
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

An Optimal Resource Allocation Model Considering
Two-Phase Software Reliability Growth Model with Testing

Effort and Imperfect Debugging

Sujit K. Pradhan
1, Anil Kumar

2, Vijay Kumar
3∗

1,2Department of Mathematics, BITS Pilani-KK Birla Goa Campus, Zuarinagar, Goa-403726, India.
E-mail: 1pradhansujit1994@gmail.com, 2anilpundir@goa.bits-pilani.ac.in

3Department of Mathematics, Amity Institute of Applied Sciences, Amity University
Uttar Pradesh, Noida-201313, India.
E-mail: 3vijay_parashar@yahoo.com

∗Corresponding Author

Abstract

This study aims at investigating an optimal resource plan in order to minimize the software costs in the
debugging and testing phases. We have proposed a resource allocation model to address testing efforts,
imperfect debugging and change-point. We have considered two cases: In the first case, the software
debugging cost is kept constant, and in this case, the optimal policy follows a bang-bang structure, which
means investing entirely in the testing phase, followed by investing fully in the debugging stage. In the
second case, we have taken the debugging cost in quadratic form. We have validated our model with the
experimental data, and the results reveal that the presented model is reasonably accurate. We have also
discussed the optimal resource allocation problems under certain conditions and examine the parameters’
behavior in the model and obtain the variations in the total cost. This study provides a detailed optimal
control theory-based testing resource allocation policy, which is supported by numerical examples.

Keywords: Software reliability growth model (SRGM), Change point, Testing effort, Optimal
control.

1. Introduction

Computers are used in diverse areas, and with recent advances in computation, software related
issues have emerged as one of the primary areas of concern. Hence, reliable software product
demand has increased in the market. Software reliability models can be effectively utilized to
generate quantified measures during the software development phase. SRGM attempts to tally
between defect detection data and estimated residual defects with time. Therefore, software
reliability is crucial in developing software and its quality. Specification, design, programming,
testing-and-debugging are the four stages involved in any software development process. During
the software development process, the testing-and-debugging phase is a key and expensive phase
of the software development life cycle (SDLC).

The probability when the software will not result in system failure for a specific time and under
specific conditions is known as software reliability (see, e.g., [1]). Further, software reliability
and software cost must be up to the expectation level of users satisfaction. During the testing
phase of SDLC, testing and debugging are the two main activities to be performed by the testing
team, and there is always a trade-off between cost and reliability. The software testing team has
to understand the variance of the software reliability and the instantaneous testing costs. Thus,
software reliability, cost, and release time are important aspects of software development.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

241

Research activities on software reliability growth models have been conducted over the past
five decades. In general, the SRGMs have been proposed under consideration with the non-
homogeneous Poisson process (NHPP) since software faults are associated with discrete time
scales. Various SRGMs [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] have been proposed
on different assumptions and applied to different situations. Many researchers have proposed
SRGMs considering different scenarios; some researchers have proposed SRGM considering
perfect debugging [2, 3, 5]; some researchers considered imperfect debugging [4, 6, 7]. Huang et
al. [18] have discussed an SRGM, which incorporates debugging time-lag and fault dependency.

Many researchers proposed SRGMs incorporating testing efforts. Yamada et al. [19], and
Musa et al. [20] proposed a novel SRGM. The model discussed in [19] describes the relationship
between the amount of testing effort and the number of software errors detected. Kapur et al.
[21], and Chang et al. [22] have proposed SRGMs, which incorporate the concept of testing-effort
function. Generally, CPU hours are considered as testing efforts. Huang et al. [23], and Kapur et
al. [24] represented a model in which the consumption rate of testing resource expenditures with
the different testing-effort functions was discussed. Jin and Jin [25] used an S-shaped curve to
describe software testing efforts. Huang et al. [26, 27] proposed SRGMs with logistic testing-effort
function.

In software reliability studies, the initial number of faults contained are not known. One
has to carry out the program in a particular environment. This helps to improve the quality
of the program by correcting the faults. SRGMs proposed by Huang et al. [28] assumed that
each failure caused by a fault is independent and random in time and occurs with the same
distribution during the fault detection process. In SRGMs, the testing environment, testing
strategy and resources are not necessarily the same throughout the development process. The
testing environment is subjected to change with the learning process. Hence, the change-point
problems play a vital role in software reliability growth modeling.

The change point is a point where the software testing team changes their testing strategy from
one to another during the software development process due to the complexity of the program,
testing facilities, and other random factors. The fault detection process is affected by different
factors. The fault detection rate may change due to the increasing knowledge of the program and
the testing strategies. Chang et al. [22] and Kapur et al. [29] discussed an SRGM with change
point in fault detection rate. Shyur et al. [30] explained a stochastic software reliability growth
model which incorporates imperfect debugging and change points.

Kapur et al. [31, 32] have discussed a model to assign the resources and minimize the total
cost during the development period of SRGM under dynamic conditions. Kumar et al. [33, 34, 35]
explained a resource allocation model for fault detection and fault correction process. They
assumed detection and correction efforts to be independent. However, activities such as detection
and correction may have budgetary constraints. Yonghua et al. [36, 37] proposed a model which
incorporates a resource allocation plan to minimize the testing cost of the software. Kumar et al.
[38] discussed resource allocation model for a multi-release SRGM to minimize the testing cost
under dynamic conditions.

