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Abstract

This article introduces a class of generator for enhancing the performance, productivity and flexibility
of statistical distributions called the exponential Inverted Marshall-Olkin-G (EMA-G) distribution.
The characteristics of the new class of generator were obtained and examined. Some special models of
the proposed model were investigated. The Bernstein function of the EMA-G model was also obtained
in a closed form. The maximum likelihood method was adopted to obtain the parameters estimate of
the formulated EMA-G distribution model. The flexibility, productivity, tractability, applicability and
viability of the new contemporary class of distribution were examined by Monte Carlo simulation. A two
real life data sets was used to illustrate the empirical performance and flexibility, productivity, tractability
of the generator. The up-to-the-minute outcomes of the new generator indicated that the EMA-G density
gives a better fit compare to some existing statistical generators in literature using their goodness-of-fit.

Keywords: Bernstein function, Exponential distribution, Generating function, Generator, Marshall-
Olkin characterization, Vehicle fatalities.

1. Introduction

Statistical distributions have unraveled the behaviour, characteristics and nature of life time
processes. However, these scenarios depend on the flexibility, productivity, performance and
tractability of the underlying probability used in analysing these processes. Hence, the per-
formance, productiveness and flexibility can be enhanced either by adding a new parameter
or compounding the probability density function (pdf) involved. One of such methods for
high productivity is using the T-X family approach called exponential Inverted Marshall-Olkin
generator(EMA-G) distribution. This method negates the exponentiated method in existing
literature by using the T-X approach in developing the underlying exponential generator.

Despite the emerging statistical generators in literature, newer generators are still being
proposed to improve productivity and performance of lifetimes scenarios. However, many
models have been proposed in literature. These include the works of [3] who proposed the
Gompertz-G model. [17] proposed the logistic-X generator. [8] proposed the Weibull-G generator.
[9] proposed the Kumaraswamy-G generator. [10] proposed the alpha power Marshall-Olkin-G
generator. [11] proposed the transmuted alpha power-G generator. [14] proposed the alpha
power transformation method of adding a new parameter. The beta transmuted-H generator was
proposed in [1]. Kumaraswamy Marshall-Olkin generator was proposed in [2]. [4] proposed the
transmuted Weibull-G generator. The transmuted odd log-logistic-G generator was proposed
in [5]. [6] proposed the log-gamma family of distributions. The exponentiated generalized-G
Poisson generator was proposed in [7]. [12] proposed the bivariate Gumbel-G generator. [16]
proposed the Topp Leone odd Lindley-G generator. Marshall-Olkin generalized-G generator
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was proposed in [20]. The transmuted Topp-Leone-G generator was proposed in [18]. Burr-X
generator was proposed in [19]. Of most important is the works of [13] who proposed the
exponentiated generalized Marshall-Olkin distribution. However, the exponentiated family of
distribution is contrary and different from the EMA-G family of distributions.

Thus, [15] proposed a one parameter model for adding a contemporary parameter with a pdf
g(t) = dG

dt such that G(t) is associated cdf for a random variable t. Then, its pdf can be expressed
as

g(t) =
βm(t)[

1− β̄M̄(t)
]2 f or β > 1, (1)

with a tilt parameter β̄ = (1− β) and M̄(t) = 1−M(t). The cumulative distribution function
(cdf) that corresponds to Equation (1) is expressed as

G(t) =
M(t)[

1− β̄M̄(t)
] f or β > 1. (2)

Redefining (1) and (2), we have the inverted Marshall-Olkin cdf and pdf as

M(t) =
βG(t)(

1− β̄G(t)
) . (3)

and
m(t) = β−1g(t)

(
1− β̄M(t)

)2 f or β > 1, (4)

where g(t) and G(t) are the parents pdf and cdf.
However, using the T-X characterization proposed by [3], the pdf of the exponential-G can be

expressed as
g(t) = α f (t)F̄(t)α−1 f or α > 0. (5)

The cdf that corresponds to Equation (3) is expressed as

G(t) = 1− F̄(t)α f or α > 0. (6)

The study introduces a generator for enhancing the performance and flexibility of distribution
with a better goodness-of-fit to real life data. The EMA-G model was applied to the Weibull,
Burrxii and Frechet distributions in a bid to investigate their performance and flexibility with glass
fibers data obtained from the UK National Physical Laboratory, breaking stress of carbon fiber data
and data from the Highway Traffic Safety Administration of accidents fatality rate in the United
States real life data (Vehicle fatalities in South Caroline for 2012, www.fars.nhtsa.dot.gov/states).
It is also motivated as a result of inefficiency in researched existing literature in distribution
theory and some results obtained from Weibull Frechet, Gompertz Weibull, Gompertz Burrxii,
transmuted Gompertz, Gompertz Frechet, Kumaraswamy Frechet models and to mention but for
a few.

The aim of this study is to introduce a new class of generator called the exponential Marshall-
Olkin-G (EMA-G) distribution using both the T-X and Marshall-Olkin characterizations that is
different from the exponentiated generalized Marshall-Olkin of [13].

2. The EMA-G method

Let g(t) and G(t) be the pdf and cdf of the Marshall-Olkin distribution respectively for a random
variable T ∈ <. Then, the pdf of the new class of generator is defined as

f (t) = αβα m(t)[1−M(t)]α−1

[β + (1− β)M(t)]α+1 , α > 0 β > 1, (7)

with a baseline cdf and pdf given as M(t) and m(t) respectively. The cdf of Equation (5) is defined
as

F(t) = 1−
[

β(1−M(t))
β + (1− β)M(t)

]α

, α > 0 β > 1. (8)
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However, when β = 1 , α > 0, we obtained the exponential-G family of distribution. Also,
when β > 1 , α = 0, we obtained the usual Marshall-Olkin transformation of adding a one
parameter.

