑝$. 

The horizontal/base line together with the spatial relationships of the expressions are shown in the 
Figure 4. Understanding these is a part of structural analysis. 

 

 
Figure 4: Spatial relationships in an expression 

. 
III. Proposed methodology 
 

The first stage of the proposed method consists in symbol segmentation using connected 
component labelling method. For a given input image containing a mathematical expression, 
binarization is carried out. The binary image is scanned pixel by pixel and its pixels are grouped 
into components based on their connectivity. Once the connected components are extracted, their 
bounding boxes are obtained. 
 The bounding box of connected component (symbol) is defined to be the smallest rectangle which 
circumscribes the connected component (CC) [18]. Labels are then assigned to the CCs. The area, 
aspect ratio and centroid of the CCs are calculated. The centroid is a point attribute that helps 
determine the symbols location. Most of the single CC symbols can be segmented in this process 
but symbols like : , i , % , = , ≥,  ≤ , ÷ , etc., which are multi CC are not segmented. 
For example division (÷), a multi CC consists of  three CC that consist of one horizontal line (-) and 
two dots (.). to resolve the problem of multi CC symbols the minimum spanning tree is utilized. 
Considering the centroid of the CCs as vertices and distances between the centroids as weights a 
minimum spanning tree is constructed. The minimum distance between the components is used to 
resolve the ambiguity in the multi CC symbols like || , i , % , = , ≥,  ≤ , ÷ etc., . 
The resolved multi CCs are labelled as composite symbols and the spanning tree is updated to 
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group the similar components of remaining symbols if any in the expression. The mathematical 
functions like min, max, SIN, COS are also resolved through this process and symbol segmentation 
of ME is thus carried out. 
In the second stage, the structural analysis part is considered. Here the spatial relationship  
 
between the symbols is identified. Horizontal profiling is used to split the math block containing 
the ME into five regions as shown in fig.5. Level three is the main base line of the ME and contains 
the parent/ dominant symbols. Level 1, level 2 and level 4, level 5 contain the super, super 
expressions, subscripts, sub expressions. The peak values in the profiles together with some 
heuristic rules are employed to get a coarse split of the region. The symbol component height and 
the y-coordinate of the centroid of each component is used to allot the symbol into the 5 regions. 
 
 

Level1 

Level2  

Level3  

Level4  

Level5  

 

Figure 5: A sample layout of the decomposition of a ME into five levels 
 

The statistical properties of the symbols together with the centroid values are utilized in finding 
the dominant base line. This is followed by the coarse identification of the relationship between 
two symbols such as above, below, in the same row, super script, sub script, prescript, nested 
using the relative geometric attributes of the bounding boxes of symbols. The horizontal and 
vertical projection profiles of CCs aid the process. The relationship tree based on the symbol 
dominance is then generated by constructing a minimum spanning tree that finds the different 
relationships among the components of the formulae. 

 
IV. Results and discussion 
 

The proposed methodology is tested on about 500 Mathematical Expressions taken from various 
mathematical documents collected from the internet including the database of Infty Project. The 
MEs considered cover various branches of mathematics. For handwritten samples we have 
considered only 20 expressions. The samples considered contain almost all mathematical 
expressions. The current algorithm is developed in MATLAB and Python. In the work, the 
connected components are sorted in the increasing order of x-coordinate and incase two or more 
(CC) have same x-coordinate, the y-coordinate are considered for sorting. The ordered CCs are 
scanned from left to right and basing on the spatial features the CCs are combined to form a single 
composite symbol. For e.g.; we consider some mathematical expressions and  as a sample the  
components of the expressions are  listed in Figure 6.The minimum spanning tree is used to find 
the spatial relations between the symbols of the expressions and the relationship obtained is shown 
in Figure 7. For the expression on printed documents the spatial relations could be identified 
correctly to the tune of 95%, however in handwritten cases the accuracy is around 60%. Further the 
element extraction could be accomplished with great ease. 
 

- -- - - - - - -  

- -- - - - - - -  

- -- - - - - - -   

- -- - - - - - -  

- -- - - - - - -  

𝑎!!
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Figure 6: Sample identification of different components of an expression 

Figure 7: The spatial relation between symbols in an expression 
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V. Conclusion 

 
In this paper, we focus on symbol segmentation and structural analysis of mathematical 
expressions in both printed and handwritten documents. The multiconnected components and 
context dependent symbols are resolved using the minimum spanning tree. The approach has been 
tested on around 500 MEs collected over the internet and the results are reported on them. We 
hope a good classifier can be added to the existing methodology to increase the accuracy on 
handwritten MEs. 
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Abstract 
 

This paper considered a device which is subjected to three types of failures (category I, category II and 
category III). Also the paper tries to combine discrete age replacement model with minimal repair, where 
it dealt with a discrete scheduled replacement policy. Category I failure is an un-repairable failure, 
which occurs, suddenly, and if it occurs, the device is replaced completely, while category II and 
category III failures are repairable failures, which occurs, due to time and usage, and the two failures 
are rectified with minimal repair. To investigate the characteristics of the model constructed and 
determine optimum replacement number (𝑁∗) of the device, a numerical example is provided, where it 
is assumed that the rate of the three categories of failures follow Weibull distribution. 
 
Keywords: category, discrete, number, optimal, replacement, scheduled  

 
 
 

