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Abstract  

In the paper , we propose a vaccine-dependent mathematical model for the treatment of 

diseases at the population level. Determine equilibrium points : disease-free and endemic 

and basic reproduction number R0 .We formulate theorems on stability and establish the 

proof of the theorems by Ruth-Hurwitz criteria..In addition, numerical simulations of the 

model is carried out to show the efficacy of the vaccine . Moreover, graphically it is clearly 

seen the effectiveness of vaccine for SIR epidemic model with vaccination and without 

vaccination. 

Keywords: Basic reproduction number, Equilibrium, Vaccine, Stability, Ruth-Hurwitz 
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I. Introduction 
Mathematical Modeling is the art of capturing natural phenomenon of real life in the form of 

mathematical equations. It is a method of simulating real life situations with mathematical equations 

to forecast their future behavior. Mathematical modeling uses tools such as decision theory, queuing 

theory and linear programming and requires large amounts of number crunching.  In 2013, Agrawal 

Ankit and Saxena G. studied an SIR epidemic model with generalized saturated incidence rate 

function[1]. They have analyzed stability of the disease free equilibrium and the endemic 

equilibrium with the help of a non linear incidence rate. In1993, Derrick W.R and team formulated 

a general SIRS disease transmission model  under assumptions that the size of the population varies, 

the incidence rate is nonlinear and the recovered (removed) class may also be directly re-infected[2]. 

Vaccination is the administration of antigenic material (a vaccine) to stimulate an individual's 

immune system to develop adaptive immunity to a pathogen. Vaccines can prevent or 

ameliorate morbidity from infection. Gumel A.B., Moghadas S.M. [3] have proposed a new 

deterministic model for the dynamics of an infectious disease in the presence of a preventive 

(prophylactic) vaccine and effective therapeutic treatment in 2003. Many models for the spread of 

infectious diseases in populations have been analyzed mathematically and applied to specific 

diseases by Hethcote H.W. in 2000 [4]. In 2013, Jasmine D. E.C. and Henry Amrithraj proposed an 

epidemic model with non-monotonic incidence rate under a limited resource for treatment  to 

understand the effect of the capacity of the treatment [5,6,7]. In 2014 , Jasmine D.E.C., Henry 

Amirtharaj a modified SIR epidemic model with generalized saturated incidence rate is incorporated 

on account of the effect of limited treatment resources on the control of epidemic disease [8].    

 

 

 

http://link.springer.com/search?dc.title=SIRS&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Vaccine
http://en.wikipedia.org/wiki/Adaptive_immune_system
http://en.wikipedia.org/wiki/Immunity_(medical)
http://en.wikipedia.org/wiki/Pathogen
http://en.wikipedia.org/wiki/Morbidity
http://en.wikipedia.org/wiki/Infection
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II. Model Formulation 

In the paper , considered  a population of size ( )N t ,which is divided into disjoint classes 

( ), ( ), ( )S t I t V t  and ( )R t which denote the number of susceptible , infected, vaccinated and 

recovered individuals respectively at time t  with the saturated incidence rate function    

2

1 2

SI

I I



 + +
  . 

The flow diagram of the model [figure 1] is given below :                                                

 

 

 

 

 

 

 

 

 

 

where the symbols stand for 

S  Number of susceptible individuals 

I  Number of infected individuals 

R  Number of recovered individuals 

V  Vaccinated population 

a  Recruitment rate of population 

d  
Natural death rate 

m  Natural Recovery rate of infective 

  Rate at which recovered individuals lose immunity and return to 

susceptible 

  Increase  of susceptible at constant rate 

v  Rate at which susceptible population is vaccinated 

 =
2

1

SI

I I



 + +
 

Transmission rate(non linear incidence rate function) 
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                     Figure 1: Transfer diagram for a vaccinated model 
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  proportionality constant 

1   
a positive constant 

  a positive parameter 

SI  infection force of the disease 

All parameters assumed here are greater than or equal to zero . 

III. Derivation of model 
The differential equations corresponding to figure 1 are 

              

2

1 2

2

1 2

( )

( )

( )

dS SI
a R d v S

dt I

dI SI
d m I

dt I

dR
mI d R

dt

dV
vS dV

I

t

I

d


 







 







= + + − − +
+ +

= − +
+ +

= − +

= −

                                                      (1)                    

Because of the biological meaning of the components ( ( ), ( ), ( ), ( ))S t I t V t R t , We have focused  

on the model in the first octant of 
3R  that is 

( ) 0, ( ) 0, ( ) 0, ( ) 0S t I t R t V t    and  

( ) ( ) ( ) ( ) ( )N t S t I t R t V t= + + + . 