In the present work, we incorporate testing effort, imperfect debugging, and change points.
These features are concomitant with the general SRGM. Yamada et al. [39] proposed an SRGM to
minimize the total expenditure under static conditions. A problem emerges when the development
process is carried out under dynamic conditions. The fault detection and fault correction process
relies upon the operating environment and the quality of resources utilized. Experimental data
analysis is carried out to evaluate the change point. We have used the failure increasing rate
function to find the change point. We also study the optimization problem for optimal resource
allocation for different conditions by examining the behavior of the model parameters and obtain
variations in total cost. To do so, we have taken the quadratic form of the debugging function.

The remaining manuscript is structured as follows: We concluded Section 1 by providing
notations used in the manuscript. In Section 2, we briefly discussed the model developed by Zhu
et al. [40]. Section 3 deals with the model development, and we introduced an optimal control
problem. In Section 4, the optimal policies are developed, and optimal solutions are given. Some

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

242

theoretical results are shown in Section 5, and the optimal policies are discussed for two special
cases. In Section 6, the change point is calculated with the help of the data, and the behavior of
model parameters in the variation of the total cost is discussed. In Section 7, we conclude the
paper with some possible research on this topic.

Notations

[0, T] The complete life cycle of the software.
t1 The change-point.
m1(t) The cumulative number of faults detected in phase-I by time t lies between 0 to t1.
m2(t) The cumulative number of faults detected in phase-II by time t lies between t1 and T.
x1(t) The number of faults detected at any point of time t in phase-I.
x2(t) The number of faults detected at any point of time t in phase-II.
a1(t) The total fault content function in phase-I.
a The initial number of fault.
a2(t) The total fault content function in phase-II.
α The fault introduction rate per detected fault.
b1 The fault detection rate in phase-I.
b2 The fault detection rate in phase-II.
c1 The non-removable fault rate in phase-I.
c2 The non-removable fault rate in phase-II.
w11(t) The testing effort in phase-I.
w21(t) The testing effort in phase-II.
w12(t) The debugging effort in phase-I.
w22(t) The debugging effort in phase-II.
c11(t) The debugging cost per unit at time t associated with the debugging effort w12(t) in phase-I.
c21(t) The debugging cost per unit at time t associated with the debugging effort w22(t) in phase-II.
c̃11 The base cost of debugging in phase-I.
c̃21 The base cost of debugging in phase-II.
c12 The cost of testing per unit testing effort at time t in phase-I.
c22 The cost of testing per unit testing effort at time t in phase-II.
y(t) The observed cumulative number of failures by time t.
y′(t) The failure increasing rate during time interval (t, t + ∆t).

2. Two-phase software reliability growth model

An administer SRGM is tested by software test personnel to detect and correct software faults
during the development process. In realistic conditions, different types of software faults are
found in SRGMs. Software test personnel do not remove all faults during the debugging process
by applying the same testing effort. So different testing efforts are applied by software test
personnel to remove different types of faults. Thus, to remove two types of fault, software test
personnel used a two-phase debugging process. Zhu et al. [40] proposed a two-phase software
reliability model under the following assumptions, which involved software fault dependency
and imperfect debugging.

1. The error detection in SRGMs follows the non-homogeneous Poisson process.

2. The model considered imperfect debugging, and new faults are introduced into the program
at each time.

3. Type-I and type-II software faults are defined. The type-I and type-II faults are detected
and corrected during phase-I and phase-II, respectively.

4. The software development team cannot remove all the faults experienced in both phases.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

243

5. Due to different software fault types, the fault detection and non-removable fault rates are
different in phase I and II.

6. The time to debug a fault is negligible.

Using the above assumptions, the following two-phase SRGM is considered for the study.

Phase-I. The type-I faults, which are independent and easily detected, are detected and corrected
in phase-I. The total number of software faults that cause failure in phase-I is proportional to the
difference between the total number of detected faults and the total number of non-removable
faults. The total number of detected faults that cause failure is the product of fault detection rate
and the number of remaining type-I faults which are represented by the following differential
equation

dm1(t)
dt

= b1(t) [a1(t)− m1(t)]− c1(t)m1(t), 0 ≤ t ≤ t1. (1)

With a constant fault introduction rate α (> 0), new faults are introduced during the debug-
ging phase due to imperfect debugging. Therefore, the fault present in phase-I at time t is given
by

a1(t) = a(1 + αt). (2)

In phase-I, let the non-removable fault rate is

c1(t) = c1, c1 > 0, (3)

with the initial condition m1 = 0 at t = 0 for phase-I.

Phase-II. During this phase, type-II faults are detected after the completion of type-I faults
detection and correction. No new and residue type-I faults are introduced in phase-II. The total
number of software faults that cause failure is proportional to the difference between the total
number of detected faults and non-removable faults. The total number of detected faults that
cause failure is the product of fault detection rate, the ratio of the total number of reduced faults
to the total number of failures experienced, and the number of remaining type-II faults. Therefore,
we have the following differential equation

dm2(t)
dt

= b2(t)
m2(t)
a2(t)

[a2(t)− m2(t)]− c2(t)m2(t), t1 ≤ t ≤ T. (4)

The cumulative number of fault present in phase-II is

a2(t) = a1(t1)− m1(t1). (5)

In phase-II, let the non-removable fault rate is

c2(t) = c2, c2 > 0, (6)

with the continuity condition between the two phases

m2(t1) = m1(t1). (7)

