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Abstract 

Present paper discusses a two-state retrial queueing model with feedback and balking. If a 
customer on arrival finds the server free it is served immediately. Else either it joins the retrial 
orbit as a secondary customer or balks from the system due to impatience. Primary and secondary 
arrivals both follow Poisson process. If the customer feels unsatisfied after service, it may join the 
orbit as a feedback customer. Service times follow Exponential distribution. The transient state 
probabilities for exact number of arrivals and departures when the server is busy or idle are 
obtained by solving difference-differential equations. Numerical solution is obtained and 
presented graphically.  

Keywords: Arrivals, Departures, Queueing, Retrial, Feedback, Balking. 

I. Introduction

Apart from classical queueing systems there exists a new class of queueing systems that is referred 
to as retrial queueing systems. In recent years, a lot of work has been done in this direction. Here if 
a customer on arrival finds the server free, it is served immediately. Else it joins the orbit (virtual 
queue) and retries for service from the orbit after a random amount of time (as shown in Figure 1). 
Some of the real life phenomena where these systems are successfully used are telecommunication 
systems, computer network systems, telephone switching systems. For detailed overview and 
main results [1], [2], [3] and [4] could be referred. 

Figure 1: Basic Structure of a Retrial Queueing System

If on encountering a busy server, a customer leaves the system forever instead of joining the orbit 
(due to impatience), it is known as balking. Impatience can be commonly observed in many 
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queueing systems dealing with which could lead to profits. [5] analyzed `Retrial queueing system 
with balking, optional service and vacation' where the steady state distributions of server state and 
number of jobs in the orbit are obtained.  

If a customer feels unsatisfied after service, it may join the orbit as a feedback customer in 
order to obtain a satisfied service. This feature of feedback has also been widely discussed in retrial 
queueing theory. `A single server feedback retrial queue with collisions' was analyzed by [6]. [7] 
worked on `Modified vacation policy for M/G/1 retrial queue with balking and feedback' where 
some important measures were obtained. [8] published `Performance evaluation of two Markovian 
retrial queueing model with balking and feedback' in which the joint distribution of server state 
and retrial queue was derived. 

[9] worked on `Some new results for the M/M/1 queue' where solution is obtained for the
probability that exactly `i’ number of arrivals, `j’ number of services occur over a time interval t. In 
standard queueing models, total number of units in the system is considered whereas in this 
approach the exact number of arrivals and departures are considered. `A Single Server Retrial 
Queue with Impatient Customers' was studied by [10] considering the number of arrivals and 
departures from the orbit. [11] worked on `A two-state multiserver retrial queueing model with 
balking'. [12] analyzed `A Two-State Retrial Queueing Model with Feedback having Two Identical 
Parallel Servers' where the transient state probabilities were obtained. 

The novelty of the work in the present paper is that here the solution of two-state model 
considering balking on the basis of immediate need and providing feedback facility to unsatisfied 
customers is obtained. 
The present paper is categorized into various sections as under: 

Section II gives the model description along with the difference-differential equations 
governing the system. The transient state probabilities are evaluated in section III. In section IV 
various performance measures are obtained. Numerical and graphical solutions are illustrated in 
section V. In section VI, the busy period probabilities are presented numerically and graphically. 
Finally, the paper is concluded in section VII which is followed by the references at the end. 

II. Model Description

We consider a two-state retrial queueing model with feedback and balking. The fresh customers 
follow a Poisson process. On encounter with a busy server, the customer may join the orbit in 
order to retry for service else it balks from the system due to impatience. Service times follow 
Exponential distribution. The secondary customers repeatedly request for service from the orbit 
following a Poisson process. Also, an unsatisfied customer may join the orbit as a feedback 
customer in order to receive a satisfied service. 
• Primary arrivals follow Poisson process with parameter λ.
• On encountering a busy server, arriving customer either joins the retrial orbit with

probability β or leaves the system without joining i.e., balk from the system with parameter 1-β. 
• Secondary arrivals follow Poisson process with parameter θ.
• Service times follow Exponential distribution with parameter µ.
• After receiving service, the customer joins the orbit with probability γ (when

unsatisfied) and departs from the system with probability 1-γ. 
The input flow of primary calls, intervals between repetitions, service times are statistically 
independent. 

Laplace Transformation of 𝑓(̅𝑠) of 𝑓(𝑡) is given by: 
𝑓	((𝑠) = ∫ 𝑒!"#$

% 𝑓(𝑡)𝑑𝑡;     𝑅𝑒(𝑠) > 0 
The Laplace inverse of 
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If 𝐿!0{f(s)} = F(t) and 𝐿!0{g(s)} = G(t), then 
𝐿!0{f(s) g(s)} = ∫ 𝐹(u)𝐺(t − u)#

% du = F * G, 
F * G is called the convolution of F and G. 