The survival rate, hazard rate, cumulative hazard rate, odd and reversed hazard rate functions
of the EMA-G distribution can be expressed respectively as

S(t) =
[

β(1−M(t))
β + (1− β)M(t)

]α

,

h(t) =
α m(t)[

1−M(t)
][

β + (1− β)M(t)
] ,

H(t) = −α

[
log(β(1−M(t)))− log(β + (1− β)M(t))

]
,

O(t) =
1−

[
β(1−M(t))

β+(1−β)M(t)

]α

[
β(1−M(t))

β+(1−β)M(t)

]α ,

and

r(t) =
αβα m(t)[1−M(t)]α−1

[β+(1−β)M(t)]α+1

1−
[

β(1−M(t))
β+(1−β)M(t)

]α .

The quantile function tu for a given EMA-G density when u ∈ (0, 1) is defined as

tu = M−1β(1− (1− u)
1
α )(β + (1− u)

1
α (1− β))−1. (9)

The skewness and kurtosis of the EAP-G density can be obtained respectively as

SK(tu) =
t0.25 + t0.75 − 2t0.5

t0.75 − t0.25
,

KU(tu) =
t0.875 + t0.125 − t0.625 − t0.375

t0.75 − t0.25
.

The performance of the skewness and kurtosis of the EMA-G models are given in Table 1
with the skewness as (SK), kurtosis denoted as (KU), 25th percent as (Q1), the median as (M),
and the 75th percent as (Q3) for some EMA-G models. The data set were generated with the
quantile function given in Equation (7) with different parameter values cases. The simulation
sub-model are Weibull, Burrxii and Frechet. The results of the simulation show that increase
in parameter estimates increases the skewness and kurtosis and decreases the median and the
quarters for Weibull, Burrxii and Frechect models. However, increase in parameter estimate
increases the quarters in Weibull, Frechet and Burrxii models. The EMA-G Burrxii model is left
skewed. Otherwise right skewed and the parameter values increases. The kurtosis increases as
parameter increases.
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Table 1: Results for goodness-of-fit with skewness, kurtosis, first quantile, median and third quantile for different
parament values cases for the EMA-G models

Distribution Parameter SK KU Q1 M Q3
α β λ µ

Weibull 0.5 1.0 0.5 0.5675 1.6591 0.6620 3.8436 15.3745
1.5 1.0 0.2136 0.4911 0.8109 1.8325 3.4094
2.0 2.0 0.5 0.0258 0.0631 1.0384 1.5536 2.0962
3.5 3.0 -0.0584 -0.0987 1.3414 1.7297 2.0751
5.0 5.0 -0.1064 -0.1864 1.5269 1.7783 1.9814
10.0 8.0 -0.1474 -0.2556 1.7290 1.8931 2.0150

1.5 1.0 0.5 0.5675 1.6591 0.1324 0.7687 3.0748
1.5 1.0 0.2136 0.4911 0.1621 0.3665 0.6818
2.0 2.0 2.5 0.0258 0.0631 0.2076 0.3107 0.4192
3.5 3.0 -0.0584 -0.0987 0.2682 0.3459 0.4150
5.0 5.0 -0.1064 -0.1864 0.3053 0.3556 0.3962
10.0 8.0 -0.1474 -0.2556 0.3458 0.3786 0.4030

2.5 1.0 0.5 0.5675 1.6591 0.0662 0.3843 1.5374
1.5 1.0 0.2136 0.4911 0.0810 0.1832 0.3409
2.0 2.0 5.0 0.0258 0.0631 0.1038 0.1553 0.2096
3.5 3.0 -0.0584 -0.0987 0.1341 0.1729 0.2075
5.0 5.0 -0.1064 -0.1864 0.1526 0.1778 0.1981
10.0 8.0 -0.1474 -0.2556 0.1729 0.1893 0.2015

Burrxii 0.5 1.0 0.5 0.9932 257.8495 4.6677 225.00 65025
1.5 1.0 0.8000 5.1096 0.2500 2.2500 20.25
2.0 2.0 0.5 0.5992 1.9455 0.0208 0.1240 0.5358
3.5 3.0 0.5141 1.4381 0.0111 0.0579 0.2035
5.0 5.0 0.4690 1.2171 0.0028 0.0138 0.0442
10.0 8.0 0.4122 1.0082 0.0015 0.0070 0.0201

1.5 1.0 0.5 0.5922 2.6458 1.3608 2.9541 9.1752
1.5 1.0 0.2162 0.5446 0.7578 1.1760 1.8250
2.0 2.0 2.5 0.0621 0.1398 0.4609 0.6587 0.8827
3.5 3.0 0.0099 0.0311 0.4072 0.5656 0.7273
5.0 5.0 -0.0182 -0.0243 0.3093 0.4247 0.5360
10.0 8.0 -0.0487 -0.0799 0.2753 0.3711 0.4580

2.5 1.0 0.5 0.4070 1.2491 1.1665 1.7187 3.0290
1.5 1.0 0.1094 0.2515 0.8705 1.0844 1.3509
2.0 2.0 5.0 -0.0182 -0.0287 0.6789 0.8116 0.9395
3.5 3.0 -0.0617 -0.1093 0.6381 0.7521 0.8528
5.0 5.0 -0.0859 -0.1521 0.5562 0.6517 0.7321
10.0 8.0 -0.1112 -0.1945 0.5246 0.6091 0.6767

Frechet 0.5 1.0 0.5 0.9109 16.6310 0.7316 6.0414 120.0417
1.5 1.0 0.7497 4.5117 0.8285 3.8322 24.8331
2.0 2.0 0.5 0.6019 2.3041 0.9609 3.1910 12.1653
3.5 3.0 0.5644 1.9297 1.6578 5.4552 19.0959
5.0 5.0 0.5134 1.5901 2.2939 6.8833 21.1601
10.0 8.0 0.5063 1.5110 4.6143 14.4425 44.4367
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Table 1 – Continued from previous page
Distribution Parameter SK KU Q1 M Q3

