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Abstract 

Stock prices’ prediction is fundamental for investment decision-making. In this research, a 

differential equations model is developed for stock prices prediction. More specifically, a 7×7 

differential equations system based on Lanchester’s combat models will be used. Data concerning 

the short-term stock’s prices of healthcare firms listed in Athens Stock Exchange will be analyzed 

in order to develop and evaluate the stocks’ prices predictive model. The obtained results revealed 

the differential equations model potential for stock prices’ prediction in the short-term. 

Keywords: stock price prediction, forecasting, differential equations, Lanchester’s combat 

model 

I. Introduction

Stock markets are formal, organized and regulated markets for securities whose prices are 

determined by the law of supply and demand. In these markets the opposite expectations of 

investors are met for the formation of stock prices at a given time. More specifically, there are 

always some investors who believe that the price of a stock is going to fall and others who 

believe that price of the same stock is going to rise. The former are trying to sell their stocks 

pushing their price to fall, while the latter are trying to buy these stocks, pushing their prices 

to rise. Investors see the stock markets as an alternative form of investing their capitals, in 

order to gain a satisfactory return, higher than that these other investments such as bank 

deposits or government bonds. 

Stock markets are also parts of the financial systems and, like banks, they provide the 

means and services to transfer funds from investors’ savings to firms. Based on stock markets, 
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investors expect positive returns, which are achieved through the growth of the firms leading 

to a rise in the stock prices. 

Several studies suggest a correlation between many factors such as political and financial 

stability and stock prices [1]. Macroeconomic and psychological factors can affect stock prices 

[2]. Invest decisions in stocks are found to be affected by factors such as optimism and 

pessimism as well [3]. Furthermore, stock prices can be affected by factors such as 

macroeconomic data, market circles, trade balance, firms’ profits, technology and 

globalization [4]. 

 Predicting stock prices would be really crucial for investment decision-making [5–6]. 

Despite the many factors that can affect stock prices, their prediction can be achieved even it 

is a difficult process. This is the main reason why stock prices prediction is in the spotlight of 

most of the investors and professional analysts [7].  

Chang and Liu [7], propose a model to predict stocks’ future prices using a first order 

Takagi–Sugeno model. Their model was tested on Taiwan Stock Exchange stocks and the 

model’s output outperformed other approaches such regression analysis. Schöneburg [8], 

used neural networks to predict German stock prices by the aid of temporary and not-long 

lasting framework. The proposed model achieved a degree of accuracy up to 90%. Neural 

networks were used by Kohara et al. [9] as well. In their research, they used data from 330 

days to estimate their model’s coefficients. Adebiyi et al. [10], used the following ARIMA 

model to predict the future prices of stock prices: 

 

Yt = φ0 +φ1Yt−1 + +φ2Yt−2+. . . +εt − θ1εt−1 − θ2εt−2−. . . −θqεt−q (1) 

 

where Yt is the real value and εt is the random error at t, φi and θj are the coefficients, p and 

q are the integers called autoregressive and moving average respectively. The same authors 

[11] are comparing the accuracy of ARIMA and neural networks models in predicting stock 

prices. Their results show that both the models achieve effective forecast for stock prices. 

Hafezi et al. [12], proposed a bat-neural network model based on a multi-agent framework to 

predict DAX stock prices in quarterly periods of eight years.  

Katsouleas et al. [13] proposed a generalized differential equations model by the aid of 

the so-called Lanchester’s combat approach to predict the healthcare firms of Athens Stock 

Exchange (ASE) stocks’ prices. The model was based on the prior work of Chalikias and 

Skordoulis on Lanchester’s combat approach concerning the case of a duopolistic market [14] 

as there is evidence that warfare models can be applied in business cases [14–17]. The primary 

differential equations model was the following one: 

 
dx

dt
= −ay + f(t)

dy

dt
= −bx + g(t)

 (2) 

 

where x(t) and y(t) refer to the amount of ready-for-use product items for sale of firm A and 

B correspondingly, f(t) and g(t) refer to their respective increase and decrease rates, while 

ay(t), bx(t) correspond to the handy product items’ rates.  