Two-Dimensional State Model 
Definitions: 
𝑃5,A,%(𝑡)=Probability that there are exactly i number of arrivals, j number of departures from the 
system by time t and server is idle. 
𝑃5,A,0(𝑡)=Probability that there are exactly i number of arrivals, j number of departures from the 
system by time t and server is busy. 
𝑃5,A(𝑡) =Probability that there are exactly i number of arrivals, j number of departures from the 
system by time t. 

𝑃5,A(𝑡) = 𝑃5,A,%(𝑡) + 𝑃5,A,0(𝑡)	∀𝑖, 𝑗; 		𝑖 ≥ 𝑗 

𝑃5,A,%(𝑡) = 0; 𝑖 < 𝑗			𝑃5,A,0(𝑡) = 0; 𝑖 ≤ 𝑗 
Initially 

𝑃%,%,%(0) = 1;	𝑃5,A,%(0) = 0	𝑖 ≥ 𝑗; 	𝑖, 𝑗 ≠ 0	
	𝑃5,A,0(0) = 0;	∀	𝑖, 𝑗 

The Difference-Differential Equations Governing the System are: 
𝑑
𝑑𝑡 𝑃5,A,%

(𝑡) = −(𝜆 + (𝑖 − 𝑗)𝜃)𝑃5,A,%(𝑡) + 𝜇(1 − 𝛾)𝑃5,A!0,0(𝑡) + 𝜇𝛾𝑃5,A,0(𝑡); 				𝑖 ≥ 𝑗 ≥ 0										(1) 

𝑑
𝑑𝑡 𝑃0,%,0

(𝑡) = −(𝜆𝛽 + 𝜇)𝑃0,%,0(𝑡) + 𝜆𝑃%,%,%(𝑡) + 𝜃𝑃0,%,%(𝑡);																																																										(2) 

							
𝑑
𝑑𝑡 𝑃5,A,0

(𝑡) = −(𝜆𝛽 + 𝜇)𝑃5,A,0(𝑡) + 𝜆𝑃5!0,A,%(𝑡) + 𝜆𝛽Q1 − 𝛿5!0,AS𝑃5!0,A,0(𝑡) + (𝑖 − 𝑗)𝜃𝑃5,A,%(𝑡); 				𝑖 > 1, 𝑖
> 𝑗 ≥ 0																																																																																																																																				(3) 

where 

𝛿5!0,A = U1; 			𝑖 − 1 = 𝑗
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Using Laplace Transform 𝑓(̅𝑠) of 𝑓(𝑡) given by: 

𝑓̅(𝑠) = Z 𝑒!"#
$

%
𝑓(𝑡)𝑑𝑡; 										𝑅𝑒(𝑠) > 0 

 and using initial condition in equations (1) to (3), we have:          
														(𝑠 + 𝜆)𝑃[%,%,%(𝑠) = 𝑃[(0) 

(𝑠 + 𝜆 + (𝑖 − 𝑗)𝜃)𝑃[5,A,%(𝑠) = 𝜇(1 − 𝛾)𝑃[5,A!0,0(𝑠) + 𝜇𝛾𝑃[5,A,0(𝑠); 								𝑖 ≥ 𝑗 ≥ 0																						(4)

144



Neelam Singla, Harwinder Kaur 
A TWO-STATE RETRIAL QUEUEING MODEL 

RT&A, Special Issue No 2 (64), 
Volume 16, November 2021 

(𝑠 + 𝜆𝛽 + 𝜇)𝑃[0,%,0(𝑠) = 𝜆𝑃[%,%,%(𝑠) + 𝜃𝑃[0,%,%(𝑠)																																																																													(5) 

(𝑠 + 𝜆𝛽 + 𝜇)𝑃[5,A,0(𝑠) = 𝜆𝑃[5!0,A,%(𝑠) + 𝜆𝛽𝑃[5!0,A,0(𝑠) + (𝑖 − 𝑗)𝜃𝑃[5,A,%(𝑠); 		𝑖 > 1, 𝑖 > 𝑗 ≥ 0	(6) 

III. Solution of the Problem

Solving equations (4) to (6) recursively, we have 

𝑃[%,%,%(𝑠) =
1

𝑠 + 𝜆																																																																																																																																					(7) 

𝑃[0,%,0(𝑠) =
𝜆

𝑠 + 𝜆𝛽 + 𝜇 `
1

𝑠 + 𝜆a +
𝜃

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[0,%,%(𝑠)																																																																(8) 