α β λ µ

1.5 1.0 0.5 0.4075 1.2536 0.5395 0.8230 1.4963
1.5 1.0 0.2640 0.6746 0.9630 1.3082 1.9011
2.0 2.0 2.5 0.1796 0.4158 1.7272 2.1958 2.8697
3.5 3.0 0.1465 0.3277 2.6644 3.3811 4.3439
5.0 5.0 0.1214 0.2635 4.2785 5.3301 6.6723
10.0 8.0 0.1052 0.2254 7.1662 9.0032 11.2725

2.5 1.0 0.5 0.2934 0.7643 0.5194 0.6414 0.8649
1.5 1.0 0.1826 0.4294 0.9813 1.1437 1.3788
2.0 2.0 5.0 0.1174 0.2589 1.8586 2.0956 2.3957
3.5 3.0 0.0862 0.1864 2.8272 3.1848 3.6099
5.0 5.0 0.0663 0.1405 4.6252 5.1624 5.7759
10.0 8.0 0.0490 0.1042 7.5716 8.4868 9.4963

In Table 1, increase in parameter decreases the skewness, kurtosis and the quartiles with
EMA-GWb model.

Theorem 1. The EMA-G density behaviour can be examined by investigating the characteristics
of f (t), W ′(t) and W ′′(t); where W(t) = In f (t).

Proof. Given that W(t) = In f (t), then

W(t) = α log β + log α + log m(t) + (α− 1) log(1−M(t))− (α + 1) log(β + (1− β)M(t)).

Thus,

W ′(t) =
m′(t)
m(t)

− (α− 1)m(t)
1−M(t)

− (α + 1)
(1− β)m(t)

β + (1− β)M(t)
.

However, F(t) is monotonically decreasing for all t if W ′ < 0 for all t. The mode is obtained when
W ′′ for α, β. More so, if f (t)′′ changes sign from negative to positive and to negative and again
positive as t increases viz-a-viz, then, the pdf of the EMA-G distribution will be bimodal. �

3. Special models

Some examples of the EMA-G family of distributions will be investigated for various parameter
cases. This is to enable us examine the model performance, flexibility and the goodness-of-fit.
The models examined include the Weibull (Wb), Frechet (F) and Burrxii (Br) distributions.

3.1. The EMA-GWb distribution

Let T be a random variable with the pdf and cdf (for t ≥ 0), say m(t) = λµλtλ−1exp(−(µt)λ) and
M(t) = 1− exp(−(µt)λ) respectively, (for µ > 0, λ > 0) of the Weibull density function. Then,
the pdf,cdf and hazard rate function of the EMA-GWb distribution for are expressed respectively
as

f (t) = αβα λµλtλ−1exp(−(µt)λ)[exp(−(µt)λ)]α−1

[β + (1− β)(1− exp(−(µt)λ))]α+1 , α > 0 β > 1, (10)

The corresponding cdf is defined as

F(t) = 1−
[

β(exp(−(µt)λ))

β + (1− β)(1− exp(−(µt)λ))

]α

, α > 0 β > 1, (11)
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and

h(t) =
α λµλtλ−1exp(−(µt)λ)[

exp(−(µt)λ)

][
β + (1− β)(1− exp(−(µt)λ))

] . (12)

Figure 1 shows the density functions for the EMA-GWb density for selected values of parame-
ters α, β, λ and µ. The plot in Figure 1 shows that the EMA-GWb density could be increasing,
decreasing or skewed depending on the values of the parameters.
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Figure 1: The plots of the EMA-GWb model for some parameter values cases

3.2. The EMA-GBr distribution

Let the pdf and cdf say (for λ > 0, µ > 0) of the Burrxii density be m(t) = λµtµ−1(1 + tµ)−(λ+1)

and M(t) = 1− (1 + tµ)−λ, respectively. Then, the pdf, cdf and hazard rate function of the
EMA-GBr density are expressed respectively as

f (t) = αβα λµtµ−1(1 + tµ)−(λ+1)[(1 + tµ)−λ]α−1

[β + (1− β)(1− (1 + tµ)−λ)]α+1 , α > 0 β > 1, (13)

The corresponding cdf is defined as

F(t) = 1−
[

β((1 + tµ)−λ)

β + (1− β)(1− (1 + tµ)−λ)

]α

, α > 0 β > 1, (14)
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and

h(t) =
α λµtµ−1(1 + tµ)−(λ+1)[

(1 + tµ)−λ

][
β + (1− β)M(t)

] . (15)
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Figure 2: The plots of the EMA-GBr model for some parameter values cases

Figure 2 shows the EMA-GBr density plot for selected values of parameters α, β, λ and µ. The
plot shows that the EMA-GBr density is increasing and decreasing.

3.3. The EMA-GF distribution

Let the pdf of the Frechet is expressed as m(t) = µλµt−µ−1e−(
λ
t )

µ
and the cdf as M(t) = e−(

λ
t )

µ

for positive parameters λ and µ. Then the pdf, cdf and hazard rate function of the EMA-GFr
model α ∈ <− {1} are expressed respectively as

f (t) = αβα µλµt−µ−1e−(
λ
t )

µ
[1− e−(

λ
t )

µ
]α−1

[β + (1− β)e−(
λ
t )

µ
]α+1

, α > 0 β > 1, (16)

The corresponding cdf is defined as

F(t) = 1−
[

β(1− e−(
λ
t )

µ
)

β + (1− β)e−(
λ
t )

µ

]α

, α > 0 β > 1, (17)
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and

h(t) =
α µλµt−µ−1e−(

λ
t )

µ[
1− e−(

λ
t )

µ

][
β + (1− β)e−(

λ
t )

µ

] . (18)
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Figure 3: The plots of the EMA-GF model for some parameter values cases

Figure 3 shows the density functions for selected values of parameters β, α, λ and µ. The
density plot shows that the EMA-GFr distribution can be increasing, decreasing or unimodal and
skewed to the left.

