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Abstract 

 

This paper presents a discrete sliding mode controller for higher order systems without using model 

order reduction techniques for single input single output systems. The proposed controller is 

designed with discrete form of PID as a sliding surface. To find the PID sliding surface controller 

tuning parameters, the traditional method of PID design or pole placement method can be used. 

The designed controller has flexibility in terms of range of the parameters to decide the stability and 

robustness of the closed loop performance and existence in terms of Lyapunov function and/or 

stability. Generally it is difficult to design proper controller due to inaccurate identified model of 

system or its parameters and external unmesaurable disturbance. The proposed controller has a 

simple and flexible structure having a set of tuning equations as a function of the desired 

performance of the systems. The discrete form of sliding surface and system states provide highly 

useful information to control necessary parameters of the interest for many higher or lower order 

systems. The systems available in real time or plant model identified by different method in the 

context of design of the controllers results in higher order; therefore it is necessary to direct the 

automation applications of systems towards higher order systems. In this paper, the examples are 

simulated using Mathwork’s MATLAB to show and compare results proposed law with prevalent 

available controllers. 

 

Keywords: Discrete sliding mode control, Higher order system, Sliding mode control,   

Robustness, Simulation. 

 

I. Introduction 
 

Generally the performance of the PID controller are not achievable properly for the higher order 

model unless it reduced to first or second order systems [1-3]. The main aim to design the robust 

controller for higher order system to minimize offset and uncertainty in the plant for that purpose 

design strategies for controller developed model mismatch themselves the era of  the variable 

structure controller (VSC) and latter days it modified and is famous as the sliding mode control 

techniques. Sliding mode control (SMC), first introduced in the early 1950s, has been a focus to tackle 

system uncertainties and external disturbances with good robustness [4]. Many researchers found 

good results from discrete sliding mode control (DSMC) over the continuous sliding mode control 

[1],[4,7]. Sliding mode control recently widely used in many control engineering applications due to 

its robustness and simplicity of computation. It has been successfully applied to underwater vehicle, 
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automotive transmissions engines, power systems, induction motor, robotics etc [4,6-7]. Design of 

Sliding mode control (SMC) mainly consists of two important phases one is the design of a sliding 

surface and the second is the switching law. In literature, the design methods of PI/PID controllers 

for higher order delayed system with model reduction method and it is required complex 

computation [8-9]. Many times it is observed that higher ordered model not reduced exactly to plant 

behavior because of model mismatch, uncertainty and disturbance occurs in the plant. Therefore it 

directly affects the performance and stability of the system. [3,10] 

The discrete version of SMC has been used in system control whenever digitized system has 

good stabilization with low level acceptable sampling period [10]. It should be pointed out that 

DSMC is not the counterpart of the continuous sliding mode controller [4]. The literature found that 

state observer is usually developed to realize the DSMC, which increases the burden on controller 

design. An unstable control system produces due to the inappropriate design of the state observer 

or control law. Hence, the method was preferable to reduce the workloads of state observer design 

for the DSMC [11]. The delay in the system has another factor to affect the stability of the process so 

it is difficult to control the variables in the process. The common strategy to eliminate it required to 

design delay-free process pointed out in the framework of Smith's predictor and use it for controller 

design[12],[13]. The robustness properties of SMC are found when the system reaches the sliding 

surface, but it observed that during the system moves toward reaching phase system becomes 

undesired high-frequency oscillation (chattering) occurs, because of the discontinuous switching 

function, which causes to control signal oscillated around the switching surface. The chattering-

effect is undesirable to the final control elements, it will be possibility to damage the control elements 

in the field [7,12]. To overcome this problem one way to minimize the chattering effects is to select 

continuous approximation for the discontinuous function signum in the controller, which is replaced 

by a smooth function like saturation or hyperbolic function with the appropriate binding of error 

within some predefined boundary [3,14]. The second approach is to introduce an adaptive switching 

gain, which adapts the gain as per the present conditions. Design higher order sliding mode control 

is another way to eliminate the chattering effect. We observed that from past increasing the 

computing power of electronic devices and discrete-time sampler computer-based control has 

become popular to design control tasks.  