𝑃[0,0,%(𝑠) =
𝜇(1 − 𝛾)
𝑠 + 𝜆 c

𝜆
𝑠 + 𝜆𝛽 + 𝜇 𝑃

[%,%,%(𝑠) +
𝜃

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[0,%,%(𝑠)d																																										(9) 

𝑃[5,%,%(𝑠) =
𝜇𝛾

𝑠 + 𝜆 + 𝑖𝜃 𝑃
[5,%,0(𝑠); 																																																																																											𝑖 ≥ 1			(10) 

𝑃[5,0,%(𝑠) =
𝜇(1 − 𝛾)

𝑠 + 𝜆 + (𝑖 − 1)𝜃 𝑃
[5,%,0(𝑠) +

𝜇𝛾
𝑠 + 𝜆 + (𝑖 − 1)𝜃 𝑃

[5,0,0(𝑠); 																										𝑖 ≥ 2			(11) 

𝑃[5,5!0,%(𝑠) =
𝜇(1 − 𝛾)
𝑠 + 𝜆 + 𝜃 𝑃

[5,5!6,0(𝑠) +
𝜇𝛾

𝑠 + 𝜆 + 𝜃 𝑃
[5,5!0,0(𝑠); 																																										𝑖	 ≥ 3			(12) 

𝑃[5,%,0(𝑠) =
𝜆

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[5!0,%,%(𝑠) +

𝜆𝛽
𝑠 + 𝜆𝛽 + 𝜇 𝑃

[5!0,%,0(𝑠) +
𝑖𝜃

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[5,%,%(𝑠); 𝑖 ≥ 2			(13) 

𝑃[5,5!0,0(𝑠) =
𝜆

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[5!0,5!0,%(𝑠) +

𝜃
𝑠 + 𝜆𝛽 + 𝜇 𝑃

[5,5!0,%(𝑠); 																																		𝑖 ≥ 2			(14) 

𝑃[5,5,%(𝑠) =
𝜇(1 − 𝛾)
𝑠 + 𝜆 c

𝜆
𝑠 + 𝜆𝛽 + 𝜇 𝑃

[5!0,5!0,%(𝑠) +
𝜃

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[5,5!0,%(𝑠)d ; 																	𝑖 ≥ 2			(15) 

𝑃[5,0,0(𝑠) =
𝜆

𝑠 + 𝜆𝛽 + 𝜇 𝑃
[5!0,0,%(𝑠) +

𝜆𝛽
𝑠 + 𝜆𝛽 + 𝜇 𝑃

[5!0,0,0(𝑠) +
(𝑖 − 1)𝜃
𝑠 + 𝜆𝛽 + 𝜇 𝑃

[5,0,%(𝑠); 	𝑖 ≥ 3		(16) 

𝑃[5,A,0(𝑠) = f`
1

𝑠 + 𝜆𝛽 + 𝜇a
5!A!3

𝜆B"5 	(𝜆𝛽)(5!A!3!0)B"5 	𝜂3C (𝑠)	𝑃[A<3,A,%(𝑠)
5!A

310

+ `
𝜆𝛽

𝑠 + 𝜆𝛽 + 𝜇a
5!A!0

𝑃[A<0,A,0(𝑠); 																																									𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 1				(17) 

where 

𝜂3C (𝑠) =

⎩
⎪
⎨

⎪
⎧

1; 												𝑘 = 1

1 +
𝑘𝜃𝛽

𝑠 + 𝜆𝛽 + 𝜇 ; 								𝑘 = 2	𝑡𝑜	𝑖 − 𝑗 − 1

𝑘𝜃
𝑠 + 𝜆𝛽 + 𝜇 ; 		𝑘 = 𝑖 − 𝑗

𝜓3C = U
1; 			𝑘 = 1	𝑡𝑜	𝑖 − 𝑗
0; 		𝑘 = 𝑖 − 𝑗 + 1  
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𝑃[5,A,%(𝑠) =
𝜇(1 − 𝛾)

𝑠 + 𝜆 + (𝑖 − 𝑗)𝜃 no f `
1

𝑠 + 𝜆𝛽 + 𝜇a
5!A!3<0

𝜆B"5 	(𝜆𝛽)(5!A!3)B"5 	𝜂3C (𝑠)	𝑃[A<3!0,A!0,%(𝑠)
5!A<0

310

p

+ `
𝜆𝛽

𝑠 + 𝜆𝛽 + 𝜇a
5!A

𝑃[A,A!0,0(𝑠)q

+
𝜇𝛾

𝑠 + 𝜆 + (𝑖 − 𝑗)𝜃 o f `
1

𝑠 + 𝜆𝛽 + 𝜇a
5!A!3<0

𝜆B"5 	(𝜆𝛽)(5!A!3)B"5 	𝜙3C (𝑠)	𝑃(A<3!0,A,%(𝑠)
5!A<0

310

p ;			