4. Statistical useful representation

A useful representation of the EMA-G family of distributions will be derived in this section. The
representation is used to study the statistical characteristics of the EMA-G distribution. This
representation will help to simplify the properties of the proposed EMA-G model. However,
for τ > 0, (a− b)τ = ∑τ

η=0(−1)η(τ
η)aτ−ηbη . Thus, the pdf and cdf of the EMA-G density can be

defined respectively as

f (t) =
∞

∑
r=0

α−1

∑
η=0

α(−1)η+r
(

α− 1
η

)(
α + r

r

)
β−r−1(1− β)rm(t)Mη+r(t) (19)

and

F(t) = 1−
∞

∑
r=0

α

∑
η=0

(−1)η+r
(

α

η

)(
α + r− 1

r

)
β−r(1− β)r Mη+r(t). (20)
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5. Statistical properties of the EMA-G distribution

This section investigated the statistical properties of the EMA-G family of distributions. These
properties include the moments, generating function, entropies, probability weighted moment,
moments of the residual and reversed residual lifes and order statistics.

5.1. The moments of the EMA-G distribution

The kth moment of the EMA-G density with random variable T for is expressed as

µ′k =
∞

∑
r=0

α−1

∑
η=0

Avior,η

∫ ∞

0
tkm(t)Mη+r(t)dt

=
∞

∑
r=0

α−1

∑
η=0

Avior,η Dt,

(21)

where

Avior,η = α(−1)η+r
(

α− 1
η

)(
α + r

r

)
β−r−1(1− β)r, Dt =

∫ ∞

0
tkm(t)Mη+r(t)dt.

The mean of Equation (21) is obtained when k = 1. The central moment of the random
variable T, say µψ and the cumulants (Koψ) of the random variable T can be obtained respectively
as

µψ =
ψ

∑
v=0

(−1)v
(

ψ

v

)
µ′v1 µ′ψ−r, (22)

and

Koψ = µ′ψ −
ψ−1

∑
v=0

(
ψ− 1
v− 1

)
Krµ′ψ−r, (23)

with Ko1 = µ′1.
The dth incomplete moment for, say ρd(s) of the EAP-G density can be obtained as

ρd(s) =
∞

∑
r=0

α−1

∑
η=0

Avior,η

∫ s

0
tsm(t)Mη+r(t)dt

=
∞

∑
r=0

α−1

∑
η=0

Avior,η Ds,

(24)

where
Ds =

∫ s

0
tsm(t)Mη+r(t)dt.

However, the Bonferroni and Lorenz curve can be obtained respectively as

B(p) =
ρ1(tp)

pµ′1
,

and

L(p) =
ρ1(tp)

µ′1
,

where tp is evaluated numerically from the quantile function in Equation (8) for probability p
More so, the mean deviation about the median, say M of T can be obtained as

δM =
∫ ∞

0
|T −M| f (t)dt = µ′1 − ρ1(M).

Also, the mean deviation about the mean of random variable T can be expressed

δµ =
∫ ∞

0
|T − µ′1| f (t)dt = 2µ′1F(µ′1)− ρ1µ′1,

with µ′1 = E[T] and F(µ′1) evaluated numerically from Equation (6).
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5.2. Probability weighted moments (PWM)

The estimate of the estimators of the parameters and the quantiles of the generalized distributions
can be derived using the PWMs of the EMA-G density. The (s, r)th PWM of T, say for s ≥ 0, r ≥ 1
is given as

PWMr,s =
∫ ∞

0
tr f (t)F(t)sdt

=
∞

∑
r=0

α

∑
η

Br,η Avior,η

∫ ∞

0
tsm(t)M(η+r)(φ+1)(t)dt

=
∞

∑
r=0

α

∑
η

Br,η Avior,ηQps

(25)

where

Br,η = (−1)η+r
(

α

η

)(
α + r− 1

r

)
β−r(1− β)r, Qp =

∫ ∞

0
tsm(t)M(η+r)(φ+1)(t)dt.

5.3. Generating function

The probability generating function of EMA-G density function of a random variable T is
expressed as

M(x) =
∞

∑
δ=0

(log x)δ

δ!

∫ ∞

1
tδ f (t)dt f or |x| > 1, t > 0

=
∞

∑
δ=0

∞

∑
r=0

α−1

∑
η=0

(log x)δ

δ!
Avior,η Lδ,

(26)

where
Lδ =

∫ ∞

1
tδm(t)Mη+r(t)dt.

More so, the moment generating function of the random variable T is given as

MT(x) =
∞

∑
r=0

α−1

∑
η=0

Avior,η Rψ (27)

where
Rψ =

∫ ∞

0
etxm(t)M(η+r)(φ+1)(t)dt.

5.4. Moments of the residual life and reversed residual life

The ηth moment of the residual life, say bη(x) = E[(T − x)η |T > x] for η = 1, . . . uniquely
determines M(t) (see [?]). However, the ηth moment of the residual life is given as

mη(x) =
1

1− F(x)

∞

∑
r=0

α−1

∑
η=0

η

∑
p=0

(−1)η−pxη−p
(

η

p

)
Avior,ηξp, (28)

where
ξp =

∫ ∞

x
tpm(t)Mη+r(t)dt.

Similarly, the ηth moment of the reversed residual life, say Mη(t) = E[(x− T)η |T ≤ x] for η > 0,
and η = . . . uniquely determines F(t) is given as

Mη(x) =
1

F(x)

∞

∑
r=0

α−1

∑
η=0

η

∑
u=0

(−1)η−uxη−u
(

η

u

)
Avior,ηϑu, (29)
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where
ϑu =

∫ x

0
tum(t)Mη+r(t)dt.