3. Model development

The testing and debugging phase aims to detect and correct faults and make the software
more reliable during the development process of the software. Software reliability is affected
by the testing resources spent in the testing phase. We have modified the SRGM given in
Section-2 without increasing the complexity. We have developed a model, which incorporates
time-dependent testing effort with change point under imperfect debugging environments. Here,
a model is constructed with concurrent detection and correction activities. Resources should

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

244

be allocated optimally during software testing. Thus, a tactical plan is required for allocating
resources optimally. The total resource in each phase is divided into two portions, i.e. testing
effort and debugging effort. The mathematical expression for the resource allocation model is
written as

w11(t) + w12(t) = 1, 0 ≤ t ≤ t1, (8)

w21(t) + w22(t) = 1, t1 ≤ t ≤ T, (9)

which is shown in Figure 1.

Figure 1: Optimal resource allocation in Phase-I and Phase-II.

Phase-I. We have assumed that the software development team detects the faults causing failure
and corrects those faults during the testing phase to develop a new model. The total number of
software faults that cause failure in phase-I per unit testing effort expenditure is proportional to
the difference between the total number of detected faults and the total number of non-removable
faults. The total number of detected faults that cause failure is the product of fault detection rate
and the number of remaining type-I faults. All the detected faults are not possible to remove from
software during the testing phase. Here, we have taken the testing effort in the fault detection
process. We know that we should remove more faults if much testing effort is utilized in the
testing phase. Some faults can’t be removed. Based on the above assumptions and compatible
with the idea of Zhu et al. [40], we have proposed the phase-I software reliability growth model
as

x1(t) =
dm1(t)

dt
= w11(t) [b1(a1(t)− m1(t))− c1m1(t)] , 0 ≤ t ≤ t1. (10)

Phase-II. In phase-II, the total number of software faults that cause failure per unit testing effort
expenditure is proportional to the difference between the total number of detected faults and the
total number of non-removable faults. The total number of detected faults that cause failure is the
product of fault detection rate, the ratio of the total number of reduced faults to the total number
of failures experienced and the number of remaining type-II faults. The following differential
equation gives the phase-II model:

x2(t) =
dm2(t)

dt
= w21(t)

[
b2

m2(t)
a2(t)

(a2(t)− m2(t))− c2m2(t)
]

, t1 ≤ t ≤ T. (11)

Optimal control problem. We aim to create a resource allocation plan to minimize the total testing
expenditure. For the simplicity of the model, we have neglected all other costs except fault
detection cost and correction cost over the finite planning period T. The proposed model
incorporates testing effort as a control parameter. Then the problem can be described over the
interval [0, T] as follows:

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

245

min

[∫ t1

0

{
c11(t)x1(t) + c12w11(t)

}
dt +

∫ T

t1

{
c21(t)x2(t) + c22w21(t)

}
dt

]
, (12)

subject to

x1(t) =
dm1(t)

dt
= w11(t) [b1(a1(t)− m1(t))− c1m1(t)] , 0 ≤ t ≤ t1, (13)

x2(t) =
dm2(t)

dt
= w21(t)

[
b2

m2(t)
a2(t)

(a2(t)− m2(t))− c2m2(t)
]

, t1 ≤ t ≤ T, (14)

with the conditions m1(0) = 0, and m2(t1) = m1(t1).

4. Optimal policies and solution

To solve dynamic optimal control problem defined by equations (12)–(14), we shall use Pontryagin
minimum principle [41]. Therefore, we first define the Hamiltonian function, which is given by

H(t) =

{
H1(t), 0 ≤ t ≤ t1

H2(t), t1 ≤ t ≤ T
(15)

where

H1(m1(t), λ1(t), w11(t), t) = c11(t)x1(t) + c12w11(t) + λ1(t)x1(t), 0 ≤ t ≤ t1,

H2(m2(t), λ2(t), w21(t), t) = c21(t)x2(t) + c22w21(t) + λ2(t)x2(t), t1 ≤ t ≤ T.

The necessary conditions within each time interval for an optimal solution are defined similar
to [42]. The co-state variables (or adjoint variables) λ1(t) and λ2(t) are given by

d
dt

λ1(t) = −∂H1(m1(t), λ1(t), w11(t), t)
∂m1(t)

, 0 ≤ t ≤ t1, (16)

d
dt

λ2(t) = −∂H2(m2(t), λ2(t), w21(t), t)
∂m2(t)

, t1 ≤ t ≤ T, (17)

with terminal conditions λ2(T) = 0. Also, the following matching conditions are satisfied at
t = t1

λ1(t1) = λ2(t1), (18)

H1(m1(t1), λ1(t1), w11(t1), t1) = H2(m2(t1), λ2(t1), w21(t1), t1), (19)

and we have

H1(m1(t1), λ1(t1), w11(t1), t1) ≤ H2(m2(t1), λ2(t1), w21(t1), t1), if 0 = t1 < T, (20)

H1(m1(t1), λ1(t1), w11(t1), t1) ≥ H2(m2(t1), λ2(t1), w21(t1), t1), if 0 < t1 = T. (21)

The control variables w11(t) and w21(t) are given by

∂H1(m1(t), λ1(t), w11(t), t)
∂w11(t)

= 0, 0 ≤ t ≤ t1, (22)