A key step in the design of sliding mode controllers is to introduce a proper sliding surface 

so that tracking errors and output deviations can be reduced to a satisfactory level. In this work a 

DSMC with velocity form of discrete sliding surface is used to obtain a desired set point tracking. 

The system used in the simulation is typically higher order with considerable time delay. The 

discrete time form of the continuous system is obtained using a matched pole zero 

method and represented in state space using controllable Canonical form. The parameters of 

equivalent controllers are obtained by means of traditional approach of PID control design. In this 

simulation both non oscillatory and moderately oscillatory but higher order with  time delay 

systems are experimentally  used to validate usefulness of the proposed control law  in 

discrete  form. 

Many available SMCs are designed based on PD type sliding surface [14], [12,15]. which 

introduce to large steady state error due to external disturbances it overcome this drawback, SMC 

with PID-type sliding surface design so, that integral term introduced into the sliding surface 

formulation. 

In overall the major contribution of this study can be summaries as follows 

• The DSMC resolved limitation of CSMC in case of slow system where sampling time of 

digital implementation is considerably large. 

• The proposed method is applicable to higher order plus dead time process with oscillatory 

behavior and work satisfactory under the influence of system uncertainties. 

• The developed control scheme eliminates steady state error and chattering problem. 
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• The simulation result are presented to make qualitative comparison with traditional 

continues SMC and improved PID controller.  

The organization of the paper is as follows section II includes short information of 

continuous controller and discrete sliding mode control law, section III includes simulation 

examples and its performance analysis while section IV remarked as the conclusion of the work . 

 

 

III. Sliding Mode Controller 

 

A. Continuous Sliding-Mode Control  
In Eker’s work, a continuous form of PID sliding surface with three parameters has been 

introduced to achieve a satisfactory closed-loop system performance which is given below 

The equivalent controller given by Eker [6] is 
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B. Proposed Discrete Sliding Mode Control Law 
As per the design of sliding controller formulation, there are two control laws first is 

equivalent control and switching control law. Nowadays there are many advantages of digital 

control technologies due to the rapid evaluation of digital devices. Therefore it is natural to have 

growth of the researcher’s attitude towards implementation and simulation of discrete SMC laws 

[12,14]. As the sampling rate is not near to infinity in practical systems, therefore, continuous term 

in discrete time control law introduces an unwanted phenomenon of chattering and instability. 

Therefore it is essential to keep discontinuous term very small to avoid instability of the system. 

The representation of system in the form of discrete state space state space as 

 
x(k + 1) = ∅x(k) + Ηu(k) + l(k) 

 

                                            y(k) = Cx(k − d)                                                                              (3) 

Where

n n 
,

1nH  and 
1 nC  represent discrete time state space matrices, and 

x(k) is state vector.  The term
1( ) nl k   represents the lumped uncertainty and it is bounded. The 

system model (10) used to calculate the equivalent control law. The term d is used for the number 

of delay samples.In this paper chosen as the sliding surface is design as discrete sliding surface  

                                        S(k) = Kx(k) − Kt [
e(k) + kp[e(k + 1) − e(k)] + kie(k)

+kd[e(k + 1) − 2e(k) + e(k − 1)]
]                         (4) 

Where K=[K1,K2….Kn] is the gain matrix calculated through pole placement method and it used as 

tuning parameters for  DSMC, x(k) is the state vector and Kt is the constant for controller gain. In 

pole placement design desired values of settling time and damping factor required to compute state 
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feedback gain based on Ackermann’s formula The error function formulated as   

                                                                e(k) = r(k) − y(k)                                                              (5)                                                                                           

Where e(k) is the error signal, r(k) is  reference input and y(k) represents systems output. 