 

 IV. Equilibrium Points 

a) Disease-freee equilibrium 0E  

At disease-free equilibrium state,  

                      

2

1 2

2

1 2

( ) 0

( ) 0

( ) 0

0

SI
a R d v S

I

SI
d m I

I

mI d R

vS d

I

I

V

 




 





 



+ + − − + =
+ +

− + =
+ +

− + =

− =

                                         (2)   

Assume that  0I =    then on solving all equations of system (2) ,we have disease-free equilibrium 

points such that 

                                 
0  ,  0,  0,

( )

( )

a v a
E

d v d d v

  + +
=  

+ + 
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b) Endemic equlibrium  *E  

Assume that 0I   then system (1) becomes 

     

2

1 2

2

1 2

* *
* ( ) * 0

*

* *
( ) * 0

*

* ( ) 0

* 0

*

*

*

*

S I
a R d v S

I

S I
d m I

I

mI d R

vS dV

I

I

 




 











+ + − − + =
+ +

− + =
+ +

− + =

− =

             .           (3) 

On solving all equations of system (3) ,we have the endemic equilibrium points such that    
2

1 2( )
*

*( )*I Id m
S

 



++ +
=  , 

 

 

( ) ( )

1

2

2 2

2

2

2

01

2

( )( )
( )

*
( )( )

2

4 ( 1)( )( )
( )

( )( )
2

d v d mm
d m

d
I

d v d m

d v d mm
d m

d

d v

d v d m R

d m











 







 



+

 + +
− + − + = 

+ + 
 
 

− + +
− + − + + 

+ + 
 
 

+

, 

*
*

mI
R

d 
=

+
 and 

2

1 2( ) * *( )
*
v d m

V
I

d

I 



++ +
=  respectively 

and 

basic reproduction number is given by  

                          

0

( )

( ) ( )

a

d d
R

m v

 



+
=

+ +
 

Jacobian matrix of system (2) at disease -free equilibrium is given by 

      J =   

( )
( ) 0

( )

( )
0 ( ) 0 0

( )

0 ( ) 0

0 0

a
d v

d v

a
d m

d v

m d

v d

 




 





− + 
− + +
 

+ 
− + +

 
 − +
 

− 

 . 

and  
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( )
( ) 0

( )

( )
0 ( ) 0 0

( )

0 ( ) 0

0 0

a
d v z

d v

a
d m zJ zI

d v

m d z

v d z

 




 





− + 
− + − +
 

+ 
− + −− = +

 
 − + −
 

− − 

. 

The characteristic equation will be  

                                             | | 0J zI− =   . 

( )
( ) ( ) ( )( ( )) 0

( )

a
d z d v z d z z d m

d v

 




  +
 − + − + + − + + − + + =  

+  
  

or    , ( ) , ( )z d z d v z d = − = − + = − +     and 

( ) ( ) ( )

( )

a d m d v
z

d v

  



+ − + +
=

+

. 

For the system (2) to be locally asymptotically stable all 0z  . 

So, if  we consider , 
( )

1
( ) ( )

a

d m d v

 



+


+ +
 . Then   0 1R  . 

Where     0

( )

( ) ( )

a

d d
R

m v

 



+
=

+ +
  is called basic reproduction number . 

 

Therefore , the system (2) is  locally asymptotically stable if 0 1R  . 

And if  0z   , then  

                                  

( ) ( )( )
0

( )

( )
1

( )( )

a d m d v

d v

a

d m d v

  



 



+ − + +


+

+


+ +
 

Or,                              0 1R   .     

This implies that  the system (2) is globally asymptotically stable if  0 1R   . 

 

V.Mathematical Analysis 

 

Lemma 5.1: The plane  

a
S I R V

d

+
+ + + =

 is a manifold of system (1) which   is attracting in 

the first octant.                          

From the lemma ,  we have 

a
S I R V

d

+
+ + + =

   which implies     
    S I
d

R V
a +

= − − −
 

Therefore system (1) becomes, 
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2

1 2

( ) ( , , )

( ) ( , )

( , , )

a
I R V I

dI d
d m I P I R V

dt

dR
mI d R Q I R

dt

dV a
v

I I

I R V dV T I R V
dt d








 



+ 
− − − 

 = − + 
+

= − + 

+ 
= − − − −  

 

+

             (4) 

Theorem 5.2 : System (4) does not have non-trivial periodic orbit if   

1(3 ) 0d m + + 
. 