5.5. Order statistics

Let T1, T2, . . . , Tη is a random sample of size η from the f (t) distribution and T(1), T(2), . . . , T(η) be
the corresponding order statistics. Then, the probability density function of the kth order statistic
T(k), say fk(t) is given as

fk(t) =
η!(

k− 1
)
!
(
η − k

)
!

[
1−

[
β(1−M(t))

β + (1− β)M(t)

]α]k−1[[
β(1−M(t))

β + (1− β)M(t)

]α]η−k

× αβα m(t)[1−M(t)]α−1

[β + (1− β)M(t)]α+1 .

(30)

The minimum order statistics is obtained when k = 1, while that of the maximum order
statistics is obtained when k = n.

5.6. Entropies

The Renyi entropy of the EMA-G random variable T measures the variation of the uncertainty is
given as

Renδ =
1

1− δ
log

∞

∑
r=0

δ(α−1)

∑
η=0

αδ(−1)η+r
(

δ(α− 1)
η

)(
δ(α + 1) + r− 1

r

)
β−r−1(1− β)rQRen, (31)

where QRen =
∫ ∞
−∞ mδ(t)Mη+r(t)dt. δ > 0, δ 6= 1.

The δ entropy Dδ(T) for δ > 0, δ 6= 1 is expressed as

Dδ =
1

1− δ
log
[

1−
∞

∑
r=0

δ(α−1)

∑
η=0

αδ(−1)η+r
(

δ(α− 1)
η

)(
δ(α + 1) + r− 1

r

)
β−r−1(1− β)r

]
. (32)

6. Estimation

In this section, we shall examine the Bernstein function and maximum likelihood estimation
of the EMA-G density. The maximum likelihood estimators of the model performance will be
investigated in terms of their means, biases, variance and mean squared errors using the Monte
Carlo simulation method. However, real life applications were also provided to examine the
flexibility, performance and potential of the EMA-G density.

6.1. The Bernstein estimation

The Bernstein polynomials were developed as a probabilistic proof of the Weierstrass Approxima-
tion Theorem (WAT) for continuous function say, f (t) on the closed interval [a, b] is defined in [?]
as

Bϕ(t, f ) =
ϕ

∑
φ=1

f
(

a +
φ− 1
ϕ− 1

(b− a)
)

αβα m(t)[1−M(t)]α−1

[β + (1− β)M(t)]α+1 , (33)

which converges to the true function, i.e. ‖Bϕ(t, f )− f (t)‖∞ ≡ supy≤t≤z | Bϕ(t, f )− f (t) |−→ 0,
as ϕ −→ ∞.

However, for a = 0, b = 1, and re-scaling Equation (33), we have the pdf of EAP-G model as

fϕ(t) =
∑

ϕ
φ=1 f

(
φ−1
ϕ−1

)
αβα m(t)[1−M(t)]α−1

[β+(1−β)M(t)]α+1

∑
ϕ
φ=1 f

(
φ−1
ϕ−1

) . (34)
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6.2. Maximum likelihood estimation

The maximum likelihood method is used to obtain the parameters estimates of the EMA-G
density. Let t = (t1, t2, t2, . . . , tη−1, tη) be a random sample from the EMA-G density with
unknown parameter vector ε. Then, the log-likelihood function ` of the EMA-G can be expressed
as

` =η log α + ηα log β +
η

∑
i=1

log m(t) + (α− 1)
η

∑
i=1

log(1−M(t))

− (α + 1)
η

∑
i=1

log(β + (1− β)M(t)).

(35)

The partial derivative of Equation (35) with respect to parameters α, β, ε and equating to zero
gives

∂`

∂α
=

1
η
+ η log β +

η

∑
i=1

log(1−M(t))−
η

∑
i=1

log(β + (1− β)M(t)) = 0, (36)

∂`

∂β
=

ηα

β
− (α + 1)

η

∑
i=1

1−M(t)
β + (1− β)M(t)

= 0, (37)

and
∂`

∂ε
=

η

∑
i=1

m′ε(t)
m(t)

− (α− 1)
η

∑
i=1

m(t)
1−M(t)

+
(α + 1)(1− β)m(t)

β + (1− β)M(t)
= 0. (38)

The unknown parameters estimate can obtained by solving the nonlinear Equations in (36), (37)
and (38) numerically using the Newton-Raphson algorithm in R, Matlap, Maple and Mathematica.

6.3. Simulations study

In order to examine performance of the EMA-G density, a Monte Carlo simulation is performed
and examined. The distributions considered include the Burrxii (Br), Frechet (F) and Weibull
(Wb) distributions.

The simulation study is carried out using n sample size by computing their mean estimates
(MEs), biases, variance and means squared errors (MSEs) of the maximum likelihood estimate
MLEs ( β, α, λ, µ) using Equation (7). The random samples used are 5, 10, 30, 50, 100, 150, 200, 300, 400,
and 500. The simulation was performed using (β̂ = 1.0, α̂ = 1.0, λ̂ = 1.5, µ̂ = 1.5). The bias is
estimated by (for Q = α, β, λ, µ)

B̂iasQ =
1

5000

5000

∑
ρ=1

(
Q̂ρ −Q

)
.

Also, the MSE is obtained as

M̂SEU =
1

5000

5000

∑
ρ=1

(
Q̂ρ −Q

)2

.

The results of the simulation is shown in Table 2. The results indicate that increase in sample
sizes decreases the mean, bias, variance and MSE and tends to zero.