∂H2(m2(t), λ2(t), w21(t), t)
∂w21(t)

= 0, t1 ≤ t ≤ T, (23)

which will give from the equations (22) and (23)

w∗
11(t) =

(c1m1(t)− b1(a1(t)− m1(t)))(c11(t) + λ1(t))− c12

c11w11(t)b1((a1(t)− m1(t))− c1(t)m1(t))
, 0 ≤ t ≤ t1, (24)

w∗
21(t) =

(c2m2(t)− b2(
m2(t)
a2(t)

)(a2(t)− m2(t)))(c21(t) + λ2(t))− c22

c21w21(t)(b2(
m2(t)
a2(t)

)(a2(t)− m2(t))− c2m2(t))
, t1 ≤ t ≤ T, (25)

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

246

and from equations (8) and (9), we obtain

w∗
12(t) = 1 − (c1m1(t)− b1(a1(t)− m1(t)))(c11(t) + λ1(t))− c12

c11w11(t)b1((a1(t)− m1(t))− c1(t)m1(t))
, 0 ≤ t ≤ t1, (26)

w∗
22(t) = 1 −

(c2m2(t)− b2(
m2(t)
a2(t)

)(a2(t)− m2(t)))(c21(t) + λ2(t))− c22

c21w21(t)(b2(
m2(t)
a2(t)

)(a2(t)− m2(t))− c2m2(t))
, t1 ≤ t ≤ T. (27)

5. Theoretical results

In this section, we have discussed optimal criteria for two-phase, continuous-time optimal control
problems where the integration of these problems depends upon the change point. The qualitative
results developed here are demonstrated in the following theorem.

Theorem 1. Let the change point t1 occurs in the software development life cycle [0, T]. Then the
following holds

(i) At t1 ∈ (0, T), the total cost of fault detection and correction in phase-I is equal to the total
cost of fault detection and correction in phase-II.

(ii) At t1 = 0, the total cost of fault detection and correction in phase-I is less than the total cost
of fault detection and correction in phase-II.

(iii) At t1 = T, the total cost of fault detection and correction in phase-I is greater than the total
cost of fault detection and correction in phase-II.

Proof. Let [0, T] is the planning period of SRGM and the change point t1 ∈ (0, T). Since, the
Hamiltonian H1 and H2 are equal at the change point t1 which is given by equation (19)

H1(m1(t1), λ1(t1), w11(t1), t1) = H2(m2(t1), λ2(t1), w21(t1), t1).

We obtain

c11(t)x1(t) + c12w11(t) + λ1(t)x1(t) = c21(t)x2(t) + c22w21(t) + λ2(t)x2(t),

and hence, we get

(c11(t) + λ1(t))x1(t) + c12w11(t) = (c21(t) + λ2(t))x2(t) + c22w21(t). (28)

Therefore, in the equation (28), the total cost of fault detection and correction in phase-I is equal
to the total cost of fault detection and correction in phase-II.

To prove (ii), let the change-point be t1 = 0, i.e. t1 /∈ (0, T). Then we should skip directly to
phase-II for fault detection and correction i.e. in phase-I, no-fault detection and correction are
done. Hence, the total cost of fault detection and correction in phase-I is less than the total cost of
fault detection and correction in phase-II.

Let the change-point be t1 = T i.e t1 /∈ (0, T). Then we stick entirely in phase-I for fault
detection and correction, i.e. in phase-II, no-fault detection and correction is done. Hence, the
total cost of fault detection and correction in phase-I is greater than the total cost of fault detection
and correction in phase-II. This complete the proof of part (iii). ■

Special cases. In general, at the initial time of the testing phase of SRGM, the debugging/fault
correction cost is much higher as the uncertain nature of the errors. Later on, the fault intensity
gradually decreases, and most of the expenditure is invested in the testing phase. Therefore the
debugging cost gradually decreases with time. Here, we shall discuss two special cases to show
how debugging/fault correction costs impact the optimal policies.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

247

Case-I. Let the debugging/fault correction cost per unit for cumulative fault removed at time t
before and after change point are constant, i.e.

c11(t) = c11 and c21(t) = c21 (29)

Then for constant debugging cost, the objective function (12) will take the following form

min

[∫ t1

0

{
c11x1(t) + c12w11(t)

}
dt +

∫ T

t1

{
c21x2(t) + c22w21(t)

}
dt

]

subject to

x1(t) =
dm1(t)

dt
= w11(t) [b1(a1(t)− m1(t))− c1m1(t)] , 0 ≤ t ≤ t1 (30)

x2(t) =
dm2(t)

dt
= w21(t)

[
b2

m2(t)
a2(t)

(a2(t)− m2(t))− c2m2(t)
]

, t1 ≤ t ≤ T (31)

with the conditions m1(0) = 0, m2(t1) = m1(t1), w11(t) + w12(t) = 1 and w21(t) + w22(t) = 1.
Then the Hamiltonian for the optimal control problem is

H1(m1(t), λ1(t), w11(t), t) = c11x1(t) + c12w11(t) + λ1(t)x1(t), 0 ≤ t ≤ t1

H2(m2(t), λ2(t), w21(t), t) = c21x2(t) + c22w21(t) + λ2(t)x2(t), t1 ≤ t ≤ T,

The adjoint variable λ1(t) and λ2(t) are given by

d
dt

λ1(t) = λ̇1(t) = w11(t)(c11 + λ1(t))(b1 + c1), 0 ≤ t ≤ t1 (32)

d
dt

λ2(t) = λ̇2(t) = w21(t){c21(t) + λ2(t)}{c2 − b2

(
1 − 2m2(t)

a2(t)