																																																																																																																																																		𝑖 > 𝑗 > 1			(18) 

where 

𝜂3C (𝑠) =

⎩
⎪
⎨

⎪
⎧

1; 													𝑘 = 1

1 +
𝑘𝜃𝛽

𝑠 + 𝜆𝛽 + 𝜇 ; 	𝑘 = 2	𝑡𝑜	𝑖 − 𝑗

𝑘𝜃
𝑠 + 𝜆𝛽 + 𝜇 ; 						𝑘 = 𝑖 − 𝑗 + 1

𝜙3C (𝑠) =

⎩
⎪
⎨

⎪
⎧

1; 													𝑘 = 1

1 +
(𝑘 − 1)𝜃𝛽
𝑠 + 𝜆𝛽 + 𝜇 ; 		𝑘 = 2	𝑡𝑜	𝑖 − 𝑗

(𝑘 − 1)𝜃
𝑠 + 𝜆𝛽 + 𝜇 ; 								𝑘 = 𝑖 − 𝑗 + 1

𝜓3C = U
1; 			𝑘 = 1	𝑡𝑜	𝑖 − 𝑗
0; 		𝑘 = 𝑖 − 𝑗 + 1  

Taking Inverse Laplace of equations (7) to (18), we get the time dependent probabilities as: 

𝑃%,%,%(𝑡) = 𝑒!D#																																																																																																																												(19) 

𝑃0,%,0(𝑡) = 𝜆𝑒!D# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q + 𝜃𝑒!(DG<F)# ∗ 𝑃0,%,%(𝑡)																																																(20) 

𝑃0,0,%(𝑡) = 𝜇(1 − 𝛾)𝜆𝑒!D# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q ∗ 𝑃%,%,%(𝑡) + 𝜇(1 − 𝛾)𝜃𝑒!D# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q

∗ 𝑃0,%,%(𝑡)																																																																																																								(21) 

𝑃5,%,%(𝑡) = 𝜇𝛾𝑒!(D<5I)# ∗ 𝑃5,%,0(𝑡); 																																																																																𝑖 ≥ 1		(22) 

𝑃5,0,%(𝑡) = 𝜇(1 − 𝛾)𝑒!(D<(5!0)I)# ∗ 𝑃5,%,0(𝑡) + 𝜇𝛾𝑒!(D<(5!0)I)# ∗ 𝑃5,0,0(𝑡); 								𝑖 ≥ 2			(23) 

𝑃5,5!0,%(𝑡) = 𝜇(1 − 𝛾)𝑒!(D<I)# ∗ 𝑃5,5!6,0(𝑡) + 𝜇𝛾𝑒!(D<I)# ∗ 𝑃5,5!0,0(𝑡); 														𝑖 ≥ 3		(24) 

						𝑃5,%,0(𝑡) = 𝜆𝑒!(DG<F)# ∗ 𝑃5!0,%,%(𝑡) + 𝜆𝛽𝑒!(DG<F)# ∗ 𝑃5!0,%,0(𝑡) + 𝑖𝜃𝑒!(DG<F)# ∗ 𝑃5,%,%(𝑡);										 
																																																																																																																																																𝑖 ≥ 2		(25)		

𝑃5,5!0,0(𝑡) = 𝜆𝑒!(DG<F)# ∗ 𝑃5!0,5!0,%(𝑡) + 𝜃𝑒!(DG<F)# ∗ 𝑃5,5!0,%(𝑡); 																					𝑖 ≥ 2		(26) 

𝑃5,5,%(𝑡) = 𝜇(1 − 𝛾)𝜆𝑒!D# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q ∗ 𝑃5!0,5!0,%(𝑡) + 𝜇(1 − 𝛾)𝜃𝑒!D# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q

∗ 𝑃5.5!0,%(𝑡); 																																																																																							𝑖	 ≥ 2			(27)	

146



Neelam Singla, Harwinder Kaur 
A TWO-STATE RETRIAL QUEUEING MODEL 

RT&A, Special Issue No 2 (64), 
Volume 16, November 2021 

𝑃5,0,0(𝑡) = 𝜆𝑒!(DG<F)# ∗ 𝑃5!0,0,%(𝑡) + 𝜆𝛽𝑒!(DG<F)# ∗ 𝑃5!0,0,0(𝑡) + (𝑖 − 1)𝜃𝑒!(DG<F)# 	
∗ 𝑃5,0,%(𝑡); 	 	𝑖 ≥ 3		(28) 