The principal objective of the present manuscript is to develop a differential equations 

model by the aid of Lanchester’s combat approach for stock price prediction.  
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II. Methods

The data used in this research concern healthcare firms listed in ASE. In Greece, citizens 

receive health care from both public and private providers. The increasing problems on 

public health care system is the main factor which is responsible for the growth of private 

sector [18]. The private healthcare sector represents the 32.9% of health care market in Greece 

[19]. Greek private health services contain diagnostics centers and clinics as primary and 

secondary health care units respectively. The 5 largest groups of the private healthcare sector 

correspond to 53% all of the market’s stocks [20]. This market contains seven firms in Athens 

stock exchange, Αxon (AXON), Εuromedica (EUROM), Ιaso (IASO), Ιatriko Athinon (IATR), 

Lavipharm (LAVI), Medicon Hellas (MENTI) and Hygeia (YGEIA). 

The Athens Stock Exchange constitutes the only authorized stock market in Greece. 

Before 2002 comes to an end, almost three hundred seventy-five firms had been included, 

while their overall capitalization equal to € 85.5 billion. Only ASE affiliates may carry out 

purchase and sale requisitions for shares via the so-called Integrated Automatic Electronic 

Trading System (OASIS) of the market. The ASE is actually an order-driven market, since its 

affiliates can continually commence offer requisitions in the system from 11:00 a.m. to 4:00 

p.m. [21].

The study used historical stock prices of ASE healthcare firms during a 12-month period. 

More specifically, the stock data were picked out daily data files of ASE containing for all of 

the months the closing stock prices from the first day of each month. 

For developing the deferential equations approach, we utilized the random variables T, 

U, V, W, X, Y and Z which correspond to the stock prices of the market’s 7 firms. Thus, the 

next 7 × 7 differential equations system was primarily concluded: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
dT
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b
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 (3) 

III. Results

Let us consider the following n × n system of differential equations: 

dx

dt
= Ax (4) 

where x(t) = (x1(t), … , xn(t))
T is an n × 1 vector of functions of the variable t, the coefficient

matrix A ∈ ℝn×n  takes the following form: 
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A =

[

0 
a2
a1

a3
a1

a1
a2

0 
a3
a2

⋯
an−1
a1

an
a1

⋯
an−1
a2

an
a2

⋮ ⋱ 
a1
an−1

a2
an−1

a3
an−1

a1
an

a2
an

a3
an

⋱

⋯ 0
an
an−1

⋯
an−1
an

0
]

(5) 

and [aj]j=1
n
⊂ ℝ in its definition (2) satisfy ∑ aj

n
j=1 = 1.

An interesting and somewhat surprising result is that the spectrum σ(A) is in fact 

independent of these parameters [aj]j=1
n

. More precisely, it may be shown that σ(A) is

intimately related to the order n of the matrix A, including simply the eigenvalue pair 

λ1 = n − 1 with algebraic multiplicity (n-1) and λ2 = n − 1. In this direction, we will prove its 

characteristic polynomial may be factored as follows: 

χΑ(λ) = det(A − λIn) = (−1)
n(λ + 1)n−1(λ − n + 1) (6) 

by induction on n. Indeed, this assertion is readily verified for n = 2 and n = 3. 

To simplify our analysis for larger n, for an arbitrary n × n matrix X we introduce the 

notation Xi,j for its (n − 1) × (n − 1) submatrix deduced by erasing its i-th row and j-th 

column. Our recursive assumption may then be stated as follows:  

χΑn,n(λ) = det(An,n − λIn−1) = (−1)
n−1(λ + 1)n−2(λ − n + 2) (7) 

since An,n is simply the leading (n − 1) × (n − 1) submatrix of A. Laplace expansion along the 

last row of A − λIn yields to: 