)
}, t1 ≤ t ≤ T (33)

with the terminal condition λ2(T) = 0, which on simplifying will give

λ1(t1) = λ1(0) +
∫ t1

o
w11(t)(c11 + λ1(t))(b1 + c1)dt (34)

λ2(t1) =
∫ T

t1

w21(t){c21 + λ2(t)}{b2

(
1 − 2m2(t)

a2(t)

)
− c2}dt. (35)

The necessary conditions for optimality are

∂H1

∂w11
= 0, 0 ≤ t ≤ t1 (36)

∂H2

∂w21
= 0, t1 ≤ t ≤ T (37)

which will give

H1w11 = (c11 + λ1(t))(b1(a1(t)− m1(t))− c1m1(t)) + c12, 0 ≤ t ≤ t1,

and

H2w21 = (c21 + λ2(t))(b2
m2(t)
a2(t)

(a2(t)− m2(t))− c2m2(t)) + c22, t1 ≤ t ≤ T.

where H1w11 = ∂H1
∂w11

and H2w21 = ∂H2
∂w21

.
The Hamiltonian in equation (15) is linear in w11(t) and w21(t), respectively. So we have the

following bang-bang solution for w11(t) and w21(t) to minimize the Hamiltonian. Therefore, we
obtain w11(t) and w21(t) as

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

248

(i) If 0 ≤ t ≤ t1,

w∗
11(t) =

1, if H1w11 > 0
undefined, if H1w11 = 0
0, if H1w11 < 0.

(38)

If the marginal value of the testing effort H1w11 is positive, then maximum possible testing
effort is w11(t) = 1 because Hamiltonian H1 is linear in control variable w11(t). If H1w11 is
negative, then minimum testing effort is w11(t) = 0 i.e. all effort should be allocated to
debugging. If H1w11 = 0, then the testing effort w11(t) need not be determined from the
condition H1w11 = 0.

(ii) If t1 ≤ t ≤ T,

w∗
21(t) =

1, if H2w21 > 0
undefined, if H2w21 = 0
0, if H2w21 < 0.

(39)

Similarly, if the marginal value of the testing effort H2w21 is positive, then maximum possible
testing effort is w21(t) = 1 because Hamiltonian H2 is linear in control variable w21(t). If
H2w21 is negative, then minimum testing effort is w21(t) = 0 i.e. all effort should be allocated
to debugging. If H2w21 = 0, then the testing effort w21(t) need not be determined from the
condition H2w21 = 0.

Case-II. Researchers have been proposed the effect of the experience curve in SRGM. Kapur et al.
[31] used Pegels’ form [43] as debugging cost function. In this case, we consider that the total
cost per unit fault removed is a quadratic function of the debugging efforts, i.e.

c11(t) = c̃11(w12(t))2 and c21(t) = c̃21(w22(t))2. (40)

Then the Hamiltonian (15) will reduce to

H1(m1(t), λ1(t), w11(t), t) = c11(t)x1(t) + c12w11(t) + λ1(t)x1(t), 0 ≤ t ≤ t1

H2(m2(t), λ2(t), w21(t), t) = c21(t)x2(t) + c22w21(t) + λ2(t)x2(t), t1 ≤ t ≤ T.

From the necessary condition of optimality described by (22) and (23) , we obtain

w12(t) =

√
λ1(t)(c1m1(t)− b1(a1(t)− m1(t)))− c12

c̃11(b1(a1(t)− m1(t))− c1m1(t))
, 0 ≤ t ≤ t1, (41)

w22(t) =

√√√√√λ2(t)(c2m2(t)− b2(
m2(t)
a2(t)

)(a2(t)− m2(t)))− c22

c̃21(b2(
m2(t)
a2(t)

)(a2(t)− m2(t))− c2m2(t))
, t1 ≤ t ≤ T. (42)

Therefore, the optimal policy for w11(t) and w21(t) using equations (8) and (9), can be expressed
as

w11(t) = 1 −

√
λ1(t)(c1m1(t)− b1(a1(t)− m1(t)))− c12

c̃11(b1(a1(t)− m1(t))− c1m1(t))
, 0 ≤ t ≤ t1, (43)

w21(t) = 1 −

√√√√√λ2(t)(c2m2(t)− b2(
m2(t)
a2(t)

)(a2(t)− m2(t)))− c22

c̃21(b2(
m2(t)
a2(t)

)(a2(t)− m2(t))− c2m2(t))
, t1 ≤ t ≤ T. (44)

6. Numerical Analysis

In this section, different optimal policies have been discussed on the proposed model using a
numerical example. This study aims to get some view into the result and study the impact of
change in efforts on the model’s total cost.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

249

Our first objective is to find the change point. We have taken PL/I database application
software data, given in Table 1, which was studied by Ohba [13] to get the change point of the
model. Specifically, testing for the PL/I database application software ranges from week 1 to week
19, and a total of 328 errors are found. The discussed model in section-3 comprises two phases.
Generally, when the testing is carried out, the software developers team knows the change point
t1. But here, we don’t know the value of t1. Therefore, we first need to determine the value of t1
in the model validation.