	𝑃5,A,0(𝑡) = 𝜆5!A!0	𝛽5!A!6
𝑡5!A!6

(𝑖 − 𝑗 − 2)! 𝑒
!ED<FGH# ∗ 𝑃A<0,A,%(𝑡)

+ f 𝜆5!A!3
5!A!0

316

𝛽5!A!3!0
𝑡5!A!3!0

(𝑖 − 𝑗 − 𝑘 − 1)! 𝑒
!ED<FGH# ∗ 𝑃A<3,A,%(𝑡)

+ f (𝑘𝜃)(𝜆𝛽)5!A!3
𝑡5!A!3

(𝑖 − 𝑗 − 𝑘)!

5!A!0

316

𝑒!ED<
F
GH# ∗ 𝑃A<3,A,%(𝑡) + (𝑖 − 𝑗)𝜃𝑒

!ED<FGH# ∗ 𝑃5,A,%(𝑡)

+ (𝜆𝛽)5!A!0
𝑡5!A!6

(𝑖 − 𝑗 − 2)! 𝑒
!ED<FGH# ∗ 𝑃A<0,A,0(𝑡); 	𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 1				(29)

𝑃5,A,%(𝑡) = 𝜇(1 − 𝛾)𝜆5!A𝛽5!A!0𝑒!(D<(5!A)I)#

⎩
⎨

⎧ 1

`𝜇𝛽a
5!A − 𝑒

!EFGH# f
𝑡K

𝑟!
1

`𝜇𝛽a
5!A!K

5!A!0

K1% ⎭
⎬

⎫
∗ 𝑃A,A!0,%(𝑡)

+ 𝜇(1 − 𝛾)𝜆𝑒!(D<(5!A)I)#f(𝜆𝛽)5!A!3
5!A

316 ⎩
⎨

⎧ 1

`𝜇𝛽a
5!A!3<0 − 𝑒

!EFGH# f
𝑡K

𝑟!
1

`𝜇𝛽a
5!A!3!K<0

5!A!3

K1% ⎭
⎬

⎫

∗ 𝑃A<3!0,A!0,%(𝑡)
+ 𝜇(1

− 𝛾)𝑒!(D<(5!A)I)#f(𝑘𝜃)(𝜆𝛽)5!A!3<0

⎩
⎨

⎧ 1

`𝜇𝛽a
5!A!3<6 − 𝑒

!EFGH# f
𝑡K

𝑟!
1

`𝜇𝛽a
5!A!3!K<6

5!A!3<0

K1% ⎭
⎬

⎫5!A

316

∗ 𝑃A<3!0,A!0,%(𝑡) + 𝜇(1 − 𝛾)(𝑖 − 𝑗 + 1)𝑒!(D<(5!A)I)# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q ∗ 𝑃5,A!0,%(𝑡)

+ 𝜇(1 − 𝛾)(𝜆𝛽)5!A𝑒!(D<(5!A)I)#

⎩
⎨

⎧ 1

`𝜇𝛽a
5!A − 𝑒

!EFGH# f
𝑡K

𝑟!
1

`𝜇𝛽a
5!A!K

5!A!0

K1% ⎭
⎬

⎫
∗ 𝑃A,A!0,0(𝑡)

+ 𝜇𝛾𝜆5!A𝛽5!A!0𝑒!(D<(5!A)I)#

⎩
⎨

⎧ 1

`𝜇𝛽a
5!A − 𝑒

!EFGH# f
𝑡K

𝑟!
1

`𝜇𝛽a
5!A!K

5!A!0

K1% ⎭
⎬

⎫
∗ 𝑃A,A,%(𝑡)

+𝜇𝛾𝜆𝑒!(D<(5!A)I)#f(𝜆𝛽)5!A!3

⎩
⎨

⎧ 1

`𝜇𝛽a
5!A!3<0 − 𝑒

!EFGH# f
𝑡K

𝑟!
1

`𝜇𝛽a
5!A!3!K<0

5!A!3

K1% ⎭
⎬

⎫5!A

316

∗ 𝑃A<3!0,A,%(𝑡) + 𝜇𝛾𝑒!(D<(5!A)I)#f(𝑘 − 1)𝜃(𝜆𝛽)5!A!3<0
5!A

316 ⎩
⎨

⎧ 1

`𝜇𝛽a
5!A!3<6

− 𝑒!E
F
GH# f

𝑡K

𝑟!
1

`𝜇𝛽a
5!A!3!K<6

5!A!3<0

K1% ⎭
⎬

⎫
∗ 𝑃A<3!0,A,%(𝑡)