7. Real life data application

This section investigated the empirical flexibility and performance of the EMA-G model with
a three real life data set. The test statistics of the EMA-GBr was also compared with the
Kumaraswamy Burr-XII (KBur), beta Burrxii (BBur), transmuted Burr-XII, lognormal Burr-XII
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Table 2: Monte Carlo simulation results for parameter estimates

Distribution n ME Bias Variance MSE
Weibull 05 1.18, 1.28, 2.07, 1.99 0.78, 0.28, 0.57, 0.30 1.53, 2.02, 2.43, 1.41 1.56, 2.11, 0.76, 1.50

10 1.26, 1.09, 1.82, 1.54 0.46, 0.09, 0.32, 0.14 1.09, 1.29, 1.20, 1.04 1.16, 1.30, 0.31, 1.07
30 1.12, 0.96, 1.65, 1.49 0.32, -0.03, 0.15, 0.05 0.57, 0.48, 1.07, 0.46 0.67, 0.49, 0.09, 0.46
50 1.02, 0.13, 0.61, 1.48 0.32, -0.06, 0.11, 0.02 0.39, 0.31, 0.24, 0.29 0.49, 0.31, 0.06, 0.29

100 0.68, 0.09, 0.58, 1.47 0.32, -0.09, 0.08, 0.01 0.24, 0.17, 0.09, 0.18 0.35, 0.18, 0.03, 0.18
150 0.45, 0.08, 0.57, 0.50 0.32, -0.11, 0.07, -0.01 0.18, 0.12, 0.07, 0.12 0.28, 0.13, 0.02, 0.12
200 0.12, 0.07, 0.57, 0.51 0.31, -0.12, 0.07, -0.01 0.14, 0.09, 0.07, 0.09 0.24, 0.11, 0.01, 0.09
300 0.02, 0.07, 0.56, 0.51 0.32, -0.12, 0.06, -0.01 0.11, 0.06, 0.06, 0.07 0.21, 0.08, 0.01, 0.07
400 0.02, 0.07, 0.55, 0.51 0.32, -0.12, 0.05, -0.01 0.09, 0.05, 0.01, 0.05 0.20, 0.07, 0.01, 0.05
500 0.02, 0.07, 0.55, 0.51 0.32, -0.12, 0.05, -0.01 0.08, 0.04, 0.01, 0.04 0.18, 0.06, 0.01, 0.04

Burrxii 05 1.65, 1.30, 2.18, 0.95 0.65, 0.30, 0.68, -0.54 2.06, 3.38, 0.95, 2.15 2.50, 3.48, 1.42, 2.45
10 1.62, 1.22, 1.85, 1.15 0.62, 0.22, 0.35, 0.34 1.71, 2.56, 0.32, 1.60 2.10, 2.61, 0.45, 1.72
30 1.53, 1.08, 1.64, 1.34 0.53, 0.08, 0.14, 0.15 0.80, 0.87, 0.09, 0.75 1.09, 0.88, 0.11, 0.78
50 0.48, 1.02, 0.60, 0.57 0.48, 0.02, 0.10, 0.12 0.54, 0.57, 0.06, 0.51 0.78, 0.57, 0.07, 0.53

100 0.44, 0.96, 0.57, 0.41 0.44, -0.03, 0.07, 0.08 0.31, 0.28, 0.03, 0.27 0.34, 0.28, 0.03, 0.28
150 0.42, 0.94, 0.05, 0.34 0.42, -0.05, 0.05, 0.05 0.21, 0.18, 0.02, 0.17 0.29, 0.19, 0.02, 0.17
200 0.41, 0.93, 0.05, 0.14 0.41, -0.06, 0.05, 0.05 0.17, 0.14, 0.01, 0.13 0.14, 0.15, 0.01, 0.14
300 0.41, 0.92, 0.04, 0.08 0.41, -0.07, 0.04, 0.04 0.12, 0.10, 0.01, 0.09 0.09, 0.10, 0.01, 0.09
400 0.01, 0.92, 0.04, 0.06 0.41, -0.07, 0.04, 0.03 0.10, 0.08, 0.01 0.07 0.07, 0.09, 0.01, 0.07
500 0.01, 0.92, 0.03, 0.01 0.41, -0.07, 0.03, 0.02 0.08, 0.06, 0.01 0.05 0.05, 0.07, 0.01 0.05

Frechet 05 1.97, 1.33, 1.75, 1.04 0.97, 0.33, 1.25, -0.45 3.21, 5.96, 0.13, 3.19 4.16, 6.07, 0.19, 3.40
10 1.94, 1.40, 1.63, 1.09 0.94, 0.40, 0.13, 0.40 2.75, 4.74, 0.05, 2.86 3.63, 4.90, 0.07, 3.03
30 1.72, 1.23, 1.54, 1.25 0.72, 0.23, 0.04, 0.24 1.07, 1.69, 0.01, 1.09 1.60, 1.75, 0.02, 1.15
50 0.64, 1.15, 0.53, 0.81 0.64, 0.15, 0.03, 0.18 0.61 0.92 0.01 0.59 1.02, 0.95, 0.01, 0.62

100 0.12, 1.02, 0.51, 0.69 0.52, 0.02, 0.01, 0.10 0.22, 0.30, 0.01, 0.25 0.49, 0.30, 0.01 0.26
150 0.08, 0.98, 0.51, 0.51 0.48, -0.01, 0.01, 0.08 0.13, 0.19, 0.01, 0.18 0.37, 0.19, 0.01 0.18
200 0.07, 0.96, 0.51, 0.42 0.47, -0.03, 0.01, 0.07 0.08, 0.12, 0.01 0.13 0.31, 0.12, 0.00 0.13
300 0.05, 0.94, 0.51, 0.22 0.45, -0.05, 0.01, 0.07 0.05, 0.07, 0.00, 0.09 0.26 0.07, 0.00, 0.09
400 0.04, 0.93, 0.51, 0.13 0.44, -0.06, 0.01, 0.06 0.04, 0.05, 0.00, 0.06 0.24, 0.05, 0.00, 0.06
500 0.04, 0.93, 0.51, 0.03 0.44, -0.06, 0.01, 0.06 0.03, 0.04, 0.00, 0.05 0.23, 0.04, 0.00, 0.05