Weeks
Cumulative
execution time
(CPU hours)

Cumulative
number of
detected faults

Weeks
Cumulative
execution time
(CPU hours)

Cumulative
number of
detected faults

1 2.45 15 11 26.23 233
2 4.9 44 12 27.67 255
3 6.86 66 13 30.93 276
4 7.84 103 14 34.77 298
5 9.52 105 15 38.61 304
6 12.89 110 16 40.91 311
7 17.1 146 17 42.67 320
8 20.47 175 18 44.66 325
9 21.43 179 19 47.65 328
10 23.35 206

Table 1: Data set (Failure data from PL/I database application [13])

To determine the value of t1, we shall use the software failure increasing rate concept which is
given by

y′(t) = lim
∆t→0

y(t + ∆t)− y(t)
∆t

. (45)

For different value of ∆t, the pattern of y′(t) is shown in Figure 2. We know that y′(t) increases
until it reached its optimum due to the tester’s growing fault correction experience. Afterwards, it
starts to decline to stabilize the rate. A similar trend will be showing again for fault correction of
another type of faults. From Figure 2, we conclude that the optimum value for failure increasing
rate in phase-I is obtained at t = 6 and phase-II at t = 9. Therefore, we get the change point at
t1 = 7.

Figure 2: Software failure rate with respect to time t.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL
S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

250

From the above analysis, we have concluded that the change point t1 occurs at 7. For t1 = 7,
the software failure in phase-I and phase-II is defined when t ∈ [0, 7] and t ∈ [7, 19] respectively.

We discuss briefly the comparative analysis of the proposed SRGM with different testing
efforts. The common criteria used to compare the model are the mean-squared error (MSE), the
predictive-ratio risk (PRR) and the predictive power (PP), and the results are shown in Table 2.

The MSE measures the deviation between the predicted values with the actual data and is
defined as:

MSE =
1
n

n

∑
i=1

(m(ti)− yi)
2,

where n is the number of observations in the model. The PRR measures the distance of model
estimates from the actual data against the model estimate which is given by

PRR =
n

∑
i=1

(
m(ti)− yi

m(ti)

)2

,

whereas the PP measures the distance of model estimates from the actual data against the actual
data and is defined as

PP =
n

∑
i=1

(
m(ti)− yi

yi

)2

.

w11(t) = 0.5,
w21(t) = 0.6

w11(t) = 0.6,
w21(t) = 0.7

w11(t) = 0.7,
w21(t) = 0.8

w11(t) = 0.8,
w21(t) = 0.9

MSE 758.15 428.54 292.29 46.57
PRR 0.5001 0.3408 0.5849 0.1982
PP 0.4588 0.3881 0.3934 0.4087

Table 2: Model parameters comparison criteria

We have estimated different model parameters using Excel 2019. The estimated parameters
(a, α, b1, c1, b2 and c2) and the hypothetical value of the other parameters are presented in Table 3.

Parameter
w11(t) = 0.5,
w21(t) = 0.6

w11(t) = 0.6,
w21(t) = 0.7

w11(t) = 0.7,
w21(t) = 0.8

w11(t) = 0.8,
w21(t) = 0.9

a 380 440 450 454
α 0.02 0.016 0.018 0.015
b1 0.109 0.085 0.075 0.072
c1 0.0573 0.0496 0.046 0.032
b2 0.4889 0.4718 0.465 0.3354
c2 0.0135 0.0644 0.0644 0.0185
c̃11 500 950 1950 2200
c̃21 1100 3800 15000 220000
c12 8500 21000 25000 30000
c22 5000 12000 13000 15000

Table 3: Value of parameters for different w11(t) and w21(t).

In this analysis, we have discussed the significance of allocation of testing efforts w11(t) and
w21(t). Figure 3 describe the relationship between the cumulative number of faults removed
versus time. It shows that the increase in the testing efforts w11(t) and w21(t) will increase the
number of faults removed. It has been seen that when the value of w11(t) and w21(t) gradually
increases, the rate of fault removal increases.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

251

Figure 3: Cumulative number of faults removed vs time

The analysis is also done to show how the debugging cost impacts the future cost to remove
one fault and also indicates that decreasing the debugging efforts w12(t) and w22(t) will lead to
a depletion in the total debugging cost. The pattern is shown in Figure 4, which says that the
co-state variable decreases with time and approaches zero.

Figure 4: Shadow cost vs time

In the analysis, a reduction in the total debugging cost is observed when the debugging effort
decreases and hence the rate of increase of the total expenditure is reduced. Also, it shows how
the Hamiltonian (H) that is the sum of testing and debugging cost, starts decreasing after some
time. In short, Hamiltonian represents the instantaneous total cost of the model at time t. The
results are shown in Table 4, and the total developmental cost of the SRGM with different testing
efforts are 93469, 247329, 357569 and 734065, respectively.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

252

Time
(Weeks)

Total Cost
(w11(t) = 0.5,
w21(t) = 0.6)

Total Cost
(w11(t) = 0.6,
w21(t) = 0.7)

Total Cost
(w11(t) = 0.7,
w21(t) = 0.8)

Total Cost
(w11(t) = 0.8,
w21(t) = 0.9)