χΑ(λ) = det(A − λIn) = ∑
aj

an
(−1)n+jdet((A − λIn)n,j)

n−1
j=1 + (−λ)(−1)n+ndet((A −

λIn)n,n) = ∑
aj

an
(−1)n+jdet((A − λIn)n,j)

n−1
j=1 + (−1)n(λ + 1)n−2(λ − n + 2)

(8) 

To continue, we turn our attention to [det((A − λIn)n,j)]j=1
n−1

and note the following 

properties: 

Lemma 1. (a) det((A − λIn)n,1) =
an

a1
(λ + 1)n−2. (b) det((A − λIn)n,j) = (−1)

j+1 an

aj
(λ +

1)n−2, for j = 2, … , n − 1.

Proof. (a) By induction on n. Indeed, denoting: 

B ≡ (A − λIn)n,1 =

[

a2
a1

a3
a1

⋯

−λ
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⋯
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⋯

⋱
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an−1 ]

∈ ℂ(n−1)×(n−1) (9) 

A direct computation verifies the statement for n = 3, since |

a2

a1

a3

a1

−λ
a3

a2

| =  
a3

a1
(λ + 1). 
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Proceeding further, we make the recursive assumption: 

(det(Bn−1,n−1) =)

|

|
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⋯
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a2

⋯
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a2
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|

|

=
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a1

(λ + 1)n−3, (10) 

whereby this determinant is independent of  [aj]j=2
n−2

 and involves only an−1 i.e. the nominator 

of the last column entries in (10), and a1, the denominator of the first row in (10). 

Since Bn−1,n−2 =

[
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 has the same formulation as in (10), but 

with an  instead of an−1 in its last column, we conclude that: 

det(Bn−1,n−2) =
an
a1
(λ + 1)n−3 (11) 

On the other hand, it is immediately revealed that: 

det(Bn−1,j) = 0,  for j=1,2, . . . , n-3 (12) 

since each of these minors includes a pair of linearly dependent rows; namely, rows 1 and 

j+1. Hence, Laplace expansion of (9) along its last row verifies the assertion: 

det(B) = ∑
aj+1
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(b) For j = 2 we have:
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where we have used elementary properties to bring the matrix under consideration in the 

general form (9). Since the previous statement ensures the determinant of (13) is dependent 

only on the parameters an (appearing as nominator of the last column entries) and a1 

(denominator of first row entries), we obtain: 

det((A − λIn)n,2) = (−1)
a1
a2

an
a1
(λ + 1)n−2 = (−1)

an
a2
(λ + 1)n−2 (14) 

The remaining assertions for 2 < j ≤ n − 1 are proved similarly. 

The statements in Lemma 1 may be summarized together as: 

det((A − λIn)n,j) = (−1)
j+1 an

aj
(λ + 1)n−2, for j = 1, … , n − 1. 

Hence, plugging (14) in (8) and after some algebraic manipulations, we reach: 

χΑ(λ) = (−1)
n(λ + 1)n−2 [∑(−1)2j+1 + λ(λ − n + 2)

n−1

j=1

] 

= (−1)n(λ + 1)n−2(λ2 − (n − 2)λ − (n − 1)) 

= (−1)n(λ + 1)n−2(λ + 1)(λ − n + 1) 

whereby (6) and σ(A) = [−1, …− 1⏟      
n−1

 , n − 1] are immediate. 

Denoting [ej]j=1
n
⊂ ℝn the standard basis vectors, i.e.ej = (0,…0⏟  

j−1

, 1 , 0, … 0⏟  
n−j

)

T

it is 

straightforward to check that span [−
aj

a1
e1 + ej]

𝑗=2

𝑛

 is the (n − 1) −dimensional eigenspace 

associated to λ1 = −1, while (
an

a1
,
an

a2
, … ,

an

an−1
, 1)

T

 is an eigenvector corresponding to λ2 = n −

1. 