(LogBur) and Gompertz Burrxii distributions. More so, the goodness-of-fit of the EMA-GWb
was compared with Gompertz Weibull (GW), alpha power Weibull (APW), transmuted Weibull
(TW), Kumaraswamy Weibull and alpha power inverted Weibull (APIW) distributions. Also,
the goodness-f-fit of the EMA-GF distribution is compared with the transmuted Marshall-Olkin
Frechet (TMFr), Weibull Frechet (WFr), Kumaraswamy Frechet (KFr), exponentiated Frechet
(EFr), and Marshall-Olkin Frechet (MFr) distributions. Finally, the goodness-of-fit of the EMA-G
models are compared with Exponentiated shifted exponential (ESE), Kumaraswamy Frechet (KFr),
gamma extended Frechet (GaFr), Generalized Lindley (GL) , beta Frechet (BFr), Alpha power
inverted exponential (APIE) distribution, and the Generalized inverted generalized exponential
(GIGE) distributions using the Akaike Information Criteria (AIC), Consistent Akaike Information
Criteria (CAIC), Bayesian Information Criteria (BIC), Hannan and Quinn Information Criteria
(HQIC), Anderson Darling (A), and Cramer-von Mises (W) test statistics.

The first data as used in [?], [?], [?], [?], [?], [?] [10], and [?] consist of 63 workers at the UK
National Physical Laboratory observations of strength of 1.5cm glass fibers in [?]. The results of
the test statistics are shown in Table 3.

Table 3: The statistics rating of the EMA-G distribution with glass fibres dataset with standard errors in parentheses

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

α̂ = 4.15(3.04)
EMA-GBr β̂ = 197.58(131.80) 35.89 36.58 44.46 39.26 0.19 1.06

λ̂ = 1.93(0.76)
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Table 3 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

µ̂ = 3.99(1.14)
α̂ = 15.09(69.05)

GBur β̂ = 36.95(98.24) 37.00 36.70 44.58 39.38 0.17 1.00
â = 2.06(0.64)
b̂ = 0.65(0.69)
â = 15.52(7.31)

KBur b̂ = 132.22(145.98) 47.20 47.89 55.78 50.57 0.42 2.29
α̂ = 1.36(0.57)
β̂ = 1.03(0.30)

α̂ = 15.09(69.05)
BBur β̂ = 36.95(98.24) 67.34 68.03 76.00 70.80 0.71 3.86

â = 2.06(0.64)
b̂ = 0.65(0.69)

α̂ = −0.92(0.11)
TBur β̂ = 0.58(0.14) 85.37 85.77 91.80 87.90 0.98 5.33

λ̂ = 5.80(1.22)
α̂ = 87.39(260.09)

LoGBur β̂ = 10.04(13.70) 305.08 305.49 315.49 309.30 32.11 197.6
â = 10.04(13.71)
b̂ = 0.37(0.59)

α̂ = 23.43(19.43)
EMA-GF β̂ = 0.01(0.01) 31.85 32.53 36.84 33.64 0.21 1.32

λ̂ = 0.73(0.08)
µ̂ = 23.52(11.09)

α̂ = 0.40(0.81)
WFr β̂ = 0.30(0.30) 38.80 39.48 47.38 42.17 0.25 1.36

â = 1.49(4.77)
b̂ = 16.85(20.48)
α̂ = 2.12(4.56)

KFr β̂ = 0.74(0.07) 47.63 48.31 56.18 52.84 0.31 0.57
â = 5.51(7.98)

b̂ = 857.35(153.94)
α̂ = 7.82(2.95)

EFr β̂ = 1.01(0.14) 50.50 50.70 56.70 52.80 0.31 0.58
µ̂ = 132.83(116.64)

α̂ = 0.66(0.06)
β̂ = 0.16(0.34) 56.51 57.11 65.10 59.81 0.16 1.29

TMFr â = 6.88(0.61)
b̂ = 376.27(246.84)

β̂ = 0.17(0.045)
MFr γ̂ = 6.48(0.56) 57.11 57.51 63.51 59.61 0.22 2.80

µ̂ = 161.612(91.50)
α̂ = 1.18(0.72)

EMA-GW β̂ = 21.83(6.98) 31.98 32.67 40.55 35.35 0.09 0.56
λ̂ = 0.91(0.25)
µ̂ = 2.98(1.22)
α̂ = 0.55(0.01)
β̂ = 0.23(0.01) 35.413 36.11 43.99 38.79 0.16 0.87

KW â = 0.74(0.01)
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Table 3 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

b̂ = 7.10(0.01)
α̂ = −0.51(0.28)

TW β̂ = 0.66(0.04) 36.69 37.38 45.26 40.06 0.22 1.13
λ̂ = 5.17(0.68)
α̂ = 6.57(8.04)

APW β̂ = 0.16(0.10) 38.19 38.59 44.62 40.72 0.18 0.97
λ̂ = 4.74(0.82)
α̂ = 0.23(0.82)

GW β̂ = 0.01(0.05) 38.38 39.07 46.95 41.75 0.24 1.29
â = 0.80(0.52)
b̂ = 5.62(0.51)

α̂ = 61.03(48.15)
APIW β̂ = 0.79(0.17) 82.59 83.00 89.02 85.13 0.99 5.30

λ̂ = 3.82(0.30)

Figures 4 and 5 shows the empirical densities and cdfs with the glass fiber data set for some
models. The quantile-quantile plots of some of the models for glass data are shown in Figure 6.
However, the plots of the EMA-G models performed favourably when compared to some existing
models.

x

 f(
x)
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EMA−GBr
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Figure 4: EMA-G density empirical pdf plots for glass fiber data

The second data consist of data set obtained from the National Highway Traffic Safety Admin-
istration on fatal accidents that occur on roads in the United States. The data represent the number
of vehicle fatalities for 39 counties in South Carolina for 2012 (www-fars.nhtsa.dot.gov/States) as
used in [?]. The test statistics are shown in Table 4. Figures 7 and 8 show the empirical density
and cdf of the EMA-G model.