I. Introduction 
 
Most systems deteriorate and subsequently fail due to age and usage. These deficiencies have a 
detrimental impact on sales, the production of faulty goods and the delay in the provision of 
customer services.  For these reasons, many optimal replacement policies have been built by several 
researchers to minimize excessively high running costs and prevent sudden failure of systems. For 
certain purposes, such as shortage of spare units, lack of money or staff, or inconvenience of time 
needed to complete replacement, an operating unit may often not be replaced at the exact optimum 
replacement times, but in idle periods, a unit can be replaced instead. Aven and Castro [1] 
constructed a minimal replacement policy for a system subject to two types of failures, which 
determined optimal replacement time for the system.  Briš et al. [2] presented a new approach for 
optimizing a complex system's maintenance strategy that respects a given reliability constraint. 
Chang [3] considered a device that faces two types of failures (repairable and non-repairable) based 
on a random mechanism. Coria et al. [4] introduced a method of analytical optimization for 
preventive maintenance policy with historical failure time data. Enogwe et al. [5] used the 
distribution of the probability of failure times and come up with a replacement model for items that 
fails un-notice. Fallahnezhad and Najafian [6] investigated the number of spare parts and 
installations for a unit and parallel systems, so as cut down the average cost per unit time. Jain and 
Gupta [7] studied optimal replacement policy for a repairable system with multiple vacation and 
imperfect coverage. Lim et al. [8] studied the characteristics of some age substitution policies. Liu et 
al. [9] developed mathematical models of uncertain reliability of some multi-component systems. 
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Malki et al. [10] analyzed age replacement policies of a parallel system with stochastic dependency. 
Murthy and Hwang [11] presented that, the failures can be reduced through effective maintenance 
actions (in a probabilistic sense), and such maintenance actions can occur either at discrete time 
instants or continuously over time. Nakagawa [12] modified the continuous standard age 
replacement for a unit, and come up with a discrete replacement model for the unit.  Nakagawa et 
al. [13] presented the advantages of some replacement policies. Safaei et al. [14] studied the optimal 
preventive maintenance action for a system based on some conditions. Sudheesh et al. [15] studied 
age replacement policy in discrete approach. Tsoukalas and Agrafiotis [16] presented a new 
replacement policy warrant for a system with correlated failure and usage time. Waziri and Yusuf 
[17] constructed an age replacement model for a parallel-series system based on some proposed 
policies. Xie et al. [18] assessed the effects of safety barriers on the prevention of cascading failures. 
Yaun and Xu [19] studies a cold standby repairable system with two different components and one 
repairman who can take multiple vacations, where they assumed that, if there is a component which 
fails and the repairman is on vacation, the failed component will wait for repair until the repairman 
is available. Yusuf and Ali [20] constructed a minimal repair replacement model for two parallel 
units in which both units operate simultaneously, such that, the two components are two types of 
failures. Yusuf et al. [21] analyzed the characteristics of reliability and availability of certain number 
of devices. Zhao et al.  [22] proved that age replacement policy is optimal among all replacement 
policies. 
       The key contribution of this study is to come up with a discrete scheduled replacement model 
for a device that is exposed to three categories of failures, in order to (i) provide opportunity to 
replace a system at the ideal time (ii) provide the ability to skip such special hours to avoid, and (iii) 
investigate those aspects of the discrete model of scheduled replacement requiring limited repair.  
 
 

II. Methods 
 
Reliability measures namely reliability function and failure rates are used to obtain the expressions 
of discrete scheduled replacement model involving minimal repair based on some assumptions. A 
numerical example was given for the purpose of investigating the characteristics of the model 
constructed. 

III. Notations  

• 𝐶! : cost of repair due to failure of category II.	
• 𝐶" : cost of repair due to failure of category III.	
• 𝐶# : cost of scheduled replacement at NT, for  𝑁 = 1, 2, 3….	
• 𝐶$ : cost of unscheduled replacement due to failure of category I.	
• 𝐶(𝑁):  replacement  cost rate in one replacement cycle.  
• 𝑁∗:	the device's optimum discrete scheduled replacement time. 
• 𝑟&(𝑡):	rate of category I failure. 
• 𝑟!(𝑡):	rate of category II failure . 
• 𝑟"(𝑡):	rate of category III failure. 
• 𝑅&(𝑡):	reliability function due to category I failure. 

 
IV. Description of the System 

 
Consider a device which is subjected to three independent types of failures, which are named as 
category I, category II  and category III, such that, all the three failures arrives according to non-
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homogeneous Poisson process. It is assumed that, category I failure is unrepairable one, while 
category II and category III failures are repairable failures. The device is replace with new one 
whenever it reaches scheduled replacement time 𝑁𝑇	(𝑁 = 1, 2, 3, … ) for a fixed T or at category I 
failure, whichever occurs first. 

V. Discrete Scheduled Replacement Model 
 

This section considers a fundamental discrete scheduled replacement model involving minimal 
repair. 
Assumptions for this model: 

1. Category I failure is un-repairable one, while category II and category III failures are 
repairable failure. 

2. Category I, Category II and Category III failures arrives according to a non-homogeneous 
Poisson process with failure intensity 𝑟&(𝑡), 𝑟!(𝑡) and 𝑟"(𝑡), respectively, such that:  𝑟"(𝑡) ≥
𝑟!(𝑡) ≥ 𝑟&(𝑡). 

3. The cost of replacement/minimal repair follows the order : 𝐶$ > 𝐶# > 𝐶! > 𝐶". 
4. All three failures are detected instantaneously. 
5. When needed, all the resources required are available. 
6. If the device fails with respect to category I failure, the device will be replaced completely. 
7. If the device fails with respect to category II or category II failure, the device is minimally 

restored back to operation. 
8. The device is replaced completely at planned time 𝑁𝑇(𝑁 = 1, 2, 3… ) for a fixed T or at 

category I failure, whichever arrives first.  
 
      Based on the assumptions, the probability of the device being replaced before category I failure 
occurs at the scheduled time T is 

                                                       𝑅&(𝑁𝑇) = 𝑒'∫ $!(*),*
"#
$ ,			                                                      (1) 

where  𝑁 = 1, 2, 3… and  T is fixed. 
 
Based on the assumptions, the cost of unscheduled replacement of the device in one replacement 
cycle is 

                                                          𝐶$(𝑁𝑇)51 − 𝑅&(𝑁𝑇)7,                                                    (2) 
where 𝑁 = 1, 2, 3… and  T is fixed. 
 
Based on the assumptions, the cost of scheduled replacement of the device at time 𝑁𝑇 in one 
replacement cycle is  

                                                             	𝐶#𝑅&(𝑁𝑇),                                                                 (3) 
where 𝑁 = 1, 2, 3… and  T is fixed. 
 
Based on the assumptions, the cost of minimal repair of the device due to category II failure in one 
replacement cycle is 

                                                    ∫ 𝐶!𝑟!(𝑡)𝑅&(𝑡)𝑑𝑡
-.
/ ,                                                           (4) 

where 𝑁 = 1, 2, 3… and  T is fixed. 
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Based on the assumptions, the cost of minimal repair of the device due to category III failure in one 
replacement cycle is 

                                                               ∫ 𝐶"𝑟"(𝑡)𝑅&(𝑡)𝑑𝑡
-.
/ ,                                                 (5) 

where 𝑁 = 1, 2, 3… and  T is fixed. 
 
Based on the assumptions, the mean of one replacement cycle is  

                                                                     ∫ 𝑅&(𝑡)𝑑𝑡
-.
/ ,                                                          (6) 

where 𝑁 = 1, 2, 3… and  T is fixed. 
 