+ 𝜇𝛾(𝑖 − 𝑗)𝜃𝑒!(D<(5!A)I)# n
1
𝜇
𝛽
−
𝑒!E

F
GH#

𝜇
𝛽

q ∗ 𝑃5,A,%(𝑡); 	 	𝑖 > 𝑗

> 1 (30)
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IV. Some Performance Measures

• The Laplace transform 𝑃[5.(𝑠) is given by:

𝑃[5.(𝑠) =f𝑃[5,A(𝑠) =
𝜆5

(𝑠 + 𝜆)5<0 ; 			𝑖 > 0
5

A1%

 

and its Laplace Inverse is: 

𝑃5.(𝑡) =
𝑒!D#(𝜆𝑡)5

𝑖!
which verifies the basic assumption that primary arrivals follow Poisson process. 
• The probability that exactly j customers depart from the system by time t is given by:

𝑃[.A(𝑡) =f𝑃5,A(𝑡)
$

51A

 

• Summing equations (7)-(18) over i and j we get:

ffx𝑃[5,A,%(𝑠) + 𝑃[5,A,0(𝑠)y
5

A1%

$

51%

=
1
𝑠

and hence 

ffx𝑃5,A,%(𝑡) + 𝑃5,A,0(𝑡)y = 1
5

A1%

$

51%

 

which is a verification of our results. 
• Define 𝑄2,-(𝑡) = Probability that there are exactly n customers in the orbit when m (m=0, 1)

i.e., either the server is idle or busy at time t.
For idle server we represent it by probability 𝑄2,%(𝑡)

𝑄2,%(𝑡) =f𝑃A<2,A,%(𝑡)
$

A1%

 

The number of customers in the orbit, in this case are calculated with the following formula: 
n = (number of arrivals − number of departures)  
When the server is busy, it is represented by probability 𝑄2,0(𝑡) 

𝑄2,0(𝑡) =f𝑃A<2<0,A,0(𝑡)					
$

A1%

 

The number of customers in the orbit in this case is calculated by the following formula: 
n = (number of arrivals − number of departures − 1) 
Using above definitions in (1)-(3) and letting γ=0, the equations we get under statistical      
equilibrium are: 

(𝜆 + 𝑛𝜃)𝑄2,% = 𝜇𝑄2.0; 																																																																																		𝑛 ≥ 0																				(31) 
(𝜆𝛽 + 𝜇)𝑄2,0 = 𝜆𝑄2,% + 𝜆𝛽𝑄2!0,0 + (𝑛 + 1)𝜃𝑄2<0,%; 																										𝑛 ≥ 2																				(32) 

which coincides with the result (3.68) of [13]. 

V. Numerical Solution and Graphical Representation

Using MATLAB programming for the case 𝜌=0.7,	η=0.5,	γ=0.5 and 1-β=0.4 the numerical solutions 
are generated. Some of which are given in Table 1 to Table 5. Observing the below tables for 
various time instants it is observed that the sum of probabilities approaches to 1. 
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Table 1: At t=1 
𝑃%,%,% 𝑃0,%,% 𝑃0,0,% 𝑃L,L,% 𝑃M,0,% 𝑃0,%,0 𝑃6,%,0 𝑃6,0,0 𝑃N,O,0 Sum 

0.4966 0.0623 0.0736 0.2735 0.0492 0.0165 0 0 0 0.9717 

Table 2: At t=5 
𝑃%,%,% 𝑃0,%,% 𝑃0,0,% 𝑃6,%,% 𝑃6,0,% 𝑃6,6,% 𝑃7,%,% 𝑃7,0,% 𝑃7,6,% 𝑃7,7,% 

0.0302 0.0379 0.0792 0.0238 0.0699 0.0552 0.0101 0.0344 0.0409 0.0171 

𝑃L,6,% 𝑃0,%,0 𝑃6,%,0 𝑃6,0,0 𝑃7,%,0 𝑃7,0,0 𝑃7,6,0 𝑃L,%,0 𝑃L,0,0 𝑃L,6,0 
0.0172 0.0551 0.069 0.0812 0.0436 0.0795 0.039 0.0185 0.00415 0.0328 