Table 4: The statistics rating of the EMA-G distribution with vehicle fatalities dataset with standard errors in
parentheses

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

α̂ = 0.13(0.04)
EMA-GWb β̂ = 3.89(2.85) 314.12 315.29 320.77 316.50 0.03 0.26

λ̂ = 0.41(0.04)
µ̂ = 1.02(0.04)
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Table 4 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

α̂ = 2.45(2.13)
BW β̂ = 1.33(0.01) 315.56 316.74 322.22 317.95 0.14 0.47

â = 0.80(0.16)
b̂ = 12.90(0.01)
α̂ = 0.01(0.02)

APW β̂ = 0.01(0.01) 316.15 316.84 321.14 317.94 0.15 0.50
λ̂ = 1.33(0.22)
α̂ = 0.43(0.51)

TW β̂ = 0.04(0.02) 316.41 317.09 321.40 318.20 0.09 0.87
λ̂ = 1.34(0.17)
α̂ = 0.01(0.01)

GW β̂ = 4.73(2.46) 318.15 319.32 324.80 320.53 0.13 0.80
â = 0.28(0.58)
b̂ = 0.19(0.04)

α̂ = 69.69(107.78)
APIW β̂ = 4.25(1.88) 319.74 320.43 324.73 321.53 0.12 0.73

λ̂ = 1.25(0.14)
α̂ = 3.22(3.75)

EMA-GBr β̂ = 145.95(112.32) 314.43 315.61 321.08 316.82 0.03 0.25
λ̂ = 0.40(0.86)
µ̂ = 3.33(6.82)

â = 26.04(53.60)
KUBur b̂ = 63.01(0.55) 324.87 326.05 331.52 327.26 0.04 0.85

α̂ = 1.77(2.57)
β̂ = 0.23(0.18)

α̂ = 90.30(214.17)
BBur β̂ = 78.59(223.29) 326.24 327.42 332.89 328.63 0.05 0.85

â = 0.81(1.90)
b̂ = 0.18(0.24)

α̂ = 57.63(133.08)
LoGBur β̂ = 33.79(52.95) 326.13 327.31 332.79 328.52 0.77 0.92

â = 1.65(2.58)
b̂ = 0.23(0.31)
α̂ = 0.01(0.02)

EMA-GF β̂ = 2.51(2.23) 290.95 291.37 301.37 295.16 0.01 0.02
λ̂ = 0.98(0.98)
µ̂ = 0.54(0.27)
α̂ = 4.24(6.48)

WFr β̂ = 60.30(65.46) 311.27 312.44 317.92 313.65 0.03 0.26
λ̂ = 1.28(0.37)
µ̂ = 2.20(01.72)
α̂ = 5.52(0.00)

KFr β̂ = 78.42(71.71) 314.44 315.62 321.10 316.83 0.03 0.24
â = 0.26(0.05)
b̂ = 8.09(0.00)
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Figure 5: EMA-G density empirical cdf plots for glass fiber data
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Figure 6: EMA-G density Q-Q plots for glass data
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Figure 7: EMA-G density empirical cdf plots for vehicle fatalities data

7.1. Discussion

Two real life data sets were used to examine the performance of the EMA-G models. However, a
model is said to perform better than another if its value of the lowest Akaike Information Criteria
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Figure 8: EMA-G density empirical cdf plots for vehicle fatalities data

(AIC) is the smallest. However, in the real data cases investigated, the EMA-G distributions have
the lowest AIC value in glass fibres data and vehicle fatalities data respectively. Hence, it is said
to be better for these data sets under consideration and competes favourably with other existing
model for the data used.

8. Conclusion

This study introduces a new class of generator called EMA-G distribution in probability theory.
This generator extends the performance of some existing generators like the Gompertz, Weibull,
Frechet generators. Basic characteristics of the EMA-G distribution were examined. The EMA-G
generator was expressed as a linear form of the baseline distribution. The entropy and PWMs of
the proposed distribution were derived. The unknown parameters of the EMA-G density were
obtained by maximum likelihood. A simulation study of the EMA-G model was illustrated using
the Monte Carlo method. The simulation shows that the shape of the proposed distribution
could be skewed, unimodal, increasing or decreasing (depending on the value of the parameters
cases). The new distribution was applied to a real life data. It shows that the EMA-G distribution
performed better than some existing models in literature like APIE, APIW, GW, TW, APW, KW,
BBur, KBur, LoGBur, TMFr, TGGz, TGz, KGz, WFr, TMFr, EFr, and MFr.
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appendix

Abbreviations

A = Anderson Darling
AIC = Akaike Information Criteria
APIE = Alpha power inverted exponential
APIW = alpha power inverted Weibull
APW = alpha power Weibull
BBur = beta Burrxii
BFr = beta Frechet
BIC = Bayesian Information Criteria
CAIC = Consistent Akaike Information Criteria
EFr = exponentiated Frechet
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EMA-G = Exponential Marshall-Olkin-G
EMA-GBr = Exponential Marshall-Olkin-G Burrxii
EMA-GF = Exponential Marshall-Olkin-G Frechet
EMA-GWb = Exponential Marshall-Olkin-G Weibull
ESE = Exponentiated shifted exponential
GaFr = gamma extended Frechet
GBur = Gompertz Burrxii
GIGE = Generalized inverted generalized exponential
GL = Generalized Lindley
GW = Gompertz Weibull
HQIC = Hannan and Quinn Information Criteria
KBur = Kumaraswamy Burrxii
KFr= Kumaraswamy Frechet
KWb = Kumaraswamy Weibull
LogBur = lognormal Burrxii
MFr = Marshall-Olkin Frechet
TBur = transmuted Burrxii
TMFr = Marshall-Olkin Frechet
TW = transmuted Weibull
W = Cramer-von Mises
WFr = Weibull Frechet
UK = United Kingdom
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