 Adding up equation (1) to equation (6), the device's cost rate in one replacement cycle is 

                           𝐶(𝑁) = 				 0%1&'2!
(-.)340&2!(-.)4∫ 2!(*)5(*),*

"#
$

∫ 2!(*),*
"#
$

,			                                           (7) 

where 
                                       				𝐾(𝑡) = 𝐶!𝑟!(𝑡) + 𝐶"𝑟"(𝑡).                                                               (8) 

Noting the following: 
1. If the value of T is taking as one ( that is,  T = 1), then 𝐶(𝑁) will be a continuous 

standard age replacement model with minimal repair.  
2.  𝐶(𝑁) is adopted as an objective function of an optimization problem, and the main 

goal is to obtain an optimal discrete scheduled replacement time 𝑁∗ that minimizes 
𝐶(𝑁). 
 

VI. Numerical Example 
 

In this section, we will give two numerical example, so as to illustrate the characteristics of the 
constructed discrete scheduled replacement model. 
         Let the rate of arrival of category I, category II and category III failures follows the Weibull 
distribution: 
 

                             𝑟6(𝑡) = 𝜆6 ∝6 𝑡∝''&,    for 𝑖 = 1, 2, 3,                                                    (9) 
 

where ∝6> 1 and 𝑡 ≥ 0. 
 
Let the collection of parameters and repair/replacement costs be used in this specific example: 

1. ∝&= 2, ∝!= 3, ∝"= 3. 
2. 𝜆& = 0.0002, 𝜆& = 0.04, 𝜆" = 0.02. 
3. 𝐶$ = 50, 𝐶# = 40, 𝐶! = 3, 𝐶" = 1.5. 

By substituting the parameters in equation (9), the category I, category II and category III failure 
rates were obtained as follows: 
 

                                              𝑟&(𝑡) = 0.0004𝑡,                                                             (10) 
 

                                             𝑟!(𝑡) = 0.12𝑡!,                                                                  (11) 
 

                                              	𝑟"(𝑡) = 0.06𝑡".                                                                 (12) 
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Table 1 below is obtained, by substituting the assumed cost of replacement/repair (𝐶$ = 50, 𝐶# = 40, 
𝐶! = 3, 𝐶" = 1.5) and rates of category I, category II and category III failures obtained above 
(equations (10), (11) and (12) ) in equation (7), so as to evaluate the device's optimal discrete 
scheduled replacement time. When obtaining table 1, the value of  𝑇 = 1, 𝑇 = 2, 𝑇 = 3, 𝑇 = 4, 𝑇 = 5 
and  𝑇 = 6 are considered so as to investigate the properties of the device's optimal discrete 
scheduled replacement time. Figure 1 is the graph of 𝐶(𝑁) against 𝑁, as 𝑇 = 1. Figure 2 is the graph 
of 𝐶(𝑁) against 𝑁, as 𝑇 = 2. Figure 3 is the graph of 𝐶(𝑁) against 𝑁, as 𝑇 = 3. Figure 4 is the graph 
of 𝐶(𝑁) against  𝑁, as 𝑇 = 4. Figure 5 is the graph of 𝐶(𝑁) against  𝑁, as 𝑇 = 5. Figure 6 is the graph 
of 𝐶(𝑁) against 𝑁, as 𝑇 = 6.  

 
Table 1:  Values of C(N) for T = 1, T = 2, T = 3, T = 4, T = 5 and  T =6, versus 𝑁	(1, 2, 3… ) 

N C(N) as T=1 C(N) as T=2 C(N) as T=3 C(N) as T=4 C(N) as T=5 C(N) as T=6 

1 400.82 203.18 140.39 112.46 99.38 94.47 
2 203.18 112.46 94.47 99.13 116.34 142.63 
3 140.39 94.47 106.45 142.63 195.82 263.13 
4 112.46 99.13 142.63 216.79 314.97 433.39 
5 99.38 116.34 195.82 314.97 465.78 641.83 
6 94.47 142.63 263.13 433.39 641.83 876.92 
7 94.86 176.41 342.80 568.80 836.42 1125.87 
8 99.13 216.79 433.39 717.84 1042.19 1374.67 
9 106.45 263.13 533.53 876.92 1251.20 1608.65 

10 116.34 314.97 641.83 1042.19 1455.03 1813.40 
11 116.34 371.85 756.81 1209.54 1645.18 1975.90 
12 128.47 433.39 876.92 1374.67 1813.40 2085.74 
13 142.63 499.18 1000.52 1533.20 1952.23 2136.30 
14 158.65 568.80 1125.87 1680.83 2055.48 2125.54 
15 176.41 641.83 1251.20 1813.40 2118.67 2056.29 

 
 

 
 

Figure 1:  C(N) against N, as T= 
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Figure 2:  C(N) against N, as T=2 

 
 
 

 
 

Figure 3:  C(N) against N, as T=3 
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Figure 4:  C(N) against N, as T=4 
 
 
 
 

 
 

Figure 5:  C(N) against N, as T=5 
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Figure 6:  C(N) against N, as T=6 
 
 

 
 

 
 

Figure 6:  Comparing C(N) for T=1, 2, 3, 4, 5, 6  
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Some observations from the results obtained are as follows: 

1. Observe from table 1, the optimum discrete scheduled replacement time is 6, when 𝑇 = 1.
That is, 𝑁∗ = 6, with 𝐶(𝑁∗ = 6) = 94.47, when 𝑇 = 1. See figure 1 below for the plot of 𝐶(𝑁)
against N.

2. Observe from table 1, the optimum discrete scheduled replacement time is 3, when 𝑇 = 2	.
That is, 𝑁∗ = 3, with 𝐶(𝑁∗ = 3) = 94.47, when 𝑇 = 2. See figure 2 below for the plot of 𝐶(𝑁)
against N.

3. Observe from table 1, the optimum discrete scheduled replacement time is 2, when 𝑇 = 3	.
That is, 𝑁∗ = 2, with 𝐶(𝑁∗ = 2) = 94.47, when 𝑇 = 3. See figure 3 below for the plot of 𝐶(𝑁)
against N.

4. Observe from table 1, the optimum discrete scheduled replacement time is 2, when 𝑇 = 4	.
That is, 𝑁∗ = 2, with 𝐶(𝑁∗ = 2) = 99.13, when 𝑇 = 4. See figure 4 below for the plot of 𝐶(𝑁)
against N.

5. Observe from table 1, the optimum discrete scheduled replacement time is 1, when 𝑇 = 5	.
That is, 𝑁∗ = 1, with 𝐶(𝑁∗ = 1) = 99.38, when 𝑇 = 5. See figure 5 below for the plot of 𝐶(𝑁)
against N.

6. Observe from table 1, the optimum discrete scheduled replacement time is 1, when 𝑇 = 6	.
That is, 𝑁∗ = 1, with 𝐶(𝑁∗ = 1) = 99.47, when 𝑇 = 6. See figure 6 below for the plot of 𝐶(𝑁)
against N.