1 4886 13516 18628 25407
2 4900 13532 18651 25413
3 4915 13550 18675 25418
4 4932 13569 18702 25425
5 4950 13590 18731 25431
6 4970 13612 18763 25437
7 4991 13637 18798 25444
8 5171 14009 23142 62883
9 5371 14329 23702 63850
10 5488 14419 23594 62797
11 5507 14270 22849 59895
12 5429 13910 21611 55575
13 5270 13393 20086 50399
14 5054 12786 18477 44925
15 4806 12150 16942 39606
16 4552 11536 15577 34744
17 4307 10974 14422 30501
18 4083 10482 13482 26925
19 3887 10065 12737 23990

Table 4: Total Cost (Testing cost and debugging cost)

7. Conclusions and future work

In this article, we have presented a resource allocation technique considering a two-phase software
reliability growth model with testing effort, change-point, and imperfect debugging. Numerical
simulations are done which support the accuracy of our proposed model. We have given an
insight into how to find the change point. Generally, the software developers team knows the
change point of real software testing. This paper aims to calculate the total cost of the software
using two-phase SRGM. We have proposed the theoretical results using optimal control theory,
and a different approach is used to allocate testing resources optimally. We can control the testing
efforts when the company switches from one testing strategy to another. We observed from the
graph of the future cost of detection that it eventually reaches zero with time. Moreover, from
the graph of shadow cost of correction, we observed that, as time increases, the shadow cost
decreases and tends to zero. The variation in cost with the change in various model parameters
has also been depicted.

In contrast with the other studies, we proposed the theoretical results to find the change point
from one testing strategy to another using optimal control theory. But in this paper, experimental
data analysis is utilized to determine the change point. We have used the failure increasing rate
function to find the change point. To propose a more realistic SRGM, more information is needed
by software managers. In this direction, the stochastic model for fault detection and correction
can be used for future work. We can also extend the proposed model by incorporating different
fault content functions. All these issues may be part of further work.

References

[1] Musa, J. D. (1980). The measurement and management of software reliability. Proceedings of
the IEEE, 68(9), pp. 1131-1143.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

253

[2] Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for software
reliability and other performance measures. IEEE transactions on Reliability, 28(3), pp. 206-211.

[3] Ohba, M., & Yamada, S. (1984). S-shaped software reliability growth models. In International
Colloquium on Reliability and Maintainability, 4 th, Tregastel, France, pp. 430-436.

[4] Yamada, S., Tokuno, K., & Osaki, S. (1992). Imperfect debugging models with fault introduc-
tion rate for software reliability assessment. International Journal of Systems Science, 23(12), pp.
2241-2252.

[5] Ohba, M. (1984). Software reliability analysis models. IBM Journal of research and Development,
28(4), pp. 428-443.

[6] Li, Q., & Pham, H. (2017). NHPP software reliability model considering the uncertainty of
operating environments with imperfect debugging and testing coverage. Applied Mathematical
Modelling, 51, pp. 68-85.

[7] Pham, H. (1996). A software cost model with imperfect debugging, random life cycle and
penalty cost. International Journal of Systems Science, 27(5), pp. 455-463.

[8] Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and applications.
IEEE Transactions on Software Engineering, (12), pp. 1431-1437.

[9] Kareer, N., Kapur, P. K., & Grover, P. S. (1990). An S-shaped software reliability growth
model with two types of errors. Microelectronics Reliability, 30(6), pp. 1085-1090.

[10] Pham, H. (2016). A generalized fault-detection software reliability model subject to random
operating environments. Vietnam Journal of Computer Science, 3(3), pp. 145-150.

[11] Kapur, P. K., Pham, H., Anand, S., & Yadav, K. (2011). A unified approach for developing soft-
ware reliability growth models in the presence of imperfect debugging and error generation.
IEEE Transactions on Reliability, 60(1), pp. 331-340.

[12] Kapur, P. K., Pham, H., Aggarwal, A. G.,& Kaur, G. (2012). Two dimensional multi-release
software reliability modeling and optimal release planning. IEEE Transactions on Reliability,
61(3), pp. 758-768.

[13] Lo, J. H., & Huang, C. Y. (2006). An integration of fault detection and correction processes in
software reliability analysis. Journal of Systems and Software, 79(9), pp. 1312-1323.

[14] Pham, H., & Zhang, X. (1997). An NHPP software reliability model and its comparison.
International Journal of Reliability, Quality and Safety Engineering, 4(3), pp. 269-282.

[15] Pham, H. (2007). An imperfect-debugging fault-detection dependent-parameter software.
International Journal of Automation and Computing, 4(4), pp. 325.

[16] Kumar, V., Singh, V. B., Dhamija, A., & Srivastav, S. (2018). Cost-reliability-optimal release
time of software with patching considered. International Journal of Reliability, Quality and
Safety Engineering, 25(04), pp. 1850018.

[17] Kumar, V., Sahni, R., & Shrivastava, A. K. (2016). Two-dimensional multi-release software
modelling with testing effort, time and two types of imperfect debugging. International
Journal of Reliability and Safety, 10(4), pp. 368-388.

[18] Huang, C. Y., & Lin, C. T. (2006). Software reliability analysis by considering fault dependency
and debugging time lag. IEEE Transactions on reliability, 55(3), pp. 436-450.

[19] Yamada, S., Ohtera, H., & Narihisa, H. (1986). Software reliability growth models with
testing-effort. IEEE Transactions on Reliability, 35(1), pp. 19-23.