Proof: Consider,  

                          
( ) 0, ( ) 0, ( ) 0I t R t V t  

  . 

and consider the Dulac function, 

                 
1( , , )D I R V  −=  

2

1 2

SI

II 



+ +
=  

      i.e.    
2

1 2( , , )
I I

D I R V
a

I R V I
d

  




+ +
=

+ 
− − − 

 

  .
   

 

Then , 

 
( ) ( ) ( )DP DQ DT

I R V

  
+ +

  
 
 

 

( )( )

( ) ( )

2

21 2

2 2

1 2 1 2

2 2

2(3 ) )2

( )

( dd m

a a a
I R V I R V I I R V

d d d

d dR dV R

a a
I R V I I R V

d d

II d m

I I I I

 

  
  



 


 

    





+ +− + +
= − −

+ + +     
− − − − − − − − −     

     

− + +
−

+ +   
− − − − − −   

 

+



+ +



+ +

.
 

 

( ) ( ) ( )
0

DP DQ DT

I R V

  
+ + 

          1(3 ) 0f di m + +   .      
           .                                                                                                     

where, 
2

1 2 1 2

2

( )( 2 ) ( )( )( )
.

d m I d m IDP

aI aI R V I R

I

V
d d



 

 



 − + + + + +
= −

+   + − − − − − −      

       

2 2 2

1 2 1 2 1 2

2 2

( ) ( )( ) ( ) ( )( )
.

m I d I d R IDQ

aR a aI I R VI R V I I R V
dd

I I I

d

    

  

     + + + + + + + +
= − −

+  + +   − − −− − − − − −        

 

and  
2 2

1 2 1 2

2

)
.

(( )() d II I

a aI I R V I I R V
d

dV IDT

V

d

 

 

   



+ + + +

+  + −

−

− − − − −    


−

 

=


                     

This completes the proof . 
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Now rescaling (4) by 

, , , ( )x I y R z V d t
d d d

  
 

  
= = = = +

+ + + . 

Then 

. .
dx dx dI dt

d dI dt d 
=

 

,  . .
dy dy dR dt

d dR dt d 
=   and . .

dz dz dV dt

d dV dt d 
=

 
Therefore, 

 
 1

px A x y zdx
Tx

d qx

− − −
= −

+
,

dy
sx y

d
= −  and

( )
dz

g A x y z hz
d

= − − − − .

 
Where , 

,
v d

g h
d d 

= =
+ +

m
s
d 

=
+

 
1 ( ) ( )

, ,
( ) ( )

a d m
p A T

d d d

 

  

+ +
= = =

+ +
 

( )
( )2

1 1 2

( ) ( )d xd d
q I

 

 
 






+ + +
= + = + 

    . 

Thus we have new system of equations, 

                    

( )

1

( )

dx px A x y z
Tx

d qx

dy
sx y

d

dz
g A x y z hz

d







− − −
= −

+

= −

= − − − −

                                                              (5)           

The trivial equilibrium (0, 0, 0) of (5) is the disease-free equilibrium and  

 endemic equilibrium points after rescaling the system (4) is obtained as

 
( )

*
( 1) ( )

h Ap T gT
x

ph s Tq g h

− −
=

+ + +
 , * *y sx= , 

( * *)
*

( )

g A x sx
z

g h

− −
=

+
. 

 

VI. Stability Analysis of Disease-free and Endemic Equilibria after Rescaling 

 

    Now the Jacobian matrix of system (5) at disease free equilibrium will be 

                                

1

0 0

1 0

( )

Ap T

J s

g g g h

− 
 

= −
 
 − − − +  .

 

Then  
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1

0 0

1 0

( )

Ap T

J I s

g g g h



 



− − 
 

− = − −
 
 − − − + + 

 

and the characteristic equation is 

                        
1 0J I− =

.
 
 ( ) (1 )( ) 0

( ) 0 , 1 0 , .

g h Ap T

g h Ap T

  

  

− + + − + − − =

 = − +  = −  = −

  For the third eigen value three conditions arises: 

1. Stable hyperbolic node if 

  
0T Ap− 

 
2.Saddle node  if 

 
0T Ap− =

 3.Hyperbolic saddle node if 

   

0T Ap− 
. 

When 

0 0T Ap Ap T−   − 
  .

 So ,by Routh-Hurwitz criteria the disease-free equilibrium after rescaling is locally asymptotically 

stable  . 

Now , discussing the stability  of the endemic equilibrium when 

0T Ap− 
.  