7. Observe from figure 7, we have : (𝐶(𝑁), 𝑇 = 1) < (𝐶(𝑁), 𝑇 = 2) < (𝐶(𝑁), 𝑇 = 3) <
(𝐶(𝑁), 𝑇 = 4) < (𝐶(𝑁), 𝑇 = 5) < (𝐶(𝑁), 𝑇 = 6).

8. Observe from figure 1, figure 2, figure 3 and figure 4 are all in convex shaped, which
corresponded to 𝑇 = 1, 𝑇 = 2, 𝑇 = 3 and 𝑇 = 4, respectively.

9. Observe from figure 5 and figure 6 are in s-shaped, which are corresponded to 𝑇 = 5 and 𝑇 =
6, respectively.

10. Observe from table 1, as the value of T is increasing, the optimum discrete scheduled
replacement time decreases.

VII. Conclusion and recommendations

This paper developed a discrete scheduled model for a device that is exposed to three categories of 
failures. category I failure is an un-repairable one, which occurs suddenly, and if it occurs, the device 
is replaced completely, while category II and category III failures are repairable failures, which 
occurs due to time and usage, and the two failures are minimally repaired. A numerical example 
was provided to test the constructed model so as to investigate the characteristics of the discrete 
scheduled model constructed and determine the optimum replacement number (𝑁∗) of the device. 
A numerical example was provided for simple illustrations. From the results obtained, it is 
discovered or verified that, the value of T have an effect on the discrete scheduled replacement 
model, because of the following reasons: 

1. as the value of 𝑇 decreases, the optimal discrete replacement time ( 𝑁∗) increases, while as
the value of  𝑇 increases, the optimal discrete replacement time ( 𝑁∗) decreases.

2. as the value of 𝑇 increases, 𝐶(𝑁) increases, while as the value of 𝑇 decreases, 𝐶(𝑁) increases
decreases.

With such reasons above, it can be easily seen that, continuous scheduled replacement model 
(continuous age replacement model) is better than discrete scheduled replacement model (discrete 
age replacement model). This paper is important to engineers, maintenance managers and plant 
management in maintaining multi-component systems at idle times, such as weekend, month-end 
or year-end.  
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Abstract 

The current study establishes a new three parameter Rayleigh distribution that is 
based on the inverse Weibull-G family and is an extension of the Rayleigh 
distribution. The formulation is known as the inverse Weibull-Rayleigh distribution 
(IWRD). The distinct structural properties of the formulated distribution including 
moments, moment generating function, order statistics, quantile function, and Renyi 
entropy have been discussed. In addition expressions for survival function, hazard 
rate function and reverse hazard rate function are obtained explicitly. The behaviour 
of probability density function (p.d.f) and cumulative distribution function (c.d.f) are 
illustrated through different graphs. The estimation of the formulated distribution 
parameters are performed by maximum likelihood estimation method. A simulation 
analysis has been carried out to evaluate and compare the effectiveness of estimators 
in terms of their bias, variance and mean square error (MSE). Eventually, the 
usefulness of the formulated distribution is illustrated by means of real data sets 
which are related distinct areas of science. 

Keywords: Inverse Weibull-G family, Rayleigh distribution, moments, Renyi entropy, 
simulation, maximum likelihood estimation. 

Mathematics classification: 60E05, 62FXX, 62F10, 62G05 

 

I. Introduction 

There is a plethora of univariate distributions in the statistics literature. However, statisticians have 
found it difficult to find an effective distribution for analysing or modelling complicated real-life data 
sets. To resolve such challenges, new probability distributions must be formed or fundamental type 
must be modified. Over recent times, researchers have investigated a plethora of new methods and 
approaches, and by employing these approaches, generalization or extensions can be accomplished 
from baseline distributions. The main objective for these modifications is to enhance the accuracy or 
flexibility of distributions while assessing more complicated real-life data sets. 

Waloddi Weibull, a Swedish mathematician, introduced the Weibull distribution in 1951. Because it 
may be used to analyse real life data with monotone failure rates, this distribution is considered 
versatile for data sets with bathtub shapes or unimodal. The Weibull distribution, on the other hand, 
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may not necessarily give a best fit for data sets with a bathtub shape or failure rates that are 
unimodal. 

Let be a random variable follows the Weibull distribution with parameter  and . Then its 
probability density function (pdf) is defined as 

 ;  

The inverse of the Weibull distribution is obtained by applying the transformation .   

Thus the probability density function (pdf) of inverse Weibull distribution takes following form. 

                              ;                                                                

The inverse Weibull distribution is a subclass of the generalised extreme value distribution, which 
was previously researched by B.V. Gnedenko (1941) and Frechet (1927). In this paper, we develop the 
inverse Weibull-Rayleigh distribution, which is an extension of the Rayleigh distribution. Rayleigh 
distributions have a broad array of applications in research to simulate real life data, including 
reliability analysis, engineering, communication theory, medical science, and applied statistics. 
Rayleigh distribution has been expanded by researchers to make it more comprehensive and efficient 
for assessing more diverse factual data, for instance, due to its immense variety of applications. 
Weibull-Rayleigh distribution by Faton Merovci [11], odd generalized exponential Rayleigh 
distribution by Albert Luguterah [2], Topp-Leone Rayleigh distribution by Fatoki olayode [12], new 
generalisation of Rayleigh distribution by A.A Bhat et al [8].The probability density function (pdf) of 
Rayleigh distribution with scale parameter is defined by 

                                  ;                                                                                

The associated cumulative distribution function (cdf) is given by 

                                        ;                                                                           

In recent past years researcher have focussed to explore new generators from continuous standard 
distributions. As a result, the obtained distribution enhances the effectiveness and flexibility of data 
modelling. Some generated families of distribution are as follows: beta-G family of distribution 
explored by Eugene et al [10], kumaraswamy-G family by Cordeiro et al [9], transformed-
transformer(T-X) by Alzaatrh et al [1], Weibull-G by Bourguignon et al [5], Lindley-G by Frank 
Gomes-silva et al [12], Topp-Leone odd log-logistic family of distributions by Brito et al [7], inverse 
Weibull-G by Amal S. Hassan et al [3], among others. 