Formulation for the equivalent control law in discrete form when condition that S(k)=0 is the sliding 

surface in equation(4)  the response of sliding at (k+1)th instant 
               𝑆(𝑘 + 1) = 𝐾𝑥(𝑘 + 1) − 𝐾𝑡  [𝑢(𝑘 + 1) + 𝑘𝑝[𝑒(𝑘 + 2) − 𝑒(𝑘 + 1) ] 

                                                                    +𝑘𝑖𝑒(𝑘 + 1) + 𝑘𝑑[𝑒(𝑘 + 2) − 2𝑒(𝑘 + 1) + 𝑒(𝑘) ] ]                         (6)                                                                                                                                                          

Using (3) and (6) formulated the equivalent control law as 

 

 

S(k + 1) = K∅x(k) + KΗu(k) + Kl(k)-K_t [e(k + 1) + kp[e(k + 2)-e(k + 1) ] 

                                                +kie(k + 1) + kd[e(k + 2)-2e(k + 1) + e(k) ] ]               (7)  

          

The equivalent control law obtained by equating equation (14) to zero given by  

                   𝑢𝑒𝑞(𝑘) = (𝐾𝐻)−1 [−𝐾∅𝑥(𝑘) − 𝐾𝑙(𝑘) + 𝐾𝑡 [𝑒(𝑘 + 1)  + 𝑘𝑝 [
𝑒(𝑘 + 2)

−𝑒(𝑘 + 1)
] + 𝑘𝑖𝑒(𝑘 + 1) +

                          𝑘𝑑[𝑒(𝑘 + 2) − 2𝑒(𝑘 + 1) + 𝑒(𝑘)]]]                                                                                   (8) 

The robustness with parameter variation and external disturbance is consider by introducing of high 

frequency discontinues function term by sgn(s(k)) function generally used. It found that the 

boundary layer hyperbolic function given the smooth change in the switching signal within the 

specified range due to  which  reduced the chattering  

 

                                                         𝑢𝑠𝑤 = −tanh (
𝑠(𝑘)

𝛽
)                                                                         (9) 

The complete control law as per DSMC is  

                                                               𝑢(𝑘) = 𝑢𝑒𝑞(𝑘) + 𝑢𝑠𝑤(𝑘)                                                                (10)                  

                    

 

III. Simulation examples 

Example 1 

 
Consider the non-oscillatory system process with open loop transfer function [2 12] 

 

𝐺(𝑠) =
1

(𝑠 + 1)(𝑠 + 5)2
𝑒−0.5𝑠 

 

The discrete time model obtained by pole placement method with sampling interval Ts=0.1 sec is 

𝐺(𝑧) =
0.0001473𝑧2 + 0.0002947𝑧 + 0.0001473

𝑧3 − 2.1182𝑧2 + 1.466𝑧 − 0.3329
𝑧−5 

 

This can be represented in the form of state space matrix in controllable canonical form as 
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0 1 0

0 0 1

0.3329 1.466 2.118



 
 

=
 
 − 

   ,       
0

0

1

H

 
 

=
 
  

,  
0.0001473

0.0002947

0.0001473

TC

 
 

=
 
  

 

Fig. 1. Control signal  generated for  example 1 

 
Fig. 2. System output response for example 1 

 

For the simulated example 1 and example 2, consider the control setting values shown in Table 1. 

 
TABLE 1 Control setting values and  

Simulation 

Examples 

kp ki kd alpha beta ksw Kt 

(1)  2.3 0.01 1.65 1.999 0.09 120 17.08 

(2)  2.45 0.0123 1.25 0.99 0.99 40 60 

 

The value of  pole placement with  settling time (+/- 2% band ) ts=2s and damping factor is 1.Gives 

gain matrix parameter K=[0.2493 -0.6474 0.3979].The value of Kt , alpha and beta are selected as share 

found from the desired performance the selected values  shown in table1 , it is observed that output 

without chattering and obey the stability criteria. The controller parameter for Eker’s SMC are kp, 

ki kd, and switching surface constant choosing as ksw are shown in table1.The boundary level 

constant β=10 chosen. For proposed study select the tuning parameters calculated with traditional 

method gives (12.3,-9.794, 1.032) 