Theorem 6.1: Suppose   0T Ap−   then there is a unique endemic equilibrium 

 ( *, *, *)x y z
 of model (5) which is a saddle node . 

Proof:  Since  T Ap
,therefore , we neglect  T  and so the system (5) can    

 be written as

 

                   

( )

1

( )

dx px A x y z

d qx

dy
sx y

d

dz
g A x y z hz

d







− − −
=

+

= −

= − − − −

                (6). 

And  

                 

 *( 1)
* , * * , * .

( 1)

g A x sAp
x y sx z

p s g h

− +
= = =

+ +
    (7)            

Jacobian matrix of system (6) at endemic points is given by, 
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( )  
2 2 2 2

*( 1)* * ( 1) *(1 *) *(1 *)

(1 *) ( )(1 *) (1 *) (1 *)

1 0

( )

pg A x spx qsx Aq px qx px qx

qx g h qx qx qx

M s

g g g h

  − +− + − + − +
−  

+ + + + +   
 = −
 

− − − + 
  
 

 

 

          

    2

2

1
* ( 1) *( 1) ( 1)

(1 *)

(1 *)

M px g s Aq qx s h Aq s
qx

Apg

qx

 = − + + − + + + + +

+
+

 

 Substituting the value of  Ap from (7) ,  

        

    2

1
* *( 1) ( 1)

(1 *)
M px g Aq qx s h Aq s

qx
 = − + + + + +

. 

Since   0q   which implies det( ) 0M   .  

 Now , Trace of M will be 

( )  
2 2 2 2

* * ( 1) ( ) *( 1)1
( )

( )(1 *) ( )(1 *) (1 *) ( )

px qsx Aq g h pg A x s
tr M

g h qx g h qx qx g h

 − + + − − +
=  

+ + − + + − + +  

Sign of trace (M) depends on the nature of S1 which is given as 

           
( )  1 * * ( 1) ( ) *( 1)S px qsx Aq g h pg A x s= − + + − − +

 
using  (7)  , we have 

 
21

2

2

( ) ( ) ( 1)
( )

( ) ( ) ( 1) ( 1)
( 1) ( )

( )( 1)

qsT g h Aqph g h ph s
h Ap T gT

S p g h Tq g h Aq ghpA s pgA
ph s Tq g h

gT g h s

 − + − + − +
   − −

= + − + + + + −   
+ + +     − + +

 

which implies   1 0S   since   0q    .

  

         
1( ) 1 ( ) 0tr M S g h= − − + 

 Thus, by Routh-Hurwitz Criterion the endemic equilibrium points ( *, *, *)x y z  are locally 

asymptotically stable.   

7.  Numerical Simulation and Graphical Representation 

Case I: SIR epidemic model without vaccination: 
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Figure 2 shows that S(t)  approaches to its steady state value while I(t) and R(t)  approaches zero  as 

time progresses, disease dies out. 
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Case II: SIR epidemic model with vaccination: 
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Figure 3 shows that S(t) ,V(t) approaches to its steady state value while I(t) and R(t)  approaches zero  

as time progresses, disease dies out. 

Case III: SIR epidemic model without vaccination: 
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Figure 4 shows that S(t) approaches to its steady state value while I(t) and R(t)  approaches zero  as 

time progresses, disease becomes endemic. 

Case IV: SIR epidemic model with vaccination: 
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Figure 5 shows that S(t) ,V(t) approaches to its steady state value while I(t) and R(t)  approaches zero  

as time progresses, disease becomes endemic. 

 

  

Case I  

                   

 

 

Figure 2: SIR graph without vaccination 
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Case II 

              

Case III                  

 

                     

 

 

 

 

 

Figure 3: SIR model with vaccination. 

Figure 4: SIR model without vaccination. 
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Case IV 

   

 

 

VIII. Conclusion 

In this paper, we have considered a vaccinated epidemic model with generalized incidence rate 

function. The global stability of the endemic equilibrium E* = (S*,I*,R*,V*)  depends on the basic 

reproduction number. It plays an important role in controlling the disease. When reproduction 

number is less than or equal to one the disease free equilibrium state is globally attractive in the first 

octant and is globally stable, that is the disease dies out. When basic reproduction number is greater 

than one the endemic equilibrium state E* exists and is globally stable in the interior. I have also 

plotted SIR and SIR-V graphs  and compared the graphs for both reproduction number greater than 

one and less than one. These results and parametric conditions help to develop social consciousness 

about the disease among the susceptible.  
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