II. T-X Transformation 

T-X family of distributions defined by Alzaatreh et al [1] is given by 

                                                                                                                                      

Where  be the probability density function of a random variable and  be a function of 
cumulative density function of random variable . 
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Suppose denotes the baseline cumulative distribution function, which depends on parameter 
vector . Now using T-X approach, the cumulative distribution function  of inverse Weibull 

generator (IWG) can be derived by replacing  in equation  with and , where 

 which follows 

                                       

                                              ;                                                                   

The corresponding pdf of  becomes 

                ;                           

The survival  and hazard rate function  are respectively given by 

                                 

                                 

III. Useful Expansion 

Applying Taylor series expansion to the exponential function of the pdf in equation we have 

                                                                                             

Substitute equation  in , we have 

                                                                

Since  and , using generalised binomial theorem, we have 
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Using equation  in equation , we have 

                        

                                                                                                    

              Where    
 

The paper is framed as. In section 2, we derive the cumulative distribution function (cdf), probability 
density function (pdf). In section 3, we study the reliability measures, survival function, hazard rate 
function and reverse hazard rate function. In section 4, different statistical properties are studied 
including, moments, moment generating function, quantile function and random number generation. 
In section 5, Renyi entropy is discussed. In section 6, order statistics is expressed, in section 7, the 
estimation of parameters are performed by maximum likelihood estimation. In section 8, simulation 
study is performed. Finally in section 9 the efficiency of the established distribution is examined 
through data sets. 

 
IV. The Inverse Weibull-Rayleigh Distribution 

In this section we explore the inverse Weibull-Rayleigh distribution and studied its different 
statistical properties. Using equation  in equation , we obtain the cumulative distribution 
function (cdf) of the proposed distribution which follows 

                                                                             

  

  Figures (1.1) and (1.2) illustrates some of possible shapes of the cdf of IWRD for different values 
 and  
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The associated probability density function of inverse Weibull-Rayleigh distribution is given by 

                              

 

Figures (2.1) and (2.2) illustrates some of possible shapes of the pdf of IWRD for different values  
and  

V. Reliability Measures 

Suppose be a continuous random variable with cdf , . Then its reliability function which 
is also called survival function is defined as 

 

The survival function of inverse Weibull-Rayleigh distribution is given as 
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Figures (3.1) and (3.2) illustrates some of possible shapes of the survival function of IWRD for 
different values  and  

The hazard rate function of inverse Weibull-Rayleigh distribution is given as 

                                                                                                               

Substituting equations  and  in equation , we have 

                                                

 

 

Figures (4.1) and (4.2) illustrates some of possible shapes of the hazard rate function of IWRD for 
different values  and  

Reverse hazard rate function of inverse Weibull-Rayleigh distribution is given as 
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Figures (5.1) and (5.2) illustrates some of possible shapes of the reverse hazard rate function of IWRD 
for different values  and  

 

 

 

VI. Structural properties of inverse Weibull-Rayleigh distribution 

Theorem 4.1:- Suppose denotes a random variable follows IWRD with p.d.f . Then the 

moment of inverse Weibull-Rayleigh distribution is given by 

 

Proof:- Let denotes a random variable follows inverse Weibull-Rayleigh distribution. Then

moment denoted by  is given as 

                             
 

Substituting equations (1) and (2) in equation (10), we get 
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We know the formulae of generalized binomial expansion, which follows 

              

Now applying the above formulae, we get 

                      

                     

Making substitution  so that 
 

                    

               
 

Theorem 4.2:- Suppose denotes a random variable follows IWRD with pdf . Then the 
moment generating function of inverse Weibull-Rayleigh distribution is given by 

 

 

Proof:- Let be a random variable follows inverse Weibull-Rayleigh distribution. Then the moment 
generating function of the distribution denoted by  is given 

                      
 

Using Taylor’s series 
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The characteristics function of the IWRD denoted as  can be obtained by replacing  
is given by 

                   

VII. Quantile function of inverse Weibull-Rayleigh distribution 

The quantile function of random variable , where , can be obtained by inverting 
equation , we have 

                                 

In particular, the median of the distribution can be obtained by setting   

                                            

VIII. Random number generation of inverse Weibull-Rayleigh distribution 

Suppose denotes a random variable with cdf given in equation . The random number of inverse 
Weibull-Rayleigh distribution can be generated as 
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Where is the uniform random variable defined in an open interval . 

IX. Renyi entropy of inverse Weibull-Rayleigh distribution 

 If is a continuous random variable having probability density function . Then Renyi 
entropy is defined as 

             , where  and  

Using equation (6), we have 

                            

 

                                             

Now using the power series expansion for exponential function, we have 

                                 

Substituting equation (16) into (17), we obtain 

           

                   

 

Thus, the Renyi entropy for inverse Weibull-Rayleigh distribution, is given by 
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     Where  

                                     

Making the substitution , we have 

                       

After solving above integral, we obtain 

            

X. Order statistics of inverse Weibull-Rayleigh distribution 

Let us suppose be random samples of size n from IWRD distribution with pdf  and cdf 

. Then the probability density function of order statistics is given as 

                                                                         

Now using the equation  and  in . The probability of  order statistics of inverse 
Weibull-Rayleigh distribution is given as 

                                    

              
    

                                                                                                                         

Then, the pdf of first order statistics inverse Weibull-Rayleigh distribution is given as 

               

Then, the pdf of nth order statistics inverse Weibull-Rayleigh distribution is given as 
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XI. Maximum likelihood estimation and Fisher’s information matrix of inverse 

Weibull- Rayleigh distribution 

Suppose denotes random sample of size n from inverse Weibull-Rayleigh distribution then 
its likelihood function is given by 

                        

                          

                          

The log likelihood function is given by 

                                                                      
       

                                                                                                                          

Differentiating equation (18) with respect each parameter  and , we have 
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By setting equations , and  to zero the MLE of parameters can be obtained. However the 

above equations are non-linear which cannot be expressed in closed form. So numerical techniques 
such as Newton-Raphson, Regula-Falsi and bisection methods must be applied to obtain MLE of 
parameters denoted by  of . 

Since the MLE of  follows asymptotically normal distribution which is given as 

 

Where  is the limiting variance-covariance matrix and  is a  Fisher information 
matrix 
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Hence the approximate  confidence interval for and are respectively given by 

 
 And  

Where  denotes the  percentile of the standard normal distribution. 

XII. Results 

I. Simulation Analysis 

In this section we demonstrate the simulation analysis which examines the effectiveness of the M L 
estimators. The inverse cdf method is employed to generate random samples of size

and which is discussed in section (4). This procedure is repeated  
times for calculation of bias, variance and MSE. Four separate combinations of parameters are 
selected and it is observed that bias, variance and MSE decrease significantly, when we increase 
sample size. The efficiency of ML estimators is therefore relatively strong, consistent in case of IWRD.  