 

S.R.Shiledar, G.M.Malwatkar, I.S.Jadhav, G.V.Lakhekar  
DESIGN OF DSMC FOR HIGHER ORDER SYSTEM  

RT&A, Special Issue № 1 (60) 
Volume 16, Janyary 2021  

95 

 

The Wang et al’s gives the controller equation  

 

Gcwang = 25 +
18.2

s
+ 5.5s 

As can be seen in figs(1-2),control signal response and system output compare with from proposed 

DSMC comparison found that large deviation in the set point tracking performance with oscillatory 

behavior noticed in PID response. Also less overshoot, less settling time as compare with Eker’s SMC 

and Wang et al. In fig(1) control signal of proposed method converges faster to steady state  value 

within 1.5sec as compare to existing method  

 

Example 2 
Consider the moderately oscillatory process with open loop transfer function [2] 

 

𝐺(𝑠) =
1

(𝑠2 + 2𝑠 + 3)(𝑠 + 3)
𝑒−0.3𝑠 

 

The discrete time model obtained by pole placement method with sampling interval Ts=0.1 sec is 

 

G(z) =
0.0001953z2 + 0.0003905z + 0.0001953

z3 − 2.1182z2 + 1.466z − 0.3329
z−3 

 

This transfer function represent in the form of state space matrix in controllable canonical form as 

 

 

0 1 0

0 0 1

0.6065 2.1462 2.5324



 
 

=
 
 − 

,   
0

0

1

H

 
 

=
 
  

,     
0.0001953

0.0003905

0.0001953

TC

 
 

=
 
  

 

 

Obtained gain matrix for tuning parameter K=[0.5633 -1.3937 0.8304].The value of Kt, alpha and beta 

are selected as shown in table1 are found from the getting appropriate  performance of output 

without chattering and follow the stability criteria. The controller parameter for Eker’s SMC are kp, 

ki kd, Here switching surface constant choosing as ksw with boundary level constant β=10.For 

proposed study select the tuning parameters calculated with traditional method gives (2.109, 8.925, 

0.1194).The PID controller by Wang et al’s method gives 

𝐺𝑐𝑤𝑎𝑛𝑔 = 5 +
7.146

𝑠
+ 3.008𝑠 

The comparing DSMC with output response and control signal with from Eker’s SMC and Wang et 

al’s, it is remarked as the response obtained from proposed algorithm is better than that of Eker et 

al’s and Wang et al’s technique. 

In fig(3) control signal of proposed method converges faster to steady state value within 

0.3sec as compare to existing method. Therefore it can be concluded that the results obtained by 

DSMC are better than that of the CSMC for the system with higher order dynamics 
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Fig. 3. Control signal  genrated for  example 2 

                 
Fig. 4. System output response for example 2 

 

IV. Conclusions 
In this work, a discrete part of PID controller is used as a sliding surface to obtain the discrete sliding 

mode control law. The proposed discrete mode control law is applied to higher order plus delay 

time systems. The traditional approach of PID controller is used to obtain the tuning parameters of 

the discrete time sliding mode control. The design procedure given in the work looks simple and 

straightforward because less complexity of computations are involved in DSMC technique. Two 

simulation examples are included in the work are of the typical nature, the first example is 

monotonic with higher order plus delay time while second example is moderately oscillatory 

systems with higher order dynamics. The proposed DSMC is applied for set point tracking and the 

performance of the proposed law seem to be effective with less tracking and settling time with 

possibly minimum overshoot. The effort taken by the control action is also acceptable and can be 

useful for real time practical system. Therefore it can be concluded that the results obtained by 

DSMC are better than that of the CSMC for the system with higher order dynamics   
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