Hence, the general solution to (4) takes the form: 

x(t) = e−t

[
 
 
 
 
 −
an
a1

−
an−1
a1

−
an−2
a1

  0  0 ⋯

⋯ −
 a2
a1

0  1
⋮

0 1 0
1 0 ⋯

⋯ 0
0 0 ]

(

c1
c2
⋮

cn−1

) + cne
(n−1)t

(

an
a1
an
a2
⋮
an
an−1
1 )

(15) 

with arbitrary [𝑐𝑗]𝑗=1
𝑛

 or, equivalently, 

x1(t) = −(∑cj
an−j+1

a1

n−1

j=1

)e−t + cn
an
a1
e
(n−1)t

xj(t) = cn−j+1e
−t + cn

an

aj
e
(n−1)t

   (for j = 2,… , n − 1), 

xn(t) = c1e
−t + cne

(n−1)t
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We note that the case of (4) for n = 4 has been previously studied by Chalikias et al. [22] 

in relation to the issue of banking industry in Greece. 

For the set of the examined stocks the following data were extracted. The function of 

time has been estimated in order to fit the above solution to the real data [22]. Because of the 

different monotony of every stock, different functions of time for every stock were used. More 

specifically the time functions of the following table were used. 

Table 1. Stocks’ time functions. 

Stock symbol Variable i Time function 

ΑΧΟΝ i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i3 

ΕURΟΜ i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i4 

ΙΑSO i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i 

ΙΑΤR i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i 

LΑVΙ i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i4 

MENTI i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i3 

YGEIA i = −0.05 where j = 0, 0.083, 0.166, 0.025, 0.033, … ,1 i4 

If we change ai coefficients with the stock percentages we take the ci coefficients of the 

model. 

Table 2. Model’s 𝑐𝑖  coefficients. 

Coefficient Value 

C1 –177.324

C2 –1.93013

C3 –1064.27

C3 0.643501

C5 0.258205

C6 –151.673

In order to evaluate the good fit of the experimental results, the real stocks’ data and the 

model’s predicted data were compared with Wilcoxon Test as the precaution of normality 

weren’t satisfied.  

Table 3. Wilcoxon Test results. 

Real data – predicted data 

Z –1.574

Asymp. Sig. (2-tailed) 0.116

Based on the above table, we conclude that the real data and model’s predicted have the 

equal distribution with the same median as Wilcoxon Test’s null hypothesis is accepted 

(Asymp. Sig. (2 − tailed) = 0.116). 

Furthermore, the same results are drawn by Sign Test as shown in the following table 

(Asymp. Sig. (2 − tailed) = 0.909). 

Table 4. Sign Test results. 

Real data – predicted data 

Z –0.115

Asymp. Sig. (2-tailed) 0.909

11



Miltiadis Chalikias, Ioannis Triantafyllou, Michalis Skordoulis, 

Dimitris Kallivokas, Panagiota Lalou 
STOCKS’ DATA MATHEMATICAL MODELING 

RT&A, Special Issue No 2 (64), 
Volume 16, November 2021 

The following figure shows the real data and the model’s predicted values. 

Figure 1. Real data and the model’s predicted values. 
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IV. Discussion

In this paper we proposed a differential equations approach by the aid of Lanchester’s combat 

model which can predict stock prices. Input variables concerned the 7 private healthcare 

firms listed in ASE. The data analysis was based on 7×7differential equations model. The 

experimental results were found to have equal distribution and same median as the real data. 

This demonstrated the model’s good fit. Thus, the method used can be applied in cases of 

stock price prediction. Furthermore, another scope of Lanchester’s combat models is found, 

as there is no other application of these models in such a case.  

As already mentioned, the data used in this study concern a 12-month period. Similar 

models are used in various cases of long-term data. In these cases, the models’ predictive 

capability is high [14-16]. However, such models have not be used in stock prices prediction 

cases. Thus, a long-term model could be analyzed in a future research. Furthermore, in future 

models, stock prices prediction could take into consideration various factors such as the 

economy of a country [23-24], the political structure of a country [22,25], or psychological 

factors [26]. Several modifications and extensions of the proposed methodological approach 

seem to be of some research interest for future work, since the specific topic is really 

contemporary and meets a variety of real data applications.   
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