Table 1:  Average bias, variance and MSEs of 5,00 simulations of  IWRD for different parameters 
values. 
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II. Applications  

This section is dedicated to demonstrate the effectiveness of the established distribution by taking 
into account real data sets taken from medical science. The established distribution is compared with 
power Erlang distribution (PED), Weighted Gumbel-II distribution (WG-IID), power Gompertz 
distribution (PGD), inverse Weibull distribution (IWD), Rayleigh distribution (RD), inverse Rayleigh 
distribution (IRD) and inverse Lindley distribution (ILD). It is revealed that the developed 
distribution offers an appropriate fit. 

To compare the versatility of the explored distribution, we consider the criteria like AIC (Akaike 

information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian information 
criterion) and HQIC. Distribution having lesser AIC, CAIC, BIC, HQIC and KS values is considered 
better also having higher probability value (p-value). 

Sample 
Size n 

Parameters    , ,        , ,  
Bias  variance MSE Bias  variance MSE 

30   0.10667 0.09549 0.10687 0.03396 0.04469 0.04584 
 0.01601 0.03820 0.03846 0.03240 0.01454 0.01559 

 0.99840 6.86551 7.86231 0.46101 2.29695 2.50948 
50   0.03325 0.04242 0.04353 0.00960 0.02461 0.02471 

 0.02828 0.01952 0.02032 0.02701 0.00881 0.00954 
 0.29418 1.33982 1.42637 0.22597 0.96048 1.01155 

75   0.03266 0.02648 0.02755 0.01118 0.01587 0.01599 
 0.01992 0.01395 0.01434 0.01276 0.006403 0.00656 

 0.23048 0.54670 0.59982 0.14271 0.26261 0.28298 
100   0.01522 0.01673 0.01696 0.00267 0.01220 0.01221 

 -0.0008 0.00980 0.00980 0.01304 0.00462 0.00479 
 0.15424 0.34874 0.37253 0.06209 0.12997 0.13383 

150   0.01240 0.01161 0.01177 0.00537 0.00995 0.00998 
 0.01080 0.00754 0.00765 0.01761 0.00403 0.00434 

 0.09099 0.16775 0.17603 0.06589 0.13020 0.13255 
    , ,                        , ,  
30   0.01382 0.01359 0.01379 -0.0018 0.01282 0.01282 

 0.00500 0.00398 0.00400 0.01203 0.00447 0.00462 
 0.10007 0.19036 0.20038 0.07110 0.19553 0.20058 

50   0.01956 0.01135 0.01174 0.00314 0.01279 0.01280 
 0.00397 0.00422 0.00423 0.00645 0.00402 0.00406 

 0.11939 0.15628 0.17053 0.07557 0.19296 0.19867 
75   0.01085 0.01139 0.01151 -0.0052 0.00959 0.00962 

 0.00533 0.00384 0.00386 0.01512 0.00440 0.00403 
 0.08410 0.13345 0.14052 0.03145 0.09593 0.09691 

100   0.00531 0.01086 0.01089 0.00303 0.00873 0.00874 
 0.00616 0.00401 0.00305 0.01137 0.00396 0.00402 

 0.06256 0.12807 0.13199 0.04911 0.10033 0.00275 
150   0.01534 0.010668 0.01070 0.02240 0.01451 0.00502 

 0.00422 0.00389 0.00301 0.00551 0.00436 0.00400 
 0.12016 0.17372 0.12816 0.14134 0.10026 0.00084 
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       And              

   The descriptive statistics of the data set 1 and 2 are presented in Table 1and 4.The estimates of the 
parameters are shown in Table 2 and 5 for data set 1and 2 respectively. Log-likelihood, Akaike 
information criteria (AIC) etc for the data set 1 and 2 are generated and presented in Table 3 and 6 
respectively. 

Data set 1:- The data was collected from a group of 46 patients, per years, upon the recurrence of 
leukemia whom received autologous marrow. The data repoted by Jhon H Kersey [14], as follows 

 0.0301,0.0384,0.063, 0.0849, 0.0877, 0.0959, 0.1397, 0.1616, 0.1699, 0.2137,0.2137,   0.2164, 0.2384, 
0.2712, 0.274, 0.3863, 0.4384, 0.4548, 0.5918, 0.6,0.6438, 0.6849, 0.7397, 0.8575, 0.9096, 0.9644, 1.0082, 
1.2822, 1.3452, 1.4,1.526, 1.7205, 1.989, 2.2438, 2.5068, 2.6466, 3.0384, 3.1726, 3.4411, 4.4219,4.4356, 
4.5863, 4.6904, 4.7808, 4.9863, 5   

Table 2: Descriptive statistics of data set first 

 

 

Table 3: The ML Estimates and standard error of the unknown parameters 

 

 

 

Table 4: Performance of distributions for data set first 

lkAIC ln22 -= l
kn
knCAIC ln2
1

2
-

--
= lnkBIC ln2ln -=

lnkHQIC ln2))ln(ln(2 -=

Min  Q1 Median Mean Q3 Skew Kurt. Max 
0.0301 0.221 0.798 1.517 2.441 1.036 2.655 5 

Model  IWRD PED WG-IID PGD IWD RD IRD ILD 
 0.6737 1.2685 0.7023 0.6483 …….. 0.4075 0.0343 0.4333 
 0.2764 0.6654 0.4651 0.2006 0.7017 …….. …….. ………. 

 0.0641 1.4619 0.0010 0.7515 0.3371 ……. ……. ………. 

S.E  0.2252 2.6342 0.3287 0.1832 0.1154 0.0600 0.0050 0.0462 
 0.0399 0.6548 0.6414 0.3050 …….. …….. …….. ………. 

 0.0491 2.3917 0.5574 0.1553 …….. …….. …….. ………. 

Model  IWRD PED WG-
IID 

PGD IWD RD IRD ILD 

 118.90 127.91 138.90 127.36 138.89 207.42 303.76 176.43 
AIC 124.90 133.91 144.90 133.36 142.89 209.42 305.76 178.43 
CAIC 125.47 134.48 145.47 133.93 143.17 209.51 305.85 178.52 
BIC 130.39 139.40 150.38 138.84 146.55 211.25 307.59 180.25 
HQIC 126.96 135.97 146.95 135.41 144.26 210.10 306.45 179.11 
K-S Value 0.079 0.0980 0.1399 0.1013 0.139 0.3998 0.566 1.342 

P Value 0.935 0.7686 0.3286 0.7325 0.328 8.1e-07 2.9e-13 2.2e-16 

â
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The asymptotic variance-covariance matrix of maximum likelihood estimates under IWRD for data 
set first is computed as 

 

Therefore, the confidence interval for and  are given as ,
 
and

, respectively. 