𝑃L,7,0 𝑃O,0,0 𝑃O,6,0 𝑆𝑢𝑚 
0.0092 0.0151 0.015 0.9154 

Table 3: At t=15 
𝑃6,6,% 𝑃7,7,% 𝑃L,6,% 𝑃L,7,% 𝑃L,L,% 𝑃O,7,% 𝑃O,L,% 𝑃O,O,% 𝑃N,L,% 𝑃N,O,% 

0.0028 0.0076 0.007 0.0143 0.0122 0.0157 0.0206 0.0129 0.0128 0.0204 

𝑃N,N,% 𝑃M,%,% 𝑃M,L,% 𝑃M,O,% 𝑃M,N,% 𝑃P,7,% 𝑃P,L,% 𝑃P,O,% 𝑃P,N,% 𝑃P,M,% 
0.0199 0.0095 0.015 0.018 0.0137 0.0118 0.0244 0.0366 0.04 0.0302 

𝑃P,P,% 𝑃L,6,0 𝑃L,7,0 𝑃O,6,0 𝑃O,7,0 𝑃O,L,0 𝑃N,6,0 𝑃N,7,0 𝑃N,L,0 𝑃N,O,0 
0.0128 0.0142 0.0123 0.0196 0.0272 0.0164 0.0193 0.0333 0.0326 0.0147 

𝑃M,6,0 𝑃M,7,0 𝑃M,L,0 𝑃M,O,0 𝑃M,N,0 𝑃P,6,0 𝑃P,7,0 𝑃P,L,0 𝑃P,O,0 𝑃P,N,0 
0.0149 0.0293 0.0362 0.0268 0.0095 0.0187 0.0416 0.0619 0.0624 0.0404 

PP,M,0 Sum 
0.0134 0.9029 

Table 4: At t=25 
𝑃6,0,% 𝑃7,6,% 𝑃O,O,% 𝑃M,N,% 𝑃P,L,% 𝑃P,O,% 𝑃P,N,% 𝑃P,M,% 𝑃P,P,% 𝑃N,L,0 

0 0.0001 0.0015 0.0065 0.0142 0.0406 0.0939 0.1804 0.2744 0.0033 

𝑃M,L,0 𝑃P,7,0 𝑃P,O,0 𝑃P,N,0 𝑃P,M,0 Sum 
0.0059 0.0141 0.0744 0.104 0.0893 0.9026 

Table 5: At t=35 
𝑃N,%,% 𝑃P,L,% 𝑃P,N,% 𝑃P,M,% 𝑃P,P,% 𝑃L,6,0 𝑃O,L,0 𝑃N,L,0 𝑃P,L,0 𝑃P,O,0 

0 0.0014 0.029 0.1263 0.7119 0 0 0.0001 0.0041 0.0133 

𝑃P,N,0 𝑃P,M,0 Sum 
0.0349 0.0689 0.9899 

Various probabilities are graphically presented against time t in Figures 2 to 5. Here, traffic   
intensity from primary calls is 𝜌 = D

F
 and traffic intensity from secondary calls is 𝜂 = I

F
. 
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Figure 2: Probabilities 𝑃!,!,! and 𝑃#,#,! against t (average service times) 

The probabilities 𝑃%,%,% and 𝑃0,0,% are compared in Figure 2 by plotting against time t for the 
case ρ=0.6, η=0.7, γ=0.6 and 1-β=0.7. It can be seen from the plot that the probability 𝑃%,%,% with 
initial value 1 at t=0 decreases rapidly whereas probability 𝑃0,0,% initiates with value 0 at t=0 
increases in the beginning and then decreases gradually with time. 

Figure 3:  Probabilities 𝑃$,#,!, 𝑃$,%,! and 𝑃$,&,! against t (average service times) 

In Figure 3, the probabilities 𝑃L,0,%, 𝑃L,6,% and 𝑃L,7,% are plotted against time t for the case where 
ρ=0.6, η=0.7, γ=0.6 and 1-β=0.7.  It can be observed from the plot that the probabilities increase 
initially and then decrease gradually. In general, the probabilities are higher for larger number of 
departures. 
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Figure 4:  Probabilities 𝑃%,#,#, 𝑃&,#,#, 𝑃$,#,# and 𝑃',#,# against t (average service times) 

Figure 4 shows the comparison between the probabilities 𝑃6,0,0, 𝑃7,0,0, 𝑃L,0,0 and 𝑃O,0,0 when plotted 
against time t. It is interpreted from the graph that these probabilities increase initially from the 
value 0 at t=0. Highest achieved values of various probabilities are higher for lower i (number of 
arrivals). After reaching their respective peaks, probabilities start decreasing and the trend gets 
reversed i.e., now the probabilities take higher values for larger i (number of arrivals). 