[20] Musa, J. D., Iannino, A., & Okumoto, K. (1990). Software reliability. Advances in computers, 30,
pp. 85-170.

[21] Kapur, P. K., Goswami, D. N., Bardhan, A., & Singh, O. (2008). Flexible software reliability
growth model with testing effort dependent learning process. Applied Mathematical Modelling,
32(7), pp. 1298-1307.

[22] Chang, Y. P. (2001). Estimation of parameters for nonhomogeneous Poisson process: Software
reliability with change-point model. Communications in Statistics-Simulation and Computation,
30(3), pp. 623-635.

[23] Huang, C. Y., & Kuo, S. Y. (2002). Analysis of incorporating logistic testing-effort function
into software reliability modeling. IEEE Transactions on reliability, 51(3), pp. 261-270.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

254

[24] Kapur, P. K., Goswami, D. N., & Gupta, A. (2004). A software reliability growth model with
testing effort dependent learning function for distributed systems. International Journal of
Reliability, Quality and Safety Engineering, 11(04), pp. 365-377.

[25] Jin, C., & Jin, S. W. (2016). Parameter optimization of software reliability growth model with
S-shaped testing-effort function using improved swarm intelligent optimization. Applied Soft
Computing, 40, pp. 283-291.

[26] Huang, C. Y., Lyu, M. R., & Kuo, S. Y. (2003). A unified scheme of some nonhomogenous
poisson process models for software reliability estimation. IEEE transactions on Software
Engineering, 29(3), pp. 261-269.

[27] Huang, C. Y., Kuo, S. Y., & Lyu, M. R. (2007). An assessment of testing-effort dependent
software reliability growth models. IEEE transactions on Reliability, 56(2), pp. 198-211.

[28] Huang, C. Y., Lin, C. T., Kuo, S. Y., Lyu, M. R., & Sue, C. C. (2004, September). Software
reliability growth models incorporating fault dependency with various debugging time lags.
In Proceedings of the 28th Annual International Computer Software and Applications Conference,
COMPSAC 2004, IEEE, pp. 186-191.

[29] Kapur, P. K., Gupta, A., Shatnawi, O., & Yadavalli, V. S. S. (2006). Testing effort control
using flexible software reliability growth model with change point. International Journal of
Performability Engineering, 2(3), pp. 245.

[30] Shyur, H. J. (2003). A stochastic software reliability model with imperfect-debugging and
change-point. Journal of Systems and Software, 66(2), pp. 135-141.

[31] Kapur, P. K., Pham, H., Chanda, U., & Kumar, V. (2013). Optimal allocation of testing effort
during testing and debugging phases: a control theoretic approach. International Journal of
Systems Science, 44(9), pp. 1639-1650.

[32] Kapur, P. K., Pham, H., Kumar, V., & Anand, A. (2012). Dynamic optimal control model
for profit maximization of software product under the influence of promotional effort. The
Journal of High Technology Management Research, 23(2), pp. 122-129.

[33] Kumar, V., & Sahni, R. (2016). An effort allocation model considering different budgetary
constraint on fault detection process and fault correction process. Decision Science Letters, 5(1),
pp. 143-156.

[34] Kumar, V., Kapur, P. K., Taneja, N., & Sahni, R. (2017). On allocation of resources during
testing phase incorporating flexible software reliability growth model with testing effort
under dynamic environment. International Journal of Operational Research, 30(4), pp. 523-539.

[35] Kumar, V., Khatri, S. K., Dua, H., Sharma, M., & Mathur, P. (2014). An assessment of testing
cost with effort-dependent fdp and fcp under learning effect: a genetic algorithm approach.
International Journal of Reliability, Quality and Safety Engineering, 21(06), pp. 1450027.

[36] Ji, Y., Mookerjee, V. S., & Sethi, S. P. (2005). Optimal software development: A control
theoretic approach. Information Systems Research, 16(3), pp. 292-306.

[37] Ji, Y., Kumar, S., Mookerjee, V. S., Sethi, S. P., & Yeh, D. (2011). Optimal enhancement
and lifetime of software systems: A control theoretic analysis. Production and Operations
Management, 20(6), pp. 889-904.

[38] Kumar, V., & Sahni, R. (2020). Dynamic testing resource allocation modeling for multi-release
software using optimal control theory and genetic algorithm. International Journal of Quality
& Reliability Management, 37(6/7), pp. 1049-1069.

[39] Yamada, S., & Osaki, S. (1987). Optimal software release policies with simultaneous cost and
reliability requirements. European Journal of Operational Research, 31(1), pp. 46-51.

[40] Zhu, M., & Pham, H. (2018). A two-phase software reliability modeling involving with
software fault dependency and imperfect fault removal. Computer Languages, Systems &
Structures, 53, pp. 27-42.

[41] Naidu, D. S. (2002). Optimal control systems. CRC press.
[42] Kamien, M. I., & Schwartz, N. L. (2012). Dynamic optimization: the calculus of variations and

optimal control in economics and management. Courier Corporation.
[43] Pegels, C. C. (1969). On startup or learning curves: An expanded view. AIIE Transactions,

1(3), pp. 216-222.

S.K. Pradhan, A. Kumar and V. Kumar
AN OPTIMAL RESOURCE ALLOCATION MODEL

RT&A, Special Issue No 2(64),
Volume 16, November 2021

255