  

 

Data set 2:- The data set represents the survival times(in years) of a group of patients given 
chemotherapy treatment reported by Bekker et al.[4]. The data follows  

    0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 
0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 
1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033 

Table 5: Descriptive statistics of data set second 

 

 

 

Table 6: The ML Estimates of the unknown parameters for data set second 

( )
÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=-

0.00240.0011-0.0075
0.0011-0.00150.0053-
0.00750.0053-0.0507

1 wI

%95 ba , q ( )1520.2322,1.1 ( )0.3546 0.1982,

( ),0.1604 0.0321-

Min  Q1 Median Mean Q3 Skew Kurt. Max 
0.047 0.39 0.84 1.34 2.17 0.972 2.663 4.03 

Model  IWRD PED WG-
IID 

PGD IWD RD IRD ILD 

 0.9335 1.9113 0.8677 0.6504 ……. 0.6026 0.1072 0.6584 
 0.3361 0.6756 0.4977 0.1215 0.8671 ……. ……. …….. 

 0.1524 2.1173 0.0010 0.9762 0.4482 …….. ……. ……... 

S.E  0.3257 3.6555 0.3392 0.1719 …….. 0.0898 0.0159 0.0723 
 0.0505 0.6238 0.5701 0.2587 0.0927 ……. ……. ………… 

 0.1078 3.4214 0.5884 0.1949 0.0818 …….. …….. ………. 
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Table 7: Performance of distributions for data set second 

The asymptotic variance-covariance matrix of maximum likelihood estimates under IWRD for data 
set first is computed a 

 

Therefore, the  confidence interval for and  are given as ,
  and , respectively.

 

 

it is evident from Table (4) and (7) that IWRD has lesser values of AIC, CAIC, BIC, HQIC and K-S 
statistics along with higher p-value. When it is compared with IWD, RD, IRD and ILD models. 
Hence we conclude that IWRD provides an adequate fit than compare ones 

XIII. Discussion 

This paper deals with a new generalisation of Rayleigh distribution called inverse Weibull-
Rayleigh distribution. We have added extra two parameters to the Rayleigh distribution by inverse 
Weibull-G generator, the main purpose for such modification is that the formulated distribution 
become more richer and flexible in modelling datasets. Several distinct properties of formulated 
distribution has been studied and discussed. The model parameters of the distribution are 
estimated by the known method of maximum likelihood estimation. Eventually, the efficiency of 
the explored distribution is examined through real data sets which reveals that the formulated 
distribution provides an adequate model fit than competing ones. 

( )
÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=-

0.01160.0034-0.0263
0.0034-0.00250.0105-
0.02630.0105-0.1061

1 wI

%95 ba , q ( )1.5720 0.2950, ( )0.4353 0.2370,

( )0.3638 0.0590,-

Model  IWRD PED WG-
IID 

PGD IWD RD  IRD ILD 

 110.24 115.97 127.64 115.96 127.63 155.83 230.17 138.88 
AIC 116.24 121.97 133.64 121.96 131.63 157.83 232.17 140.88 
CAIC 116.82 122.56 134.23 122.54 131.92 157.92 232.26 140.97 
BIC 121.66 127.39 139.06 127.38 135.25 159.63 233.98 142.69 
HQIC 118.26 123.99 135.66 123.98 132.98 158.50 232.84 141.56 
K-S Value 0.0660 0.9811 0.1383 0.1139 0.138 0.353 0.507 1.252 
P Value 0.982 2.2e-16 0.3251 0.5638 0.325 1.5e-05 2.8e-11 2.2e-16 

llog2-
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Abstract 
This paper investigates the stochastic behavior of a redundant system having problem of waiting line in the maintenance 
section in terms of various aspects such as reliability, availability, sensitivity etc. The system under consideration 
has three parts X, Y and Z connected in series. Each part has two units. Out of which part X has one main unit and 
other applied redundant unit. Similarly part Y has one main unit and other cold redundant unit to support the system. 
When main units of both the part have failed, then redundant units start automatically. While part Z has two units 
connected in parallel configuration.  Here a realistic situation is discussed that when main units and redundant units of 
part X and Y are failed and arrived for repair then due to unavailability of repair men a  line is generated there and  
its affect on systems reliability. So the focus of the study is to investigate the nature of the system using 
supplementary variable technique with the application of copula methodology under the condition when all four units are 
in line for repair. 

Keywords: Stochastic analysis, Supplementary variable technique,  Copula 
methodology availability analysis etc.   

I. Introduction
Redundancy is a very general technique used to improve the performance and reliability of 
the system. The word redundancy is generally addressed to forecast the replacement of a unit or 
Part by another unit or Part in case of failure. Redundancy functions in two ways: Applied 
redundancy and Passive redundancy. Both redundancies prevent system performance from 
un predicted failure and downfall without human interference. Applied redundancy monitors 
the performance of individual devices so it reduces the performance decline, when a condition 
occurs in the system with a number of failures. The system of electricity supply is a 
good example of applied redundancy as huge number of electrical lines is connected to 
generate facility with the consumer as well as each electrical line monitors that detect overload and 
circuit breakers. On the other hand passive redundancy provides extra competence or capacity to 
avoid or to decrease the impact of system failure. This extra competency permits the failure of 
some parts without system failure. For example in structural engineering, the additional cables 
and struts that are used in construction of overpass allow some parts to fail without the whole 
structure fall down. Also, queuing problem is an area of mathematics which deals with the models 
and situation that arises due to waiting line in maintenance or service. When we talk about 
analysis of repair services, queue analysis plays an important role. These models have been 
used by various repair systems like communication and manufacturing, networking and 
simulation for calculating the behavior of the system and various 
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reliability aspects. Previously, many researchers predict the system performance by assuming 
failure free service. But later different types of failures have been considered while evaluating a 
systems performance. 

On the basis of above study and related facts, here in this paper we have discussed the 
stochastic behavior of a redundant system having three-Parts X, Y and Z, connected in series. Part 
X and Y have two main units and at same time two redundant units, one is applied redundant and 
another is Cold redundant.  Part Z has two units which are connected in parallel configuration. 
Due to failure of any of the part, the system can result in complete failure [3]. It is assumed that 
when system starts operating, all the main units except redundant units are fully operational. Also, 
When the main units of X and Y fails, redundant units are switched on automatically and failed 
units are sent for repair to repairing section. The condition that has been taken into the 
consideration of the study is when all four units main units as well as supporting units are failed 
and sent for repair to maintenance section but because of unavailability of repairmen a line is 
generated in this section [4]. The system working process is described by the figure. Transition 
state diagram is shown by Figures 1. Table 1 shows the state specification of the system. 