Figure 5: Probabilities 𝑃$,!,#,  𝑃$,#,# and 𝑃$,%,# against t (average service times) 

The probabilities 𝑃L,%,0, 𝑃L,0,0 and 𝑃L,6,0 are plotted against time t in Figure 5. Beginning with value 0 
at t=0, all the probabilities increase rapidly to their highest values and then decrease gradually. 
Also, it is observed that 𝑃L,6,0 is higher than 𝑃L,0,0 which is in turn greater than 𝑃L,%,0 i.e., 
probabilities are higher for larger j (number of departures). 

VI. Busy Period Probabilities

The probability that server is busy is given by 

𝑃(𝑆𝑒𝑟𝑣𝑒𝑟	𝑖𝑠	𝑏𝑢𝑠𝑦) = f 𝑃5,A,0(𝑡)	 	(33)
5QAR%
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The probability that system is busy is given by 

𝑃(𝑆𝑦𝑠𝑡𝑒𝑚	𝑖𝑠	𝑏𝑢𝑠𝑦) = f (𝑃5,A,%(𝑡) + 𝑃5,A,0(𝑡))																																(34)
5QAR%

 

Numerical and Graphical Representation of Busy Period Probabilities: 

Following the work of [14] and using MATLAB programming, the numerical results are 
obtained. Here the probabilities for system busy as well as for server busy are obtained which are 
presented in the Table 6 below for various values of 𝜌 keeping values of η, γ and 1-β constant. 

Table 6: Probabilities of System busy and Server busy to study the effect of 𝜌 

t Probability(System Busy) Probability(Server Busy) 
ρ=0.3 ρ=0.6 ρ=0.9 ρ=0.3 ρ=0.6 ρ=0.9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
0.2231 
0.3565 
0.4455 
0.5085 
0.555 
0.5905 
0.6183 
0.6405 
0.6586 
0.6735 

0 
0.3937 
0.5774 
0.6798 
0.7438 
0.7872 
0.8184 
0.8416 
0.8596 
0.8738 
0.8853 

0 
0.5245 
0.7166 
0.8081 
0.8599 
0.8927 
0.915 
0.9308 
0.9424 
0.9512 
0.958 

0 
0.1772 
0.2508 
0.2946 
0.3255 
0.3491 
0.3678 
0.383 
0.3957 
0.4063 
0.4153 

0 
0.3152 
0.4159 
0.4676 
0.5019 
0.5275 
0.5478 
0.5645 
0.5784 
0.5903 
0.6003 

0 
0.4232 
0.5281 
0.5764 
0.608 
0.6317 
0.6506 
0.6661 
0.6786 
0.6886 
0.6959 

Figure 6: Probabilities of System busy and Server busy against t (average service times) 

The probabilities for System busy and Server busy are compared in Figure 6 for the case ρ=0.6, 
η=0.7, γ=0.6 and 1-β=0.7. It is clearly visible that the probabilities for System busy remained higher 
than that of Server busy throughout, as expected. General trend shows that probabilities start 
increasing in the beginning, achieve some highest values and then start decreasing. 
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Figure 7: Effect of ρ on System busy against t (average service times) 

Figure 8: Effect of ρ on Server busy against t (average service times) 
The effect of changing primary customers traffic intensity i.e., 𝜌 = 1D

F
2 on probability of system 

busy and probability of server busy is studied through Figure 7 and Figure 8 respectively. In both 
the graphs the trend followed is similar. The probabilities increases in the beginning and are 
higher for larger values of ρ but the trend gets reversed for higher values of t. 

Figure 9: Effect of γ on System busy against t (average service times) 
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Figure 10:  Effect of γ on Server busy against t (average service times) 

The effect of change of γ (feedback factor) on probability of system busy and server busy is 
observed through Figures 9 and 10 respectively. It is interpreted from the plots that initially both 
the probabilities increase rapidly from the value 0 at t=0 and then decrease gradually for higher t. 
In both the cases, the probabilities are higher for larger value of γ. 

VII. Conclusion

In this paper we analyzed a two-state retrial queueing system with feedback and balking. As we 
know balking is one aspect of impatient customers. Managing impatience leads to profit in 
business. The time dependent probabilities for exact number of arrivals and exact number of 
departures from the system are derived. Here due to dealing with two-state probabilities, results 
are more quantified and informative. Some performance measures are obtained in order to verify 
results. Numerical results are generated using MATLAB programming. Also, the graphical 
illustrations are provided in order to understand the effect of change of various parameters. The 
present model can serve as a base for the future research to model various practical situations 
applying the concept of balking and feedback where more than one homogeneous or 
heterogeneous servers would be required. 
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