II. Assumptions

• In the beginning the system is in good operating state.
• All Parts are connected in series.
• System has two states only good and failed not degraded.
• Catastrophic failure is also responsible for system failure in the study also they require

constant and exponential repair. So, copula technique is used for finding probability
distribution [5].

• Repair facility which follows general time distribution is there for the service of both the
Parts of unit 3 and also failure are exponential in both cases.

• For the Parts 1 and 2 failure and repairs both are exponential.
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Table 1: State specification of the system 

States Description System 
State 

S0 The system is in good working state G 
S1 The system is in working state when key unit is failed. G 
S2 The system is in failed state because of failure of superfluous unit. F 
S3 When all four units are in waiting at repair section, system is in failed state. F 

S4 The system is in working state when superfluous unit of Part X is failed. G 
S5 The system is in failed state due to the failure of key unit of Part X. F 
S6 The system is in working condition when key unit Part Y is failed. G 
S7 The system is in failed state when superfluous unit of Part Y is failed. F 
S8 The system is in operable condition when key unit of Part Z failed. G 
S9 The system is in failed state from the state S8 due to failure of superfluous unit 

of Part Z. 
FR 

S10 The system is in operable condition when superfluous unit of Part Z is failed. G 

S11 The system is in failed state from the state S10 due to failure of key unit of Part 
Z.  

FR 

S12 The system is in failed state from the state S1 due to failure of Part Z. FR 
S13 The system is in failed state from the state S6 due to failure of Part Z. FR 
S14 System is failed state because of catastrophic failure. FR 

G: Good state; F: Failed State; FR= Failed state and under repair. 

III. Notations
Pr  Probability 

       Pr (at time t system is in good state S0) 

       Pr {the system is in failed state due to the failure of the ith Part at time t}, where i=2, 5, 7, 14. 

           Failure rates of Parts, where I = x1, x2, y1, y2, z1, z2, csf. 

             Arrival rate of all four units of Parts X and Y to the repair section named as x1, x2,   y1, y2. 

             Repair rate of unit’s x1, x2, y1, y2. 

      General repair rate of ith system in the time interval (k, k+�), where i= z1, z2,(names for the 
units of Part Z) csf and k=v, g, r, l. 

      Pr (at time t there is a queue (x1, x2, y1, y2) in the maintenance section due to servicing of some 
other unit and all four machines are waiting for repair. 

 Pr (at time t system is in failed state due to the failure of jth unit when kth unit has been 
already failed, where i=9, 11. j=g, v. and k=v, g. 
K1, K2  Profit cost and service cost per unit time respectively. 

Let and  then the expression for joint probability according to Gumbel-Hougaard 

family of copula is given as  
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Figure 1: Transition state diagram 

IV. Formulation of the mathematical model

The following differential equations have been obtained by considering limiting procedures and 
different probability constraints which satisfying the model: 
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… (6) 

… (7) 

… (8) 

… (9) 

… (10) 

… (11) 

… (12) 

… (13) 

… (14) 

… (15) 

Boundary Conditions: 

… (16) 

… (17) 

… (18) 

… (19) 

… (20) 

… (21) 

… (22) 

… (23) 
Initial condition: 

, otherwise zero. 
Solving equations (1) through (15) by taking Laplace transform and by using initial and boundary 
conditions we obtained following probabilities of system is in up and down states at time t, 

+=úû
ù

êë
é ++
¶
¶ )()( 06 12

tPtP
t yy lyl

0),,()( 92
=ú

û

ù
ê
ë

é
+

¶
¶

+
¶
¶ tvgPg

gt zf

=úû
ù

êë
é ++
¶
¶ )()( 1012

tPg
t zz lf +)(02

tPzl ò
¥

0
11 ),,()(

1
dvtgvPvzf

0),,()( 111
=úû

ù
êë
é +

¶
¶

+
¶
¶ tgvPv

vt zf

0),()( 12 =úû
ù

êë
é +

¶
¶

+
¶
¶ trPr

rt Zf

0),()( 13 =úû
ù

êë
é +

¶
¶

+
¶
¶ trPr

rt zf

0),()( 14 =úû
ù

êë
é +

¶
¶

+
¶
¶ tlPl

lt csff

)]()()()([),0( 76323 tPtPtPtPtiP +++== y

)(),0( 08 1
tPtP zl=

)(),,0( 89 2
tPtvP zl=

)(),0( 010 2
tPtP zl=

)(),,0( 1011 1
tPtgP zl=

)(),0( 112 tPtP zl=
)(),0( 613 tPtP zl=

)(),0( 014 tPtP csfl=

1)0(0 =P

)()()()()()( 1086410 sPsPsPsPSPsPupP +++++=

387



Surabhi Sengar, Mangey Ram, Yigit Kasancaglu 
STOCHASTIC ANALYSIS ODF COMPLEX REDUNDANT SYSTEM… 

RT&A, No. 4 (65)  
Volume 16, December 2021 

1+ + + + 

+ ] … (24) 

… (25) 
where, 

… (26) 

… (27) 

… (28) 
Also, 

… (29) 
Steady state behavior of the system By Abel’s lemma we have, 

In equations (24) and (25) we get, 
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… (30) 

 … (31) 
where, 

… (32) 

… (33) 

… (34) 

IV. Discussion

In this paper, A common problem of waiting line, which generally occurs in the manufacturing 
industries is discussed through the reliability, availability, Mean time to failure and cost analysis of 
the considered system by using supplementary variable technique and copula methodology. Also, 
we have analyzed the steady state behaviour to improve the practical utility of the system.  One 
can easily observe from figure 2 that reliability of the system decreases rapidly with the transitions 
in time when all failures follow exponential time distribution. The reason for this decrease is 
waiting line in the repair section because of which the system is in non operational state for a long 
time.  Figure 3 gives an idea about the availability of the system that decreases approximately in a 
constant manner with the increment in time.  
Here, we have also done the analysis of effect of various parameters on mean time to failure of the 

system. Figures 4 represents decreases in MTTF with the increases failure rate ( ) of main unit of 
part X.  Similarly, figures 5 and 6 shows the MTTF decreases of the system with the increase of 

failure rates , and . A common phenomenon can be observed from the graphs of all the 
parameters that initially because of waiting line in the repair section the MTTF is negative and 
gradually it becomes positive.    

At last cost function G(t) analysis, for different values of and with respect to time is 
done in figure 7.  This analysis reveals that expected profit decreases as the service cost of the 
system increases. 
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